EP1959096A2 - Method for impingement cooling for gas turbines - Google Patents
Method for impingement cooling for gas turbines Download PDFInfo
- Publication number
- EP1959096A2 EP1959096A2 EP08151497A EP08151497A EP1959096A2 EP 1959096 A2 EP1959096 A2 EP 1959096A2 EP 08151497 A EP08151497 A EP 08151497A EP 08151497 A EP08151497 A EP 08151497A EP 1959096 A2 EP1959096 A2 EP 1959096A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- wall
- air
- cooling air
- impingement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03044—Impingement cooled combustion chamber walls or subassemblies
Definitions
- the invention relates to a method for impingement air cooling for gas turbines, in which cooling air impinges on formed in a partition impingement air openings in separate cooling air jets on the wall to be cooled wall area.
- impingement air cooling In gas turbine engines and stationary gas turbines, it is known to cool the highly heated components in the turbine such as rotor blades, vanes, liners or combustion chamber walls with a portion of the compressor air by means of impingement air.
- impingement air cooling the cooling air, as a steady stream of air, reaches the surface to be cooled via relatively small impingement cooling bores. Due to the strong pressure drop in the impingement cooling bores in each case a powerful air jet is formed, which causes a high heat transfer in each case in a localized area of the wall surface to be cooled.
- the EP 0 892 151 A1 For example, a channel formed in the leading edge of a turbine blade is exposed to impingement air via cooling holes from a main channel supplied with cooling air and is passed longitudinally through the blade height. An optimal cooling effect of the impact air jets is not achieved in this way.
- the disclosed EP 0 698 724 B1 a special blade formation for impingement air cooling of the trailing edge of a turbine blade with which the cooling effect of the impingement air reduced by crossflows in the impingement cooling air streams is to be improved.
- the EP 0 889 201 A1 suggests a specific shape of the wall surface to be cooled in order to increase the cooling effect of the impingement air jets.
- the invention has for its object to provide a method for impact air cooling acted upon by hot combustion gases components of a gas turbine, with which the cooling effect of the impact air can be improved.
- the basic idea of the invention is that ring vortex structures are produced in the space between the impingement air openings and the wall of the engine component to be cooled instead of a continuous impingement air stream at a distance by the impingement air openings on the input side with in a certain frequency and with certain amplitude with cooling air pulses be charged.
- a certain amplitude of the cooling air pulses and a matched size of the impingement air openings are strong ring vortex structures
- the temperature gradients on the component wall become due to the dynamic response behavior of the temperature boundary layer on average over time higher and thereby the heat transfer is increased on the wall of the component to be cooled.
- Ring vortex structures for maximum cooling effect highest intensity are achieved by a correspondingly larger amplitude, preferably at a certain resonant frequency
- the distance between the partition wall and the wall region to be cooled is chosen according to the invention such that resonance conditions prevail between the ring vortices generated at the impact air openings and the pressure waves induced and reflected due to the occurring ring vortices and thus an intensification of the ring vortex structures can be observed.
- the periodic generation of the ring vortex structures is interrupted at regular intervals, by the regularly recurring pauses in the periodic ring vorticity of the cooling air mass flow can be reduced with the same cooling effect.
- the improved cooling effect due to the ring vortex structures of the impingement air generated in a certain frequency reduces the cooling air requirement and increases the efficiency of the turbine or the life of the highly heated turbine components.
- a cavity 1 of an engine component for example, a blade of a turbine stage
- a temperature T cool a time-varying, ie in the speed periodically - for example, sinusoidal - changing cooling air mass flow, consisting of at a time interval consecutive cooling air velocity sacred V cool (t) with a certain amplitude V cool , introduced.
- a hot gas with a temperature T and a velocity V flows along the outer wall 3 of the engine component to be cooled.
- a partition wall 2 with impact air openings 4 is arranged at a distance from the outer wall 3, which with the temporally successive speed packets V cool (t ) of the unsteady cooling air mass flow are applied.
- the cooling air reaches the inner surface of the outer wall 3 and flows in a transverse flow at the speed V cross in the cooling air channel formed between the outer wall 3 and the partition 2 5 via openings, not shown, for example, film cooling holes, to the outside. Due to the periodic loading of the impingement air openings 4 with the cooling air velocity packets V cool (t), periodically successive strong ring vortex structures 6 are formed at their exit when they impinge on the transverse flow.
- the annular vortex structures 6 of the cooling air are able to substantially completely penetrate the cooling air channel 5 present between the dividing wall and the outer wall or the transverse flow present in the outer wall and thus strike the inner surface of the outer wall 3 with high intensity, which is better than with is cooled according to the prior art provided a steady impingement air flow.
- the new cooling method can be used on stationary gas turbines and gas turbine engines for impingement air cooling of rotor blades, vanes, liners and platforms as well as turbine and combustor housings.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Prallluftkühlung für Gasturbinen, bei dem Kühlluft über in einer Trennwand ausgebildete Prallluftöffnungen in separaten Kühlluftstrahlen auf den zu kühlenden Wandbereich prallt.The invention relates to a method for impingement air cooling for gas turbines, in which cooling air impinges on formed in a partition impingement air openings in separate cooling air jets on the wall to be cooled wall area.
Bei Gasturbinentriebwerken und stationären Gasturbinen ist es bekannt, die stark erwärmten Komponenten im Bereich der Turbine wie Rotorschaufeln, Leitschaufeln, Liner oder Brennkammerwände mit einem Teil der Kompressorluft mittels Prallluft zu kühlen. Bei der Prallluftkühlung gelangt die Kühlluft als stetiger Luftstrahl über relativ kleine Prallkühlbohrungen auf die zu kühlende Fläche. Aufgrund des starken Druckabfalls in den Prallkühlbohrungen wird jeweils ein kräftiger Luftstrahl ausgebildet, der jeweils in einem örtlich begrenzten Bereich der zu kühlenden wandfläche einen hohen Wärmeübergang bewirkt. Die Prallluftkühlung hat sich zwar als eines der effektivsten Verfahren zur Innenkühlung bei Gasturbinen bewährt, jedoch hat es nicht an Versuchen gefehlt, dieses Kühlprinzip weiter zu verbessern.In gas turbine engines and stationary gas turbines, it is known to cool the highly heated components in the turbine such as rotor blades, vanes, liners or combustion chamber walls with a portion of the compressor air by means of impingement air. In the case of impingement air cooling, the cooling air, as a steady stream of air, reaches the surface to be cooled via relatively small impingement cooling bores. Due to the strong pressure drop in the impingement cooling bores in each case a powerful air jet is formed, which causes a high heat transfer in each case in a localized area of the wall surface to be cooled. Although impingement air cooling has proved to be one of the most effective methods for internal cooling in gas turbines, there has been no lack of attempts to further improve this cooling principle.
Gemäß der
Bei einem Kühlsystem für die Turbinenschaufeln einer Gasturbine, das nicht auf dem Prinzip der Prallkühlung beruht, ist es weiterhin bekannt, die Kühlluft mit Hilfe eines Strömungsoszillators mit einer vorgegebenen Frequenz intermittierend in die zu kühlende Turbinenschaufel einzubringen und den pulsierenden Luftstrom nach dem Passieren der in der Schaufel ausgebildeten Kammern durch Öffnungen in der Schaufelhinterkante und der Schaufeloberkante wieder nach außen zu führen. Die Pulsation der Luft anstelle einer stetigen Luftzufuhr in das Schaufelinnere soll die konvektive Wärmeübertragung und damit die Kühlwirkung der zugeführten Kühlluft verbessern.In a cooling system for the turbine blades of a gas turbine, which is not based on the principle of impingement cooling, it is also known to introduce the cooling air by means of a flow oscillator with a predetermined frequency intermittently in the turbine blade to be cooled and the pulsating air flow after passing in the Bucket chambers formed by openings in the blade trailing edge and the upper edge of the blade to the outside again. The pulsation of the air instead of a steady supply of air into the blade interior to improve the convective heat transfer and thus the cooling effect of the supplied cooling air.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Prallluftkühlung von mit heißen verbrennungsgasen beaufschlagten Komponenten einer Gasturbine anzugeben, mit dem die Kühlwirkung der Prallluft verbessert werden kann.The invention has for its object to provide a method for impact air cooling acted upon by hot combustion gases components of a gas turbine, with which the cooling effect of the impact air can be improved.
Erfindungsgemäß wird die Aufgabe mit einem verfahren gemäß den Merkmalen des Patentanspruchs 1 gelöst. Aus den Unteransprüchen ergeben sich weitere Merkmale und vorteilhafte Weiterbildungen der Erfindung.According to the invention the object is achieved by a method according to the features of
Der Grundgedanke der Erfindung besteht mit anderen Worten darin, dass in dem Raum zwischen den Prallluftöffnungen und der zu kühlenden Wand der Triebwerkskomponente anstelle eines stetigen Prallluftstroms in zeitlichem Abstand Ringwirbelstrukturen erzeugt werden, indem die Prallluftöffnungen eingangsseitig mit in einer bestimmten Frequenz und mit bestimmter Amplitude mit Kühlluftimpulsen beaufschlagt werden. Bei einer bestimmten Amplitude der Kühlluftimpulse und einer darauf abgestimmten Größe der Prallluftöffnungen werden kräftige Ringwirbelstrukturen erzeugt, die die bestehende Querströmung an der zu kühlenden wandfläche durchdringen und mit der Frequenz Kühlluftgeschwindigkeitspakete oder Kühlluftimpulse vollständig bis an die betreffende Wandfläche gelangen, Infolge der in einer bestimmten Frequenz erzeugten Ringwirbel werden die Temperaturgradienten an der Bauteilwand aufgrund des dynamischen Antwortverhaltens der Temperaturgrenzschicht im zeitlichen Mittel höher und dadurch wird der Wärmeübergang an der Wand des zu kühlenden Bauteils erhöht.The basic idea of the invention, in other words, is that ring vortex structures are produced in the space between the impingement air openings and the wall of the engine component to be cooled instead of a continuous impingement air stream at a distance by the impingement air openings on the input side with in a certain frequency and with certain amplitude with cooling air pulses be charged. At a certain amplitude of the cooling air pulses and a matched size of the impingement air openings are strong ring vortex structures As a result of the ring vortices generated at a certain frequency, the temperature gradients on the component wall become due to the dynamic response behavior of the temperature boundary layer on average over time higher and thereby the heat transfer is increased on the wall of the component to be cooled.
Die Beziehung zwischen der Größe (D) der Prallluftöffnung, der Luftgeschwindigkeit (Vcool) in der Prallluftöffnung (Amplitude der Kühlluftgeschwindigkeitspakete) und der Frequenz (f), mit der die Prallluftöffnungen mit den Kühlluftimpulsen beaufschlagt werden, spiegelt sich in der sog. Strouhalzahl
Ringwirbelstrukturen mit für eine maximale Kühlwirkung höchster Intensität werden durch eine entsprechend größere Amplitude, vorzugsweise bei einer bestimmten Resonanzfrequenz erzielt,Ring vortex structures for maximum cooling effect highest intensity are achieved by a correspondingly larger amplitude, preferably at a certain resonant frequency,
Der Abstand zwischen der Trennwand und dem zu kühlenden Wandbereich wird erfindungsgemäß so gewählt, dass zwischen den an den Prallluftöffnungen erzeugten Ringwirbeln und den aufgrund der auftretenden Ringwirbel induzierten und reflektierten Druckwellen Resonanzbedingungen herrschen und dadurch eine Intensivierung der RingwirbelStrukturen zu verzeichnen ist.The distance between the partition wall and the wall region to be cooled is chosen according to the invention such that resonance conditions prevail between the ring vortices generated at the impact air openings and the pressure waves induced and reflected due to the occurring ring vortices and thus an intensification of the ring vortex structures can be observed.
In vorteilhafter Weiterbildung der Erfindung wird die periodische Erzeugung der Ringwirbelstrukturen in zeitlich regelmäßigen Abständen unterbrochen, Durch die regelmäßig wiederkehrenden Pausen in der periodischen Ringwirbelerzeugung kann der Kühlluftmassenstrom bei gleicher Kühlwirkung verringert werden.In an advantageous embodiment of the invention, the periodic generation of the ring vortex structures is interrupted at regular intervals, by the regularly recurring pauses in the periodic ring vorticity of the cooling air mass flow can be reduced with the same cooling effect.
Die aufgrund der in einer bestimmten Frequenz erzeugten Ringwirbelstrukturen der Prallluft verbesserte Kühlwirkung vermindert den Kühlluftbedarf und erhöht den Wirkungsgrad der Turbine oder die Lebensdauer der hoch erhitzten Turbinenkomponenten.The improved cooling effect due to the ring vortex structures of the impingement air generated in a certain frequency reduces the cooling air requirement and increases the efficiency of the turbine or the life of the highly heated turbine components.
Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung, in deren einziger Figur schematisch eine Teilansicht einer in einem Heißgastrom angeordneten Triebwerkskomponente wiedergegeben ist, näher erläutert.An embodiment of the invention will be explained in more detail with reference to the drawing, in the single figure of which a partial view of an engine component arranged in a hot gas stream is reproduced schematically.
In einen Hohlraum 1 einer Triebwerkskomponente, beispielsweise einer Leitschaufel einer Turbinenstufe, wird mit einer Temperatur Tcool ein zeitabhängig variierender, das heißt sich in der Geschwindigkeit periodisch - beispielsweise sinusförmig - ändernder Kühlluftmassenstrom, bestehend aus in zeitlichem Abstand aufeinander folgenden Kühlluftgeschwindigkeitsidaketen Vcool(t) mit einer bestimmten Amplitude Vcool, eingebracht. Entlang der zu kühlenden Außenwand 3 der Triebwerkskomponente strömt ein Heißgas mit einer Temperatur T und einer Geschwindigkeit V. In dem Hohlraum 1 ist im Abstand von der Außenwand 3 eine Trennwand 2 mit Prallluftöffnungen 4 angeordnet, die mit den zeitlich aufeinander folgenden Geschwindigkeitspaketen Vcool(t) des unstetigen Kühlluftmassenstroms beaufschlagt werden. Die Kühlluft gelangt an die Innenfläche der Außenwand 3 und strömt in einer Querströmung mit der Geschwindigkeit Vcross in dem zwischen der Außenwand 3 und der Trennwand 2 gebildeten Kühlluftkanal 5 über nicht dargestellte Öffnungen, beispielsweise Filmkühlöffnungen, nach außen. Aufgrund der periodischen Beaufschlagung der Prallluftöffnungen 4 mit den Kühlluftgeschwindigkeitspaketen Vcool(t) werden an deren Ausgang mit dem Auftreffen auf die Querströmung periodisch aufeinander folgende kräftige Ringwirbelstrukturen 6 ausgebildet. Die Ringwirbelstrukturen 6 der Kühlluft sind in der Lage, den zwischen der Trennwand und der Außenwand vorhandenen Kühlluftkanal 5 bzw. die in diesem vorhandene Querströmung im Wesentlichen vollständig zu durchdringen und treffen somit mit hoher Intensität auf die Innenfläche der Außenwand 3, die dadurch besser als mit einem nach dem Stand der Technik vorgesehenen stetigen Prallluftstrom gekühlt wird.In a
Aufgrund der hohen Effizienz der unstetigen Prallluftkühlung erhöht sich bei gleicher Kühlluftmenge die Lebensdauer der betreffenden Turbinenkomponenten oder der Kühlluftbedarf wird verringert und der Wirkungsgrad der Turbine wird verbessert. Das neue Kühlverfahren kann bei stationären Gasturbinen und Gasturbinentriebwerken zur Prallluftkühlung von Rotorschaufeln, Leitschaufeln, Linern und Plattformen sowie Turbinen- und Brennkammergehäusen eingesetzt werden.Due to the high efficiency of the unsteady impingement air cooling increases with the same amount of cooling air, the life of the turbine components in question or the cooling air requirement is reduced and the efficiency of the turbine is improved. The new cooling method can be used on stationary gas turbines and gas turbine engines for impingement air cooling of rotor blades, vanes, liners and platforms as well as turbine and combustor housings.
Zur Ausbildung von Ringwirbelstrukturen mit hoher Prallluftkühlwirkung ist es erforderlich, die Größe bzw. den Durchmesser D der Prallluftöffnung 4, die Frequenz f der Kühlluftgeschwindigkeitäpakete oder Kühlluftimpulse bzw. die Wirbelablösefrequenz und die Amplitude der Strösaungsgeschwindigkeitspakete und damit die Strömungsgeschwindigkeit der Kühlluft in der Prallluftkühlöffnung 4 so einzustellen und aufeinander abzustimmen, dass möglichst kräftige Ringwirbelstrukturen 6 mit hoher Kühlwirkung ausgebildet werden. Diese drei Parameter sind in der Strouhalsahl Sr, einer dimensionslosen Frequenz, die das Verhältnis aus dem Produkt der Kühlluftimspulsfreguenz und der Größe der Prallluftöffnung und der Strömungsgeschwindigkeit ist, verknüpft, wobei
Im Ergebnis aufwendiger Versuchsreihen wurde ermittelt, dass bei einer Strouhalzahl Sr im Bereich von 0,8 bis 1,2 kräftige Ringwirbelstrukturen der Prallkühlluft mit einer Frequenz erzeugt werden, die gegenüber einem stetigen Prallluftkühlstrom zu einer deutlichen Verbesserung der Kühlwirkung der Prallluft führen. Dabei sollte die Gescbwindigkeitsamplitude der Kühlluftgeschwindigkeitspakete (Kühlluftimpulse) einen bestimmten Wert nicht unterschreiten. Intensive Ringwirbelstrukturen werden bevorzugt unter Resonanzbedingungen zwischen den an den Prallluftöffnungen erzeugten Ringwirbeln und den sich aufgrund des Auftretens der Ringwirbel an der Bauteilwand und der Trennwand aufbauenden Druckschwingungen erzeugt.As a result of elaborate test series it was determined that at a Strouhalzahl Sr in the range of 0.8 to 1.2 strong annular vortex structures of the impingement cooling air are generated at a frequency that lead to a steady impact air cooling current to a significant improvement in the cooling effect of the impingement air. The speed amplitude of the cooling air velocity packets (cooling air impulses) should not fall below a certain value. Intensive ring vortex structures are preferably generated under resonance conditions between the ring vortices generated at the impact air openings and the pressure oscillations that build up due to the occurrence of the ring vortices on the component wall and the partition wall.
- 11
- Hohlraum einer TurbinenkomponenteCavity of a turbine component
- 22
- Trennwand in 1Partition in 1
- 33
- Außenwand von 1Outside wall of 1
- 44
- Prallluftöffnungen in 2Impact air openings in 2
- 55
- Kühlluftkanal zw. 2 und 3Cooling air duct between 2 and 3
- 66
- RingwirbelstrukturenRing vortex structures
- Vcool(t)V cool (t)
- KühlluftgeschwindigkeitspaketCooling air speed packet
- Vcool V cool
- Kühlluftgeschwindigkeit, Amplitude v. Vcool(t)Cooling air velocity, amplitude v. V cool (t)
- Tcool T cool
- KühllufttemperaturCooling air temperature
- VV
- HeißgasgeschwindigkeitHot gas velocity
- Vcross V cross
- Geschwindigkeit der Querströmung in 5Velocity of the cross flow in FIG. 5
- DD
- Größe der PrallluftöffnungSize of the impingement air opening
- FF
- Frequenz von Vcool(t) bzw. 6Frequency of V cool (t) or 6
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007008319A DE102007008319A1 (en) | 2007-02-16 | 2007-02-16 | Method for impingement air cooling for gas turbines |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1959096A2 true EP1959096A2 (en) | 2008-08-20 |
EP1959096A3 EP1959096A3 (en) | 2013-02-20 |
EP1959096B1 EP1959096B1 (en) | 2014-10-01 |
Family
ID=39144432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08151497.8A Ceased EP1959096B1 (en) | 2007-02-16 | 2008-02-15 | Method for impingement cooling for gas turbines |
Country Status (3)
Country | Link |
---|---|
US (1) | US8152463B2 (en) |
EP (1) | EP1959096B1 (en) |
DE (1) | DE102007008319A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2540992A3 (en) * | 2011-06-27 | 2017-01-25 | Rolls-Royce Deutschland Ltd & Co KG | Dispositif et procédé de génération d'un choc formant des remous en anneau ainsi que la turbomachine dotée d'un tel dispositif |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9458855B2 (en) | 2010-12-30 | 2016-10-04 | Rolls-Royce North American Technologies Inc. | Compressor tip clearance control and gas turbine engine |
US9482249B2 (en) * | 2013-09-09 | 2016-11-01 | General Electric Company | Three-dimensional printing process, swirling device and thermal management process |
DE102013112725A1 (en) | 2013-11-19 | 2015-05-21 | Hochschule Karlsruhe | Impingement jet cooling equipment |
US10208603B2 (en) * | 2014-11-18 | 2019-02-19 | United Technologies Corporation | Staggered crossovers for airfoils |
CN105927288A (en) * | 2016-06-02 | 2016-09-07 | 西北工业大学 | Rotor disc boss type periodic pressure wave generating device |
US10480327B2 (en) | 2017-01-03 | 2019-11-19 | General Electric Company | Components having channels for impingement cooling |
CN113153444B (en) * | 2021-04-09 | 2022-12-09 | 西安交通大学 | Turbine blade internal impingement cooling structure based on ultrasonic wave enhanced heat transfer |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2044695B1 (en) * | 1969-03-08 | 1974-05-24 | Rolls Royce | |
US4095417A (en) * | 1976-08-23 | 1978-06-20 | Avco Corporation | Apparatus for and method of suppressing infrared radiation emitted from gas turbine engine |
IN170251B (en) * | 1987-04-16 | 1992-03-07 | Luminis Pty Ltd | |
DE4244302C2 (en) * | 1992-12-28 | 2002-08-29 | Alstom | Impact cooling device |
JP3415663B2 (en) * | 1992-12-28 | 2003-06-09 | アルストム | Equipment for cooling the cooling surface in an impact manner |
US5391052A (en) * | 1993-11-16 | 1995-02-21 | General Electric Co. | Impingement cooling and cooling medium retrieval system for turbine shrouds and methods of operation |
US5464322A (en) | 1994-08-23 | 1995-11-07 | General Electric Company | Cooling circuit for turbine stator vane trailing edge |
DE4430302A1 (en) * | 1994-08-26 | 1996-02-29 | Abb Management Ag | Impact-cooled wall part |
DE19520291A1 (en) * | 1995-06-02 | 1996-12-05 | Abb Management Ag | Combustion chamber |
GB2326706A (en) * | 1997-06-25 | 1998-12-30 | Europ Gas Turbines Ltd | Heat transfer structure |
EP0889201B1 (en) * | 1997-07-03 | 2003-01-15 | ALSTOM (Switzerland) Ltd | Impingement arrangement for a convective cooling or heating process |
EP0892151A1 (en) | 1997-07-15 | 1999-01-20 | Asea Brown Boveri AG | Cooling system for the leading edge of a hollow blade for gas turbine |
US6053203A (en) * | 1997-08-15 | 2000-04-25 | Administrators Of The Tulane Educational Fund | Mechanically-driven pulsating flow valve for heat and mass transfer enhancement |
DE29714742U1 (en) * | 1997-08-18 | 1998-12-17 | Siemens AG, 80333 München | Heat shield component with cooling fluid return and heat shield arrangement for a hot gas-carrying component |
AU6238199A (en) * | 1998-06-01 | 2000-01-10 | Penn State Research Foundation, The | Oscillator fin as a novel heat transfer augmentation device |
DE10202783A1 (en) * | 2002-01-25 | 2003-07-31 | Alstom Switzerland Ltd | Cooled component for a thermal machine, in particular a gas turbine |
-
2007
- 2007-02-16 DE DE102007008319A patent/DE102007008319A1/en not_active Withdrawn
-
2008
- 2008-02-15 EP EP08151497.8A patent/EP1959096B1/en not_active Ceased
- 2008-02-15 US US12/071,156 patent/US8152463B2/en active Active
Non-Patent Citations (1)
Title |
---|
MLADIN E-C ET AL.: "INTERNATIONAL JOURNAL OF THERMAL SCIENCES", vol. 39, 1 February 2000, EDITIONS ELSEVIER, article "Alterations to coherent flow structures and heat transfer due to pulsations in an im- pinging air-jet", pages: 236 - 248 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2540992A3 (en) * | 2011-06-27 | 2017-01-25 | Rolls-Royce Deutschland Ltd & Co KG | Dispositif et procédé de génération d'un choc formant des remous en anneau ainsi que la turbomachine dotée d'un tel dispositif |
Also Published As
Publication number | Publication date |
---|---|
US20080226441A1 (en) | 2008-09-18 |
EP1959096B1 (en) | 2014-10-01 |
EP1959096A3 (en) | 2013-02-20 |
US8152463B2 (en) | 2012-04-10 |
DE102007008319A1 (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1959096B1 (en) | Method for impingement cooling for gas turbines | |
DE102007007177B4 (en) | Method and apparatus for cooling gas turbine rotor blades | |
DE102009044585B4 (en) | Method for operating a turbine engine and arrangement in a turbine engine | |
DE60224339T2 (en) | Cooling insert with tangential outflow | |
DE69500735T2 (en) | GAS TURBINE SHOVEL | |
DE4316475C2 (en) | A gas turbine combustor | |
DE102010037811B4 (en) | Device and method for cooling nozzles | |
EP0203431B2 (en) | Impingement cooled transition duct | |
EP2300686B1 (en) | Gas turbine comprising a guide vane | |
CH703144B1 (en) | Turbine blade, turbine rotor, and method for cooling a turbine blade. | |
DE102010016442A1 (en) | Flange-cooled turbine nozzle | |
EP3124746A1 (en) | Method for cooling a turbo-engine component and turbo-engine component | |
EP2236765A2 (en) | Cooling arrangement for a turbine engine component | |
DE102008055522A1 (en) | Divergent turbine nozzle | |
EP2582921A2 (en) | Noise-reduced turbomachine | |
EP3134677A1 (en) | Burner comprising a fluidic oscillator, for a gas turbine, and a gas turbine comprising at least one such burner | |
EP1429001A2 (en) | Intake silencer for gas turbines | |
EP0489193A1 (en) | Combustion chamber for gas turbine | |
EP0718483A2 (en) | Steam injection in gas turbine | |
EP2584148A1 (en) | Film-cooled turbine blade for a turbomachine | |
EP1219780B1 (en) | Apparatus and method for the impingement cooling of a turbomachine component | |
DE102004010620A1 (en) | Method for the effective use of cooling for the acoustic damping of combustion chamber pulsations and combustion chamber | |
DE102013209746B4 (en) | Turbine stage with a blow-out arrangement and method for blowing out a barrier gas flow | |
EP2400115B1 (en) | Thermally Loaded, Cooled Component | |
EP2540992B1 (en) | Device and method for producing an impingement air jet in the form of an annular swirl and turbocharger with such a device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 25/12 20060101ALI20130116BHEP Ipc: F01D 5/18 20060101AFI20130116BHEP |
|
17P | Request for examination filed |
Effective date: 20130820 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140509 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JENS, TAEGE Inventor name: DR. ERIK, JANKE Inventor name: DR. FRANK, HASELBACH Inventor name: DR. MATTHIAS, REYER Inventor name: DR. TIMM, JANETZKE Inventor name: PROF. DR. WOFLGANG NITSCHE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008012267 Country of ref document: DE Effective date: 20141113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008012267 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150702 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200227 Year of fee payment: 13 Ref country code: GB Payment date: 20200227 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200225 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008012267 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210901 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210215 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |