EP1959096A2 - Method for impingement cooling for gas turbines - Google Patents

Method for impingement cooling for gas turbines Download PDF

Info

Publication number
EP1959096A2
EP1959096A2 EP08151497A EP08151497A EP1959096A2 EP 1959096 A2 EP1959096 A2 EP 1959096A2 EP 08151497 A EP08151497 A EP 08151497A EP 08151497 A EP08151497 A EP 08151497A EP 1959096 A2 EP1959096 A2 EP 1959096A2
Authority
EP
European Patent Office
Prior art keywords
cooling
wall
air
cooling air
impingement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08151497A
Other languages
German (de)
French (fr)
Other versions
EP1959096B1 (en
EP1959096A3 (en
Inventor
Timm Janetzke
Wolfgang Nitsche
Matthias Reyer
Frank Haselbach
Erik Janke
Jens Täge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1959096A2 publication Critical patent/EP1959096A2/en
Publication of EP1959096A3 publication Critical patent/EP1959096A3/en
Application granted granted Critical
Publication of EP1959096B1 publication Critical patent/EP1959096B1/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to a method for impingement air cooling for gas turbines, in which cooling air impinges on formed in a partition impingement air openings in separate cooling air jets on the wall to be cooled wall area.
  • impingement air cooling In gas turbine engines and stationary gas turbines, it is known to cool the highly heated components in the turbine such as rotor blades, vanes, liners or combustion chamber walls with a portion of the compressor air by means of impingement air.
  • impingement air cooling the cooling air, as a steady stream of air, reaches the surface to be cooled via relatively small impingement cooling bores. Due to the strong pressure drop in the impingement cooling bores in each case a powerful air jet is formed, which causes a high heat transfer in each case in a localized area of the wall surface to be cooled.
  • the EP 0 892 151 A1 For example, a channel formed in the leading edge of a turbine blade is exposed to impingement air via cooling holes from a main channel supplied with cooling air and is passed longitudinally through the blade height. An optimal cooling effect of the impact air jets is not achieved in this way.
  • the disclosed EP 0 698 724 B1 a special blade formation for impingement air cooling of the trailing edge of a turbine blade with which the cooling effect of the impingement air reduced by crossflows in the impingement cooling air streams is to be improved.
  • the EP 0 889 201 A1 suggests a specific shape of the wall surface to be cooled in order to increase the cooling effect of the impingement air jets.
  • the invention has for its object to provide a method for impact air cooling acted upon by hot combustion gases components of a gas turbine, with which the cooling effect of the impact air can be improved.
  • the basic idea of the invention is that ring vortex structures are produced in the space between the impingement air openings and the wall of the engine component to be cooled instead of a continuous impingement air stream at a distance by the impingement air openings on the input side with in a certain frequency and with certain amplitude with cooling air pulses be charged.
  • a certain amplitude of the cooling air pulses and a matched size of the impingement air openings are strong ring vortex structures
  • the temperature gradients on the component wall become due to the dynamic response behavior of the temperature boundary layer on average over time higher and thereby the heat transfer is increased on the wall of the component to be cooled.
  • Ring vortex structures for maximum cooling effect highest intensity are achieved by a correspondingly larger amplitude, preferably at a certain resonant frequency
  • the distance between the partition wall and the wall region to be cooled is chosen according to the invention such that resonance conditions prevail between the ring vortices generated at the impact air openings and the pressure waves induced and reflected due to the occurring ring vortices and thus an intensification of the ring vortex structures can be observed.
  • the periodic generation of the ring vortex structures is interrupted at regular intervals, by the regularly recurring pauses in the periodic ring vorticity of the cooling air mass flow can be reduced with the same cooling effect.
  • the improved cooling effect due to the ring vortex structures of the impingement air generated in a certain frequency reduces the cooling air requirement and increases the efficiency of the turbine or the life of the highly heated turbine components.
  • a cavity 1 of an engine component for example, a blade of a turbine stage
  • a temperature T cool a time-varying, ie in the speed periodically - for example, sinusoidal - changing cooling air mass flow, consisting of at a time interval consecutive cooling air velocity sacred V cool (t) with a certain amplitude V cool , introduced.
  • a hot gas with a temperature T and a velocity V flows along the outer wall 3 of the engine component to be cooled.
  • a partition wall 2 with impact air openings 4 is arranged at a distance from the outer wall 3, which with the temporally successive speed packets V cool (t ) of the unsteady cooling air mass flow are applied.
  • the cooling air reaches the inner surface of the outer wall 3 and flows in a transverse flow at the speed V cross in the cooling air channel formed between the outer wall 3 and the partition 2 5 via openings, not shown, for example, film cooling holes, to the outside. Due to the periodic loading of the impingement air openings 4 with the cooling air velocity packets V cool (t), periodically successive strong ring vortex structures 6 are formed at their exit when they impinge on the transverse flow.
  • the annular vortex structures 6 of the cooling air are able to substantially completely penetrate the cooling air channel 5 present between the dividing wall and the outer wall or the transverse flow present in the outer wall and thus strike the inner surface of the outer wall 3 with high intensity, which is better than with is cooled according to the prior art provided a steady impingement air flow.
  • the new cooling method can be used on stationary gas turbines and gas turbine engines for impingement air cooling of rotor blades, vanes, liners and platforms as well as turbine and combustor housings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The method involves allowing cooling air to impinge over impingement air openings (4) formed in a partition wall in separate cooling air jets on a wall area. Ring eddy structures (6) are produced using high cooling effect penetrating a cross-flow and impinging on the wall area provided at a temporal distance from the cross-flow, at high intensity and frequency. The structures are produced as the impingement air openings are subjected at an input side with cooling air speed-packets (Vcool(t)) of a preset amplitude and frequency.

Description

Die Erfindung betrifft ein Verfahren zur Prallluftkühlung für Gasturbinen, bei dem Kühlluft über in einer Trennwand ausgebildete Prallluftöffnungen in separaten Kühlluftstrahlen auf den zu kühlenden Wandbereich prallt.The invention relates to a method for impingement air cooling for gas turbines, in which cooling air impinges on formed in a partition impingement air openings in separate cooling air jets on the wall to be cooled wall area.

Bei Gasturbinentriebwerken und stationären Gasturbinen ist es bekannt, die stark erwärmten Komponenten im Bereich der Turbine wie Rotorschaufeln, Leitschaufeln, Liner oder Brennkammerwände mit einem Teil der Kompressorluft mittels Prallluft zu kühlen. Bei der Prallluftkühlung gelangt die Kühlluft als stetiger Luftstrahl über relativ kleine Prallkühlbohrungen auf die zu kühlende Fläche. Aufgrund des starken Druckabfalls in den Prallkühlbohrungen wird jeweils ein kräftiger Luftstrahl ausgebildet, der jeweils in einem örtlich begrenzten Bereich der zu kühlenden wandfläche einen hohen Wärmeübergang bewirkt. Die Prallluftkühlung hat sich zwar als eines der effektivsten Verfahren zur Innenkühlung bei Gasturbinen bewährt, jedoch hat es nicht an Versuchen gefehlt, dieses Kühlprinzip weiter zu verbessern.In gas turbine engines and stationary gas turbines, it is known to cool the highly heated components in the turbine such as rotor blades, vanes, liners or combustion chamber walls with a portion of the compressor air by means of impingement air. In the case of impingement air cooling, the cooling air, as a steady stream of air, reaches the surface to be cooled via relatively small impingement cooling bores. Due to the strong pressure drop in the impingement cooling bores in each case a powerful air jet is formed, which causes a high heat transfer in each case in a localized area of the wall surface to be cooled. Although impingement air cooling has proved to be one of the most effective methods for internal cooling in gas turbines, there has been no lack of attempts to further improve this cooling principle.

Gemäß der EP 0 892 151 A1 wird ein in der Vorderkante einer Turbinenschaufel ausgebildeter Kanal über Kühlbohrungen aus einem mit Kühlluft versorgten Hauptkanal mit Prallluft beaufschlagt und über die Schaufelhöhe längsdurchströmt. Eine optimale Kühlwirkung der Prallluftstrahlen wird auf diese weise nicht erreicht. Demgegenüber offenbart die EP 0 698 724 B1 eine spezielle Schaufelausbildung zur Prallluftkühlung der Hinterkante einer Turbinenschaufel, mit der die durch Querströme in den Prallkühlluftströmen verminderte Kühlwirkung der Prallluft verbessert werden soll. Die EP 0 889 201 A1 schlägt eine spezifische Form der zu kühlenden Wandfläche vor, um die Kühlwirkung der Prallluftstrahlen zu erhöhen.According to the EP 0 892 151 A1 For example, a channel formed in the leading edge of a turbine blade is exposed to impingement air via cooling holes from a main channel supplied with cooling air and is passed longitudinally through the blade height. An optimal cooling effect of the impact air jets is not achieved in this way. In contrast, the disclosed EP 0 698 724 B1 a special blade formation for impingement air cooling of the trailing edge of a turbine blade with which the cooling effect of the impingement air reduced by crossflows in the impingement cooling air streams is to be improved. The EP 0 889 201 A1 suggests a specific shape of the wall surface to be cooled in order to increase the cooling effect of the impingement air jets.

Bei einem Kühlsystem für die Turbinenschaufeln einer Gasturbine, das nicht auf dem Prinzip der Prallkühlung beruht, ist es weiterhin bekannt, die Kühlluft mit Hilfe eines Strömungsoszillators mit einer vorgegebenen Frequenz intermittierend in die zu kühlende Turbinenschaufel einzubringen und den pulsierenden Luftstrom nach dem Passieren der in der Schaufel ausgebildeten Kammern durch Öffnungen in der Schaufelhinterkante und der Schaufeloberkante wieder nach außen zu führen. Die Pulsation der Luft anstelle einer stetigen Luftzufuhr in das Schaufelinnere soll die konvektive Wärmeübertragung und damit die Kühlwirkung der zugeführten Kühlluft verbessern.In a cooling system for the turbine blades of a gas turbine, which is not based on the principle of impingement cooling, it is also known to introduce the cooling air by means of a flow oscillator with a predetermined frequency intermittently in the turbine blade to be cooled and the pulsating air flow after passing in the Bucket chambers formed by openings in the blade trailing edge and the upper edge of the blade to the outside again. The pulsation of the air instead of a steady supply of air into the blade interior to improve the convective heat transfer and thus the cooling effect of the supplied cooling air.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Prallluftkühlung von mit heißen verbrennungsgasen beaufschlagten Komponenten einer Gasturbine anzugeben, mit dem die Kühlwirkung der Prallluft verbessert werden kann.The invention has for its object to provide a method for impact air cooling acted upon by hot combustion gases components of a gas turbine, with which the cooling effect of the impact air can be improved.

Erfindungsgemäß wird die Aufgabe mit einem verfahren gemäß den Merkmalen des Patentanspruchs 1 gelöst. Aus den Unteransprüchen ergeben sich weitere Merkmale und vorteilhafte Weiterbildungen der Erfindung.According to the invention the object is achieved by a method according to the features of patent claim 1. From the dependent claims, further features and advantageous developments of the invention.

Der Grundgedanke der Erfindung besteht mit anderen Worten darin, dass in dem Raum zwischen den Prallluftöffnungen und der zu kühlenden Wand der Triebwerkskomponente anstelle eines stetigen Prallluftstroms in zeitlichem Abstand Ringwirbelstrukturen erzeugt werden, indem die Prallluftöffnungen eingangsseitig mit in einer bestimmten Frequenz und mit bestimmter Amplitude mit Kühlluftimpulsen beaufschlagt werden. Bei einer bestimmten Amplitude der Kühlluftimpulse und einer darauf abgestimmten Größe der Prallluftöffnungen werden kräftige Ringwirbelstrukturen erzeugt, die die bestehende Querströmung an der zu kühlenden wandfläche durchdringen und mit der Frequenz Kühlluftgeschwindigkeitspakete oder Kühlluftimpulse vollständig bis an die betreffende Wandfläche gelangen, Infolge der in einer bestimmten Frequenz erzeugten Ringwirbel werden die Temperaturgradienten an der Bauteilwand aufgrund des dynamischen Antwortverhaltens der Temperaturgrenzschicht im zeitlichen Mittel höher und dadurch wird der Wärmeübergang an der Wand des zu kühlenden Bauteils erhöht.The basic idea of the invention, in other words, is that ring vortex structures are produced in the space between the impingement air openings and the wall of the engine component to be cooled instead of a continuous impingement air stream at a distance by the impingement air openings on the input side with in a certain frequency and with certain amplitude with cooling air pulses be charged. At a certain amplitude of the cooling air pulses and a matched size of the impingement air openings are strong ring vortex structures As a result of the ring vortices generated at a certain frequency, the temperature gradients on the component wall become due to the dynamic response behavior of the temperature boundary layer on average over time higher and thereby the heat transfer is increased on the wall of the component to be cooled.

Die Beziehung zwischen der Größe (D) der Prallluftöffnung, der Luftgeschwindigkeit (Vcool) in der Prallluftöffnung (Amplitude der Kühlluftgeschwindigkeitspakete) und der Frequenz (f), mit der die Prallluftöffnungen mit den Kühlluftimpulsen beaufschlagt werden, spiegelt sich in der sog. Strouhalzahl Sr = f × D / V cool

Figure imgb0001
wider, die erfindungsgemäß zwischen 0,2 und 2,0 liegt und vorzugsweise zwischen 0,8 und 1,2 beträgt.The relationship between the magnitude (D) of the impingement air opening, the air velocity (V cool ) in the impingement air opening (amplitude of the cooling air velocity packets), and the frequency (f) applied to the impingement air openings with the cooling air pulses is reflected in the so-called Strouhal number Sr = f × D / V cool
Figure imgb0001
resist, which according to the invention is between 0.2 and 2.0, and preferably between 0.8 and 1.2.

Ringwirbelstrukturen mit für eine maximale Kühlwirkung höchster Intensität werden durch eine entsprechend größere Amplitude, vorzugsweise bei einer bestimmten Resonanzfrequenz erzielt,Ring vortex structures for maximum cooling effect highest intensity are achieved by a correspondingly larger amplitude, preferably at a certain resonant frequency,

Der Abstand zwischen der Trennwand und dem zu kühlenden Wandbereich wird erfindungsgemäß so gewählt, dass zwischen den an den Prallluftöffnungen erzeugten Ringwirbeln und den aufgrund der auftretenden Ringwirbel induzierten und reflektierten Druckwellen Resonanzbedingungen herrschen und dadurch eine Intensivierung der RingwirbelStrukturen zu verzeichnen ist.The distance between the partition wall and the wall region to be cooled is chosen according to the invention such that resonance conditions prevail between the ring vortices generated at the impact air openings and the pressure waves induced and reflected due to the occurring ring vortices and thus an intensification of the ring vortex structures can be observed.

In vorteilhafter Weiterbildung der Erfindung wird die periodische Erzeugung der Ringwirbelstrukturen in zeitlich regelmäßigen Abständen unterbrochen, Durch die regelmäßig wiederkehrenden Pausen in der periodischen Ringwirbelerzeugung kann der Kühlluftmassenstrom bei gleicher Kühlwirkung verringert werden.In an advantageous embodiment of the invention, the periodic generation of the ring vortex structures is interrupted at regular intervals, by the regularly recurring pauses in the periodic ring vorticity of the cooling air mass flow can be reduced with the same cooling effect.

Die aufgrund der in einer bestimmten Frequenz erzeugten Ringwirbelstrukturen der Prallluft verbesserte Kühlwirkung vermindert den Kühlluftbedarf und erhöht den Wirkungsgrad der Turbine oder die Lebensdauer der hoch erhitzten Turbinenkomponenten.The improved cooling effect due to the ring vortex structures of the impingement air generated in a certain frequency reduces the cooling air requirement and increases the efficiency of the turbine or the life of the highly heated turbine components.

Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung, in deren einziger Figur schematisch eine Teilansicht einer in einem Heißgastrom angeordneten Triebwerkskomponente wiedergegeben ist, näher erläutert.An embodiment of the invention will be explained in more detail with reference to the drawing, in the single figure of which a partial view of an engine component arranged in a hot gas stream is reproduced schematically.

In einen Hohlraum 1 einer Triebwerkskomponente, beispielsweise einer Leitschaufel einer Turbinenstufe, wird mit einer Temperatur Tcool ein zeitabhängig variierender, das heißt sich in der Geschwindigkeit periodisch - beispielsweise sinusförmig - ändernder Kühlluftmassenstrom, bestehend aus in zeitlichem Abstand aufeinander folgenden Kühlluftgeschwindigkeitsidaketen Vcool(t) mit einer bestimmten Amplitude Vcool, eingebracht. Entlang der zu kühlenden Außenwand 3 der Triebwerkskomponente strömt ein Heißgas mit einer Temperatur T und einer Geschwindigkeit V. In dem Hohlraum 1 ist im Abstand von der Außenwand 3 eine Trennwand 2 mit Prallluftöffnungen 4 angeordnet, die mit den zeitlich aufeinander folgenden Geschwindigkeitspaketen Vcool(t) des unstetigen Kühlluftmassenstroms beaufschlagt werden. Die Kühlluft gelangt an die Innenfläche der Außenwand 3 und strömt in einer Querströmung mit der Geschwindigkeit Vcross in dem zwischen der Außenwand 3 und der Trennwand 2 gebildeten Kühlluftkanal 5 über nicht dargestellte Öffnungen, beispielsweise Filmkühlöffnungen, nach außen. Aufgrund der periodischen Beaufschlagung der Prallluftöffnungen 4 mit den Kühlluftgeschwindigkeitspaketen Vcool(t) werden an deren Ausgang mit dem Auftreffen auf die Querströmung periodisch aufeinander folgende kräftige Ringwirbelstrukturen 6 ausgebildet. Die Ringwirbelstrukturen 6 der Kühlluft sind in der Lage, den zwischen der Trennwand und der Außenwand vorhandenen Kühlluftkanal 5 bzw. die in diesem vorhandene Querströmung im Wesentlichen vollständig zu durchdringen und treffen somit mit hoher Intensität auf die Innenfläche der Außenwand 3, die dadurch besser als mit einem nach dem Stand der Technik vorgesehenen stetigen Prallluftstrom gekühlt wird.In a cavity 1 of an engine component, for example, a blade of a turbine stage, with a temperature T cool a time-varying, ie in the speed periodically - for example, sinusoidal - changing cooling air mass flow, consisting of at a time interval consecutive cooling air velocity sacred V cool (t) with a certain amplitude V cool , introduced. A hot gas with a temperature T and a velocity V flows along the outer wall 3 of the engine component to be cooled. In the cavity 1, a partition wall 2 with impact air openings 4 is arranged at a distance from the outer wall 3, which with the temporally successive speed packets V cool (t ) of the unsteady cooling air mass flow are applied. The cooling air reaches the inner surface of the outer wall 3 and flows in a transverse flow at the speed V cross in the cooling air channel formed between the outer wall 3 and the partition 2 5 via openings, not shown, for example, film cooling holes, to the outside. Due to the periodic loading of the impingement air openings 4 with the cooling air velocity packets V cool (t), periodically successive strong ring vortex structures 6 are formed at their exit when they impinge on the transverse flow. The annular vortex structures 6 of the cooling air are able to substantially completely penetrate the cooling air channel 5 present between the dividing wall and the outer wall or the transverse flow present in the outer wall and thus strike the inner surface of the outer wall 3 with high intensity, which is better than with is cooled according to the prior art provided a steady impingement air flow.

Aufgrund der hohen Effizienz der unstetigen Prallluftkühlung erhöht sich bei gleicher Kühlluftmenge die Lebensdauer der betreffenden Turbinenkomponenten oder der Kühlluftbedarf wird verringert und der Wirkungsgrad der Turbine wird verbessert. Das neue Kühlverfahren kann bei stationären Gasturbinen und Gasturbinentriebwerken zur Prallluftkühlung von Rotorschaufeln, Leitschaufeln, Linern und Plattformen sowie Turbinen- und Brennkammergehäusen eingesetzt werden.Due to the high efficiency of the unsteady impingement air cooling increases with the same amount of cooling air, the life of the turbine components in question or the cooling air requirement is reduced and the efficiency of the turbine is improved. The new cooling method can be used on stationary gas turbines and gas turbine engines for impingement air cooling of rotor blades, vanes, liners and platforms as well as turbine and combustor housings.

Zur Ausbildung von Ringwirbelstrukturen mit hoher Prallluftkühlwirkung ist es erforderlich, die Größe bzw. den Durchmesser D der Prallluftöffnung 4, die Frequenz f der Kühlluftgeschwindigkeitäpakete oder Kühlluftimpulse bzw. die Wirbelablösefrequenz und die Amplitude der Strösaungsgeschwindigkeitspakete und damit die Strömungsgeschwindigkeit der Kühlluft in der Prallluftkühlöffnung 4 so einzustellen und aufeinander abzustimmen, dass möglichst kräftige Ringwirbelstrukturen 6 mit hoher Kühlwirkung ausgebildet werden. Diese drei Parameter sind in der Strouhalsahl Sr, einer dimensionslosen Frequenz, die das Verhältnis aus dem Produkt der Kühlluftimspulsfreguenz und der Größe der Prallluftöffnung und der Strömungsgeschwindigkeit ist, verknüpft, wobei Sr = f × D / V cool .

Figure imgb0002
To form ring vortex structures having a high impingement air cooling effect, it is necessary to set the size or diameter D of the impingement air opening 4, the frequency f of the cooling air velocity packets or cooling air pulses or the vortex shedding frequency and the amplitude of the flow velocity packets and thus the flow velocity of the cooling air in the impingement air cooling opening 4 and to coordinate with each other that the strongest possible ring vortex structures 6 are formed with high cooling effect. These three parameters are in the Strouhalsahl Sr, a dimensionless frequency that is the Ratio of the product of the Kühlluftsprulsfreguenz and the size of the impingement air opening and the flow velocity is linked, wherein Sr = f × D / V cool ,
Figure imgb0002

Im Ergebnis aufwendiger Versuchsreihen wurde ermittelt, dass bei einer Strouhalzahl Sr im Bereich von 0,8 bis 1,2 kräftige Ringwirbelstrukturen der Prallkühlluft mit einer Frequenz erzeugt werden, die gegenüber einem stetigen Prallluftkühlstrom zu einer deutlichen Verbesserung der Kühlwirkung der Prallluft führen. Dabei sollte die Gescbwindigkeitsamplitude der Kühlluftgeschwindigkeitspakete (Kühlluftimpulse) einen bestimmten Wert nicht unterschreiten. Intensive Ringwirbelstrukturen werden bevorzugt unter Resonanzbedingungen zwischen den an den Prallluftöffnungen erzeugten Ringwirbeln und den sich aufgrund des Auftretens der Ringwirbel an der Bauteilwand und der Trennwand aufbauenden Druckschwingungen erzeugt.As a result of elaborate test series it was determined that at a Strouhalzahl Sr in the range of 0.8 to 1.2 strong annular vortex structures of the impingement cooling air are generated at a frequency that lead to a steady impact air cooling current to a significant improvement in the cooling effect of the impingement air. The speed amplitude of the cooling air velocity packets (cooling air impulses) should not fall below a certain value. Intensive ring vortex structures are preferably generated under resonance conditions between the ring vortices generated at the impact air openings and the pressure oscillations that build up due to the occurrence of the ring vortices on the component wall and the partition wall.

BezugszeichealisteBezugszeichealiste

11
Hohlraum einer TurbinenkomponenteCavity of a turbine component
22
Trennwand in 1Partition in 1
33
Außenwand von 1Outside wall of 1
44
Prallluftöffnungen in 2Impact air openings in 2
55
Kühlluftkanal zw. 2 und 3Cooling air duct between 2 and 3
66
RingwirbelstrukturenRing vortex structures
Vcool(t)V cool (t)
KühlluftgeschwindigkeitspaketCooling air speed packet
Vcool V cool
Kühlluftgeschwindigkeit, Amplitude v. Vcool(t)Cooling air velocity, amplitude v. V cool (t)
Tcool T cool
KühllufttemperaturCooling air temperature
VV
HeißgasgeschwindigkeitHot gas velocity
Vcross V cross
Geschwindigkeit der Querströmung in 5Velocity of the cross flow in FIG. 5
DD
Größe der PrallluftöffnungSize of the impingement air opening
FF
Frequenz von Vcool(t) bzw. 6Frequency of V cool (t) or 6

Claims (6)

verfahren zur Prallluftkühlung für Gasturbinen, bei dem Kühlluft über in einer Trennwand ausgebildete Prallluftöffnungen in separaten Kühlluftstrahlen auf den zu kühlenden Wandbereich prallt und in einer Querströmung wieder abgeführt wird, dadurch gekennzeichnet, dass in der Querströmung in zeitlichem Abstand aufeinander folgende und mit hoher Intensität und Frequenz die Querströmung durchdringende und auf den zu kühlenden Wandbereich prallende Ringwirbelstrukturen (6) mit hoher Kühlwirkung erzeugt werden, indem die Prallluftöffnungen (4) eingangsseitig mit Kühlluftgeschwindigkeitepaketen (Vcool(t)} von bestimmter Amplitude (Vcool) und Frequenz (f) beaufschlagt werden.Method for impingement air cooling for gas turbines, in the cooling air bounces in a partition wall impingement air openings in separate cooling air jets on the wall to be cooled wall and dissipated again in a cross flow, characterized in that in the cross flow at a time interval consecutive and with high intensity and frequency The vortex structures (6) penetrating the transverse flow and impinging on the wall region to be cooled are produced with high cooling effect by impinging the impingement air openings (4) on the input side with cooling air velocity packets (V cool (t)} of specific amplitude (V cool ) and frequency (f) , Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ausbildung und Intensität der Ringwirbelstrukturen (6) durch die Amplitude der Kühlluftgeschwindigkeitspakete und die Größe (D) der Prallluftöffnungen (4) bestimmt ist.A method according to claim 1, characterized in that the formation and intensity of the ring vortex structures (6) by the amplitude of the cooling air velocity packets and the size (D) of the impingement air openings (4) is determined. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis zwischen der Frequenz (f) und der Amplitude (Vcool) der Kühlluftgeschwindigkeitspakete und der Größe (D) der Prallluftöffnungen (4) durch die Strouhalzahl (Sr = f x D/Vcool) bestimmt ist und die Strouhalzahl (Sr) zur Anregung der Ringwirbelstrukturen im Bereich zwischen 0,2 und 2,0 liegt.A method according to claim 1 or 2, characterized in that the ratio between the frequency (f) and the amplitude (V cool ) of the cooling air velocity packets and the size (D) of the impingement air openings (4) by the Strouhalzahl (Sr = fx D / V cool ) and the Strouhal number (Sr) for exciting the ring vortex structures is in the range between 0.2 and 2.0. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Anrege-Strouhalzahl zwischen 0,8 und 1,2 liegt.A method according to claim 3, characterized in that the exciting Strouhalzahl is between 0.8 and 1.2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Abstand zwischen der Trennwand und dem zu kühlenden Wandbereich zur Intensivierung der Ringwirbelstrukturen so gewählt ist, dass in dem Raum zwischen Trennwand und zu kühlender Wand Resonanzbedingungen zwischen den Ringwirbeln an den Prallluftöffnungen und den reflektierten Druckwellen herrschen.A method according to claim 1, characterized in that the distance between the partition and the wall to be cooled wall area for intensifying the ring vortex structures is chosen so that prevail in the space between the partition wall and wall to be cooled resonance conditions between the ring vortexes at the impact air openings and the reflected pressure waves. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die periodische Erzeugung der Ringwirbelstrukturen (6) zur Einsparung von Kühlluft in zeitlich regelmäßigen Abständen unterbrochen wird.A method according to claim 1, characterized in that the periodic generation of the ring vortex structures (6) to save cooling air is interrupted at regular intervals.
EP08151497.8A 2007-02-16 2008-02-15 Method for impingement cooling for gas turbines Ceased EP1959096B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007008319A DE102007008319A1 (en) 2007-02-16 2007-02-16 Method for impingement air cooling for gas turbines

Publications (3)

Publication Number Publication Date
EP1959096A2 true EP1959096A2 (en) 2008-08-20
EP1959096A3 EP1959096A3 (en) 2013-02-20
EP1959096B1 EP1959096B1 (en) 2014-10-01

Family

ID=39144432

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08151497.8A Ceased EP1959096B1 (en) 2007-02-16 2008-02-15 Method for impingement cooling for gas turbines

Country Status (3)

Country Link
US (1) US8152463B2 (en)
EP (1) EP1959096B1 (en)
DE (1) DE102007008319A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540992A3 (en) * 2011-06-27 2017-01-25 Rolls-Royce Deutschland Ltd & Co KG Dispositif et procédé de génération d'un choc formant des remous en anneau ainsi que la turbomachine dotée d'un tel dispositif

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9458855B2 (en) 2010-12-30 2016-10-04 Rolls-Royce North American Technologies Inc. Compressor tip clearance control and gas turbine engine
US9482249B2 (en) * 2013-09-09 2016-11-01 General Electric Company Three-dimensional printing process, swirling device and thermal management process
DE102013112725A1 (en) 2013-11-19 2015-05-21 Hochschule Karlsruhe Impingement jet cooling equipment
US10208603B2 (en) * 2014-11-18 2019-02-19 United Technologies Corporation Staggered crossovers for airfoils
CN105927288A (en) * 2016-06-02 2016-09-07 西北工业大学 Rotor disc boss type periodic pressure wave generating device
US10480327B2 (en) 2017-01-03 2019-11-19 General Electric Company Components having channels for impingement cooling
CN113153444B (en) * 2021-04-09 2022-12-09 西安交通大学 Turbine blade internal impingement cooling structure based on ultrasonic wave enhanced heat transfer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2044695B1 (en) * 1969-03-08 1974-05-24 Rolls Royce
US4095417A (en) * 1976-08-23 1978-06-20 Avco Corporation Apparatus for and method of suppressing infrared radiation emitted from gas turbine engine
IN170251B (en) * 1987-04-16 1992-03-07 Luminis Pty Ltd
DE4244302C2 (en) * 1992-12-28 2002-08-29 Alstom Impact cooling device
JP3415663B2 (en) * 1992-12-28 2003-06-09 アルストム Equipment for cooling the cooling surface in an impact manner
US5391052A (en) * 1993-11-16 1995-02-21 General Electric Co. Impingement cooling and cooling medium retrieval system for turbine shrouds and methods of operation
US5464322A (en) 1994-08-23 1995-11-07 General Electric Company Cooling circuit for turbine stator vane trailing edge
DE4430302A1 (en) * 1994-08-26 1996-02-29 Abb Management Ag Impact-cooled wall part
DE19520291A1 (en) * 1995-06-02 1996-12-05 Abb Management Ag Combustion chamber
GB2326706A (en) * 1997-06-25 1998-12-30 Europ Gas Turbines Ltd Heat transfer structure
EP0889201B1 (en) * 1997-07-03 2003-01-15 ALSTOM (Switzerland) Ltd Impingement arrangement for a convective cooling or heating process
EP0892151A1 (en) 1997-07-15 1999-01-20 Asea Brown Boveri AG Cooling system for the leading edge of a hollow blade for gas turbine
US6053203A (en) * 1997-08-15 2000-04-25 Administrators Of The Tulane Educational Fund Mechanically-driven pulsating flow valve for heat and mass transfer enhancement
DE29714742U1 (en) * 1997-08-18 1998-12-17 Siemens AG, 80333 München Heat shield component with cooling fluid return and heat shield arrangement for a hot gas-carrying component
AU6238199A (en) * 1998-06-01 2000-01-10 Penn State Research Foundation, The Oscillator fin as a novel heat transfer augmentation device
DE10202783A1 (en) * 2002-01-25 2003-07-31 Alstom Switzerland Ltd Cooled component for a thermal machine, in particular a gas turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MLADIN E-C ET AL.: "INTERNATIONAL JOURNAL OF THERMAL SCIENCES", vol. 39, 1 February 2000, EDITIONS ELSEVIER, article "Alterations to coherent flow structures and heat transfer due to pulsations in an im- pinging air-jet", pages: 236 - 248

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2540992A3 (en) * 2011-06-27 2017-01-25 Rolls-Royce Deutschland Ltd & Co KG Dispositif et procédé de génération d'un choc formant des remous en anneau ainsi que la turbomachine dotée d'un tel dispositif

Also Published As

Publication number Publication date
US20080226441A1 (en) 2008-09-18
EP1959096B1 (en) 2014-10-01
EP1959096A3 (en) 2013-02-20
US8152463B2 (en) 2012-04-10
DE102007008319A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
EP1959096B1 (en) Method for impingement cooling for gas turbines
DE102007007177B4 (en) Method and apparatus for cooling gas turbine rotor blades
DE102009044585B4 (en) Method for operating a turbine engine and arrangement in a turbine engine
DE60224339T2 (en) Cooling insert with tangential outflow
DE69500735T2 (en) GAS TURBINE SHOVEL
DE4316475C2 (en) A gas turbine combustor
DE102010037811B4 (en) Device and method for cooling nozzles
EP0203431B2 (en) Impingement cooled transition duct
EP2300686B1 (en) Gas turbine comprising a guide vane
CH703144B1 (en) Turbine blade, turbine rotor, and method for cooling a turbine blade.
DE102010016442A1 (en) Flange-cooled turbine nozzle
EP3124746A1 (en) Method for cooling a turbo-engine component and turbo-engine component
EP2236765A2 (en) Cooling arrangement for a turbine engine component
DE102008055522A1 (en) Divergent turbine nozzle
EP2582921A2 (en) Noise-reduced turbomachine
EP3134677A1 (en) Burner comprising a fluidic oscillator, for a gas turbine, and a gas turbine comprising at least one such burner
EP1429001A2 (en) Intake silencer for gas turbines
EP0489193A1 (en) Combustion chamber for gas turbine
EP0718483A2 (en) Steam injection in gas turbine
EP2584148A1 (en) Film-cooled turbine blade for a turbomachine
EP1219780B1 (en) Apparatus and method for the impingement cooling of a turbomachine component
DE102004010620A1 (en) Method for the effective use of cooling for the acoustic damping of combustion chamber pulsations and combustion chamber
DE102013209746B4 (en) Turbine stage with a blow-out arrangement and method for blowing out a barrier gas flow
EP2400115B1 (en) Thermally Loaded, Cooled Component
EP2540992B1 (en) Device and method for producing an impingement air jet in the form of an annular swirl and turbocharger with such a device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 25/12 20060101ALI20130116BHEP

Ipc: F01D 5/18 20060101AFI20130116BHEP

17P Request for examination filed

Effective date: 20130820

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JENS, TAEGE

Inventor name: DR. ERIK, JANKE

Inventor name: DR. FRANK, HASELBACH

Inventor name: DR. MATTHIAS, REYER

Inventor name: DR. TIMM, JANETZKE

Inventor name: PROF. DR. WOFLGANG NITSCHE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008012267

Country of ref document: DE

Effective date: 20141113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008012267

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200227

Year of fee payment: 13

Ref country code: GB

Payment date: 20200227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200225

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008012267

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210215

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228