EP0489193A1 - Combustion chamber for gas turbine - Google Patents

Combustion chamber for gas turbine Download PDF

Info

Publication number
EP0489193A1
EP0489193A1 EP90123311A EP90123311A EP0489193A1 EP 0489193 A1 EP0489193 A1 EP 0489193A1 EP 90123311 A EP90123311 A EP 90123311A EP 90123311 A EP90123311 A EP 90123311A EP 0489193 A1 EP0489193 A1 EP 0489193A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
gas turbine
wall parts
flame tube
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90123311A
Other languages
German (de)
French (fr)
Other versions
EP0489193B1 (en
Inventor
Pierre Meylan
Hans Schwarz
Helmar Wunderle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to DE59010740T priority Critical patent/DE59010740D1/en
Priority to EP90123311A priority patent/EP0489193B1/en
Priority to US07/799,316 priority patent/US5226278A/en
Priority to JP31888291A priority patent/JP3180830B2/en
Publication of EP0489193A1 publication Critical patent/EP0489193A1/en
Application granted granted Critical
Publication of EP0489193B1 publication Critical patent/EP0489193B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the invention relates to a gas turbine combustion chamber with an annular flame tube, which delimits a combustion chamber and is exposed on its side facing away from the combustion chamber to an air flow supplied by the compressor of the gas turbine, and which is composed essentially of overlapping wall parts, the wall parts on their side facing away from the combustion chamber each have a plurality of inlet openings distributed over the circumference, through which the cooling air is introduced into a distribution space arranged in the flame tube and communicating with the combustion space.
  • the invention has for its object to minimize the cooling air consumption in a gas turbine combustion chamber of the type mentioned in order to reduce the emission of NO x .
  • the wall parts are curved elements in the turbine axial direction, which overlap in the circumferential direction and are provided with means for guiding the cooling air from the distribution space arranged at the inlet-side end of the wall part, at least approximately in the circumferential direction to the outlet-side end of the wall part.
  • the cooling air flowing out of the overlap gaps between two adjacent wall parts is deflected in a grille before entering the combustion chamber.
  • the angle of attack of the grille can be increasingly changed from the flame tube inlet to its outlet in order to match the swirling flow of the combustion gases near the wall.
  • the turbine 1, of which the first axially flowed stages in the form of three guide rows 2 'and run rows 2''is shown in FIG. 1, essentially consists of the bladed turbine rotor 3 and the blade carrier 4 equipped with guide blades.
  • the blade carrier is in the Turbine housing 5 suspended.
  • the turbine housing 5 also includes the collecting space 6 for the compressed combustion air. From this collecting space, the combustion air reaches the annular combustion chamber 7, which in turn opens into the turbine inlet, ie upstream of the first guide row 2 '.
  • the compressed air arrives in the collecting space from the diffuser 8 of the compressor 9. Of the latter, only the last three stages are shown in the form of three guide rows 10 'and three rows 10''.
  • the rotor blades of the compressor and the turbine sit on a common shaft 11, the central axis of which represents the longitudinal axis 12 of the gas turbine unit.
  • the compressed combustion air enters the collecting chamber 6 in the direction of the arrow in the burner 13, which is only shown by way of example, of which 36 pieces are evenly distributed around the circumference.
  • the fuel is injected into the combustion chamber 15 via a fuel nozzle 14.
  • the fuel nozzle In the plane of the primary air inlet, the fuel nozzle is surrounded by a swirl body 16 in the form of vortex blades.
  • the air reaches the primary zone of the combustion chamber 15 through the vortex blades, in which the combustion process takes place.
  • the vortex blades create a swirl flow with an air core directed against the burner, which anchors the flame to the burner so that it does not tear off despite the high air speed.
  • the turbulent flow ensures rapid combustion.
  • the annular combustion chamber 15 extends downstream of the burner orifices up to the turbine inlet. It is delimited both inside and outside by the flame tube 17.
  • this flame tube is designed as a self-supporting structure. It consists of one on both its inner ring and its outer ring Number of longitudinally arranged wall parts 18 with tangential overlap gaps 22 (FIGS. 2 and 6). These wall parts, which can be cast parts, are bent in the axial direction of the turbine in accordance with the course of the combustion chamber through which flow and extend over the entire axial length of the flame tube.
  • the number of wall parts is determined from the requirement that the cooling air flowing into the combustion chamber from the gaps should be used as efficiently as possible as film cooling. It follows that the distance between two cooling air gaps and thus the tangential extent of a wall part is approximately as large as the effective length of the cooling air film. And from this one can see the manufacturing advantage, among other things, that only as many columns or wall parts have to be provided as are actually necessary. Furthermore, this design allows the implementation of ring-shaped flame tubes of any dimensions and geometries. This design is easy to maintain, if only in the event of damage, only the damaged wall parts have to be replaced.
  • the flame tube on its side facing away from the combustion chamber is exposed to the air flow in the collecting chamber 6 supplied by the compressor 9.
  • the wall parts On their side facing the collecting space 6, the wall parts each have a plurality of inlet openings (19 in FIGS. 5 and 6) distributed over the circumference, via which the cooling air flows into a distribution space (20 in FIG. 5) arranged in the wall part and communicating with the combustion chamber and 6) is initiated.
  • the cooling air duct on the wall parts 18 is shown schematically in FIG.
  • the cooling air is guided as far as possible in the circumferential direction along the surfaces of the wall parts facing the collecting space 6 using the means described below.
  • the cooling air When flowing into the combustion chamber 15, the cooling air must of course not be directed against the swirl flow of the combustion gases indicated by arrows. This means that the inflow openings and the outflow gaps in the wall parts of the inner tube of the flame tube are arranged exactly opposite to those of the outer tube of the flame tube.
  • the cooling air Seen against the direction of flow of the combustion gases, which in this view have a swirl in the counterclockwise direction, the cooling air also flows through the outer ring in a counterclockwise direction, while brushing the wall parts of the inner ring in a clockwise direction.
  • the requirement also applies that the cooling air is introduced into the combustion chamber 15 in order to maintain cooling film in such a way that it not only coincides in the same direction, but also in its direction as closely as possible in the direction of flow of the combustion gases near the wall of the flame tube.
  • FIG. 3 in which the flow conditions in the combustion chamber are shown on the basis of the partial development of a cylindrical section.
  • this 3 denotes the vertical B the plane of the burner mouth, the vertical T the plane of the turbine inlet.
  • the flow in the combustion chamber will be explained on the basis of numerical data, which, however, can only have an exemplary character due to numerous other decisive parameters.
  • the combustion air leaves the swirl body at an angle of approx. 75 °.
  • X there is an acceleration of the working medium due to the combustion, which leads to a slight deflection in the axial direction.
  • the fuel gases now flow at an angle of approx. 55 °.
  • zone Y the gas flow is accelerated in the axial direction; the flow through the channel becomes increasingly steeper (Fig. 1). This constriction before the turbine inlet causes the gases in zone Z to be deflected to approximately 20 ° and thus act on the guide vanes 2 ′ of the first turbine stage.
  • FIG. 4 and 5 show a top view of the structure of a wall part 18, specifically the side facing the collecting space.
  • 6 shows a wall part of the inner flame tube ring in cross section.
  • the wall parts are not bent in the circumferential direction. Rather, it is almost flat plates that are bent according to the longitudinal direction of the turbine according to the course of the combustion chamber. These plates are on one side on the side facing the collecting space provided at the first end with a holding device in the form of a gripper 21. With this gripper 21, the adjacent plate in the circumferential direction is held, as shown by the broken line at the left end of the plate. This creates a simple assembly means which also allows the overlap gap 22 to be kept within narrow limits in every operating state.
  • an offset 23 is provided which can be used for fastening purposes of the flame tube.
  • the flame tube structure is self-supporting; it is understood that this is only possible up to a certain order of magnitude.
  • these offsets 23 can be connected to the actual supporting structures on the wall parts. These are to be designed in any case so that a free expansion of the wall parts is not hindered during operation.
  • the wall parts are equipped with longitudinal ribs 24, which extend from the inlet-side distribution chamber 20 to the outlet-side passages 30. These passages can be designed as bores in a bead carrying the grippers 21.
  • the longitudinal ribs 24 divide the side of the wall part facing away from the combustion chamber 15 into channels 25, in which the cooling air is guided in the circumferential direction to the passages 30.
  • Both the distribution space 20 as well as the ribs 24 and the channels 25 are provided with a cover 26 against the collecting space 6. In this cover there are a number of inlet openings 19 for the cooling air in the plane of the distribution space 20. 5, although they are invisible in this view, since the cover 26 has been omitted in FIGS. 4 and 5 for reasons of clarity.
  • the distribution space 20 at the inlet-side end of the wall part is divided into a plurality of distribution segments 28 by means of partition walls 27.
  • the cooling air flowing out of the passages 30 into the overlap gap 22 is deflected in a grille 29 before entering the combustion chamber 15.
  • This is arranged on the inlet-side end of the overlapping adjacent wall part (FIG. 6) on its side facing the combustion chamber.
  • the angle of attack of the grille is increasingly changed from the flame tube inlet to its outlet in accordance with the swirling flow of the combustion gases near the wall.
  • the invention is not limited to the embodiment shown and described.
  • the long sides of the wall parts could just as well run helically, for example at 45 °.
  • this grating could just as well be designed as a separate structural unit.
  • the ribs will only be attached to a part of the walls instead of over their entire axial length. It is also conceivable for the surface of the wall part to be grooved instead of the longitudinal ribs, with or without turbulence grille.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

In a combustion chamber for a gas turbine with an annular flame tube, the latter essentially consists of wall parts (18) overlapping in the circumferential direction. The wall parts (18) are elements which are bent in the axial direction of the turbine and along the outside of which facing the collecting chamber (6) the cooling air is guided in the circumferential direction. The cooling air flowing out of the overlapping gaps (22) is deflected in a grid (29) before entering the combustion chamber (15). <IMAGE>

Description

Technisches GebietTechnical field

Die Erfindung betrifft eine Gasturbinenbrennkammer mit einem ringförmigen Flammrohr, welches einen Verbrennungsraum begrenzt und auf seiner vom Verbrennungsraum abgewandten Seite einem vom Verdichter der Gasturbine gelieferten Luftstrom ausgesetzt ist, und welches sich im wesentlichen aus überlappenden Wandteilen zusammensetzt, wobei die Wandteile an ihrer dem Verbrennungsraum abgewandten Seite jeweils mehrere, über dem Umfang verteilte Einlassöffnungen aufweisen, über die die Kühlluft in einen im Flammrohr angeordneten und mit dem Verbrennungsraum kommunizierenden Verteilraum eingeleitet wird.The invention relates to a gas turbine combustion chamber with an annular flame tube, which delimits a combustion chamber and is exposed on its side facing away from the combustion chamber to an air flow supplied by the compressor of the gas turbine, and which is composed essentially of overlapping wall parts, the wall parts on their side facing away from the combustion chamber each have a plurality of inlet openings distributed over the circumference, through which the cooling air is introduced into a distribution space arranged in the flame tube and communicating with the combustion space.

Stand der TechnikState of the art

Gasturbinen mit derartigen, luftgekühlten Flammrohren sind bekannt, bspw. aus der US 4,077,205 oder der US 3,978,662. Dort sind Kühlsysteme für Flammrohre gezeigt und beschrieben, die aus sich in Turbinenachsrichtung überlappenden Wandteilen aufgebaut sind. Das jeweilige Flammrohr weist eine Lippe auf, die sich über den Schlitz erstreckt, durch den der Kühlluftfilm austritt. Dieser Kühlluftfilm soll an der Wand des Flammrohres haften, um für dieses eine kühlende Sperrschicht zu bilden.Gas turbines with such air-cooled flame tubes are known, for example from US 4,077,205 or US 3,978,662. There, cooling systems for flame tubes are shown and described, which are constructed from wall parts which overlap in the turbine axial direction. The respective flame tube has a lip which extends over the slot through which the cooling air film emerges. This cooling air film should adhere to the wall of the flame tube in order to form a cooling barrier layer for it.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer der eingangs genannten Art den Kühluftverbrauch zu minimieren, um den Ausstoss an NOX zu reduzieren.The invention has for its object to minimize the cooling air consumption in a gas turbine combustion chamber of the type mentioned in order to reduce the emission of NO x .

Erfindungsgemäss wird dies dadurch erreicht, dass die Wandteile in Turbinenachsrichtung gebogene Elemente sind, die sich in Umfangsrichtung überlappen und mit Mitteln versehen sind, um die Kühlluft aus dem am einlassseitigen Ende des Wandteils angeordneten Verteilraum zumindest annähernd in Umfangsrichtung zum auslassseitigen Ende des Wandteils zu führen.According to the invention, this is achieved in that the wall parts are curved elements in the turbine axial direction, which overlap in the circumferential direction and are provided with means for guiding the cooling air from the distribution space arranged at the inlet-side end of the wall part, at least approximately in the circumferential direction to the outlet-side end of the wall part.

Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass mit der neuen Massnahme eine effiziente Prall/Konvektionskühlung durchführbar ist mit einer kleinstmöglichen Anzahl von Spalten, wodurch die Kühlluftverluste unter Kontrolle gehalten werden.The advantages of the invention can be seen, inter alia, in the fact that the new measure enables efficient impingement / convection cooling to be carried out with the smallest possible number of gaps, as a result of which the cooling air losses are kept under control.

Es ist besonders zweckmässig, wenn die Längsseiten der sich in Turbinenachsrichtung erstreckenden Wandteile parallel zur Turbinenachse verlaufen und wenn das Flammrohr eine gerade Anzahl sich überlappender Wandteile aufweist. Sich überlappende Stellen können bei axial geteilter Bauweise als Teilfuge benutzt werden, und es können dort Montagemittel vorgesehen werden, um die Wandteile in Zwangslage zu bringen.It is particularly expedient if the long sides of the wall parts extending in the turbine axial direction run parallel to the turbine axis and if the flame tube has an even number of overlapping wall parts. Overlapping points can be used as a parting joint in the case of an axially divided construction, and assembly means can be provided there in order to bring the wall parts into a forced position.

Ferner ist es vorteilhaft, wenn die aus den Überlappungsspalten zwischen zwei benachbarten Wandteilen ausströmende Kühlluft vor dem Eintritt in den Verbrennungsraum in einem Gitter umgelenkt wird. Der Anstellwinkel des Gitters kann dabei vom Flammrohreintritt bis zu dessen Austritt zunehmend verändert werden, um mit der in Wandnähe herrschenden Drallströmung der Verbrennungsgase übereinzustimmen.It is furthermore advantageous if the cooling air flowing out of the overlap gaps between two adjacent wall parts is deflected in a grille before entering the combustion chamber. The angle of attack of the grille can be increasingly changed from the flame tube inlet to its outlet in order to match the swirling flow of the combustion gases near the wall.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine dargestellt.
Es zeigen:

Fig.1
einen Teillängsschnitt der Gasturbine;
Fig.2
einen Teilquerschnitt durch das Flammrohr der Brennkammer nach Linie 2-2 in Fig.1;
Fig.3
die Teilabwicklung eines Zylinderschnittes durch das Flammrohr auf der Höhe der Brenner;
Fig.4
ein Wandteil des Flammrohres;
Fig.5
ein vergrösserter Ausschnitt des Wandteils nach Fig.4;
Fig.6
ein Wandteil im Querschnitt gemäss Linie 6-6 in Fig.5
In the drawing, an embodiment of the invention is shown using a single-shaft, axially flow-through gas turbine.
Show it:
Fig. 1
a partial longitudinal section of the gas turbine;
Fig. 2
a partial cross section through the flame tube of the combustion chamber according to line 2-2 in Figure 1;
Fig. 3
the partial processing of a cylinder section through the flame tube at the level of the burner;
Fig. 4
a wall part of the flame tube;
Fig. 5
an enlarged section of the wall part of Figure 4;
Fig. 6
a wall part in cross section according to line 6-6 in Fig.5

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das Abgasgehäuse der Gasturbine mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The system does not show, for example, the exhaust gas casing of the gas turbine with the exhaust pipe and chimney, and the inlet parts of the compressor part. The direction of flow of the work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Turbine 1, von der in Fig.1 die ersten axialdurchströmten Stufen in Form von je drei Leitreihen 2' und Laufreihen 2'' dargestellt ist, besteht im wesentlichen aus dem beschaufelten Turbinenrotor 3 und dem mit Leitschaufeln bestückten Schaufelträger 4. Der Schaufelträger ist im Turbinengehäuse 5 eingehängt. Im dargestellten Fall umfasst das Turbinengehäuse 5 ebenfalls den Sammelraum 6 für die verdichtete Brennluft. Aus diesem Sammelraum gelangt die Brennluft in die Ringbrennkammer 7, welche ihrerseits in den Turbineneinlass, d.h. stromaufwärts der ersten Leitreihe 2' mündet. In den Sammelraum gelangt die verdichtete Luft aus dem Diffusor 8 des Verdichters 9. Von letzterem sind lediglich die drei letzten Stufen in Form von je drei Leitreihen 10' und Laufreihen 10'' dargestellt. Die Laufbeschaufelungen des Verdichters und der Turbine sitzen auf einer gemeinsamen Welle 11, deren Mittelachse die Längsachse 12 der Gasturbineneinheit darstellt.The turbine 1, of which the first axially flowed stages in the form of three guide rows 2 'and run rows 2''is shown in FIG. 1, essentially consists of the bladed turbine rotor 3 and the blade carrier 4 equipped with guide blades. The blade carrier is in the Turbine housing 5 suspended. In the illustrated case, the turbine housing 5 also includes the collecting space 6 for the compressed combustion air. From this collecting space, the combustion air reaches the annular combustion chamber 7, which in turn opens into the turbine inlet, ie upstream of the first guide row 2 '. In The compressed air arrives in the collecting space from the diffuser 8 of the compressor 9. Of the latter, only the last three stages are shown in the form of three guide rows 10 'and three rows 10''. The rotor blades of the compressor and the turbine sit on a common shaft 11, the central axis of which represents the longitudinal axis 12 of the gas turbine unit.

In den lediglich beispielsweise dargestellten Brenner 13, von denen 36 Stück am Umfang gleichmässig verteilt angeordnet sind, tritt die verdichtete Brennluft in Pfeilrichtung aus dem Sammelraum 6 ein. Der Brennstoff wird über eine Brennstoffdüse 14 in den Verbrennungsraum 15 eingespritzt. Die Brennstoffdüse ist in der Ebene der Primärlufteinführung von einem Drallkörper 16 in Form von Wirbelschaufeln umgeben. Durch die Wirbelschaufeln gelangt die Luft in die Primärzone des Verbrennungsraumes 15, in welcher sich der Verbrennungsvorgang abspielt. Die Wirbelschaufeln bewirken eine Drallströmung mit einem gegen den Brenner gerichteten Luftkern, welcher die Flamme am Brenner verankert, damit sie trotz der hohen Luftgeschwindigkeit nicht abreisst. Gleichsam wird durch die turbulente Strömung eine schnelle Verbrennung gesichert. Anlässlich dieser Verbrennung erreichen die Verbrennungsgase sehr hohe Temperaturen, was besondere Anforderungen an die zu kühlenden Wandungen des Flammrohres 17 darstellt. Dies gilt insbesondere dann, wenn statt des gezeigten Diffusionsbrenners sogenannte Low NOX-Brenner, beispielsweise Vormischbrenner zur Anwendung gelangen, welche grosse Flammrohroberflächen und relativ bescheidene Kühlluftmengen erfordern.The compressed combustion air enters the collecting chamber 6 in the direction of the arrow in the burner 13, which is only shown by way of example, of which 36 pieces are evenly distributed around the circumference. The fuel is injected into the combustion chamber 15 via a fuel nozzle 14. In the plane of the primary air inlet, the fuel nozzle is surrounded by a swirl body 16 in the form of vortex blades. The air reaches the primary zone of the combustion chamber 15 through the vortex blades, in which the combustion process takes place. The vortex blades create a swirl flow with an air core directed against the burner, which anchors the flame to the burner so that it does not tear off despite the high air speed. At the same time, the turbulent flow ensures rapid combustion. On the occasion of this combustion, the combustion gases reach very high temperatures, which places special demands on the walls of the flame tube 17 to be cooled. This applies in particular if, instead of the diffusion burner shown, so-called low NO x burners, for example premix burners, are used, which require large flame tube surfaces and relatively modest amounts of cooling air.

Stromabwärts der Brennermündungen erstreckt sich der ringförmige Verbrennungsraum 15 bis zum Turbineneintritt. Er ist sowohl innen als auch aussen begrenzt durch das Flammrohr 17. Dieses Flammrohr ist im vorliegenden Beispiel als selbsttragende Struktur konzipiert. Es besteht sowohl an seinem Innenring als auch an seinem Aussenring aus einer Anzahl von längs angeordneten Wandteilen 18 mit tangentialen Ueberlappungsspalten 22 (Fig.2 und 6). Diese Wandteile, welche Gussteile sein können, sind in Turbinenachsrichtung entsprechend dem Verlauf des durchströmten Verbrennungsraums gebogen und erstrecken sich über die ganze axiale Länge des Flammrohres.The annular combustion chamber 15 extends downstream of the burner orifices up to the turbine inlet. It is delimited both inside and outside by the flame tube 17. In the present example, this flame tube is designed as a self-supporting structure. It consists of one on both its inner ring and its outer ring Number of longitudinally arranged wall parts 18 with tangential overlap gaps 22 (FIGS. 2 and 6). These wall parts, which can be cast parts, are bent in the axial direction of the turbine in accordance with the course of the combustion chamber through which flow and extend over the entire axial length of the flame tube.

Die Längsseiten der Wandteile 18, d.h. sowohl die dem Sammelraum 6 zugekehrten Eintrittskanten als auch die dem Verbrennungsraum 15 zugekehrten Austrittskanten (Fig.2) für die Kühlluft, verlaufen parallel zur Turbinenachse 12. Da das Turbinengehäuse in der Regel zwecks Ausbau der unteiligen Welle horizontal geteilt ist, wird zweckmässigerweise eine gerade Anzahl Wandteile gewählt. Dadurch können jeweils zwei einander um 180° gegenüberliegende Stellen, bei denen sich die Wandteile überlappen, als Teilfuge benutzt werden. Aus Symmetriegründen werden hier gleich viele Wandteile gewählt wie Brenner, nämlich 36 Stück (Fig.2). Es versteht sich, dass diese Massnahme keineswegs zwingend ist. So kann beispielsweise die Anzahl Wandteile des inneren Flammrohrringes gegenüber jener des äusseren Flammrohrringes halbiert werden. Grundsätzlich bestimmt sich die Anzahl der Wandteile aus der Forderung, dass die aus den Spalten in den Verbrennungsraum einströmende Kühlluft als Filmkühlung möglichst effizient zu nutzen ist. Daraus ergibt sich, dass der Abstand zwischen jeweils zwei Kühlluftspalten und damit die tangentiale Ertreckung eines Wandteils in etwa so gross ist wie die wirksame Länge des Kühlluftfilmes. Und hieraus ist der unter anderm auch fabrikatorische Vorteil erkennbar, dass nur soviele Spalten respektiv Wandteile vorgesehen werden müssen, als tatsächlich notwendig sind. Desweiteren erlaubt diese Bauweise die Realisierung von ringförmigen Flammrohren beliebiger Dimensionen und Geometrien. Wartungsfreundlich ist diese Bauart schon allein deshalb, weil im Schadensfall nur die beschädigten Wandteile zu ersetzen sind.The longitudinal sides of the wall parts 18, ie both the inlet edges facing the collecting space 6 and the outlet edges (FIG. 2) facing the combustion chamber 15 for the cooling air, run parallel to the turbine axis 12. Since the turbine housing is generally divided horizontally for the purpose of removing the undivided shaft , an even number of wall parts is expediently chosen. As a result, two points opposite each other, at which the wall parts overlap, can be used as parting lines. For reasons of symmetry, the same number of wall parts as the burners are selected, namely 36 pieces (Fig. 2). It goes without saying that this measure is by no means mandatory. For example, the number of wall parts of the inner flame tube ring can be halved compared to that of the outer flame tube ring. Basically, the number of wall parts is determined from the requirement that the cooling air flowing into the combustion chamber from the gaps should be used as efficiently as possible as film cooling. It follows that the distance between two cooling air gaps and thus the tangential extent of a wall part is approximately as large as the effective length of the cooling air film. And from this one can see the manufacturing advantage, among other things, that only as many columns or wall parts have to be provided as are actually necessary. Furthermore, this design allows the implementation of ring-shaped flame tubes of any dimensions and geometries. This design is easy to maintain, if only in the event of damage, only the damaged wall parts have to be replaced.

Wie in Fig.1 anhand der das Flammrohr umgebenden Pfeile ersichtlich, ist das Flammrohr an seiner vom Verbrennungsraum abgewandten Seite dem vom Verdichter 9 gelieferten Luftstrom im Sammelraum 6 ausgesetzt. Die Wandteile weisen an ihrer dem Sammelraum 6 zugekehrten Seite jeweils mehrere, über dem Umfang verteilte Einlassöffnungen (19 in Fig.5 und 6) auf, über die die Kühlluft in einen im Wandteil angeordneten und mit dem Verbrennungsraum kommunizierenden Verteilraum (20 in Fig.5 und 6) eingeleitet wird.As can be seen in FIG. 1 from the arrows surrounding the flame tube, the flame tube on its side facing away from the combustion chamber is exposed to the air flow in the collecting chamber 6 supplied by the compressor 9. On their side facing the collecting space 6, the wall parts each have a plurality of inlet openings (19 in FIGS. 5 and 6) distributed over the circumference, via which the cooling air flows into a distribution space (20 in FIG. 5) arranged in the wall part and communicating with the combustion chamber and 6) is initiated.

Die Kühluftführung an den Wandteilen 18 ist schematisch in Fig.2 dargestellt. Die Kühlluft wird mit Hilfe von nachstehend beschriebenen Mitteln möglichst in Umfangrichtung an den dem Sammelraum 6 zugekehrten Flächen der Wandteile entlanggeführt. Beim Einströmen in den Verbrennungsraum 15 darf die Kühlluft selbstverständlich nicht gegen die mit Pfeilen bezeichnete Drallströmung der Verbrennungsgase gerichtet sein. Dies bedingt, dass die Einströmöffnungen und die Ausströmspalte in den Wandteilen des Flammrohr-Innenringes genau entgegengesetzt zu jenen des Flammrohr-Aussenringes angeordnet sind. Gegen die Strömungsrichtung der Verbrennungsgase gesehen, welche in dieser Ansicht einen Drall gegen den Uhrzeigersinn aufweisen, durchströmt demnach die Kühlluft den Aussenring ebenfalls im Gegenuhrzeigersinn, während sie die Wandteile des Innenrings im Uhrzeigersinn bestreicht.The cooling air duct on the wall parts 18 is shown schematically in FIG. The cooling air is guided as far as possible in the circumferential direction along the surfaces of the wall parts facing the collecting space 6 using the means described below. When flowing into the combustion chamber 15, the cooling air must of course not be directed against the swirl flow of the combustion gases indicated by arrows. This means that the inflow openings and the outflow gaps in the wall parts of the inner tube of the flame tube are arranged exactly opposite to those of the outer tube of the flame tube. Seen against the direction of flow of the combustion gases, which in this view have a swirl in the counterclockwise direction, the cooling air also flows through the outer ring in a counterclockwise direction, while brushing the wall parts of the inner ring in a clockwise direction.

Am auslasseitigen Ende des Wandteils gilt ferner die Forderung, dass die Kühlluft zwecks Kühlfilmerhaltung so in den Verbrennungsraum 15 eingeführt wird, dass sie nicht nur gleichsinnig, sondern in ihrer Richtung möglichst mit der Strömungsrichtung der Verbrennungsgase in Wandnähe des Flammrohres übereinstimmt.At the outlet-side end of the wall part, the requirement also applies that the cooling air is introduced into the combustion chamber 15 in order to maintain cooling film in such a way that it not only coincides in the same direction, but also in its direction as closely as possible in the direction of flow of the combustion gases near the wall of the flame tube.

Diesbezüglich wird auf Fig.3 verwiesen, in welcher die Strömungsverhältnisse im Verbrennungsraum anhand der Teilabwicklung eines Zylinderschnittes dargestellt sind. In dieser Fig.3 bezeichnet die Vertikale B die Ebene der Brennermündung, die Vertikale T die Ebene des Turbineneintritts. Anhand von Zahlenangaben, welche allerdings aufgrund von zahlreichen sonstigen massgebenden Parameter nur Beispielscharakter aufweisen können, sei die Strömung im Verbrennungsraum erläutert. Die Verbrennungsluft verlässt den Drallkörper unter einem Winkel von ca. 75°. In der mit X bezeichneten Zone findet eine aufgrund der Verbrennung reaktionsbedingte Beschleunigung des Arbeitsmittels statt, was zu einer leichten Umlenkung in Achsrichtung führt. Die Brenngase strömen nunmehr unter einem Winkel von ca. 55°. In der Zone Y wird der Gasstrom in Achsrichtung beschleunigt; der durchströmte Kanal wird zunehmend steiler (Fig.1). Diese Verengung vor dem Turbineneintritt bewirkt, dass die Gase in der Zone Z auf ca. 20° umgelenkt werden und solchermassen die Leitschaufeln 2' der ersten Turbinenstufe beaufschlagen.In this regard, reference is made to FIG. 3, in which the flow conditions in the combustion chamber are shown on the basis of the partial development of a cylindrical section. In this 3 denotes the vertical B the plane of the burner mouth, the vertical T the plane of the turbine inlet. The flow in the combustion chamber will be explained on the basis of numerical data, which, however, can only have an exemplary character due to numerous other decisive parameters. The combustion air leaves the swirl body at an angle of approx. 75 °. In the zone denoted by X there is an acceleration of the working medium due to the combustion, which leads to a slight deflection in the axial direction. The fuel gases now flow at an angle of approx. 55 °. In zone Y the gas flow is accelerated in the axial direction; the flow through the channel becomes increasingly steeper (Fig. 1). This constriction before the turbine inlet causes the gases in zone Z to be deflected to approximately 20 ° and thus act on the guide vanes 2 ′ of the first turbine stage.

Aus diesem Drallverlauf ist nunmehr ersichtlich, dass über der axialen Länge des Flammrohres unterschiedliche Einströmbedingungen für die Kühlluft in den Verbrennungsraum zu berücksichtigen sind. Die Richtung der bis dahin an der dem Sammelraum zugekehrten Wandung weitgehend tangential strömenden Kühlluft muss also an die jeweils in Wandnähe vorherrschende Richtung der Hauptströmung angepasst werden. Dies geschieht mit nachstehend beschriebenen Mitteln, die sich innerhalb des Spaltes im Überlappungsbereich zweier benachbarter Wandteile befinden.From this swirl course it can now be seen that different inflow conditions for the cooling air into the combustion chamber have to be taken into account over the axial length of the flame tube. The direction of the cooling air flowing up to then largely tangentially on the wall facing the collecting space must therefore be adapted to the direction of the main flow prevailing near the wall. This is done with the means described below, which are located within the gap in the overlap area of two adjacent wall parts.

Die Fig.4 und 5 zeigen in einer Draufsicht die Struktur eines Wandteils 18, und zwar die dem Sammelraum zugekehrte Seite. Die Fig.6 stellt ein Wandteil des inneren Flammrohrringes im Querschnitt dar. Im Gegensatz zur schematischen Darstellung in Fig.2 sind die Wandteile in Umfangsrichtung nicht gebogen. Vielmehr handelt es sich um fast ebene Platten, die gemäss Fig.1 in Turbinenlängsrichtung dem Verlauf des Verbrennungsraums entsprechend gebogen sind. Diese Platten sind an ihrer dem Sammelraum zugekehrten Seite an einem ersten Ende mit einer Haltevorrichtung in Form eines Greifers 21 versehen. Mit diesem Greifer 21 wird die jeweils in Umfangsrichtung benachbarte Platte gehalten, wie dies die gestrichelte Darstellung am linken Ende der Platte zeigt. Damit ist ein einfaches Montagemittel geschaffen, welches zudem erlaubt, den Überlappungsspalt 22 in jedem Betriebszustand in engen Grenzen zu halten. Am andern Ende der Platte ist ein Versatz 23 vorgesehen, der zu Befestigungszwecken des Flammrohres verwendet werden kann. Im dargestellten Fall ist die Flammrohrstruktur selbsttragend; es vesteht sich, dass dies nur bis zu einer gewissen Grössenordnung möglich ist. Selbstverständlich können diese Versätze 23 an den Wandteilen mit eigentlichen Tragstrukturen verbunden sein. Diese sind auf jeden Fall so zu konzipieren, dass eine freie Ausdehnung der Wandteile anlässlich des Betriebes nicht behindert wird.4 and 5 show a top view of the structure of a wall part 18, specifically the side facing the collecting space. 6 shows a wall part of the inner flame tube ring in cross section. In contrast to the schematic representation in FIG. 2, the wall parts are not bent in the circumferential direction. Rather, it is almost flat plates that are bent according to the longitudinal direction of the turbine according to the course of the combustion chamber. These plates are on one side on the side facing the collecting space provided at the first end with a holding device in the form of a gripper 21. With this gripper 21, the adjacent plate in the circumferential direction is held, as shown by the broken line at the left end of the plate. This creates a simple assembly means which also allows the overlap gap 22 to be kept within narrow limits in every operating state. At the other end of the plate an offset 23 is provided which can be used for fastening purposes of the flame tube. In the case shown, the flame tube structure is self-supporting; it is understood that this is only possible up to a certain order of magnitude. Of course, these offsets 23 can be connected to the actual supporting structures on the wall parts. These are to be designed in any case so that a free expansion of the wall parts is not hindered during operation.

Die Wandteile sind an ihrer dem Verbrennungsraum abgekehrten Seite mit Längsrippen 24 bestückt, die sich vom eintrittsseitigen Verteilraum 20 bis hin zu austrittsseitigen Durchtritten 30 erstrecken. Diese Durchtritte können als Bohrungen in einem die Greifer 21 tragenden Wulst konzipiert sein. Die Längsrippen 24 unterteilen die dem Verbrennungsraum 15 abgewandte Seite des Wandteils in Kanäle 25, in welchen die Kühlluft in Umfangsrichtung zu den Durchtritten 30 geführt wird. Sowohl der Verteilraum 20 als auch die Rippen 24 und die Kanäle 25 sind mit einer Abdeckung 26 gegen den Sammelraum 6 versehen. In dieser Abdeckung befinden sich in der Ebene des Verteilraums 20 eine Anzahl Einlassöffnungen 19 für die Kühlluft. Diese Öffnungen 19 sind als Bohrungen ebenfalls in Fig.5 strichliert dargestellt, obschon sie in dieser Ansicht unsichtbar sind, da aus Gründen der Übersichtlichkeit in den Fig. 4 und 5 die Abdeckung 26 weggelassen wurde. In diesen Figuren ist ebenfalls erkennbar, dass der Verteilraum 20 am einlasseitigen Ende des Wandteils mittels Trennwänden 27 in mehrere Verteilsegmente 28 unterteilt ist. Mit der Wahl der axialen Erstreckung dieser Verteilsegmente und damit der Anzahl der beaufschlagten Kanäle 25 je Segment sowie der Grösse der Einlassöffnungen 19 hat man ein einfaches Mittel zur genauen Dosierung der Kühlluft in der Hand.On its side facing away from the combustion chamber, the wall parts are equipped with longitudinal ribs 24, which extend from the inlet-side distribution chamber 20 to the outlet-side passages 30. These passages can be designed as bores in a bead carrying the grippers 21. The longitudinal ribs 24 divide the side of the wall part facing away from the combustion chamber 15 into channels 25, in which the cooling air is guided in the circumferential direction to the passages 30. Both the distribution space 20 as well as the ribs 24 and the channels 25 are provided with a cover 26 against the collecting space 6. In this cover there are a number of inlet openings 19 for the cooling air in the plane of the distribution space 20. 5, although they are invisible in this view, since the cover 26 has been omitted in FIGS. 4 and 5 for reasons of clarity. It can also be seen in these figures that the distribution space 20 at the inlet-side end of the wall part is divided into a plurality of distribution segments 28 by means of partition walls 27. With the choice of the axial extension of these distribution segments and thus the number of channels 25 acted upon per segment and the size of the inlet openings 19, one has a simple means of precisely metering the cooling air in one hand.

Die aus den Durchtritten 30 in den Überlappungsspalt 22 ausströmende Kühlluft wird vor dem Eintritt in den Verbrennungsraum 15 in einem Gitter 29 umgelenkt. Dieses ist am einlasseitigen Ende des überlappten benachbarten Wandteils (Fig.6) an deren dem Verbrennungsraum zugewandten Seite angeordnet. Der Anstellwinkel des Gitters wird dabei vom Flammrohreintritt bis zu dessen Austritt zunehmend verändert in überstimmenderweise mit der in Wandnähe herrschenden Drallströmung der Verbrennungsgase.The cooling air flowing out of the passages 30 into the overlap gap 22 is deflected in a grille 29 before entering the combustion chamber 15. This is arranged on the inlet-side end of the overlapping adjacent wall part (FIG. 6) on its side facing the combustion chamber. The angle of attack of the grille is increasingly changed from the flame tube inlet to its outlet in accordance with the swirling flow of the combustion gases near the wall.

Selbstverständlich ist die Erfindung nicht auf die gezeigte und beschriebene Ausführung beschränkt. So könnten beispielsweise die Längsseiten der Wandteile statt parallel zur Turbinenachse ebenso gut schraubenförmig, beispielsweise unter 45° verlaufen. In Abweichung zur dargestellten integralen Bauweise des Umlenkgitters könnte dieses Gitter genau so gut als separate Baueinheit konzipiert sein. Desweiteren wird man die Rippen, sofern dies nicht zu Kühlzwecken unbedingt erforderlich ist, nur auf einem Teil der Wandungen anbringen statt über deren ganzen axialen Länge. Es ist auch denkbar, dass statt der Längsrippen die Oberfläche des Wandteils gerillt ist und zwar mit oder ohne Turbulenzgitter.Of course, the invention is not limited to the embodiment shown and described. For example, instead of parallel to the turbine axis, the long sides of the wall parts could just as well run helically, for example at 45 °. In deviation from the integral construction of the deflection grating shown, this grating could just as well be designed as a separate structural unit. Furthermore, unless this is absolutely necessary for cooling purposes, the ribs will only be attached to a part of the walls instead of over their entire axial length. It is also conceivable for the surface of the wall part to be grooved instead of the longitudinal ribs, with or without turbulence grille.

Claims (8)

Gasturbinenbrennkammer mit einem ringförmigen Flammrohr (17), welches einen Verbrennungsraum begrenzt und auf seiner vom Verbrennungsraum (15) abgewandten Seite einem vom Verdichter (11) der Gasturbine gelieferten Luftstrom ausgesetzt ist, und welches sich im wesentlichen aus sich überlappenden Wandteilen (18) zusammensetzt, wobei die Wandteile an ihrer dem Verbrennungsraum abgewandten Seite jeweils mehrere, über dem Umfang verteilte Einlassöffnungen (19) aufweisen, über die die Kühlluft in einen im Wandteil angeordneten und mit dem Verbrennungsraum kommunizierenden Verteilraum (20) eingeleitet wird,
dadurch gekennzeichnet,
dass die Wandteile (18) in Turbinenachsrichtung gebogene Elemente sind, die sich in Umfangsrichtung überlappen und mit Mitteln (24) versehen sind, um die Kühlluft aus dem am einlassseitigen Ende des Wandteils angeordneten Verteilraum (20) zumindest annähernd in Umfangsrichtung zum auslasseitigen Ende des Wandteils zu führen.
Gas turbine combustion chamber with an annular flame tube (17) which delimits a combustion chamber and is exposed on its side facing away from the combustion chamber (15) to an air flow supplied by the compressor (11) of the gas turbine, and which is composed essentially of overlapping wall parts (18), the wall parts on their side facing away from the combustion chamber each having a plurality of inlet openings (19) distributed over the circumference, through which the cooling air is introduced into a distribution chamber (20) arranged in the wall part and communicating with the combustion chamber,
characterized,
that the wall parts (18) are curved elements in the axial direction of the turbine, which overlap in the circumferential direction and are provided with means (24) for the cooling air from the distribution space (20) arranged at the inlet-side end of the wall part, at least approximately in the circumferential direction to the outlet-side end of the wall part respectively.
Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel Rippen (24) sind, welche die dem Verbrennungsraum (15) abgewandte Seite des Wandteils (18) in Kanäle (25) unterteilen, welche ihrerseits mit einer Abdeckung (26) gegen den Luftraum ausserhalb des Flammrohres (17) versehen sind.Gas turbine combustion chamber according to claim 1, characterized in that the means are ribs (24) which divide the side of the wall part (18) facing away from the combustion chamber (15) into channels (25) which in turn have a cover (26) against the air space outside of the flame tube (17) are provided. Gasturbinenbrennkammer nach Anspruch 2, dadurch gekennzeichnet, dass die in Umfangsrichtung verlaufenden Rippen (24) zumindest annähernd über die ganze axiale Erstreckung des Flammrohres (17) angeordnet sind.Gas turbine combustion chamber according to claim 2, characterized in that the ribs (24) extending in the circumferential direction are arranged at least approximately over the entire axial extent of the flame tube (17). Gasturbinenbrennkammer nach Anspruch 2, dadurch gekennzeichnet, dass die aus den Rippen (24) ausströmende Kühlluft vor dem Eintritt in den Verbrennungsraum (15) in einem Gitter (29) umgelenkt wird, welches am einlasseitigen Ende des überlappten benachbarten Wandteils (18) an deren dem Verbrennungsraum zugewandten Seite angeordnet ist.Gas turbine combustion chamber according to claim 2, characterized in that the cooling air flowing out of the ribs (24) is deflected before entering the combustion chamber (15) in a grille (29) which at the inlet end of the overlapped adjacent wall part (18) on the other Combustion chamber facing side is arranged. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der Verteilraum (20) am einlasseitigen Ende des Wandteils (18) mittels Trennwänden (27) in mehrere Verteilsegmente (28) unterteilt ist.Gas turbine combustion chamber according to Claim 1, characterized in that the distribution space (20) at the inlet-side end of the wall part (18) is divided into a plurality of distribution segments (28) by means of partition walls (27). Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die Längsseiten der sich in Turbinenachsrichtung erstreckenden Wandteile (18) parallel zur Turbinenachse (12) verlaufen.Gas turbine combustion chamber according to claim 1, characterized in that the longitudinal sides of the wall parts (18) extending in the turbine axial direction run parallel to the turbine axis (12). Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass die sich überlappenden Wandteile (18) eine selbsttragende Flammrohrstruktur bilden.Gas turbine combustion chamber according to claim 1, characterized in that the overlapping wall parts (18) form a self-supporting flame tube structure. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet, dass das Flammrohr (17) eine gerade Anzahl sich überlappender Wandteile (18) aufweist.Gas turbine combustion chamber according to claim 1, characterized in that the flame tube (17) has an even number of overlapping wall parts (18).
EP90123311A 1990-12-05 1990-12-05 Combustion chamber for gas turbine Expired - Lifetime EP0489193B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59010740T DE59010740D1 (en) 1990-12-05 1990-12-05 Gas turbine combustor
EP90123311A EP0489193B1 (en) 1990-12-05 1990-12-05 Combustion chamber for gas turbine
US07/799,316 US5226278A (en) 1990-12-05 1991-11-27 Gas turbine combustion chamber with improved air flow
JP31888291A JP3180830B2 (en) 1990-12-05 1991-12-03 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90123311A EP0489193B1 (en) 1990-12-05 1990-12-05 Combustion chamber for gas turbine

Publications (2)

Publication Number Publication Date
EP0489193A1 true EP0489193A1 (en) 1992-06-10
EP0489193B1 EP0489193B1 (en) 1997-07-23

Family

ID=8204799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123311A Expired - Lifetime EP0489193B1 (en) 1990-12-05 1990-12-05 Combustion chamber for gas turbine

Country Status (4)

Country Link
US (1) US5226278A (en)
EP (1) EP0489193B1 (en)
JP (1) JP3180830B2 (en)
DE (1) DE59010740D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648979A1 (en) * 1993-10-18 1995-04-19 ABB Management AG Method and means for cooling a gas turbine combustion chamber
US5735115A (en) * 1994-01-24 1998-04-07 Siemens Aktiengesellschaft Gas turbine combustor with means for removing swirl
US6003297A (en) * 1995-03-06 1999-12-21 Siemens Aktiengsellschaft Method and apparatus for operating a gas turbine, with fuel injected into its compressor
WO2024021252A1 (en) * 2022-07-28 2024-02-01 哈电发电设备国家工程研究中心有限公司 Air guide casing inner cylinder of gas turbine having double combustion chambers

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9220937D0 (en) * 1992-10-06 1992-11-18 Rolls Royce Plc Gas turbine engine combustor
US5460002A (en) * 1993-05-21 1995-10-24 General Electric Company Catalytically-and aerodynamically-assisted liner for gas turbine combustors
US5906093A (en) * 1997-02-21 1999-05-25 Siemens Westinghouse Power Corporation Gas turbine combustor transition
US20050044857A1 (en) * 2003-08-26 2005-03-03 Boris Glezer Combustor of a gas turbine engine
US7010921B2 (en) * 2004-06-01 2006-03-14 General Electric Company Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US7574865B2 (en) * 2004-11-18 2009-08-18 Siemens Energy, Inc. Combustor flow sleeve with optimized cooling and airflow distribution
US7934382B2 (en) * 2005-12-22 2011-05-03 United Technologies Corporation Combustor turbine interface
MY161317A (en) * 2008-02-20 2017-04-14 General Electric Technology Gmbh Gas turbine
JP5134680B2 (en) * 2008-02-27 2013-01-30 三菱重工業株式会社 Gas turbine and gas turbine casing opening method
CH699309A1 (en) * 2008-08-14 2010-02-15 Alstom Technology Ltd Thermal machine with air cooled, annular combustion chamber.
US20120027578A1 (en) * 2010-07-30 2012-02-02 General Electric Company Systems and apparatus relating to diffusers in combustion turbine engines
US9267687B2 (en) 2011-11-04 2016-02-23 General Electric Company Combustion system having a venturi for reducing wakes in an airflow
US9739201B2 (en) 2013-05-08 2017-08-22 General Electric Company Wake reducing structure for a turbine system and method of reducing wake
US9322553B2 (en) 2013-05-08 2016-04-26 General Electric Company Wake manipulating structure for a turbine system
US9435221B2 (en) 2013-08-09 2016-09-06 General Electric Company Turbomachine airfoil positioning
DE102014206018A1 (en) * 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Gas turbine plant
US11073285B2 (en) * 2019-06-21 2021-07-27 Raytheon Technologies Corporation Combustor panel configuration with skewed side walls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB642257A (en) * 1947-12-04 1950-08-30 Shell Refining & Marketing Co Improvements in and relating to combustion chambers
GB1099374A (en) * 1965-03-23 1968-01-17 Prvni Brnenska Strojirna Zd Y Improvements in or relating to cooled walls of gas-turbine combustion chambers
US3422620A (en) * 1967-05-04 1969-01-21 Westinghouse Electric Corp Combustion apparatus
GB2102558A (en) * 1981-06-12 1983-02-02 Westinghouse Electric Corp Combustor or combustion turbine
US4773227A (en) * 1982-04-07 1988-09-27 United Technologies Corporation Combustion chamber with improved liner construction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647369A (en) * 1946-09-06 1953-08-04 Leduc Rene Combustion chamber for fluid fuel burning in an air stream of high velocity
DE1059719B (en) * 1955-06-16 1959-06-18 Jan Jerie Dr Ing Cooled wall of a combustion chamber, especially for gas turbines
US3420058A (en) * 1967-01-03 1969-01-07 Gen Electric Combustor liners
US3978662A (en) * 1975-04-28 1976-09-07 General Electric Company Cooling ring construction for combustion chambers
US4077205A (en) * 1975-12-05 1978-03-07 United Technologies Corporation Louver construction for liner of gas turbine engine combustor
US4996838A (en) * 1988-10-27 1991-03-05 Sol-3 Resources, Inc. Annular vortex slinger combustor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB642257A (en) * 1947-12-04 1950-08-30 Shell Refining & Marketing Co Improvements in and relating to combustion chambers
GB1099374A (en) * 1965-03-23 1968-01-17 Prvni Brnenska Strojirna Zd Y Improvements in or relating to cooled walls of gas-turbine combustion chambers
US3422620A (en) * 1967-05-04 1969-01-21 Westinghouse Electric Corp Combustion apparatus
GB2102558A (en) * 1981-06-12 1983-02-02 Westinghouse Electric Corp Combustor or combustion turbine
US4773227A (en) * 1982-04-07 1988-09-27 United Technologies Corporation Combustion chamber with improved liner construction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0648979A1 (en) * 1993-10-18 1995-04-19 ABB Management AG Method and means for cooling a gas turbine combustion chamber
US5651253A (en) * 1993-10-18 1997-07-29 Abb Management Ag Apparatus for cooling a gas turbine combustion chamber
US5735115A (en) * 1994-01-24 1998-04-07 Siemens Aktiengesellschaft Gas turbine combustor with means for removing swirl
US6003297A (en) * 1995-03-06 1999-12-21 Siemens Aktiengsellschaft Method and apparatus for operating a gas turbine, with fuel injected into its compressor
WO2024021252A1 (en) * 2022-07-28 2024-02-01 哈电发电设备国家工程研究中心有限公司 Air guide casing inner cylinder of gas turbine having double combustion chambers

Also Published As

Publication number Publication date
US5226278A (en) 1993-07-13
DE59010740D1 (en) 1997-09-04
JPH04273913A (en) 1992-09-30
EP0489193B1 (en) 1997-07-23
JP3180830B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
EP0489193B1 (en) Combustion chamber for gas turbine
DE3200972C2 (en)
DE2550100C2 (en) Device for cooling a flow channel wall of gas turbine engines exposed to combustion gases
EP0059490B1 (en) Annular combustion chamber with an annular burner for gas turbines
DE102005025823B4 (en) Method and device for cooling a combustion chamber lining and a transition part of a gas turbine
DE4316475C2 (en) A gas turbine combustor
DE3711024C2 (en) Turbine guide vane for a gas turbine engine
CH672004A5 (en)
EP1508747A1 (en) Gas turbine diffusor and gas turbine for the production of energy
CH701454B1 (en) Burner with a flow conditioner.
DE3036525A1 (en) INLET PARTICLE SEPARATOR SYSTEM FOR A GAS TURBINE ENGINE
EP0690206A2 (en) Diffusor for a turbomachine
DE102015112767A1 (en) Fuel injector assemblies in combustion turbines
DE3231689A1 (en) MULTIPLE IMPACT-COOLED PRODUCT, IN PARTICULAR COATING A GAS FLOW PATH
DE19859829A1 (en) Burner for operating a heat generator
DE102009026210A1 (en) Slotted compressor diffuser and associated method
DE1045727B (en) Annular gas turbine combustion chamber
EP0193029B1 (en) Gas turbine combustor
DE1280618B (en) Double-walled guide vane for gas turbine engines
DE102013208069A1 (en) Burner lance for a burner of a gas turbine
WO2016156370A1 (en) Bypass heat shield element
EP0397768A1 (en) Turbine for an exhaust gas turbocharger.
EP0636764A1 (en) Gasturbine with cooled rotor
DE19629191C2 (en) Process for cooling a gas turbine
DE3007209C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI NL

17P Request for examination filed

Effective date: 19921113

17Q First examination report despatched

Effective date: 19940415

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970723

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970723

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59010740

Country of ref document: DE

Date of ref document: 19970904

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081216

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091205