EP1958320A2 - Procede de mise en service d'un ralentisseur electromagnetique - Google Patents

Procede de mise en service d'un ralentisseur electromagnetique

Info

Publication number
EP1958320A2
EP1958320A2 EP06841906A EP06841906A EP1958320A2 EP 1958320 A2 EP1958320 A2 EP 1958320A2 EP 06841906 A EP06841906 A EP 06841906A EP 06841906 A EP06841906 A EP 06841906A EP 1958320 A2 EP1958320 A2 EP 1958320A2
Authority
EP
European Patent Office
Prior art keywords
coils
current
retarder
rectifier
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06841906A
Other languages
German (de)
English (en)
Inventor
Serge Newiadomy
Mamy Rakotovao
Bruno Dessirier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telma SA
Original Assignee
Telma SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telma SA filed Critical Telma SA
Publication of EP1958320A2 publication Critical patent/EP1958320A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/043Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with a radial airgap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/28Eddy-current braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a method for controlling an electromagnetic retarder comprising a current generator.
  • the invention also relates to such an electromagnetic retarder.
  • the invention applies to a retarder capable of generating a resistant retarding torque on a main or secondary drive shaft of a vehicle which it equips, when this retarder is actuated.
  • Such an electromagnetic retarder comprises a rotary shaft which is coupled to the main or secondary transmission shaft of the vehicle to exert on it the resisting retarding torque in particular to assist braking of the vehicle.
  • the slowdown is generated with field coils supplied with direct current to produce a magnetic field in a metal part made of ferromagnetic material, in order to cause eddy currents to appear in this metal part.
  • the field coils can be fixed to cooperate with at least one metal part made of mobile ferromagnetic material having a general appearance of a disc rigidly secured to the rotary shaft.
  • these field coils are generally oriented parallel to the axis of rotation and arranged around this axis, opposite the disc, being secured to a fixed flange. Two successive field coils are electrically powered to generate magnetic fields in opposite directions.
  • the field coils are electrically powered by a current from the vehicle's electrical network, that is to say for example from a vehicle battery.
  • a current generator is integrated into the retarder.
  • the electrical supply of the induction coils is ensured by a generator comprising primary stator coils supplied by the vehicle network, and secondary rotor windings integral with the rotary shaft .
  • the induction coils are integral with the rotary shaft, being radially projecting, to generate a magnetic field in a fixed cylindrical jacket which surrounds them.
  • a rectifier such as a diode bridge rectifier is interposed between the secondary rotor windings and the field coils, also being carried by the rotary shaft. This rectifier converts the alternating current delivered by the secondary windings of the generator into direct current supplying the induction coils.
  • Two consecutive inductor coils around the axis of rotation generate magnetic fields in opposite directions, one generating a field oriented centrifugally, the other a field oriented centripetally.
  • the power supply to the primary coils allows the generator to produce the supply current to the field coils, which gives rise to eddy currents in the fixed cylindrical jacket, to generate a resistant torque on the rotating shaft, which slows down the vehicle.
  • the speed of rotation of the retarder shaft is then overdriven with respect to the speed of rotation of the transmission shaft to which it is coupled. This arrangement makes it possible to significantly increase the electrical power delivered by the generator, and therefore the power of the retarder.
  • Such a retarder is for example controlled by means of a lever or the like which can be actuated directly by an occupant of the vehicle.
  • the engagement of the retarder thus consists in moving the lever in question towards an activation position.
  • the object of the invention is to propose a method of commissioning such a retarder making it possible to increase its reliability and longevity.
  • the subject of the invention is a method of commissioning an electromagnetic retarder comprising a current generator, consisting in establishing an excitation current in primary stator coils of this generator, this excitation current being injected from a control unit connected to an electrical power source, this electromagnetic retarder comprising a rotary shaft carrying secondary windings of the generator and field coils as well as a current rectifier, the field coils being supplied by the secondary coils via the rectifier, and in which the secondary windings have a time constant which is less than the time constant of the field coils and / or greater than the time constant of the primary coils, this method consisting in injecting into the primary coils a continuous excitation current having an intensity which gradually increases to a nominal value for a predetermined minimum duration.
  • the gradual increase in the excitation current of the primary coils makes it possible to limit the overvoltage resulting from the transient effect due to the establishment of currents in the electrical elements located downstream of these primary coils.
  • the invention also relates to a method as defined above, in which the predetermined minimum duration is greater than the time constant of the primary coils, the time constant of the secondary windings, and the time constant of the field coils.
  • the invention also relates to a method as defined above, consisting in increasing the excitation current linearly during the predetermined minimum duration.
  • the invention also relates to the application of a method as defined above, to a rectifier in which the rectifier device is a diode bridge.
  • the invention also relates to an electromagnetic retarder comprising a current generator and a control unit intended to be connected to an electrical power source for electrically supplying the stator primary coils of this generator, this electromagnetic raiser comprising a rotary shaft carrying secondary windings of the generator and the inductor coils as well as a rectifier current, the field coils being supplied by the secondary coils via the rectifier, in which the secondary windings have a time constant which is less than the time constant of the field coils and / or greater than the time constant of the primary coils, and wherein the control unit comprises means for injecting into the primary coils a continuous excitation current having an intensity which progressively increases to a nominal value for a predetermined minimum duration.
  • the invention also relates to an electromagnetic retarder as defined above, in which the rectifier is a diode bridge.
  • Figure 1 is an overall view with local cutaway of an electromagnetic retarder to which the invention applies;
  • Figure 2 is a schematic representation of the electrical components of the retarder according to the invention.
  • the electromagnetic retarder 1 comprises a main casing 2 of generally cylindrical shape having a first end closed by a cover 3, and a second end closed by a coupling piece 4 by which this retarder 1 is fixed to a gearbox housing either directly either indirectly, here via a speed multiplier identified by 6.
  • This casing 2 which is fixed, contains a rotary shaft 7 which is coupled to a transmission shaft not visible in the figure, such as a main transmission shaft to the wheels of the vehicle, or secondary such as a secondary output shaft of a gearbox via the speed multiplier 6.
  • a current generator which comprises fixed or stator primary coils 8 which surround secondary rotor windings, integral with the rotary shaft 7.
  • These secondary windings are symbolically represented in FIG. 2, being identified by the reference 5.
  • These secondary windings 5 here comprise three separate windings 5A, 5B and 5C for delivering a three-phase alternating current having a frequency conditioned by the speed of rotation of the shaft. rotary 7.
  • An internal jacket 9 of generally cylindrical shape is mounted in the main casing 2 while being slightly spaced radially from the external wall of this main casing 2 to define an intermediate space 10, substantially cylindrical, in which a coolant liquid circulates from this jacket 9 .
  • This main casing which also has a generally cylindrical shape, is provided with an inlet pipe 11 for coolant into the space 10 and a delivery pipe 12 for the coolant out of this space 10.
  • This jacket 9 surrounds several inductor coils 13 which are carried by a rotor 14 rigidly secured to the rotary shaft 7.
  • Each inductor coil 13 is oriented to generate a radial magnetic field, while having a generally oblong shape extending parallel to the tree 7.
  • the jacket 9 and the body of the rotor 14 are made of ferromagnetic material.
  • the casing is a moldable piece based on aluminum and seals intervene between the casing and the jacket 9, the cover 3 and the part 4 are perforated.
  • the inductor coils 13 are electrically supplied by the secondary rotor windings 5 of the generator via a rectifier bridge carried by the rotary shaft 7.
  • This rectifier bridge can be the one marked with 15 in FIG. 2, and which comprises six diodes 15A -15F, to rectify the three-phase alternating current from the secondary windings 5A-5C in direct current.
  • This rectifier bridge can also be of another type, for example being formed from MOSFET type transistors.
  • the rotor 14 carrying the induction coils 13 has the general shape of a hollow cylinder connected to the rotary shaft 7 by radial arms 16.
  • This rotor 14 thus defines an annular internal space situated around the shaft 7, this internal space being ventilated by an axial fan 17 located substantially at the junction of the cover 3 with the casing 2.
  • a radial fan 18 is situated at the opposite end of the casing 2 to evacuate the air introduced by the ventilator 17.
  • the putting into service of the retarder consists in injecting into the primary coils 8 an excitation current coming from the electric network of the vehicle and in particular from the battery, so that the generator delivers a current on its secondary windings 5. This current then feeds the coils inductors 13 to produce a resistant torque for vehicle deceleration.
  • the excitation current is injected into the primary coils 8 by means of a control unit 19, shown in FIG. 2, which is interposed between a source of electrical power for the vehicle, and the primary coils 8.
  • the control unit 19 and the primary coils 8 are mounted in series between a mass M of the vehicle and a supply Batt of the vehicle battery.
  • a diode D is mounted across the primary coils 8 so as to avoid the circulation of a reverse current in the primary coils.
  • This control unit 19 includes an input capable of receiving a control signal representative of a level of deceleration torque requested from the retarder.
  • This input can be connected to a lever or the like which is actuated directly by a driver of the vehicle.
  • This lever can be gradually movable between two extreme positions, namely a maximum position corresponding to a request for maximum resistive torque, and a minimum position in which the retarder is not stressed.
  • the retarder is controlled by the housing 19 to exert on the rotary shaft 7 a resistive torque proportional to the position of the lever, relative to the maximum available retarding torque.
  • the input of the control unit 19 receives a control signal which corresponds to a value between zero and one hundred percent.
  • This input can also be connected to a brake control unit which independently determines a retarder control signal.
  • This brake control unit is then connected to one or more brake actuators available to the driver.
  • the driver does not act directly on the retarder, but it is the brake control unit which controls, from different parameters, the retarder and the traditional brakes of the vehicle.
  • the control unit 19 is an electronic unit comprising for example a logic circuit of the ASIC type operating at 5V, and / or a power control circuit capable of managing currents of high intensity.
  • the control unit 19 determines a nominal intensity of excitation current to be injected into the primary coils 8, and it injects into the primary coils 8 an excitation current. whose intensity gradually increases until reaching the nominal value. The housing 19 then maintains this nominal current as long as the piloting signal is unchanged, that is to say as long as a resisting torque is requested from the retarder.
  • the progressive increase, for a predetermined period, of the intensity of the excitation current is for example carried out in the form of a current ramp, that is to say a linear increase in the intensity up to to reach the nominal value.
  • the control unit 19 controls the excitation current in order to make it increase progressively up to a nominal value.
  • This progressive increase in intensity makes it possible to reduce the overvoltages at the terminals of the inductor coils, and therefore at the terminals of the rectifier 15 during each commissioning of the retarder.
  • control unit 19 commands a progressive increase in the intensity of the excitation current for a duration which is greater than the time constant T2 of the secondary windings 5 and the time constant T3 of the inductor coils 13, such so that there is no overvoltage across the rectifier 15.
  • the duration of the progressive increase is also greater than the time constant T1 of the primary coils.
  • the predetermined period during which the control unit increases the excitation current is advantageously a period which is greater than T1, T2 and T3 for ensure that there is no overvoltage in the retarder when it is put into service.
  • the predetermined duration of establishment of the excitation current is between one and ten times the longest time constant value among T1, T2 and T3, which makes it possible both to limit overvoltages and to ensure correct reactivity when the retarder is activated.
  • the progressive increase in the excitation current during the predetermined duration can be controlled by the control unit 19 to be linear, by corresponding to a current ramp.
  • the excitation current can increase quadratically with respect to time, exponential or trigonometric.
  • the overvoltage is notably conditioned by the slope of variation of the excitation current during commissioning. This gradual increase in intensity
  • the choice of a suitable evolution law further reduces the overvoltage at the terminals of the rectifier 15 so as to reduce the duration of establishment of the current to bring it as close as possible to the value of the longest time constant among T1 , T2 and T3.
  • the intensity of the excitation current increases exponentially during commissioning, which makes it possible to reduce the duration of establishment of the excitation current to a value very close to that of the longest time constant. among Tl, T2 and T3.
  • the invention thus makes it possible to limit the overvoltage at the terminals of the current rectifier, which makes it possible to reduce the manufacturing cost of the rectifier and increase its longevity.
  • the invention also makes it possible to avoid deterioration of the induction coils and / or the secondary windings of the generator by reducing the voltages applied to them.
  • the invention is not limited to the embodiments described. It applies in particular to a retarder comprising a current rectifier in the form of a bridge of MOSFET transistors.
  • the number of generator phases which depends on the applications, can be greater than three as a variant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

L'invention concerne un procédé pour mettre en service un ralentisseur électromagnétique du type comprenant une génératrice de courant. L'invention s'applique à un ralentisseur électromagnétique comprenant un stator portant des bobines primaires (8) d'une génératrice de courant, un arbre rotatif (7) portant des bobinages secondaires (5) de la génératrice et des bobines inductrices (13) alimentées électriquement par les bobines secondaires (5) via un dispositif (15) redresseur de courant porté par l'arbre rotatif (7). Le procédé de mise en service consiste à injecter dans les bobines primaires (8) un courant continu ayant une intensité qui augmente jusqu'à une valeur nominale de façon progressive pendant une durée minimale prédéterminée. L'invention s'applique aux ralentisseurs électromagnétiques destinés à équiper des véhicules tels que des camions.

Description

« Procédé de mise en service d'un ralentisseur électromagnétique ».
DOMAINE DE L'INVENTION
L'invention concerne un procédé de pilotage d'un ralentisseur électromagnétique comprenant une génératrice de courant. L'invention concerne également un tel ralentisseur électromagnétique.
L'invention s'applique à un ralentisseur capable de générer un couple résistant de ralentissement sur un arbre de transmission principal ou secondaire d'un véhicule qu'il équipe, lorsque ce ralentisseur est actionné.
ETAT DE LA TECHNIQUE
Un tel ralentisseur électromagnétique comprend un arbre rotatif qui est accouplé a l'arbre de transmission principal ou secondaire du véhicule pour exercer sur celui-ci le couple résistant de ralentissement pour notamment assister le freinage du véhicule.
Le ralentissement est généré avec des bobines inductrices alimentées en courant continu pour produire un champ magnétique dans une pièce métallique en matériau ferromagnétique, afin de faire apparaître des courants de Foucault dans cette pièce métallique.
Les bobines inductrices peuvent être fixes pour coopérer avec au moins une pièce métallique en matériau ferromagnétique mobile ayant une allure générale de disque rigidement solidaire de l'arbre rotatif.
Dans ce cas, ces bobines inductrices sont généralement orientées parallèlement à l ' axe de rotation et disposées autour de cet axe, en vis-à-vis du disque, en étant solidarisées à un flasque fixe. Deux bobines inductrices successives sont alimentées électriquement pour générer des champs magnétiques de directions opposées .
Lorsque ces bobines inductrices sont alimentées électriquement, les courants de Foucault qu'elles génèrent dans le disque s'opposent par leurs effets à la cause qui leur a donné naissance, ce qui produit un couple résistant sur le disque et donc sur l'arbre rotatif, pour ralentir le véhicule.
Dans ce mode de réalisation, les bobines inductrices sont alimentées électriquement par un courant provenant du réseau électrique du véhicule, c'est-à-dire par exemple à partir d'une batterie du véhicule. Mais pour augmenter les performances du ralentisseur, on recourt à une conception dans laquelle une génératrice de courant est intégrée au ralentisseur.
Ainsi, selon une autre conception connue des documents de brevet EP0331559 et FR1467310, l'alimentation électrique des bobines inductrices est assurée par une génératrice comprenant des bobines primaires statoriques alimentées par le réseau du véhicule, et des bobinages secondaires rotoriques solidaires de l'arbre rotatif. Les bobines inductrices sont solidaires de l'arbre rotatif en étant radialement saillantes, pour générer un champ magnétique dans une chemise cylindrique fixe qui les entoure.
Un redresseur tel qu'un redresseur à pont de diodes est interposé entre les bobinages secondaires rotoriques et les bobines inductrices, en étant également porté par l'arbre rotatif. Ce redresseur convertit le courant alternatif délivré par les bobinages secondaires de la génératrice en courant continu d'alimentation des bobines inductrices.
Deux bobines inductrices radiales consécutives autour de l'axe de rotation génèrent des champs magnétiques de directions opposées, l'une générant un champ orienté de façon centrifuge, l'autre un champ orienté de façon centripète .
En fonctionnement, l'alimentation électrique des bobines primaires permet à la génératrice de produire le courant d'alimentation des bobines inductrices, ce qui donne naissance à des courants de Foucault dans la chemise cylindrique fixe, pour générer un couple résistant sur l'arbre rotatif, qui ralentit le véhicule.
Afin de réduire le poids et d'augmenter encore les performances d'un tel ralentisseur, il est avantageux de l'accoupler à l'arbre de transmission du véhicule par l'intermédiaire d'un multiplicateur de vitesse, conformément à la solution adoptée dans le document de brevet EP1527509.
La vitesse de rotation de l'arbre du ralentisseur est alors surmultipliée par rapport à la vitesse de rotation de l'arbre de transmission auquel il est accouplé. Cet agencement permet d'augmenter significativement la puissance électrique délivrée par la génératrice, et donc la puissance du ralentisseur.
Un tel ralentisseur est par exemple piloté au moyen d'un levier ou autre pouvant être actionné directement par un occupant du véhicule. L'enclenchement du ralentisseur consiste ainsi à déplacer le levier en question vers une position d'activation.
Lorsque le levier est en position d'activation, un courant d'excitation continu est injecté dans les bobines primaires, ce qui a pour effet d'exercer un couple de freinage sur l'arbre rotatif tant que ce courant d'excitation est établi dans les bobines primaires.
Le but de l ' invention est de proposer un procédé de mise en service d'un tel ralentisseur permettant d'en augmenter la fiabilité et la longévité.
OBJET DE L'INVENTION
A cet effet, l'invention a pour objet un procédé de mise en service d'un ralentisseur électromagnétique comprenant une génératrice de courant, consistant à établir un courant d'excitation dans des bobines primaires statoriques de cette génératrice, ce courant d'excitation étant injecté depuis un boîtier de commande relié à une source d'alimentation électrique, ce ralentisseur électromagnétique comprenant un arbre rotatif portant des bobinages secondaires de la génératrice et des bobines inductrices ainsi qu'un redresseur de courant, les bobines inductrices étant alimentées par les bobines secondaires via le redresseur, et dans lequel les bobinages secondaires ont une constante de temps qui est inférieure à la constante de temps des bobines inductrices et/ou supérieure à la constante de temps des bobines primaires, ce procédé consistant à injecter dans les bobines primaires un courant d'excitation continu ayant une intensité qui augmente progressivement jusqu'à une valeur nominale pendant une durée minimale prédéterminée .
Lors de la mise en service, l'augmentation progressive du courant d'excitation des bobines primaires permet de limiter la surtension consécutive à l'effet transitoire dû à l'établissement des courants dans les éléments électriques situés en aval de ces bobines primaires.
La diminution de cette surtension grâce à la rampe de courant lors de la mise en service permet en particulier de préserver le redresseur qui comprend des composants sensibles aux tensions élevées consécutives à l'effet transitoire.
L'invention concerne également un procédé tel que défini ci-dessus, dans lequel la durée minimale prédéterminée est supérieure à la constante de temps des bobines primaires, à la constante de temps des bobinages secondaires, et à la constante de temps des bobines inductrices .
L'invention concerne également un procédé tel que défini ci-dessus, consistant à faire croître le courant d'excitation de façon linéaire pendant la durée minimale prédéterminée .
L'invention concerne également l'application d'un procédé tel que défini ci-dessus, à un redresseur dans lequel le dispositif redresseur est un pont de diodes .
L'invention concerne également un ralentisseur électromagnétique comprenant une génératrice de courant et un boîtier de commande destiné à être relié à une source d'alimentation électrique pour alimenter électriquement des bobines primaires statoriques de cette génératrice, ce raientisseur élecromagnétique comprenant un arbre rotatif portant des bobinages secondaires de la génératrice et des bobines inductrices ainsi qu'un redresseur de courant, les bobines inductrices étant alimentées par les bobines secondaires via le redresseur, dans lequel les bobinages secondaires ont une constante de temps qui est inférieure à la constante de temps des bobines inductrices et/ou supérieure à la constante de temps des bobines primaires, et dans lequel le boîtier de commande comprend des moyens pour injecter dans les bobines primaires un courant d'excitation continu ayant une intensité qui augmente progressivement jusqu'à une valeur nominale pendant une durée minimale prédéterminée .
L'invention concerne également un ralentisseur électromagnétique tel que défini ci-dessus, dans lequel le redresseur est un pont de diodes .
BREVE DESCRIPTION DES DESSINS
L'invention sera maintenant décrite plus en détail, et en référence aux dessins annexés qui en illustrent une forme de réalisation à titre d'exemple non limitatif.
La figure 1 est une vue d'ensemble avec arrachement local d'un ralentisseur électromagnétique auquel s'applique l'invention ;
La figure 2 est une représentation schématique des composants électriques du ralentisseur selon l'invention.
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION Dans la figure 1, le ralentisseur électromagnétique 1 comprend un carter principal 2 de forme généralement cylindrique ayant une première extrémité fermée par un couvercle 3 , et une seconde extrémité fermée par une pièce d'accouplement 4 par laquelle ce ralentisseur 1 est fixé à un carter de boîte de vitesses soit directement soit indirectement, ici via un multiplicateur de vitesse repéré par 6.
Ce carter 2, qui est fixe, renferme un arbre rotatif 7 qui est accouplé à un arbre de transmission non visible sur la figure, tel qu'un arbre principal de transmission aux roues du véhicule, ou secondaire tel qu'un arbre secondaire de sortie de boîte de vitesses via le multiplicateur de vitesse 6. Dans une région correspondant à 1 ' intérieur du couvercle 3 est située une génératrice de courant qui comprend des bobines primaires 8 fixes ou statoriques qui entourent des bobinages secondaires rotoriques, solidaires de l'arbre rotatif 7.
Ces bobinages secondaires sont représentés symboliquement en figure 2 en étant repérés par la référence 5. Ces bobinages secondaires 5 comprennent ici trois bobinages distincts 5A, 5B et 5C pour délivrer un courant alternatif triphasé ayant une fréquence conditionnée par la vitesse de rotation de l ' arbre rotatif 7.
Une chemise interne 9 de forme générale cylindrique est montée dans le carter principal 2 en étant légèrement espacée radialement de la paroi externe de ce carter principal 2 pour définir un espace intermédiaire 10, sensiblement cylindrique, dans lequel circule un liquide de refroidissement de cette chemise 9.
Ce carter principal, qui a également une forme générale cylindrique, est pourvu d'une canalisation d'admission 11 de liquide de refroidissement dans l'espace 10 et d'une canalisation de refoulement 12 du liquide de refroidissement hors de cet espace 10.
Cette chemise 9 entoure plusieurs bobines inductrices 13 qui sont portées par un rotor 14 rigidement solidaire de l'arbre rotatif 7. Chaque bobine inductrice 13 est orientée pour générer un champ magnétique radial, tout en ayant une forme générale oblongue s 'étendant parallèlement à l'arbre 7. De manière connue, la chemise 9 et le corps du rotor 14 sont en matériau ferromagnétique . Ici le carter est une pièce moulable à base d'aluminium et des joints d'étanchéité interviennent entre le carter et la chemise 9, le couvercle 3 et la pièce 4 sont ajourés.
Les bobines inductrices 13 sont alimentées électriquement par les bobinages secondaires rotoriques 5 de la génératrice via un pont redresseur porté par l'arbre rotatif 7. Ce pont redresseur peut être celui qui est repéré par 15 sur la figure 2, et qui comprend six diodes 15A-15F, pour redresser le courant alternatif triphasé issu des bobinages secondaires 5A-5C en courant continu. Ce pont redresseur peut aussi être d'un autre type, en étant par exemple formé à partir de transistors de type MOSFET.
Comme visible dans la figure 1, le rotor 14 portant les bobines inductrices 13 a une forme générale de cylindre creux relié à l'arbre rotatif 7 par des bras radiaux 16. Ce rotor 14 définit ainsi un espace interne annulaire situé autour de 1 ' arbre 7 , cet espace interne étant ventilé par un ventilateur axial 17 situé sensiblement au droit de la jonction du couvercle 3 avec le carter 2. Un ventilateur radial 18 est situé à 1 ' extrémité opposée du carter 2 pour évacuer 1 ' air introduit par le ventilateur 17.
La mise en service du ralentisseur consiste à injecter dans les bobines primaires 8 un courant d'excitation provenant du réseau électrique du véhicule et notamment de la batterie, pour que la génératrice délivre un courant sur ses bobinages secondaires 5. Ce courant alimente alors les bobines inductrices 13 pour produire un couple résistant de ralentissement du véhicule.
Le courant d'excitation est injecté dans les bobines primaires 8 au moyen d'un boîtier de commande 19, représenté en figure 2, qui est interposé entre une source d'alimentation électrique du véhicule, et les bobines primaires 8. Dans l'exemple de la figure 2, le boîtier de commande 19 et les bobines primaires 8 sont montées en série entre une masse M du véhicule et une alimentation Batt de la batterie du véhicule. Comme visible dans cette figure, une diode D est montée aux bornes des bobines primaires 8 de façon à éviter la circulation d'un courant inverse dans les bobines primaires .
Ce boîtier de commande 19 comprend une entrée apte à recevoir un signal de pilotage représentatif d'un niveau de couple de ralentissement demandé au ralentisseur.
Cette entrée peut être reliée à un levier ou autre qui est actionné directement par un conducteur du véhicule. Ce levier peut être mobile graduellement entre deux positions extrêmes, à savoir une position maximale correspondant à une demande de couple résistant maximal, et une position minimale dans laquelle le ralentisseur n'est pas sollicité.
Lorsque le conducteur place ce levier dans une position intermédiaire, le ralentisseur est commandé par le boîtier 19 pour exercer sur l'arbre rotatif 7 un couple résistant proportionnel à la position du levier, par rapport au couple maximal de ralentissement disponible. En d'autres termes, l'entrée du boîtier de commande 19 reçoit un signal de pilotage qui correspond à une valeur comprise entre zéro et cent pourcent .
Cette entrée peut aussi être reliée à un boîtier de commande de freinage qui détermine de façon autonome un signal de pilotage du ralentisseur. Ce boîtier de commande de freinage est alors relié à un ou plusieurs actionneurs de freinage dont dispose le conducteur. Dans ce cas , le conducteur n ' agit pas directement sur le ralentisseur, mais c'est le boîtier de commande de freinage qui pilote, à partir de différents paramètres, le ralentisseur et les freins traditionnels du véhicule. Le boîtier de commande 19 est un boîtier électronique comprenant par exemple un circuit logique de type ASIC fonctionnant sous 5V, et/ou un circuit de commande de puissance capable de gérer des courants d'intensité élevée.
Sur réception d'un signal de pilotage correspondant à une valeur non nulle, le boîtier de commande 19 détermine une intensité nominale de courant d'excitation à injecter dans les bobines primaires 8, et il injecte dans les bobines primaires 8 un courant d'excitation dont l'intensité augmente progressivement jusqu'à atteindre la valeur nominale. Le boîtier 19 maintient ensuite cette intensité nominale tant que le signal de pilotage est inchangé, c'est-à-dire tant qu'un couple résistant est demandé au ralentisseur.
L'augmentation progressive, pendant une durée prédéterminée, de l'intensité du courant d'excitation est par exemple effectuée sous forme d'une rampe de courant, c'est-à-dire d'une augmentation linéaire de l'intensité jusqu'à atteindre la valeur nominale.
Cette augmentation progressive de l ' intensité du courant d'excitation permet de limiter les surtensions apparaissant lors de la mise en service, au niveau de composants situés en aval des bobines primaires 8 qui ont des temps de réaction plus longs que les bobines primaires 8. Plus la durée d'établissement de l'intensité nominale est importante, plus les surtensions sont réduites .
En particulier lorsque les constantes de temps Tl, T2, et T3, respectivement des bobines primaires 8, des bobinages secondaires 5, et des bobines inductrices 13, ne vérifient pas la condition Tl > T2 > T3 , l'injection dans les bobines primaires 8 d'un courant d'excitation qui croît de façon progressive jusqu'à une valeur nominale permet de limiter les surtensions au niveau du redresseur 15 lors des mises en service du ralentisseur. Pour un ralentisseur dans lequel T2 < T3, le temps d'établissement d'un courant dans les bobines inductrices 13 est supérieur au temps d'établissement d'un courant dans les bobinages secondaires 5. En cas d'injection d'un échelon de courant d'excitation dans les bobines primaires 8, les bobines inductrices 13 se comportent alors comme un goulot d'étranglement, ce qui se traduit par une surtension aux bornes du redresseur 15.
Selon l'invention, lors de la mise en service du ralentisseur, le boîtier de commande 19 pilote le courant d'excitation pour le faire augmenter de façon progressive jusqu'à une valeur nominale. Cette augmentation progressive de l ' intensité permet de réduire les surtensions aux bornes des bobines inductrices, et donc aux bornes du redresseur 15 lors de chaque mise en service du ralentisseur.
Ces surtensions sont la conséquence du régime transitoire d'établissement du courant lors de la mise en service du ralentisseur. Ces surtensions sont la conséquence du régime transitoire d'établissement du courant, apparaissant notamment dans les bobinages secondaires lors de la mise en service du ralentisseur.
Avantageusement, le boîtier de commande 19 commande une augmentation progressive de 1 ' intensité du courant d'excitation pendant une durée qui est supérieure à la constante de temps T2 des bobinages secondaires 5 et à la constante de temps T3 des bobines inductrices 13, de telle sorte qu'il n'apparaît pas de surtension aux bornes du redresseur 15.
Pour limiter également la surtension aux bornes de bobines primaires 8, la durée de l'augmentation progressive est également supérieure à la constante de temps Tl des bobines primaires. Ainsi, la durée prédéterminée pendant laquelle le boîtier de commande fait croître le courant d'excitation est avantageusement une durée qui est supérieure à Tl, T2 et à T3 pour assurer qu'il n'apparaît pas de surtension dans le ralentisseur lors de sa mise en service.
Cette durée prédéterminée ne doit pas être trop importante pour conserver une réactivité satisfaisante du ralentisseur lorsqu'il est sollicité. Avantageusement, la durée prédéterminée d'établissement du courant d'excitation est comprise entre une et dix fois la valeur de constante de temps la plus longue parmi Tl, T2 et T3, ce qui permet à la fois de limiter les surtensions et d'assurer une réactivité correcte lorsque le ralentisseur est sollicité.
L'augmentation progressive du courant d'excitation durant la durée prédéterminée peut être commandée par le boîtier de commande 19 pour être linéaire, en correspondant à une rampe de courant.
Cette augmentation progressive de l'intensité peut également suivre une autre loi d'évolution du type continûment dérivable. Par exemple, le courant d'excitation peut augmenter de façon quadratique par rapport au temps, exponentielle ou bien trigonométrique.
La surtension est notamment conditionnée par la pente de variation du courant d'excitation lors de la mise en service. Cette augmentation progressive d'intensité
Le choix d'une loi d'évolution adaptée permet encore de réduire la surtension aux bornes du redresseur 15 de façon à diminuer la durée d'établissement du courrant pour la rapprocher le plus possible de la valeur de la plus longue constante de temps parmi Tl , T2 et T3.
Avantageusement, l'intensité du courant d'excitation augmente de façon exponentielle durant la mise en service, ce qui permet de ramener la durée d'établissement du courant d'excitation à une valeur très proche de celle de la constante de temps la plus longue parmi Tl, T2 et T3.
L'invention permet ainsi de limiter la surtension aux bornes du redresseur de courant, ce qui permet de réduire le coût de fabrication du redresseur et d'en augmenter la longévité.
En particulier, dans le cas d'un redresseur de courant 15 à pont de diodes, comme dans l'exemple des figures, il est possible d'utiliser des diodes bon marché puisque ces diodes n'ont à supporter qu'une très faible surtension.
On que l'invention permet également d'éviter une détérioration des bobines inductrices et/ou des bobinages secondaires de la génératrice en réduisant les tensions qui leur sont appliquées .
Bien entendu, l'invention n'est pas limitée aux exemples de réalisation décrits. Elle s'applique notamment à un ralentisseur comprenant un redresseur de courant sous forme d'un pont de transistors de type MOSFET. Le nombre de phases de la génératrice, qui dépend des applications, peut être supérieur à trois en variante .

Claims

REVENDICATIONS
1. Procédé de mise en service d'un raientisseur électromagnétique (1) comprenant une génératrice de courant, consistant à établir un courant d'excitation dans des bobines primaires statoriques (8) de cette génératrice, ce courant d'excitation étant injecté depuis un boîtier de commande (19) relié à une source d'alimentation électrique, ce ralentisseur électromagnétique (1) comprenant un arbre rotatif (7) portant des bobinages secondaires (5) de la génératrice et des bobines inductrices (13) ainsi qu'un redresseur de courant (15) , les bobines inductrices (13) étant alimentées par les bobines secondaires (5) via le /redresseur (15) , et dans lequel les bobinages secondaires
(5) ont une constante de temps (T2) qui est inférieure a la constante de temps (T3) des bobines inductrices (13) et/ou supérieure à la constante de temps (Tl) des bobines primaires (8) , ce procédé consistant à injecter dans les bobines primaires (8) un courant d'excitation continu ayant une intensité qui augmente progressivement jusqu'à une valeur nominale pendant une durée minimale prédéterminée .
2. Procédé selon la revendication 1, dans lequel la durée minimale prédéterminée est supérieure à la constante de temps (Tl) des bobines primaires (8) , à la constante de temps (T2) des bobinages secondaires (5) , et à la constante de temps (T3) des bobines inductrices (13) .
3. Procédé selon la revendication 1 ou 2, consistant à faire croître le courant d'excitation de façon linéaire pendant la durée minimale prédéterminée.
4. Application du procédé selon l'une des revendications 1 à 3 à un ralentisseur (1) dans lequel le dispositif redresseur (15) est un pont de diodes (15A- 15F) .
5. Ralentisseur électromagnétique (l) comprenant une génératrice de courant et un boîtier de commande (19) destiné à être relié à une source d'alimentation électrique pour alimenter électriquement des bobines primaires statoriques (8) de cette génératrice, ce ralentisseur élecromagnêtique comprenant un arbre rotatif
(7) portant des bobinages secondaires (5) de la génératrice et des bobines inductrices (13) ainsi qu'un redresseur de courant (15) , les bobines inductrices (13) étant alimentées par les bobines secondaires (5) via le redresseur (15) , dans lequel les bobinages secondaires (5) ont une constante de temps (T2) qui est inférieure à la constante de temps (T3) des bobines inductrices (13) et/ou supérieure à la constante de temps (Tl) des bobines primaires (8) , et dans lequel le boîtier de commande comprend des moyens pour injecter dans les bobines primaires (8) un courant d'excitation continu ayant une intensité qui augmente progressivement jusqu'à une valeur nominale pendant une durée minimale prédéterminée .
6. Ralentisseur selon la revendication 5, dans lequel le redresseur (15) est un pont de diodes (15A- 15F) .
EP06841906A 2005-12-09 2006-12-11 Procede de mise en service d'un ralentisseur electromagnetique Withdrawn EP1958320A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553819A FR2894734B1 (fr) 2005-12-09 2005-12-09 Procede de mise en service d'un ralentisseur electromagnetique
PCT/FR2006/002701 WO2007066019A2 (fr) 2005-12-09 2006-12-11 Procede de mise en service d’un ralentisseur electromagnetique

Publications (1)

Publication Number Publication Date
EP1958320A2 true EP1958320A2 (fr) 2008-08-20

Family

ID=37049000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06841906A Withdrawn EP1958320A2 (fr) 2005-12-09 2006-12-11 Procede de mise en service d'un ralentisseur electromagnetique

Country Status (7)

Country Link
US (1) US20090301829A1 (fr)
EP (1) EP1958320A2 (fr)
CN (1) CN101322306A (fr)
BR (1) BRPI0618437A2 (fr)
FR (1) FR2894734B1 (fr)
MX (1) MX2008007456A (fr)
WO (1) WO2007066019A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895166B1 (fr) * 2005-12-19 2008-06-13 Telma Sa Procede de detection de defaut de fobnctionnement d'un ralentisseur electromagnetique
US9067500B2 (en) * 2012-05-21 2015-06-30 Krassimire Mihaylov Penev Self rechargeable synergy drive for a motor vehicle
FR3083386B1 (fr) * 2018-06-28 2021-05-14 Telma Ensemble ralentisseur electromagnetique et generatrice et vehicule comportant un tel ensemble

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627913B1 (fr) * 1988-02-25 1992-02-07 Labavia Ralentisseur electromagnetique, moyens d'alimentation associes et application a un vehicule
JP3327592B2 (ja) * 1992-10-13 2002-09-24 澤藤電機株式会社 リターダの制御装置
JP2003521863A (ja) * 2000-02-02 2003-07-15 パシィフィック サイエンティフィック エレクトロ キネティクス ディビジョン 一体型リターダおよび付属装置
DE10102117A1 (de) * 2001-01-18 2002-08-08 Diehl Ako Stiftung Gmbh & Co Verfahren zum schnellen Starten eines Asynchronmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007066019A2 *

Also Published As

Publication number Publication date
US20090301829A1 (en) 2009-12-10
WO2007066019A2 (fr) 2007-06-14
MX2008007456A (es) 2008-09-23
CN101322306A (zh) 2008-12-10
BRPI0618437A2 (pt) 2016-11-22
FR2894734B1 (fr) 2008-03-14
FR2894734A1 (fr) 2007-06-15
WO2007066019A3 (fr) 2008-04-03

Similar Documents

Publication Publication Date Title
FR2627913A1 (fr) Ralentisseur electromagnetique, moyens d&#39;alimentation associes et application a un vehicule
FR2893778A1 (fr) Generateur a utiliser sur un vehicule
FR2835114A1 (fr) Rotor hybride pour alternateur
CA2802569C (fr) Alimentation electrique des equipements portes par le rotor d&#39;un moteur d&#39;aeronef
FR2935561A1 (fr) Flasque connecteur pour machine electrique a enroulements statoriques
FR2588315A1 (fr) Scie a moteur a chaine, ou machine-outil analogue manoeuvree manuellement, entrainee par un moteur a combustion interne
FR2795253A1 (fr) Systeme d&#39;entrainement pour vehicule automobile comprenant un agencement de transmission thermique pour le rotor
WO2007080279A1 (fr) Procédé de détection de défaut de fonctionnement d&#39;un ralentisseur électromagnétique
EP1958320A2 (fr) Procede de mise en service d&#39;un ralentisseur electromagnetique
WO2007066004A1 (fr) Procede de pilotage d&#39;un ralentisseur electromagnetique et systeme comprenant un ralentisseur et un boitier de pilotage
FR2885274A1 (fr) Ventilateur debrayable pour un ralentisseur electromagnetique
EP2710257A1 (fr) Turbine a rendement optimise
CA2998046A1 (fr) Direction assistee de vehicule automobile avec un moteur electromagnetique a flux magnetique axial et une alimentation electrique des stators du moteur se faisant en parallele a redondance
EP1642378B1 (fr) Ventilateur pour alternateur-demarreur
EP1527509A1 (fr) Ralentisseur electromagnetique d&#39;un vehicule muni d&#39;un dispositif multiplicateur de vitesse
EP1964255A2 (fr) Procédé de pilotage d&#39;un ralentisseur électromagnétique
EP1964254A2 (fr) Procede de pilotage d&#39;un ralentisseur electromagnetique
EP1235332A1 (fr) Ensemble constitué par un ralentisseur électromagnétique et par ses moyens d&#39;alimentations électrique
FR2816461A1 (fr) Machine electrique notamment alternateur
FR2894091A1 (fr) Procede d&#39;amelioration du refroidissement d&#39;un ralentisseur electromagnetique
FR2864367A1 (fr) Dispositif de ventilation pour machine electrique tournante autour d&#39;un arbre, a ventilateur independant de l&#39;arbre
FR3083025A1 (fr) Systeme de regulation ameliore pour une machine electrique tournante
FR2700646A1 (fr) Moteur asynchrone à vitesse variable et ventilation forcée.
FR3114616A1 (fr) Dispositif d’actionnement de pompe, système de pompage, aéronef et procédé d’alimentation en carburant associés
FR2935562A1 (fr) Agencement de connexions dans une machine electrique tournante.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080609

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20091020

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100302