EP1957358B1 - Method for production of a danger warning against an attacking torpedo - Google Patents

Method for production of a danger warning against an attacking torpedo Download PDF

Info

Publication number
EP1957358B1
EP1957358B1 EP06818551A EP06818551A EP1957358B1 EP 1957358 B1 EP1957358 B1 EP 1957358B1 EP 06818551 A EP06818551 A EP 06818551A EP 06818551 A EP06818551 A EP 06818551A EP 1957358 B1 EP1957358 B1 EP 1957358B1
Authority
EP
European Patent Office
Prior art keywords
torpedo
bearing
bearing angle
angle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06818551A
Other languages
German (de)
French (fr)
Other versions
EP1957358A1 (en
Inventor
Stephan Benen
Helmut Schmidt-Schierhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Priority to PL06818551T priority Critical patent/PL1957358T3/en
Publication of EP1957358A1 publication Critical patent/EP1957358A1/en
Application granted granted Critical
Publication of EP1957358B1 publication Critical patent/EP1957358B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G9/02Means for protecting vessels against torpedo attack

Definitions

  • the invention relates to a method for generating a danger warning in front of a stern of a vessel attacking, in particular keel water-guided torpedo according to the preamble of claim 1.
  • Torpedoes are typically capable of attacking a watercraft from all directions.
  • vessel e.g. a surface ship
  • jet-water-borne torpedoes attack the ship from the aft sector.
  • an all-round view of the ship carried by the sonar device is required.
  • Known, on-board Aktivsonare that are usually installed in the bow of the ship or at the bow as so-called Hull Mounted Sonars (HMS) are due to the situation and due to the screw noise of the ship only imperfect all-round visibility with a more or less large gap. This aft sector of the ship is blind to incoming torpedoes.
  • HMS Hull Mounted Sonars
  • the invention has for its object to provide an efficient method for generating a hazard warning in the case of aft-attacking torpedo, which triggers little signal processing at least then a warning alarm when the torpedo overflows the underwater antenna.
  • the method according to the invention has the advantage that by monitoring the rate of change of the cotangent of the successively determined bearing angle to the starting torpedo, the overflow of the torpedo via the underwater antenna can be determined by simple means.
  • the detection of the overflow provides data on both the speed of the torpedo, as well as its distance to the stern of the vessel, on the one hand, the rate of change of Kotangens the bearing angle, ie the time differential of Kotangens the bearing angle, is substantially constant and corresponds to the torpedo speed and on the other hand the predetermined by the tow distance of the underwater antenna from the rear of the vehicle and thus the torpedo position at the moment of the antenna overflow is known.
  • the target data required for combat can be programmed very accurately and the time of settling of the effector for effective control of the torpedo can be maintained relatively accurately.
  • the angle of a receiving direction with maximum receiving level is determined as the bearing angle.
  • This maximum reception level is compared-preferably after smoothing-continuously with a threshold value, and generates a gate signal when the threshold value is exceeded.
  • the gate signal is linked to the trigger signal of the cotangent detection in such a way that a linkage signal arises when the gate signal and the triggering signal generated by the cotangent detection occur together.
  • the logic signal activates the warning alarm. This additional monitoring of the reception level increases the reliability of the torpedo detection, thus reducing the false alarm rate, since the torpedo generates the largest reception level when the underwater antenna overflows.
  • the torpedo is additionally checked at which bearing angle the logic signal occurs and an additional alarm is output when the logic signal occurs at a bearing angle in the range of 90 °.
  • the underwater antenna has a plurality of juxtaposed in the tow direction of hydrophones or hydrophone groups and from the electrical output signals of the hydrophones or hydrophone groups by means of directional formation of a series of directional characteristics, each of which a direction angle is uniquely associated, clamped on both sides of the underwater antenna ,
  • the reception signals obtained via the directional characteristics are normalized, whereby a normalization window used for this purpose for the reception signals from the most aft-directional directional characteristics in comparison with a standardization window for the reception signals used for this purpose is selected to be larger from the remaining directional characteristics.
  • the maximum reception level is determined and the directional angle of the directional characteristic with the maximum reception level is output as the bearing angle.
  • the median or mean value is formed over a preceding time segment of each received signal as defined by the normalization window, and the current value of the received signal is divided by this median or mean value.
  • the normalization window or the time segment is dimensioned differently, as described above, for directional characteristics having different directional angles. In this way, when approaching a torpedo a slow increase in level of the received signal in the aft directional characteristics, the so-called. Endfire Beams, and the overflow of the antenna, the rapid increase in level due to the rapid passage of the torpedo through the other directional characteristics taken into account.
  • the receive levels of the most afferent directional characteristics are monitored and, upon the occurrence of a steep level rise exceeding a threshold, a pre-alarm is issued. As the level increases further, confirmation of the pre-alarm is issued.
  • a surface ship 10 equipped as an exemplary embodiment of a general vessel for protection against torpedoes with deflection vectors has a sonar device which, in addition to the location of targets, also serves to detect and locate torpedoes which attack the ship.
  • the sonar device comprises an active sonar 11, which is designed in a known manner as a cylinder base or as a so-called.
  • Hull Mounted Sonar (HMS) Hull Mounted Sonar
  • towed sonar which called a towed in the water from the surface vessel 10 underwater antenna, hereinafter referred towed antenna 13.
  • the active sonar 11 Due to the arrangement in the bow of the ship or by the integration in the fore ship's side, the active sonar 11 only covers a sector of about 150 ° from ship to starboard and from ship to port and is in a stern sector ⁇ ⁇ 60 ° blind. Torpedoes starting from this aft sector are not detected by the active sonar 11.
  • the towed antenna 13 is on a very long trailing cable or Tow rope 14, for example 800m, fixed and has an acoustic effective part of about 6m. At the towed antenna 13 may still be attached a tow brake 15. The attachment of the acoustic part of the towed antenna 13 to tow 14 and drag brake 15 is usually done via not shown here, attenuators, so-called. VIMs.
  • the acoustic part of the towed antenna 13 is supported by a multiplicity of hydrophones 16 (15) arranged next to one another in the towing direction. Fig.
  • hydrophone groups are formed, which are connected via running in the tow 14 signal lines 17 with an installed on board the surface vessel 10 signal processing unit. All hydrophones 16 or hydraulic groups are operated simultaneously, and by means of a direction generator 18, also called Beamförmer, is on both sides of the towed antenna 13 a fan of adjacent directional characteristics 19, also called beams, clamped. For this purpose, the electrical output signals of the hydrophones 16 or hydrophone groups are delayed in time and added in a known manner konphas.
  • Each directional characteristic 19 is a direction angle ⁇ ( Fig. 1 ).
  • the longitudinal axis of the towed antenna 13 thereby represents the reference line for the directional angles ⁇ , so that the directional characteristics 19 with the largest directional angles ⁇ are the furthest aft directional characteristics 19.
  • the received signals received via the individual directional characteristics 19 are evaluated in order to detect a torpedo, which starts in the wake of the surface ship 10 astern, a so-called keilwasserhomenden torpedo, and to generate a danger warning.
  • the receive signals from each directional characteristic 19 are normalized in block 20, wherein a Normal Deutschens capable used for the received signals from the most aft-directional characteristics 19, ie from the so-called. Endfire sector, compared to the normalization window for the received signals from the other directional characteristics 19 is selected to be large.
  • a Normal Deutschens capable used for the received signals from the most aft-directional characteristics 19, ie from the so-called. Endfire sector compared to the normalization window for the received signals from the other directional characteristics 19 is selected to be large.
  • the various mechanisms which lead to level changes in the received signals of the directional characteristics 19 during the torpedo startup are taken into account.
  • the so-called Endfire Beams there is a slow increase in level due to the approaching torpedo.
  • the core of the procedure for generating the hazard warning is the continuous bearing of the torpedo with the output of the bearing angle and bearing time.
  • the maximum reception level is determined, and the direction angle ⁇ of the directional characteristics 19 having the maximum reception level is output as a bearing angle ⁇ (block 21).
  • the respective maximum reception level P max is output.
  • the determination of bearing angle ⁇ and receiving level P max is limited to the directional characteristics 19 whose direction angle ⁇ in the angular range between 40 ° to 140 °.
  • the level maxima P max are smoothed (filter 27) and fed to a threshold (block 28). If the filtered level maximum signal exceeds the threshold value specified in block 28, then a gate signal is generated and sent to the logical AND gate 26 laid.
  • the logic AND gate 26 the trigger signal coming from the block 25 and the gate signal coming from the block 28 are linked together, so that at the output of the logical AND gate 26, a logic signal occurs, which activates a warning alarm.
  • the warning alarm is in Fig. 2 symbolically represented by a warning signal lamp 29.
  • block 30 it is checked whether the logic signal which activates the warning alarm occurs at a bearing angle ⁇ which is in the range between 80 ° and 120 °. If this is the case, then the logic signal is switched through in block 30 and outputs an additional alarm.
  • the additional alarm is indicated, for example, by blinking the signal lamp row of three warning signal lamps 31.
  • the link signal through which the block 30 is connected can be used to automatically disconnect a torpedo-combating effector.
  • the additional alarm signals that the torpedo has overrun the towed antenna 13 to its center, so that the distance of the torpedo is based on the length of the tow 14 and the towed antenna 13 can be determined very accurately.
  • a pre-alarm is output.
  • the threshold value specified in block 33 is exceeded, the pre-alarm is output, which in Fig. 2 symbolized by the warning signal lamp 37.
  • a pre-alarm confirmation is output, which results in Fig. 2 symbolized by the warning signal lamp 38.
  • the warning signal lamps 29, 31, 37 and 38 preferably generate a differently colored display in a display on which the torpedo track is visualized. For example, a newly emerging torpedo is visualized by lighting the warning signal lamp 37 in blue, a confirmation of the newly emerging torpedo by lighting the warning signal lamp 38 in green, an overflow of the torpedo by lighting the warning signal lamp 29 in red and a maximum alarm by flashing lights of the three warning signal lamps 31 ,
  • the normalized received signals can be displayed on a screen, a so-called BTR display.
  • the alarm messages described are then also displayed in the screen. This allows an operator to in addition to verify the alarm messages and thus reduce the false alarm rate.
  • the parallel active operation of the active sonar 11 interferes with the passive operation of the towing sonar. Therefore, it is advantageous to hide interference by transmission during passive reception. This can be done in such a way that the transmission process is detected by a majority threshold crossing of the level of the received signals (before their normalization in block 20) and the old level value is maintained as long as the threshold crossing persists.

Abstract

The method involves pinpointing a torpedo with an underwater antenna using sonar under output of pinpointing angle and pinpointing time. The cotangent of the pinpointing angles is computed and the pinpointing time is assigned such that slew rate of the cotangent in a center pinpointing angle area is compared with a default value and an operating signal for a warning alarm is released if the cotangent exceeds the value.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung einer Gefahrenwarnung vor einem ein Wasserfahrzeug achterlich angreifenden, insbesondere kielwassergeführten Torpedo nach dem Oberbegriff des Anspruchs 1.The invention relates to a method for generating a danger warning in front of a stern of a vessel attacking, in particular keel water-guided torpedo according to the preamble of claim 1.

Torpedos sind typbedingt in der Lage, ein Wasserfahrzeug aus allen Richtungen anzugreifen. So laufen moderne, sehr leise Torpedos das Wasserfahrzeug, z.B. ein Oberflächenschiff, in der Regel aus einem vorlichen Sektor an, wohingegen kielwasserhomende Torpedos das Schiff aus dem achterlichen Sektor angreifen. Zur frühzeitigen Ortung eines anlaufenden Torpedos ist daher eine Rundumsicht der vom Schiff mitgeführten Sonareinrichtung erforderlich. Bekannte, bordgestützte Aktivsonare, die üblicherweise im Bug des Schiffes installiert oder am Bug als sog. Hull Mounted Sonare (HMS) integriert werden, weisen lagebedingt sowie bedingt durch das Schraubengeräusch des Schiffes eine nur unvollkommene Rundumsicht mit einer mehr oder weniger großen achterlichen Lücke auf. Dieser achterliche Sektor des Schiffes ist blind gegen anlaufende Torpedos.Torpedoes are typically capable of attacking a watercraft from all directions. Thus, modern, very quiet torpedoes run the vessel, e.g. a surface ship, usually from a previous sector, whereas jet-water-borne torpedoes attack the ship from the aft sector. For early detection of an incoming torpedo therefore an all-round view of the ship carried by the sonar device is required. Known, on-board Aktivsonare that are usually installed in the bow of the ship or at the bow as so-called Hull Mounted Sonars (HMS) are due to the situation and due to the screw noise of the ship only imperfect all-round visibility with a more or less large gap. This aft sector of the ship is blind to incoming torpedoes.

Zur Abdeckung dieses Verwundbarkeitssektors des Schiffes wird bei einem bekannten Verfahren zur Abwehr eines aus achterlicher Richtung angreifenden Torpedos ( EP 1 117 587 B1 ) der Torpedo mittels eines sog. Schleppsonars, das eine vom Schiff nachgeschleppte Unterwasserantenne aufweist, passiv gepeilt und die Frequenz mindestens einer von dem Torpedo abgestrahlten, signifikanten Spektrallinie über der Zeit vermessen. Aus der Peilwinkeländerungsgeschwindigkeit, der Frequenz der vermessenen Spektrallinie und deren Änderungsgeschwindigkeit wird die Entfernung zum Torpedo fortlaufend berechnet. Bei Feststellen einer Torpedoentfernung, die vom Einsatzbereich eines den Torpedo bekämpfenden Effektors abgedeckt wird, wird schiffsseitig die Absetzung des Effektors ausgelöst.To cover this vulnerability sector of the ship is in a known method for defense against aft direction of attacking torpedoes ( EP 1 117 587 B1 ) the torpedo by means of a so-called. Schleppsonars having an underwater antenna towed by the ship, passively detected and measured the frequency of at least one of the torpedo radiated, significant spectral line over time. From the Peilwinkeländerungsgeschwindigkeit, the frequency of the measured spectral line and their rate of change, the distance to the torpedo is calculated continuously. When a torpedo distance is detected, which is covered by the area of application of an torpedo-combating effector, the displacement of the effector is triggered by the ship.

Der Erfindung liegt die Aufgabe zugrunde, ein effizientes Verfahren zur Erzeugung einer Gefahrenwarnung im Falle eines achterlich angreifenden Torpedos anzugeben, das mit geringem Aufwand an Signalverarbeitung zumindest dann einen Warnalarm auslöst, wenn der Torpedo die Unterwasserantenne überläuft.The invention has for its object to provide an efficient method for generating a hazard warning in the case of aft-attacking torpedo, which triggers little signal processing at least then a warning alarm when the torpedo overflows the underwater antenna.

Die Aufgabe ist erfindungsgemäß durch die Merkmale im Anspruch 1 gelöst.The object is achieved by the features in claim 1.

Das erfindungsgemäße Verfahren hat den Vorteil, dass durch die Überwachung der Änderungsgeschwindigkeit des Kotangens der sukzessiv ermittelten Peilwinkel zum anlaufenden Torpedo der Überlauf des Torpedos über die Unterwasserantenne mit einfachen Mitteln festgestellt werden kann. Die Detektion des Überlaufs liefert Daten sowohl über die Geschwindigkeit des Torpedos, als auch über dessen Entfernung zum Heck des Wasserfahrzeugs, da einerseits die Änderungsgeschwindigkeit des Kotangens der Peilwinkel, also das zeitliche Differential des Kotangens der Peilwinkel, im wesentlichen konstant ist und der Torpedogeschwindigkeit entspricht und andererseits der durch das Schleppseil vorgegebene Abstand der Unterwasserantenne vom Fahrzeugsheck und damit die Torpedoposition im Augenblick des Antennenüberlaufs bekannt ist. Dadurch können in einem zur Bekämpfung des Torpedos vom Wasserfahrzeug abgesetzten Effektor die für die Bekämpfung erforderlichen Zieldaten sehr genau vorprogrammiert werden und kann der Zeitpunkt des Absetzens des Effektors für eine wirkungsvolle Bekämpfung des Torpedos relativ genau eingehalten werden.The method according to the invention has the advantage that by monitoring the rate of change of the cotangent of the successively determined bearing angle to the starting torpedo, the overflow of the torpedo via the underwater antenna can be determined by simple means. The detection of the overflow provides data on both the speed of the torpedo, as well as its distance to the stern of the vessel, on the one hand, the rate of change of Kotangens the bearing angle, ie the time differential of Kotangens the bearing angle, is substantially constant and corresponds to the torpedo speed and on the other hand the predetermined by the tow distance of the underwater antenna from the rear of the vehicle and thus the torpedo position at the moment of the antenna overflow is known. As a result, in an effector remote from the vessel for controlling the torpedo, the target data required for combat can be programmed very accurately and the time of settling of the effector for effective control of the torpedo can be maintained relatively accurately.

Zweckmäßige Ausführungsformen des erfindungsgemäßen Verfahrens mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen.Advantageous embodiments of the method according to the invention with advantageous developments and embodiments of the invention will become apparent from the other claims.

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird als Peilwinkel der Winkel einer Empfangsrichtung mit maximalem Empfangspegel, vorzugsweise bezogen auf die Längsachse der Unterwasserantenne, bestimmt. Dieser maximale Empfangspegel wird - vorzugsweise nach Glättung - fortlaufend mit einem Schwellwert verglichen, und mit Überschreiten des Schwellwerts ein Torsignal generiert. Das Torsignal wird mit dem Auslösesignal der Kotangens-Detektion so verknüpft, dass ein Verknüpfungssignal entsteht, wenn das Torsignal und das von der Kotangens-Detektion erzeugte Auslösesignal gemeinsam auftreten. Mit dem Verknüpfungssignal wird der Warnalarm aktiviert. Durch diese zusätzliche Überwachung des Empfangspegels wird die Zuverlässigkeit der Torpedodetektion erhöht, also die Falschalarmrate reduziert, da der Torpedo bei Überlauf der Unterwasserantenne den größten Empfangspegel erzeugt.According to an advantageous embodiment of the invention, the angle of a receiving direction with maximum receiving level, preferably with respect to the longitudinal axis of the underwater antenna, is determined as the bearing angle. This maximum reception level is compared-preferably after smoothing-continuously with a threshold value, and generates a gate signal when the threshold value is exceeded. The gate signal is linked to the trigger signal of the cotangent detection in such a way that a linkage signal arises when the gate signal and the triggering signal generated by the cotangent detection occur together. The logic signal activates the warning alarm. This additional monitoring of the reception level increases the reliability of the torpedo detection, thus reducing the false alarm rate, since the torpedo generates the largest reception level when the underwater antenna overflows.

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird zusätzlich geprüft, bei welchem Peilwinkel das Verknüpfungssignal auftritt und ein Zusatzalarm dann ausgegeben, wenn das Verknüpfungssignal bei einem Peilwinkel im Bereich von 90° auftritt. Durch diese Maßnahme wird die Genauigkeit der Entfernungsbestimmung des Torpedos während des Überlaufs erhöht, da bei einer Peilung des Torpedos unter 90° der Torpedo exakt die Mitte der Unterwasserantenne erreicht hat und mit dem bekannten Abstand der Unterwasserantenne vom Fahrzeugheck ein exaktes Entfernungsmaß berechnet werden kann.According to an advantageous embodiment of the invention, it is additionally checked at which bearing angle the logic signal occurs and an additional alarm is output when the logic signal occurs at a bearing angle in the range of 90 °. By this measure, the accuracy of the determination of the distance of the torpedo is increased during the overflow, since at a bearing of the torpedo at 90 °, the torpedo has reached exactly the center of the underwater antenna and with the known distance of the underwater antenna from the rear of the vehicle an exact distance measure can be calculated.

Gemäß einer vorteilhaften Ausführungsform der Erfindung weist die Unterwasserantenne eine Vielzahl von in Schlepprichtung nebeneinander angeordneten Hydrofonen oder Hydrofongruppen auf und aus den elektrischen Ausgangssignalen der Hydrofone oder Hydrofongruppen wird mittels Richtungsbildung ein Fächer von aneinandergereihten Richtcharakteristiken, denen jeweils ein Richtungswinkel eindeutig zugeordnet ist, beidseitig der Unterwasserantenne aufgespannt. Die über die Richtcharakteristiken erhaltenen Empfangssignale werden normalisiert, wobei ein hierzu verwendetes Normalisierungsfenster für die Empfangssignale aus den am weitesten achterlichen Richtcharakteristiken im Vergleich zu einem hierzu verwendeten Normierungsfenster für die Empfangssignale aus den übrigen Richtcharakteristiken größer gewählt wird. In den normalisierten Empfangssignalen wird der maximale Empfangspegel ermittelt und der Richtungswinkel der Richtcharakteristik mit dem maximalen Empfangspegel als Peilwinkel ausgegeben.According to an advantageous embodiment of the invention, the underwater antenna has a plurality of juxtaposed in the tow direction of hydrophones or hydrophone groups and from the electrical output signals of the hydrophones or hydrophone groups by means of directional formation of a series of directional characteristics, each of which a direction angle is uniquely associated, clamped on both sides of the underwater antenna , The reception signals obtained via the directional characteristics are normalized, whereby a normalization window used for this purpose for the reception signals from the most aft-directional directional characteristics in comparison with a standardization window for the reception signals used for this purpose is selected to be larger from the remaining directional characteristics. In the normalized received signals, the maximum reception level is determined and the directional angle of the directional characteristic with the maximum reception level is output as the bearing angle.

Durch die Normalisierung werden in Peilung und Pegel konstante Geräuschquellen weitgehend unterdrückt und schnelle Pegel- und Peilungsänderungen hervorgehoben. Hierzu wird über einen durch das Normalisierungsfenster definierten, vorangegangenen Zeitabschnitt eines jeden Empfangssignal der Median oder Mittelwert gebildet und der aktuelle Wert des Empfangssignals durch diesen Median oder Mittelwert geteilt. Das Normalisierungsfenster bzw. der Zeitabschnitt wird - wie vorstehend beschrieben - für verschiedene Richtungswinkel aufweisende Richtcharakteristiken unterschiedlich bemessen. Auf diese Weise wird beim sich Annähern eines Torpedos einem langsamen Pegelanstieg des Empfangssignals in den achterlichen Richtcharakteristiken, den sog. Endfire Beams, und beim Überlauf der Antenne dem schnellen Pegelanstieg infolge des schnellen Durchlaufens des Torpedos durch die übrigen Richtcharakteristiken Rechnung getragen.Due to the normalization constant noise sources are largely suppressed and fast in bearing and level Level and bearing changes highlighted. For this purpose, the median or mean value is formed over a preceding time segment of each received signal as defined by the normalization window, and the current value of the received signal is divided by this median or mean value. The normalization window or the time segment is dimensioned differently, as described above, for directional characteristics having different directional angles. In this way, when approaching a torpedo a slow increase in level of the received signal in the aft directional characteristics, the so-called. Endfire Beams, and the overflow of the antenna, the rapid increase in level due to the rapid passage of the torpedo through the other directional characteristics taken into account.

Gemäß einer vorteilhaften Ausführungsform der Erfindung werden die Empfangspegel der am weitesten achterlichen Richtcharakteristiken (Endfire Beams) überwacht und bei Auftreten eines steilen Pegelanstiegs, der einen Schwellwert übersteigt, ein Voralarm ausgegeben. Bei weiterem kontinuierlich sich vergrößernden Pegelanstieg wird eine Bestätigung des Voralarms ausgegeben.In accordance with an advantageous embodiment of the invention, the receive levels of the most afferent directional characteristics (Endfire Beams) are monitored and, upon the occurrence of a steep level rise exceeding a threshold, a pre-alarm is issued. As the level increases further, confirmation of the pre-alarm is issued.

Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen:

Fig. 1
eine schematisierte Draufsicht eines Oberflächenschiffes mit einem bugseitigen Aktivsonar und einem achterlichen Schleppsonar,
Fig. 2
ein Blockschaltbild einer Schaltungsanordnung zur Erzeugung einer Gefahrenwarnung vor einem achterlich angreifenden Torpedo,
Fig. 3
ein Diagramm der Funktion des Peilwinkels zu einem achterlich angreifenden Torpedo (Kurve a) und der Kotangens des Peilwinkels (Kurve b) jeweils in Abhängigkeit von der Zeit.
The invention is described in more detail below with reference to an embodiment shown in the drawing. Show it:
Fig. 1
a schematic plan view of a surface ship with a bow-side active sonar and a stern towed sonar,
Fig. 2
a block diagram of a circuit arrangement for generating a danger warning in front of aft-attacking torpedo,
Fig. 3
a diagram of the function of the bearing angle to aft-attacking torpedo (curve a) and the Kotangens the bearing angle (curve b) respectively as a function of time.

Ein zum Schutz gegen Torpedos mit Abwehreffektoren ausgerüstetes Oberflächenschiff 10 als Ausführungsbeispiel für ein allgemeines Wasserfahrzeug weist eine Sonareinrichtung auf, die neben der Ortung von Zielen auch zur Detektion und Ortung von das Schiff angreifenden Torpedos dient. Die Sonareinrichtung umfasst ein Aktivsonar 11, das in bekannter Weise als Zylinderbasis oder als sog. Hull Mounted Sonar (HMS) ausgeführt ist, und ein Schleppsonar, das eine im Wasser vom Oberflächenschiff 10 nachgeschleppte Unterwasserantenne, im folgenden Schleppantenne 13 genannt, aufweist. Bedingt durch die Anordnung im Bug des Schiffes oder durch die Integration in der vorderlichen Bordwand des Schiffes überstreicht das Aktivsonar 11 nur einen Sektor von jeweils ca. 150° von Schiffsvoraus nach Steuerbord und von Schiffsvoraus-nach Backbord und ist in einem achterlichen Sektor α ≈ 60° blind. Aus diesem achterlichen Sektor anlaufende Torpedos werden vom Aktivsonar 11 nicht detektiert.A surface ship 10 equipped as an exemplary embodiment of a general vessel for protection against torpedoes with deflection vectors has a sonar device which, in addition to the location of targets, also serves to detect and locate torpedoes which attack the ship. The sonar device comprises an active sonar 11, which is designed in a known manner as a cylinder base or as a so-called. Hull Mounted Sonar (HMS), and a towed sonar, which called a towed in the water from the surface vessel 10 underwater antenna, hereinafter referred towed antenna 13. Due to the arrangement in the bow of the ship or by the integration in the fore ship's side, the active sonar 11 only covers a sector of about 150 ° from ship to starboard and from ship to port and is in a stern sector α ≈ 60 ° blind. Torpedoes starting from this aft sector are not detected by the active sonar 11.

Zur Schließung dieser Verwundbarkeitslücke des Oberflächenschiffes 10 im achterlichen Bereich dient das Schleppsonar, das ausschließlich passiv arbeitet. Die Schleppantenne 13 ist an einem sehr langen Schleppkabel oder Schleppseil 14, z.B. 800m, befestigt und besitzt einen akustischen wirksamen Teil von ca. 6m. An der Schleppantenne 13 kann noch einen Schleppbremse 15 befestigt sein. Die Befestigung des akustischen Teils der Schleppantenne 13 an Schleppseil 14 und Schleppbremse 15 erfolgt üblicherweise über hier nicht dargestellte Dämpfungsglieder, sog. VIMs. Der akustische Teil der Schleppantenne 13 wird von einer Vielzahl von in Schlepprichtung nebeneinander angeordneten Hydrofone 16 (Fig. 2) oder Hydrofongruppen gebildet, die über im Schleppseil 14 verlaufende Signalleitungen 17 mit einer an Bord des Oberflächenschiffes 10 installierten Signalverarbeitungseinheit verbunden sind. Alle Hydrofone 16 bzw. Hydrofongruppen werden gleichzeitig betrieben, und mittels eines Richtungsbildners 18, auch Beamförmer genannt, wird beidseitig der Schleppantenne 13 ein Fächer von aneinanderliegenden Richtcharakteristiken 19, auch Beams genannt, aufgespannt. Hierzu werden in bekannter Weise die elektrischen Ausgangssignale der Hydrofone 16 oder Hydrofongruppen zeitrichtig verzögert und konphas addiert. Jeder Richtcharakteristik 19 ist ein Richtungswinkel Θ (Fig. 1) zugeordnet. Die Längsachse der Schleppantenne 13 stellt dabei die Bezugslinie für die Richtungswinkel Θ dar, so dass die Richtcharakteristiken 19 mit den größten Richtungswinkeln Θ die am weitesten achterlichen Richtcharakteristiken 19 sind. Die über die einzelnen Richtcharakteristiken 19 erhaltenen Empfangssignale werden ausgewertet, um einen im Kielwasser des Oberflächenschiffes 10 achterlich anlaufenden Torpedo, einen sog. kielwasserhomenden Torpedo, zu detektieren und eine Gefahrenwarnung zu erzeugen.To close this vulnerability gap of the surface ship 10 in the aft area, the towing sonar, which works exclusively passive. The towed antenna 13 is on a very long trailing cable or Tow rope 14, for example 800m, fixed and has an acoustic effective part of about 6m. At the towed antenna 13 may still be attached a tow brake 15. The attachment of the acoustic part of the towed antenna 13 to tow 14 and drag brake 15 is usually done via not shown here, attenuators, so-called. VIMs. The acoustic part of the towed antenna 13 is supported by a multiplicity of hydrophones 16 (15) arranged next to one another in the towing direction. Fig. 2 ) or hydrophone groups are formed, which are connected via running in the tow 14 signal lines 17 with an installed on board the surface vessel 10 signal processing unit. All hydrophones 16 or hydraulic groups are operated simultaneously, and by means of a direction generator 18, also called Beamförmer, is on both sides of the towed antenna 13 a fan of adjacent directional characteristics 19, also called beams, clamped. For this purpose, the electrical output signals of the hydrophones 16 or hydrophone groups are delayed in time and added in a known manner konphas. Each directional characteristic 19 is a direction angle Θ ( Fig. 1 ). The longitudinal axis of the towed antenna 13 thereby represents the reference line for the directional angles Θ, so that the directional characteristics 19 with the largest directional angles Θ are the furthest aft directional characteristics 19. The received signals received via the individual directional characteristics 19 are evaluated in order to detect a torpedo, which starts in the wake of the surface ship 10 astern, a so-called keilwasserhomenden torpedo, and to generate a danger warning.

Um in Peilung und Pegel konstante Geräuschquellen in den Empfangssignalen weitgehend zu unterdrücken und damit die sich schnell ändernden Torpedogeräusche hervorzuheben, werden im Block 20 die Empfangssignale aus jeder Richtcharakteristik 19 normalisiert, wobei ein verwendetes Normalisierungsfenster für die Empfangssignale aus den am weitesten achterlichen Richtcharakteristiken 19, also aus dem sog. Endfire-Sektor, im Vergleich zu dem Normalisierungsfenster für die Empfangssignale aus den übrigen Richtcharakteristiken 19 groß gewählt wird. Dadurch wird den unterschiedlichen Mechanismen, die beim Torpedoanlauf zu Pegeländerungen in den Empfangssignalen der Richtcharakteristiken 19 führen, Rechnung getragen. In den am weitesten achterlichen Richtcharakteristiken 19, den sog. Endfire Beams, ergibt sich ein langsamer Pegelanstieg durch den sich nähernden Torpedo. Außerhalb der Endfire Beams ergibt sich eine schnelle Pegeländerung durch das schnelle Durchlaufen des Torpedos durch die Richtcharakteristiken 19 beim Überlauf der Schleppantenne 13. Deshalb wird für die langsamen Pegeländerungen ein großer Zeitraum, also ein großes Normalisierungsfenster, und für die schnellen Pegeländerungen ein kurzer Zeitraum, also ein kleines Normalisierungsfenster, verwendet. Die Normalisierung wird in der Weise durchgeführt, dass ein aktueller Signalwert des Empfangssignals durch den Median der Signalwerte dividiert wird, die in einem durch das Normalisierungsfenster bestimmten, dem aktuellen Signalwert unmittelbar vorausgegangenen Zeitabschnitt enthalten sind. Anstelle des Median kann auch der Mittelwert über das Normalisierungsfenster verwendet werden.In order to largely suppress constant noise sources in the received signals in bearing and level and thus emphasize the rapidly changing torpedo noises, the receive signals from each directional characteristic 19 are normalized in block 20, wherein a Normalisierungsfenster used for the received signals from the most aft-directional characteristics 19, ie from the so-called. Endfire sector, compared to the normalization window for the received signals from the other directional characteristics 19 is selected to be large. As a result, the various mechanisms which lead to level changes in the received signals of the directional characteristics 19 during the torpedo startup are taken into account. In the farthest aft-directional characteristics 19, the so-called Endfire Beams, there is a slow increase in level due to the approaching torpedo. Outside the Endfire Beams results in a rapid level change by the rapid passage of the torpedo through the directional characteristics 19 in the overflow of the trailing antenna 13. Therefore, for the slow level changes a large period, ie a large normalization window, and for the rapid level changes a short period, ie a small normalization window, used. The normalization is performed such that a current signal value of the received signal is divided by the median of the signal values contained in a period of time determined by the normalization window and immediately preceding the current signal value. Instead of the median, the average over the normalization window can also be used.

Kernpunkt des Verfahrens zur Erzeugung der Gefahrenwarnung ist die fortlaufende Peilung des Torpedos unter Ausgabe von Peilwinkel und Peilzeit. Zur Bestimmung des Peilwinkels ϑ wird in den normalisierten Empfangssignalen der Richtcharakteristiken 19 der maximale Empfangspegel ermittelt und der Richtungswinkel Θ der Richtcharakteristiken 19 mit dem maximalen Empfangspegel als Peilwinkel ϑ ausgegeben (Block 21). Ebenfalls wird der jeweilige maximalen Empfangspegel Pmax ausgegeben. Die Bestimmung von Peilwinkel ϑ und Empfangspegel Pmax ist dabei auf die Richtcharakteristiken 19 beschränkt, deren Richtungswinkel Θ im Winkelbereich zwischen 40° bis 140° liegen.The core of the procedure for generating the hazard warning is the continuous bearing of the torpedo with the output of the bearing angle and bearing time. For determining the bearing angle θ In the normalized reception signals of the directional characteristics 19, the maximum reception level is determined, and the direction angle θ of the directional characteristics 19 having the maximum reception level is output as a bearing angle θ (block 21). Also, the respective maximum reception level P max is output. The determination of bearing angle θ and receiving level P max is limited to the directional characteristics 19 whose direction angle Θ in the angular range between 40 ° to 140 °.

Die Zuordnung der erfassten Peilwinkel ϑ zu den Peilzeiten t ist in Fig. 3 dargestellt und ergibt die Kurve a im Peilwinkelbereich von ϑ=40° bis ϑ=140°. Für die ausgegebenen Peilwinkel ϑ wird nunmehr im Block 22 der Kotangens berechnet und den Peilzeiten t zugeordnet. Es ergibt sich die Kurve b in Fig. 3, die unter der Voraussetzung, dass der Torpedo mit annähernd konstanter Geschwindigkeit anläuft - was im allgemeinen der Fall ist - annähernd eine Gerade ist. Im Block 23 wird die Änderungsgeschwindigkeit des Kotangens, also dessen zeitliches Differential, gebildet, die nach Durchlaufen eines Filters 24 zum Glätten von Schwankungen infolge der Pendelbewegung des Torpedos im Kielwasser des Oberflächenschiffes 10 im Block 25 mit einem Vorgabewert oder einer Schwelle verglichen wird. Übersteigt die geglättete Kotangens-Änderungsgeschwindigkeit den Vorgabewert, so wird ein Auslösesignal für einen Warnalarm an ein Logisch-UND-Glied 26 gelegt.The assignment of the detected bearing angle θ to the bearing times t is in Fig. 3 and gives the curve a in the bearing angle range of θ = 40 ° to θ = 140 °. For the output bearing angle θ, the cotangent is now calculated in block 22 and assigned to the bearing times t. The result is the curve b in Fig. 3 which, assuming that the torpedo starts at approximately constant speed, which is generally the case, is approximately a straight line. In block 23, the rate of change of the cotangent, so its temporal differential is formed, which is compared after passing through a filter 24 for smoothing fluctuations due to the pendulum motion of the torpedo in the wake of the surface ship 10 in block 25 with a default value or a threshold. If the smoothed cotangent change rate exceeds the default value, a warning alarm trigger signal is applied to a logical AND gate 26.

Die Pegelmaxima Pmax werden geglättet (Filter 27) und einer Schwelle (Block 28) zugeführt. Übersteigt das gefilterte Pegelmaximumsignal den im Block 28 vorgegebenen Schwellwert, so wird ein Torsignal generiert und an das Logisch-UND-Glied 26 gelegt. Im Logisch-UND-Glied 26 werden das vom Block 25 kommende Auslösesignal und das vom Block 28 kommende Torsignal miteinander verknüpft, so dass am Ausgang des Logisch-UND-Glieds 26 ein Verknüpfungssignal auftritt, das einen Warnalarm aktiviert. Der Warnalarm ist in Fig. 2 symbolisch durch eine Warnsignallampe 29 dargestellt. Im Block 30 wird geprüft, ob das Verknüpfungssignal, das den Warnalarm aktiviert bei einem Peilwinkel ϑ auftritt, der im Bereich zwischen 80° und 120° liegt. Ist dies der Fall, so wird das Verknüpfungssignal im Block 30 durchgeschaltet und gibt einen Zusatzalarm aus. Der Zusatzalarm wird beispielsweise durch blinkendes Aufleuchten der Signallampenreihe aus drei Warnsignallampen 31 kenntlich gemacht. Gleichzeitig kann das vom Block 30 durchgeschaltete Verknüpfungssignal zum automatischen Absetzen eines den Torpedo bekämpfenden Effektors verwendet werden. Der Zusatzalarm signalisiert, dass der Torpedo die Schleppantenne 13 bis zu deren Mitte überlaufen hat, so dass die Entfernung des Torpedos anhand der Länge des Schleppseils 14 und der Schleppantenne 13 sehr genau bestimmbar ist.The level maxima P max are smoothed (filter 27) and fed to a threshold (block 28). If the filtered level maximum signal exceeds the threshold value specified in block 28, then a gate signal is generated and sent to the logical AND gate 26 laid. In the logic AND gate 26, the trigger signal coming from the block 25 and the gate signal coming from the block 28 are linked together, so that at the output of the logical AND gate 26, a logic signal occurs, which activates a warning alarm. The warning alarm is in Fig. 2 symbolically represented by a warning signal lamp 29. In block 30 it is checked whether the logic signal which activates the warning alarm occurs at a bearing angle θ which is in the range between 80 ° and 120 °. If this is the case, then the logic signal is switched through in block 30 and outputs an additional alarm. The additional alarm is indicated, for example, by blinking the signal lamp row of three warning signal lamps 31. At the same time, the link signal through which the block 30 is connected can be used to automatically disconnect a torpedo-combating effector. The additional alarm signals that the torpedo has overrun the towed antenna 13 to its center, so that the distance of the torpedo is based on the length of the tow 14 and the towed antenna 13 can be determined very accurately.

Um den achterlich anlaufenden, kielwasserhomenden Torpedo möglichst frühzeitig zu detektieren, damit genügend Vorbereitungszeit für den Einsatz der Effektoren zum Zeitpunkt des Überlaufs des Torpedos über die Schleppantenne 13 verbleibt, wird neben der vorstehend beschriebenen sog. Überlauf-Detektion noch eine sog. Endfire-Detektion durchgeführt. Bei dieser Endfire-Detektion werden die Empfangspegel in den am weitesten achterlichen Richtcharakteristiken 19, also in denjenigen Richtcharakteristiken 19 mit den maximalen Richtungswinkeln Θ (Fig. 1), die sich nach Achtern erstrecken, überwacht. In diesen achterlichen Richtcharakteristiken 19 wird wiederum das Maximum des Empfangspegels in Abhängigkeit von der Zeit überwacht. Dabei wird einmal das Auftreten eines steilen Pegelanstiegs sensiert und zum andern ein weiterer kontinuierlich sich vergrößernden Pegel geprüft. Übersteigt der steile Pegelanstieg einen Schwellwert, so wird ein Voralarm ausgegeben. Hierzu wird der zeitliche Verlauf des Empfangspegelmaximums einerseits über einen Tiefpass 32 mit vorgebbarer Grenzfrequenz an eine Schwelle (Block 33) und andererseits über einen Tiefpass 34 mit einer dem gegenüber geringeren Grenzfrequenz an eine weitere Schwelle (Block 35) gelegt. Wird der im Block 33 vorgegebene Schwellwert überschritten, so wird der Voralarm ausgegeben, der in Fig. 2 durch die Warnsignallampe 37 symbolisiert ist. Wird der im Block 35 vorgegebene Schwellwert überschritten, so wird eine Voralarmbestätigung ausgegeben, was in Fig. 2 durch die Warnsignallampe 38 symbolisiert ist. Die Warnsignallampen 29, 31, 37 und 38 generieren vorzugsweise eine unterschiedlich farbige Anzeige in einem Display, auf dem der Torpedotrack visualisiert ist. Beispielsweise wird ein neu aufkommender Torpedo durch Aufleuchten der Warnsignallampe 37 in blau, eine Bestätigung des neu aufkommenden Torpedos durch Aufleuchten der Warnsignallampe 38 in grün, ein Überlauf des Torpedos durch Aufleuchten der Warnsignallampe 29 in rot und ein Höchstalarm durch blinkendes Aufleuchten der drei Warnsignallampen 31 visualisiert.To detect the aft-starting, keel-water-borne torpedo as early as possible, so that sufficient preparation time for the use of the effectors at the time of the overflow of the torpedo on the towed antenna 13 remains, in addition to the so-called. Overflow detection described above, a so-called. Endfire detection is performed , In this endfire detection, the reception levels in the most aft-directional directional characteristics 19, ie in the directional characteristics 19 with the maximum directional angles Θ ( Fig. 1 ), which extend to aft monitors. In these aft-directional characteristics 19, in turn, the maximum of the reception level is monitored as a function of time. In this case, the occurrence of a steep increase in level is sensed and, on the other hand, another continuously increasing level is checked. If the steep level increase exceeds a threshold value, a pre-alarm is output. For this purpose, the time profile of the reception level maximum on the one hand via a low-pass filter 32 with predefinable cutoff frequency to a threshold (block 33) and on the other hand via a low pass 34 with the opposite lower cutoff frequency to another threshold (block 35). If the threshold value specified in block 33 is exceeded, the pre-alarm is output, which in Fig. 2 symbolized by the warning signal lamp 37. If the threshold value specified in block 35 is exceeded, a pre-alarm confirmation is output, which results in Fig. 2 symbolized by the warning signal lamp 38. The warning signal lamps 29, 31, 37 and 38 preferably generate a differently colored display in a display on which the torpedo track is visualized. For example, a newly emerging torpedo is visualized by lighting the warning signal lamp 37 in blue, a confirmation of the newly emerging torpedo by lighting the warning signal lamp 38 in green, an overflow of the torpedo by lighting the warning signal lamp 29 in red and a maximum alarm by flashing lights of the three warning signal lamps 31 ,

In einer ergänzenden Ausgestaltung des Verfahrens können die normalisierten Empfangssignale auf einem Bildschirm, einem sog. BTR-Display, dargestellt werden. Die beschriebenen Alarmmeldungen werden dann auch in den Bildschirm eingeblendet. Dadurch ist es einem Bediener möglich, zusätzlich die Alarmmeldungen zu verifizieren und damit die Falschalarmrate zu senken.In a supplementary embodiment of the method, the normalized received signals can be displayed on a screen, a so-called BTR display. The alarm messages described are then also displayed in the screen. This allows an operator to in addition to verify the alarm messages and thus reduce the false alarm rate.

Im Allgemeinen stört der parallel verlaufende Aktivbetrieb des Aktivsonars 11 den Passivbetrieb des Schleppsonars. Daher ist es von Vorteil, Störungen durch den Sendevorgang beim Passivempfang auszublenden. Dies kann in der Weise erfolgen, dass der Sendevorgang durch eine mehrheitliche Schwellenüberschreitung des Pegels der Empfangssignale (vor deren Normalisierung im Block 20) detektiert wird und, der alte Pegelwert beibehalten wird, solange die Schwellenüberschreitung andauert.In general, the parallel active operation of the active sonar 11 interferes with the passive operation of the towing sonar. Therefore, it is advantageous to hide interference by transmission during passive reception. This can be done in such a way that the transmission process is detected by a majority threshold crossing of the level of the received signals (before their normalization in block 20) and the old level value is maintained as long as the threshold crossing persists.

Claims (10)

  1. Method for production of a danger warning against a torpedo which is attacking a watercraft (10) from astern, in particular a wake-homing torpedo in which the bearing of the approaching torpedo is found continuously, with the bearing angle and the bearing time being output, by means of a sonar having an underwater antenna which is towed by the watercraft (10), characterized in that the cotangent of the bearing angle is calculated and is associated with the bearing times, in that the rate of change of the cotangent is compared with a preset value, at least in a central bearing angle range, and in that an initiation signal for a warning alarm is emitted if the preset value is exceeded.
  2. Method according to Claim 1, characterized in that the central bearing angle range is defined by a lower bearing angle limit of 10°, preferably 40°, and an upper bearing angle limit of 170°, preferably 140°, with the longitudinal axis of the underwater antenna forming the reference line for the bearing angle.
  3. Method according to Claim 1 or 2, characterized in that the rate of change of the cotangent is smoothed before comparison with the preset value.
  4. Method according to one of Claims 1 to 3, characterized in that the angle, preferably related to the longitudinal axis of the underwater antenna, of a receiving direction with the maximum reception level is emitted as the bearing angle, in that the preferably smoothed maximum reception level is compared continuously with a threshold value and in that a gate signal is generated if the threshold value is exceeded, and is linked to the initiation signal such that a link signal is produced when the gate signal and the initiation signal occur together, and in that the warning alarm is activated by the linking signal.
  5. Method according to Claim 4, characterized in that a check is carried out as to the bearing angle at which the linking signal occurs, and in that an additional alarm is emitted when the linking signal occurs for a bearing angle in the region around 90°.
  6. Method according to Claim 5, characterized in that the bearing angle range for initiation of an additional alarm is defined by the limit bearing angles 80° and 120°.
  7. Method according to one of Claims 1 to 6, characterized in that the underwater antenna has a multiplicity of hydrophones (16) or hydrophone groups which are arranged one behind the other in the towing direction, in that a fan of mutually adjacent directional characteristics (19) with each of which one direction angle is uniquely associated, is spread out on both sides of the underwater antenna (13) by means of direction formation from the electrical output signals of the hydrophones (16) or hydrophone groups, in that the received signals obtained from the directional characteristics (19) are normalized, wherein a normalization window for the received signals is selected roughly from the directional characteristics (19) which point furthest astern in comparison to the normalization window for the received signals from the other directional characteristics (19), and in that the maximum reception level in the normalized received signals is determined, and the direction angle of the directional characteristic (19) with the maximum reception level is emitted as the bearing angle.
  8. Method according to Claim 7, characterized in that the reception levels in the directional characteristics (19) which are furthest astern are monitored continuously, and in that an initial alarm is emitted on the occurrence of a steep level rise which exceeds a threshold value.
  9. Method according to Claim 8, characterized in that an initial alarm confirmation is emitted if the level continues to become greater.
  10. Method according to Claim 8 or 9, characterized in that the reception level monitoring is carried out using the level maximum of the received signals from the directional characteristics (19) which are furthest astern.
EP06818551A 2005-12-08 2006-11-15 Method for production of a danger warning against an attacking torpedo Active EP1957358B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06818551T PL1957358T3 (en) 2005-12-08 2006-11-15 Method for production of a danger warning against an attacking torpedo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005058559A DE102005058559B3 (en) 2005-12-08 2005-12-08 Danger warning producing method for use during attacking of wake-controlled torpedo, involves comparing slew rate of cotangent with default value and releasing operating signal for warning alarm if cotangent exceeds default value
PCT/EP2006/010950 WO2007065535A1 (en) 2005-12-08 2006-11-15 Method for production of a danger warning against an attacking torpedo

Publications (2)

Publication Number Publication Date
EP1957358A1 EP1957358A1 (en) 2008-08-20
EP1957358B1 true EP1957358B1 (en) 2009-03-11

Family

ID=37440261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06818551A Active EP1957358B1 (en) 2005-12-08 2006-11-15 Method for production of a danger warning against an attacking torpedo

Country Status (6)

Country Link
EP (1) EP1957358B1 (en)
AT (1) ATE425079T1 (en)
DE (2) DE102005058559B3 (en)
DK (1) DK1957358T3 (en)
PL (1) PL1957358T3 (en)
WO (1) WO2007065535A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2513880C2 (en) * 2012-06-07 2014-04-20 Открытое акционерное общество "Таганрогский научно-исследовательский институт связи" (ОАО "ТНИИС") Method to protect submarine against broad-band torpedo-mine
DE102016109105A1 (en) * 2016-05-18 2017-11-23 Atlas Elektronik Gmbh Watercraft for locating an underwater object
RU2756387C1 (en) * 2019-04-26 2021-09-29 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Integrated control subsystem for anti-torpedo protection of surface ship

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216534A (en) * 1960-06-28 1980-08-05 The United States Of America As Represented By The Secretary Of The Navy Decoying acoustic homing torpedoes
US4215630A (en) * 1978-03-06 1980-08-05 General Dynamics Corporation Pomona Division Anti-ship torpedo defense missile
US5373773A (en) * 1981-08-06 1994-12-20 The United States Of American As Represented By The Secretary Of The Navy Anti-torpedo stern defense system
DE19935436B4 (en) * 1999-07-28 2005-11-10 Atlas Elektronik Gmbh Torpedo defense method

Also Published As

Publication number Publication date
PL1957358T3 (en) 2009-08-31
WO2007065535A1 (en) 2007-06-14
ATE425079T1 (en) 2009-03-15
DE502006003138D1 (en) 2009-04-23
DE102005058559B3 (en) 2006-12-14
DK1957358T3 (en) 2009-05-18
EP1957358A1 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
DE102014218145B4 (en) Warning system with object differentiation
DE2710335C2 (en) Collision warning system for use with a radar system
EP1957358B1 (en) Method for production of a danger warning against an attacking torpedo
EP1562053A2 (en) Apparatus and method for monitoring the environment of a vehicle
DE102014111098A1 (en) Sensor device with ultrasonic sensor and radar sensor for detecting an object in an environment of a motor vehicle and motor vehicle
EP0213541B1 (en) Ship detection method
DE3908578A1 (en) METHOD FOR INFLUENCING A SOUND SOURCE, IN PARTICULAR A SUBMERSIBLE SUBMARINE, AND SUBMARINE
DE102007019444B3 (en) Passive determination of target data by selective reception of acoustic waves used in e.g. carrier vehicle, involves using electroacoustic transducer arrangement for sonar reception on carrier vehicle to determine position of target
DE19935436B4 (en) Torpedo defense method
EP0213418B1 (en) Method of and apparatus for the direction finding of targets
WO2015169277A1 (en) Method for carrying out spatial and/or time resolution of a first underwater sound source from a second underwater sound source and associated device and watercraft
DE3248744C2 (en)
DE102011018278B4 (en) Method and device for determining target parameters
DE3148734C2 (en) Device for steering a torpedo
DE19857760C1 (en) Passive acoustic position finding of a target radiating sound into water uses a torpedo fitted with an electro-acoustic receiving device to pick up a position on a path with a continuously changing course or torpedo maneuver
EP3268705B1 (en) Method for separating a group of ships, and watercraft and device
DE3248727C1 (en) Target search control device for torpedoes
WO1995027908A1 (en) Warning system to be installed on a ship
DE3415107B3 (en) Torpedo defensive apparatus
DE102011121007B4 (en) Device and method for displaying determined target parameters in a reconnaissance area lying targets with a display
DE3828151C2 (en)
DE2337508C3 (en) Arrangement for the spectral differentiation between radar target object echoes and radar apparent or interfering object echoes when switching from target search to target tracking
DE102007038559A1 (en) Method and apparatus for passively determining target data
DE102017119036A1 (en) Avoidance of false alarms during blind spot monitoring
DE102009032177A1 (en) Radar system for driver assistance system for detecting surroundings of passenger car, has wave guide, where system detects temporary and/or situation-dependent reduced response or failure of elevation radiation direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BENEN, STEPHAN

Inventor name: SCHMIDT-SCHIERHORN, HELMUT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006003138

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

26N No opposition filed

Effective date: 20091214

BERE Be: lapsed

Owner name: ATLAS ELEKTRONIK G.M.B.H.

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20101027

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20111118

Year of fee payment: 6

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006003138

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 18

Ref country code: DE

Payment date: 20231121

Year of fee payment: 18