EP1952441A1 - Process for fabricating a flexible electronic device of the screen type, including a plurality of thin-film components - Google Patents

Process for fabricating a flexible electronic device of the screen type, including a plurality of thin-film components

Info

Publication number
EP1952441A1
EP1952441A1 EP06831137A EP06831137A EP1952441A1 EP 1952441 A1 EP1952441 A1 EP 1952441A1 EP 06831137 A EP06831137 A EP 06831137A EP 06831137 A EP06831137 A EP 06831137A EP 1952441 A1 EP1952441 A1 EP 1952441A1
Authority
EP
European Patent Office
Prior art keywords
glass
thin
components
screen
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06831137A
Other languages
German (de)
French (fr)
Inventor
François Templier
Hubert Moriceau
Bruno Mourey
Léa Di Cioccio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1952441A1 publication Critical patent/EP1952441A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to an electronic device, active or passive matrix screen type, comprising electronic components in thin layers on a thin support and which has good performance from the point of view flexibility and / or lightness and / or robustness.
  • Active matrix displays are mostly screens
  • electrophoretic screens as well as electroluminescent displays type organic light-emitting diode or OLED (Organic Light Electroluminescent Diodes) or type PLED based on polymers. All these screens use an active matrix based on Thin Film Transistors (TFT) components and other thin-film components (particularly thin film diodes) made from amorphous silicon or polycrystalline silicon on a glass plate. large area and thickness of about 0.7 mm.
  • TFT Thin Film Transistors
  • this technique has at least two disadvantages: (i) need to reduce the processing temperatures during the various manufacturing steps (due to the poor thermal stability of the plastic) and thus reducing the performance of the TFT, and (ii) delicate handling of the plastic substrates during manufacture (due to their lack of rigidity, ...) resulting in incompatibility with the existing manufacturing lines in the case of send supports;
  • the "SUFTLA” method of Seiko-Epson comprises the following steps: (i) manufacture on a 0.7 mm glass plate of polycrystalline silicon TFT type components and (ii) transfer of the components to an intermediate support using an amorphous silicon sacrificial layer previously deposited between the TFT stack and the glass support and transfer to a final plastic support.
  • Bonding on the intermediate support and then on the plastic support is carried out by a water-soluble resin, for the first, and by an adhesive for the second.
  • This method requires that the first medium (on which the components are manufactured) be transparent to the wavelength of the laser used to reach the sacrificial layer and partially destroy it (in practice by heating the amorphous silicon).
  • this method is expensive since it implements amorphous silicon, a laser and a double transfer; it may furthermore be difficult to assemble an LCD device with two flexible plastic films.
  • laser technologies are difficult transferable to large dimensions (which is necessary for screens of significant size) and collages on polymer age badly.
  • the need to fabricate the TFT components on a polymer layer affects compatibility with existing processes and processes and production lines, as well as their performance (in particular: need for a low PECVD deposition temperature, for the insulating layers and semiconductors, hence a lower quality for these layers, difficulty in obtaining a correct flatness resulting in constraints on the final device).
  • the subject of the invention is a method of manufacturing an electronic device of the screen type, which can be large dimensions, comprising a plurality of thin-layer electronic components which is light and flexible, while implementing techniques already well validated and low cost, consistent with large dimensions. More particularly, it aims at a process for manufacturing passive or active matrix screens (with thin-film components - of the type
  • TFT - OLED type LCD or electrophoretic, in particular
  • LCD LCD or electrophoretic, in particular
  • the invention proposes a method for manufacturing a thin-film electronic device of the screen type, comprising a plurality of thin-film components on a glass support, comprising steps according to which: a starting support comprising a rigid solid substrate and a glass sheet secured to this rigid solid substrate by reversible direct bonding so as to obtain a removable interface, - the plurality of thin-layer components are manufactured on this glass sheet, the sheet is separated from glass, on which the plurality of thin-layer components have been manufactured, with respect to the rigid solid substrate, by dismounting the interface.
  • this sheet of glass and the plurality of thin-film components are then transferred to a final support.
  • This invention thus combines the advantages of existing technologies on rigid glass support (the starting support is, at least as regards the sheet, glass), while allowing to obtain a good control of the lightness and flexibility final, by a good control of the thickness of the glass sheet, this thickness being sufficiently small to obtain the desired lightness and flexibility.
  • a starting support is prepared comprising a rigid solid substrate and a glass sheet secured to this substrate; solid rigid by a reversible bonding so as to obtain a removable interface, an active matrix of pixels is produced on this glass sheet, a display layer is produced on top of this active matrix, the glass sheet, on which the active matrix and the display layer have been fabricated, is separated with respect to the rigid solid substrate, by dismounting the interface, this glass sheet and the active matrix and the display layer are transferred to a final support, possibly flexible.
  • This method thus makes it possible to produce screens with flexible active matrices, while using the existing standard manufacturing methods, and to guarantee the performance of these screens.
  • the advantages of TFT performance on glass technology are preserved and the flexibility provided by a control of the thickness of the glass.
  • the invention notably resulted from the finding that, contrary to what the "SUFTLA” and “EPLAR” methods suggested, the use of a glass support in the final structure of an electronic device flexible screen type was possible, provided to choose for this support a sufficiently thin sheet, which was possible, in particular based on the teachings of WO-02/084722.
  • the starting support is prepared by reversibly bonding the glass sheet to a rigid glass support, which gives the assembly good stability in particular.
  • mechanical and thermal, reversible direct bonding is in practice a molecular bonding, whose performance can be very good
  • the reversible bonding is preceded by a preparation treatment adapted to make hydrophilic surfaces to be bonded, which contributes to a very good bonding
  • the surfaces to be bonded have a roughness of less than one nanometer (preferably less than 0.5 nanometer), which contributes to a very good bonding
  • the starting support is prepared by gluing on the rigid solid support of a glass plate which is then optionally applied a thinning treatment bringing the thickness of the plate to a desired value, allowing and not having to manipulate the sheet separately when it has its final thickness
  • the glass sheet has a thickness at most equal to 100 microns, preferably at most equal to 50 microns
  • the plurality of components is manufactured in layer one-step thin
  • the invention also relates to a screen-type device obtained by the aforementioned method, namely a flexible thin-film electronic device of the screen type comprising a plurality of thin-layer electronic components located on a glass support whose thickness gives it a significant flexibility, preferably at most equal to 100 microns, or even 50 microns.
  • an active matrix screen comprising active matrices comprising components in thin layers on a glass sheet whose thickness gives it a significant flexibility, preferably at most equal to 100 microns, or even at most equal to 50 microns .
  • the object of the invention is to protect a device of the aforementioned type in which, advantageously, the plurality of components comprises a layer formed of an active matrix of pixels and a display layer covering the active matrix of pixels.
  • the flexible electronic device of the invention is advantageously an organic electroluminescent diode screen, or an electrophoretic screen or an LCD screen.
  • the electronic device is such that the electronic components are designed so as to emit light through said glass sheet.
  • the invention finally proposes a starting support adapted to the manufacture of a flexible thin-film electronic device of the screen type comprising a rigid solid substrate and a glass sheet secured to this rigid solid substrate by a direct reversible bonding so as to get a removable interface.
  • the rigid substrate is advantageously made of glass, at least on the surface.
  • FIG. 1 is a block diagram of a thin-film electronic device according to the invention
  • 2 is a block diagram of a starting support
  • FIG. 4 is a diagram of another subsequent step of the manufacture of the screen
  • FIG. 5 is a diagram of a separation step involved in the manufacture of the screen, on the support of FIG. of the screen
  • Figure 6 is a diagram showing the result of this separation step
  • Figure 7 is a diagram showing the final result of the manufacture of the screen.
  • the figures represent, as an example of a thin-film electronic device according to the invention, an active pixel array screen of the OLED type, and a method of manufacturing it.
  • FIG. 1 thus represents a flexible active matrix OLED screen, light and robust.
  • the active matrix i.e. the layer in which the components are made
  • the process of the invention is compatible with temperatures well above those involved in deposit formation
  • this screen comprises a final support 11, a thin layer 12 attached to this final support, here by means of an intermediate zone 13, two insulating layers 14 and 15 in which are made contacts 16, and an encapsulation layer 17 covering electroluminescent components 18A, 18B and 18C, and a protective layer 19.
  • the layer 12 is a thin layer of glass, that is to say a layer of thickness at most equal to 100 microns, preferably at most equal to 50 microns, so as to that the flexibility of the assembly is defined by the flexibility of the support 11.
  • An advantage of the device of Figure 1 is that it could be manufactured by implementing thin film deposition techniques on a substrate at least superficially formed of glass, without it was necessary later to separate the components vis-à-vis this glass.
  • FIGS. 2 to 7 show how this screen 10 can be manufactured in accordance with the invention. This method of manufacturing a screen can be described briefly by the following steps:
  • a starting substrate composed of a stack of a thin sheet of glass and a rigid sheet, advantageously also made of glass, both being temporarily secured by a reversible (molecular) direct bonding so as to form a removable interface; manufacturing, on this substrate, an active matrix of pixels, manufacturing, above the active matrix of pixels, a display layer, separation of the rigid glass support of the screen on a flexible support support if necessary.
  • the base substrate is made from two glass plates 31 and 32 whose shape and size are of little importance, depending on the intended application for the final device.
  • the thicknesses of these plates are chosen so as to satisfy several criteria: the overall thickness of these two plates is such that they can be handled together, typically at least on the order of 0.4 to 0.7 mm, for example for a surface of the order of 4 m 2 , the bottom plate 31 has a sufficient thickness for this plate, solid, is rigid.
  • two borosilicate glass plates 100 or 200 mm in diameter, 0.7 mm thick and 0.2 nm in roughness (measured by AFM on fields of (1 x 1) ⁇ m 2 ) are used. These plates are intended to be temporarily secured.
  • their roughness is advantageously at most equal to the nanometer, preferably of the order or less than 0.5 nm, which is favorable to a good molecular bonding of the faces facing these plates 31 and 32. If necessary specific layers can be deposited to obtain the required surface roughness. This roughness can be chosen to make possible the subsequent disassembly at the bonding interface.
  • the bottom plate whose function is to be rigid and withstand the following component manufacturing processes, can be performed in a wide variety of materials. However, it is advantageous that it be, as indicated above, also in glass, preferably in a glass of the same properties as that of the top plate in order to avoid thermal expansion problems, for example a standard borosilicate type glass of the LCD industry.
  • these plates are cleaned to remove particulate contamination, organic or metallic.
  • This cleaning may be chemical type (wet or dry), thermal type, chemical mechanical polishing type or any other nature capable of effectively cleaning the facing surfaces intended to form a removable interface.
  • wet chemical cleaning two cleaning compositions may be used: H 2 SO 4 , H 2 O 2 , H 2 O, or NH 4 OH, H 2 O 2 , H 2 O. are then, if necessary, rinsed with water and dried.
  • the person skilled in the art knows how to adapt the cleaning method according to the particular case.
  • the surfaces to be bonded are at the end of cleaning of hydrophilic nature.
  • the two surfaces of the plates are brought into contact at their prepared faces to carry out the direct bonding.
  • the two plates thus glued can be annealed, if necessary, to increase the bonding energy. For example, annealing at 420 ° C. is applied for 30 minutes.
  • One of the two plates, here the top plate is then thinned to the desired glass thickness for the final device, by a mechanical and / or chemical technique of any known type suitable. This step is optional if the plate considered immediately has the required thickness.
  • one of the substrates is thinned to 100 ⁇ m or alternatively to 75 ⁇ m or to 64 ⁇ m.
  • the thickness of the thinned plate, here the upper plate 32, is such that, given the properties of the glass used, this plate has a flexibility compatible with the intended application for the finished product; this thickness is in practice at most equal to 100 microns and preferably at most equal to 50 microns; it is therefore correct to define the thinned upper plate 32 as being a thin sheet of glass.
  • the lower plate 31 is a rigid solid plate. The stack presented in FIG. 2 is then obtained, where the surface areas of the two plates affected by gluing, labeled 31A and 32A, together form a bonding interface 33.
  • this interface is removable, that is to say reversible. It is within the abilities of those skilled in the art to draw on the teachings of the aforementioned document WO-02/084722 to control the bonding energy of this interface.
  • the bonding energy is very low, of the order of 350 mJ / m 2 .
  • the bonding energy is controlled by acting beforehand on the microroughness of the faces to be assembled.
  • One layer of an oxide or of several oxides for example SiO 2 , whose microroughness is adjusted, is deposited on one of the glass layers before bonding.
  • a specific chemical treatment for example by etching with hydrofluoric acid HF.
  • the oxide used is SiO 2
  • the person skilled in the art will also be able to choose to apply a heat treatment or not to give the SiO 2 layer the properties of thermal silica (see for example the article The bonding energy Semiconductor Wafer Bonding: Science, Technology and Applications VII, Bengtsson ed, The Electrochemical Society 2003, 49, presented at the Electrochemical Society Conference in Paris, May 2003).
  • the bonding energy is controlled by acting on the micro-roughness of the faces to be assembled, then by performing a cleaning as described above.
  • the base substrate 31-32 is then used as a standard glass plate for the manufacture of an active matrix with thin-film components, here of TFT type. It is understood that the presence of the removable interface does not substantially modify the mechanical properties of the stack, compared to a monobloc plate of the same thickness. Alternatively, it is of course possible to use for the bottom plate a material different from the glass but whose stack with the upper plate is capable of undergoing the same mechanical and thermal treatments as the stack 31-32: the skilled person can evaluate the characteristics required for such a stack (in particular the nature and the thicknesses of the materials to be retained as well as the associated thermal limitations).
  • FIG. 3 represents a plate of active matrices after the realization of a network of TFT components corresponding to amorphous silicon pixels, in the so-called grid technology below.
  • the components may alternatively be the basis of other materials including polycrystalline silicon.
  • the conditions of realization can be exactly the same as for a manufacture on conventional glass substrate; in particular, the maximum temperature used can be the same (in general, 300 ° C., for depositing the layers by the technique known as PECVD). This is made possible by the very nature (of the glass) of the layers of the base substrate and by the ability of the reversible bonding to hold these temperatures. In addition, as indicated, the total thickness of the base substrate is very close to that of a glass plate conventionally used in this type of treatment, 0.7 mm.
  • this network of thin-film components comprises:
  • An insulating layer of gate 42 typically made of silicon nitride SiNx, Zones of amorphous silicon 44 deposited on the insulating layer (intrinsic and doped layer stack),
  • the electrodes will be more like molybdenum or aluminum or any other conductive material allowing the injection of holes or electrons into the OLED.
  • Transverse strands such as those identified 47 (these transverse strands are not all shown in the figures, for reasons of readability thereof), are provided in the insulating layers so as to establish the appropriate connections.
  • the next step is to make a display layer on this active matrix of TFT components.
  • FIG. 4 shows the step of adding, on the pixel electrodes, localized layers comprising appropriate organic electroluminescent materials, in practice of Red (48A), Green (48B) and Blue (48C) color, so as to realize an OLED color screen.
  • These localized layers may be, optionally, small molecule organic layers (which results in “OLED” type components) or polymer layers (which results in "PLED” type components). They can be deposited by evaporation, or by ink jet, or by spin coating type.
  • OLED organic electroluminescent materials
  • a conductive layer forming a second electrode or against electrode, more precisely a cathode 49, which is here a continuous plane above the localized layers.
  • This cathode cooperates with the electrodes 46 to form electroluminescent components emitting, depending on the material thus sandwiched, green, red or blue light.
  • OLED components are covered with an encapsulation layer 50 which may be SiNx.
  • the emission of light is towards the bottom of the screen ("Bottom emission"), which was not possible with the SUFTLA or EPLAR methods. It is nevertheless possible, with an adaptation of the materials, to operate in emission upwards.
  • the screen formed by the superposition of the TFT components and OLED components is then covered by one or more plastic layers 51 which has a role of protection as well as handle for the subsequent handling of the structure.
  • This layer is for example deposited by rolling (that is to say by unwinding this layer and pressing on the deposition surface).
  • the manufacture of the screen further comprises a step of connecting the drivers ("drivers") on the screen; this can be done at this stage.
  • the product obtained at the end of this step comprises the screen to be produced as well as the solid rigid glass layer which facilitated the handling of the assembly during the various manufacturing steps.
  • the separation step consists in separating the screen and the thin layer of thin glass from the rigid layer of thick glass.
  • the separation is at the location of the direct bonding area. It is advantageously carried out by the insertion of a blade at the locations indicated by arrows in FIG. 5. If the plastic encapsulation layer 50 is strong enough not to break during the separation, it is not useful to use, by gluing from above, a support handle as in the processes explained in the state of the art.
  • Figure 6 shows the result of this separation, where the original plates were glued.
  • plates are thus separated, one of which is thinned to 75 ⁇ m or to 64 ⁇ m, without breaking the plate.
  • the screen is dissociated from the glass substrate which has allowed manipulation during the manufacturing steps. It is then possible to implant this screen at its service location.
  • a support 60 of any suitable material given the application in question, for example a plastic support (see Figure 7); this support is for example polymer such as PET.
  • this support 60 will be laminated on the screen. It may be noted by comparison of Figures 1 and 7 that the product obtained is in accordance with the desired product. Zone 13, which is the surface area 32A of the plate 32 (see point 1 and FIG. 2), is recognized and which zone of this plate 32 is affected by the reversible bonding.
  • Fixing the screen, so its thin layer of glass, can be done by gluing.
  • a support that is flexible, because of its nature and / or its thickness (for example with a rather small thickness in the range of 20 to 50 microns) then a flexible screen is obtained.
  • the support may be more rigid, for example by choosing larger thicknesses between 200 and 700 microns; the screen is not particularly flexible, but it has the advantage of being light and robust compared to an identical screen made on a solid glass support, without separation.
  • the thin product obtained by the process of the invention may alternatively, depending on the requirements, be in particular carried on materials such as a thin metal, for example a stainless steel with a thickness advantageously of between 50.degree. at 200 microns, which allows to maintain the qualities of flexibility, and to improve the solidity and the thermal stability of the whole.
  • a thin metal for example a stainless steel with a thickness advantageously of between 50.degree. at 200 microns, which allows to maintain the qualities of flexibility, and to improve the solidity and the thermal stability of the whole.
  • the removable interface can be made not directly between the exposed faces of two glass plates, but also indirectly, between the bonding layers deposited on these faces to be secured.
  • the invention provides various advantages, in particular: when the thin sheet of glass is attached to a rigid plate of glass, the support thus produced is completely compatible with known TFT processes, hence a very moderate cost and transistors made at standard temperatures and therefore good qualities, the fact of ensuring the separation at the level of a removable interface allows an excellent control of the thickness of the residual thin layer, in particular to guarantee, if necessary, a determined level of flexibility, which makes it possible to control the performances obtained.
  • the method of the invention is substantially cheaper than the methods known under the designations of "SUFTLA” and "EPLAR", yet designed for similar applications, due to the fact that it is not necessary to provide equipment laser, a downward emission, or “bottom emission” (see Figures 1 to 7 and the description above), is possible for OLED screens, or for other rans, the method of the invention can be implemented without limitation as regards the dimensions of the device to achieve; it is thus possible to provide devices of several centimeters, or even several tens of centimeters in width and length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

To fabricate a thin-film flexible electronic device of the screen type, comprising a plurality of thin-film components on a glass support: a starting support is prepared, comprising a rigid bulk substrate (32) and a glass sheet (31) fastened to this rigid bulk substrate by reversible direct bonding so as to obtain a removable interface (33); the plurality of thin-film components (41-49) is fabricated on this glass sheet; the glass sheet on which the plurality of thin-film components has been fabricated is separated, from the rigid bulk substrate, by disassembling the interface (33); and, advantageously, this glass sheet and the plurality of thin-film components is transferred to a final support.

Description

Procédé de fabrication d'un dispositif électronique flexible du type écran comportant une pluralité de composants en couches minces A method of manufacturing a flexible screen-type electronic device having a plurality of thin-film components
Etat de la technique et but de l'inventionState of the art and purpose of the invention
L'invention concerne un dispositif électronique, du type écran à matrice active ou passive, comportant des composants électroniques en couches minces sur un support mince et qui présente de bonnes performances du point de vue souplesse et/ou légèreté et/ou robustesse. Les écrans à matrice active sont la plupart du temps des écransThe invention relates to an electronic device, active or passive matrix screen type, comprising electronic components in thin layers on a thin support and which has good performance from the point of view flexibility and / or lightness and / or robustness. Active matrix displays are mostly screens
LCD, mais plus récemment sont apparus des écrans dits Electrophorétiques ainsi que des écrans électroluminescents de type à diodes électroluminescentes organiques ou OLED (Organic Light Electroluminescent Diodes) ou encore de type PLED à base de polymères. Tous ces écrans ont recours à une matrice active à base de composants TFT (Thin Film Transistors) et autres composants en couches minces (des diodes en couches minces, notamment) réalisés à partir de silicium amorphe ou de silicium polycristallin, sur une plaque de verre de grande surface et d'épaisseur de l'ordre de 0.7 mm.LCD, but more recently appeared so-called electrophoretic screens as well as electroluminescent displays type organic light-emitting diode or OLED (Organic Light Electroluminescent Diodes) or type PLED based on polymers. All these screens use an active matrix based on Thin Film Transistors (TFT) components and other thin-film components (particularly thin film diodes) made from amorphous silicon or polycrystalline silicon on a glass plate. large area and thickness of about 0.7 mm.
Pour des applications sur équipements portables (téléphone, PDA, ordinateurs...) les fabricants demandent des écrans de plus en plus légers. Une autre caractéristique recherchée pour les écrans ou les dispositifs électroniques en couches minces est la souplesse, pour une intégration plus simple dans les nouveaux produits, ou même pour rendre possibles de nouvelles applications telles qu'une carte d'orientation ou un écran enroulable, notamment. Une dernière caractéristique recherchée est la robustesse. La fragilité des écrans LCD actuels à base de verre épais impose en effet l'ajout d'une couche de protection en plastique sur les portables. Il serait souhaitable de s'en affranchir. Que l'on recherche une plus grande légèreté ou une plus grande souplesse ou encore une meilleure robustesse, on cherche à s'affranchir de la forte épaisseur et de la rigidité de la plaque de verre de support, en pratique de 0.7 mm, voire des deux plaques de verre comme dans le cas des écrans LCD où un filtre coloré repose aussi sur ce support. II a été proposé à cet effet de fournir ces matrices actives sur un support plastique, ce qui combine légèreté et souplesse. Plusieurs approches ont ainsi été proposées :For applications on portable equipment (phone, PDA, computers ...) manufacturers are demanding screens increasingly light. Another characteristic sought for screens or electronic devices in thin layers is flexibility, for easier integration into new products, or even to make possible new applications such as an orientation map or a roll-up screen, in particular . A last characteristic sought is robustness. The fragility of the current LCD screens based on thick glass requires the addition of a protective plastic layer on laptops. It would be desirable to get rid of it. Whether we are looking for a greater lightness or a greater flexibility or a better robustness, we try to overcome the thick and rigidity of the support glass plate, in practice 0.7 mm, or even two glass plates as in the case of LCD screens where a color filter is also based on this support. It has been proposed for this purpose to provide these active matrices on a plastic support, which combines lightness and flexibility. Several approaches have been proposed:
- fabrication directe sur plastique : cette technique présente toutefois au moins deux inconvénients : (i) nécessité de réduire les températures de traitement lors des diverses étapes de fabrication (en raison de la mauvaise stabilité thermique du plastique) et donc réduction des performances des TFT, et (ii) manipulation délicate des substrats plastiques en cours de fabrication (en raison de leur manque de rigidité,...) d'où une incompatibilité avec les lignes de fabrication existantes dans le cas de supports enverre ;- direct manufacturing on plastic: however, this technique has at least two disadvantages: (i) need to reduce the processing temperatures during the various manufacturing steps (due to the poor thermal stability of the plastic) and thus reducing the performance of the TFT, and (ii) delicate handling of the plastic substrates during manufacture (due to their lack of rigidity, ...) resulting in incompatibility with the existing manufacturing lines in the case of send supports;
- par fabrication sur un support puis report (ou transfert) sur un autre support, dont en particulier les procédés connus sous les noms de « SUFTLA » et « EPLAR ». Le procédé « SUFTLA » de Seiko-Epson (notamment décrit dans le document « SUFTLA ® (Surface Free Technology by Laser Ablation/Annealing) de S. Utnunomiya et al. -TFT2-1 paru dans AM-LCD'02 - pp. 37-40) comporte les étapes suivantes : (i) fabrication sur une plaque de verre de 0.7 mm de composants de type TFT en silicium poiycristallin et (ii) report des composants sur un support intermédiaire en utilisant une couche sacrificielle en silicium amorphe préalablement déposée entre l'empilement TFT et le support en verre puis report sur un support final en matière plastique. Le collage sur le support intermédiaire puis sur le support plastique est effectué par une résine soluble à l'eau, pour le premier, et par une colle pour le second. Ce procédé nécessite que le premier support (sur lequel les composants sont fabriqués) soit transparent à la longueur d'onde du laser utilisé pour atteindre la couche sacrificielle et la détruire partiellement (en pratique par chauffage du silicium amorphe). En outre, ce procédé est cher puisqu'il met en œuvre du silicium amorphe, un laser et un double transfert ; il peut en outre y avoir des difficultés à assembler un dispositif LCD avec deux films en plastique souple. De plus les technologies laser sont difficilement transférables à de grandes dimensions (ce qui est nécessaire pour des écrans de taille significative) et les collages sur polymère vieillissent mal.- by manufacturing on a support and then report (or transfer) to another medium, including in particular the processes known under the names "SUFTLA" and "EPLAR". The "SUFTLA" method of Seiko-Epson (notably described in the document "SUFTLA® (Surface Free Technology by Laser Ablation / Annealing) of S. Utnunomiya et al. -TFT2-1 published in AM-LCD'02 - pp. 37 -40) comprises the following steps: (i) manufacture on a 0.7 mm glass plate of polycrystalline silicon TFT type components and (ii) transfer of the components to an intermediate support using an amorphous silicon sacrificial layer previously deposited between the TFT stack and the glass support and transfer to a final plastic support. Bonding on the intermediate support and then on the plastic support is carried out by a water-soluble resin, for the first, and by an adhesive for the second. This method requires that the first medium (on which the components are manufactured) be transparent to the wavelength of the laser used to reach the sacrificial layer and partially destroy it (in practice by heating the amorphous silicon). In addition, this method is expensive since it implements amorphous silicon, a laser and a double transfer; it may furthermore be difficult to assemble an LCD device with two flexible plastic films. Moreover laser technologies are difficult transferable to large dimensions (which is necessary for screens of significant size) and collages on polymer age badly.
Le procédé « EPLAR » de Philips (voir notamment le document 54-Philips "EPLAR" process (see in particular document 54-
2 : Thin Plastic Electrophoretic Displays Fabricated by a Novel Process, SID 05 DIGEST - pp.1634-1637) fait intervenir non plus du silicium amorphe mais une couche de polyimide. Plus précisément ce procédé comporte les étapes suivantes : o (i) dépôt sur un support de verre de 0.7 mm d'épaisseur d'une couche polymère de quelques microns, o (ii) fabrication de composants TFT en silicium amorphe, o (iii) dépôt de couches organiques LED, o (iii) séparation entre le support et la couche de polyimide : celle- ci devient la couche de maintien des composants TFT Ce procédé est plus simple que le procédé « SUFTLA » (il n'y a qu'un seul transfert) mais reste cher car l'étape de séparation met en œuvre une technique de séparation laser. En outre la nécessité de fabriquer les composants TFT sur une couche polymère affecte la compatibilité avec les procédés et traitements et les lignes de fabrication existants, ainsi que leurs performances (en particulier : nécessité d'une température de dépôt PECVD basse, pour les couches isolantes et semi-conductrices, d'où une qualité moindre pour ces couches, difficulté à obtenir une planéité correcte d'où des contraintes sur le dispositif final).2: Thin Plastic Electrophoretic Displays Fabricated by a Novel Process, SID 05 DIGEST - pp. 1634-1637) does not involve amorphous silicon but a layer of polyimide. More precisely, this process comprises the following steps: (i) depositing on a 0.7 mm thick glass support a polymer layer of a few microns, (ii) manufacturing amorphous silicon TFT components, o (iii) deposition of organic LED layers, o (iii) separation between the support and the polyimide layer: this becomes the TFT component holding layer This process is simpler than the "SUFTLA" process (there is only a single transfer) but remains expensive because the separation step implements a laser separation technique. In addition, the need to fabricate the TFT components on a polymer layer affects compatibility with existing processes and processes and production lines, as well as their performance (in particular: need for a low PECVD deposition temperature, for the insulating layers and semiconductors, hence a lower quality for these layers, difficulty in obtaining a correct flatness resulting in constraints on the final device).
En complément des inconvénients précités, il est à noter qu'aucun de ces deux procédés n'a permis jusqu'à présent des productions de masse, essentiellement en raison de la difficulté qu'il y a à les appliquer à des écrans de grandes dimensions (typiquement au-delà de 50 mm de diagonale. En outre, ces deux techniques ne permettent pas la « bottom émission », émission vers le bas, du fait de la présence résiduelle dans l'empilement final de la couche de silicium amorphe ou de la couche de polyimide (voir les figures des documents SUFTLA et EPLAR).In addition to the aforementioned disadvantages, it should be noted that none of these two processes has so far allowed mass production, mainly because of the difficulty of applying them to large screens. (typically beyond 50 mm diagonal) In addition, these two techniques do not allow the "bottom emission", emission down, due to the residual presence in the final stack of the amorphous silicon layer or the polyimide layer (see the figures in the SUFTLA and EPLAR documents).
C'est pourquoi, de manière générale, l'invention a pour objet un procédé de fabrication d'un dispositif électronique du type écran, pouvant être de grandes dimensions, comportant une pluralité de composants électroniques en couche mince qui soit léger et souple, tout en mettant en œuvre des techniques déjà bien validées et de coût modéré, compatibles avec de grandes dimensions. Plus particulièrement, elle vise un procédé de fabrication d'écrans à matrice passive ou active (avec des composants en couches minces - de typeTherefore, in general, the subject of the invention is a method of manufacturing an electronic device of the screen type, which can be large dimensions, comprising a plurality of thin-layer electronic components which is light and flexible, while implementing techniques already well validated and low cost, consistent with large dimensions. More particularly, it aims at a process for manufacturing passive or active matrix screens (with thin-film components - of the type
TFT - à pixels du type OLED, LCD ou électrophorétique, notamment), qui soit léger et souple, simple et de coût modéré.TFT - OLED type, LCD or electrophoretic, in particular), which is light and flexible, simple and of moderate cost.
L'invention propose à cet effet un procédé de fabrication d'un dispositif électronique en couches minces du type écran, comportant une pluralité de composants en couches minces sur un support en verre, comportant des étapes selon lesquelles : on prépare un support de départ comportant un substrat massif rigide et une feuille de verre solidarisée à ce substrat massif rigide par un collage direct réversible en sorte d'obtenir un interface démontable, - on fabrique la pluralité de composants en couche minces sur cette feuille de verre, on sépare la feuille de verre, sur laquelle on a fabriqué la pluralité de composants en couches minces, vis-à-vis du substrat massif rigide, par démontage de l'interface. De manière avantageuse, on reporte ensuite cette feuille de verre et la pluralité de composants en couches minces sur un support final.To this end, the invention proposes a method for manufacturing a thin-film electronic device of the screen type, comprising a plurality of thin-film components on a glass support, comprising steps according to which: a starting support comprising a rigid solid substrate and a glass sheet secured to this rigid solid substrate by reversible direct bonding so as to obtain a removable interface, - the plurality of thin-layer components are manufactured on this glass sheet, the sheet is separated from glass, on which the plurality of thin-layer components have been manufactured, with respect to the rigid solid substrate, by dismounting the interface. Advantageously, this sheet of glass and the plurality of thin-film components are then transferred to a final support.
Cette invention combine ainsi les avantages des technologies existant sur support rigide de verre (le support de départ est, au moins en ce qui concerne la feuille, en verre), tout en permettant d'obtenir un bon contrôle de la légèreté et de la souplesse finales, par un bon contrôle de l'épaisseur de la feuille de verre, cette épaisseur pouvant être suffisamment faible pour obtenir la légèreté et la souplesse voulues.This invention thus combines the advantages of existing technologies on rigid glass support (the starting support is, at least as regards the sheet, glass), while allowing to obtain a good control of the lightness and flexibility final, by a good control of the thickness of the glass sheet, this thickness being sufficiently small to obtain the desired lightness and flexibility.
Dans le cas particulier de la fabrication d'écrans à matrice active, le procédé de l'invention peut être décrit comme comportant les étapes suivantes : - on prépare un support de départ comportant un substrat massif rigide et une feuille de verre solidarisée à ce substrat massif rigide par un collage réversible en sorte d'obtenir un interface démontable, on fabrique une matrice active de pixels sur cette feuille de verre, on fabrique au dessus de cette matrice active une couche d'affichage, on sépare la feuille de verre, sur laquelle on a fabriqué la matrice active et la couche d'affichage, vis-à-vis du substrat massif rigide, par démontage de l'interface, on reporte cette feuille de verre et la matrice active et la couche d'affichage sur un support final, éventuellement souple.In the particular case of the production of active matrix screens, the method of the invention can be described as comprising the following steps: a starting support is prepared comprising a rigid solid substrate and a glass sheet secured to this substrate; solid rigid by a reversible bonding so as to obtain a removable interface, an active matrix of pixels is produced on this glass sheet, a display layer is produced on top of this active matrix, the glass sheet, on which the active matrix and the display layer have been fabricated, is separated with respect to the rigid solid substrate, by dismounting the interface, this glass sheet and the active matrix and the display layer are transferred to a final support, possibly flexible.
Ce procédé permet ainsi de réaliser des écrans à matrices actives flexibles, tout en utilisant les méthodes de fabrication standard existantes, et de garantir les performances de ces écrans. On conserve en effet les avantages des performances des TFT sur technologie verre et la souplesse apportée par une maîtrise de l'épaisseur du verre.This method thus makes it possible to produce screens with flexible active matrices, while using the existing standard manufacturing methods, and to guarantee the performance of these screens. In fact, the advantages of TFT performance on glass technology are preserved and the flexibility provided by a control of the thickness of the glass.
On appréciera que les procédés précités de fabrication d'écrans conduisaient l'homme de métier à conclure que la réalisation d'écrans souples impliquait que le support portant les composants électroniques en couches minces soit en matière plastique.It will be appreciated that the above-mentioned methods of screen manufacture led the skilled person to conclude that the production of flexible screens implied that the support carrying the thin-film electronic components is made of plastic.
On appréciera en outre que le principe d'un interface démontable était déjà connu, notamment d'après le document WO-02/084722. Les enseignements de ce document concernent principalement le cas d'un substrat de silicium sur un bloc de silicium, avec des indications pour le cas général de matériaux semi-conducteurs tels que le silicium, le germanium, ou des composés de silicium et de germanium, voire des carbures ou des nitrures de ces éléments, ou encore des matériaux ferroélectriques ou piézo-électriques ou magnétiques.It will further be appreciated that the principle of a removable interface was already known, in particular from WO-02/084722. The teachings of this document mainly concern the case of a silicon substrate on a silicon block, with indications for the general case of semiconductor materials such as silicon, germanium, or silicon and germanium compounds, even carbides or nitrides of these elements, or even ferroelectric or piezoelectric or magnetic materials.
Pourtant, bien que ce document ait prévu des applications dans le domaine de la fabrication des écrans, il n'avait pas encore été reconnu que ses enseignements étaient applicables à une couche mince et souple de verre (il était bien prévu que l'interface puisse avoir lieu entre des couches d'oxyde de silicium, mais celles-ci étaient de très fines couches portées par des substrats en d'autres matériaux), et que le choix de ce matériau était compatible, pour des épaisseurs suffisamment faibles, avec à la fois la fabrication des composants et l'obtention d'une bonne souplesse.However, although this document envisaged applications in the field of screen manufacturing, it had not yet been recognized that its teachings were applicable to a thin and flexible layer of glass (it was well planned that the interface could between layers of silicon oxide, but these were very thin layers carried by substrates of other materials), and that the choice of this material was compatible, for thicknesses sufficiently low, with both the manufacture of components and obtaining a good flexibility.
En d'autres termes, l'invention a notamment découlé de la constatation que, contrairement à ce que suggéraient les procédés « SUFTLA » et « EPLAR », l'usage d'un support de verre dans la structure finale d'un dispositif électronique souple du type écran était possible, sous réserve de choisir pour ce support une feuille suffisamment mince, ce qui était possible, notamment en s'inspirant des enseignements du document WO-02/084722.In other words, the invention notably resulted from the finding that, contrary to what the "SUFTLA" and "EPLAR" methods suggested, the use of a glass support in the final structure of an electronic device flexible screen type was possible, provided to choose for this support a sufficiently thin sheet, which was possible, in particular based on the teachings of WO-02/084722.
De manière générale, selon des caractéristiques préférées de l'invention, éventuellement combinées : l'on prépare le support de départ par collage réversible de la feuille de verre sur un support rigide de verre, ce qui confère à l'ensemble une bonne stabilité notamment mécanique et thermique, le collage direct réversible est en pratique un collage moléculaire, dont les performances peuvent être très bonnes, le collage réversible est précédé d'un traitement de préparation adapté à rendre hydrophiles les surfaces à coller, ce qui contribue à un très bon collage, les surfaces à coller ont une rugosité inférieure au nanomètre (de préférence inférieure à 0,5 nanomètre), ce qui contribue à un très bon collage, l'on prépare le support de départ par collage sur le support massif rigide d'une plaque de verre à laquelle on applique éventuellement ensuite un traitement d'amincissement amenant l'épaisseur de la plaque à une valeur voulue, ce qui permet de ne pas avoir à manipuler isolément la feuille lorsqu'elle a son épaisseur finale, la feuille mince de verre a une épaisseur au plus égale à 100 microns, de préférence au plus égale à 50 microns, on fabrique la pluralité de composants en couche mince en une étape selon laquelle on fabrique une matrice active de pixels sur la feuille mince de verre, et une étape selon laquelle on fabrique une couche d'affichage au- dessus de cette matrice active de pixels, grâce à quoi, après séparation on obtient un écran à matrice active, on fabrique la matrice active de pixels en formant des composants en couches minces de type TFT, ce que l'on sait bien faire de manière performante et à faible coût, on fabrique la couche d'affichage en formant des composants électroluminescents organiques de type OLED, ce que l'on sait également bien faire, de manière performante et à faible coût, on dépose par laminage une couche électrophorétique en sorte d'obtenir un écran électrophorétique, on réalise un écran LCD, - on sépare la feuille de verre vis-à-vis du support massif rigide au moyen par insertion d'une lame, ce qui permet une séparation bien nette, sans avoir à chauffer l'ensemble puisque cela peut se faire à la température ambiante, on reporte la feuille de verre et les composants qui y sont formés sur une feuille souple en matière plastique (ce qui est connu en soi) ; en variante, on reporte la feuille de verre et les composants qui y sont formés sur une feuille métallique souple.In a general manner, according to preferred features of the invention, possibly combined: the starting support is prepared by reversibly bonding the glass sheet to a rigid glass support, which gives the assembly good stability in particular. mechanical and thermal, reversible direct bonding is in practice a molecular bonding, whose performance can be very good, the reversible bonding is preceded by a preparation treatment adapted to make hydrophilic surfaces to be bonded, which contributes to a very good bonding, the surfaces to be bonded have a roughness of less than one nanometer (preferably less than 0.5 nanometer), which contributes to a very good bonding, the starting support is prepared by gluing on the rigid solid support of a glass plate which is then optionally applied a thinning treatment bringing the thickness of the plate to a desired value, allowing and not having to manipulate the sheet separately when it has its final thickness, the glass sheet has a thickness at most equal to 100 microns, preferably at most equal to 50 microns, the plurality of components is manufactured in layer one-step thin film in which an active matrix of pixels is fabricated on the glass thin sheet, and a step of making a display layer over this active matrix of pixels, whereby after separation one obtains an active matrix screen, the active matrix of pixels is produced by forming thin-film components of the TFT type, which is well known to perform well and at low cost, the display layer is manufactured by forming organic electroluminescent components of the OLED type , what is also known to do well, in a high performance and low cost, is deposited by rolling an electrophoretic layer so as to obtain an electrophoretic screen, an LCD screen is made, - separating the glass sheet vis- to the solid rigid support by means of insertion of a blade, which allows a clear separation, without having to heat all as it can be done at room temperature, the glass sheet and the components are carried forward formed thereon on a flexible sheet of plastic material (which is known per se); alternatively, the glass sheet and the components formed thereon are deferred onto a flexible metal sheet.
L'invention porte également sur un dispositif du type écran obtenu par le procédé précité, à savoir un dispositif électronique flexible en couches minces du type écran comportant une pluralité de composants électroniques en couches minces situés sur un support en verre dont l'épaisseur lui confère une souplesse significative, de préférence au plus égale à 100 microns, voire 50 microns.The invention also relates to a screen-type device obtained by the aforementioned method, namely a flexible thin-film electronic device of the screen type comprising a plurality of thin-layer electronic components located on a glass support whose thickness gives it a significant flexibility, preferably at most equal to 100 microns, or even 50 microns.
Elle vise en particulier un écran à matrice active comportant des matrices actives comportant des composants en couches minces sur une feuille de verre dont l'épaisseur lui confère une souplesse significative, de préférence au plus égale à 100 microns, voire au plus égale à 50 microns.It is aimed in particular at an active matrix screen comprising active matrices comprising components in thin layers on a glass sheet whose thickness gives it a significant flexibility, preferably at most equal to 100 microns, or even at most equal to 50 microns .
C'est ainsi que l'invention vise à protéger un dispositif du type précité dans lequel, de manière avantageuse, la pluralité de composants comporte une couche formée d'une matrice active de pixels et une couche d'affichage recouvrant la matrice active de pixels. En d'autres termes, le dispositif électronique flexible de l'invention est avantageusement un écran à diodes électroluminescentes organiques, ou un écran électrophorétique ou un écran LCD. Avantageusement, le dispositif électronique est tel que les composants électroniques sont conçus en sorte d'émettre de la lumière au travers de ladite feuille de verre.Thus, the object of the invention is to protect a device of the aforementioned type in which, advantageously, the plurality of components comprises a layer formed of an active matrix of pixels and a display layer covering the active matrix of pixels. . In other words, the flexible electronic device of the invention is advantageously an organic electroluminescent diode screen, or an electrophoretic screen or an LCD screen. Advantageously, the electronic device is such that the electronic components are designed so as to emit light through said glass sheet.
L'invention propose enfin un support de départ adapté à la fabrication d'un dispositif électronique flexible en couches minces du type écran comportant un substrat massif rigide et une feuille de verre solidarisée à ce substrat massif rigide par un collage direct réversible en sorte d'obtenir un interface démontable.The invention finally proposes a starting support adapted to the manufacture of a flexible thin-film electronic device of the screen type comprising a rigid solid substrate and a glass sheet secured to this rigid solid substrate by a direct reversible bonding so as to get a removable interface.
Le substrat rigide est avantageusement en verre, au moins en surface.The rigid substrate is advantageously made of glass, at least on the surface.
Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple illustratif non limitatif sur lesquels : la figure 1 est un schéma de principe d'un dispositif électronique en couches minces conforme à l'invention, ici constitué d'un écran à matrices actives, la figure 2 est un schéma de principe d'un support de départ, - la figure 3 est un schéma d'une étape ultérieure de la fabrication, selon l'invention, de la matrice active de l'écran, sur le support de la figure 2, la figure 4 est un schéma d'une autre étape ultérieure de la fabrication de l'écran, la figure 5 est un schéma d'une étape de séparation intervenant dans la fabrication de l'écran, la figure 6 est un schéma représentant le résultat de cette étape de séparation, et la figure 7 est un schéma représentant le résultat final de la fabrication de l'écran. Les figures représentent, à titre d'exemple de dispositif électronique en couches minces conforme à l'invention, un écran à matrices actives à pixels du type OLED, et un procédé de fabrication de celui-ci. La figure 1 représente ainsi un écran OLED à matrice active flexible, léger et robuste.Objects, features and advantages of the invention will become apparent from the following description given by way of non-limiting illustrative example in which: FIG. 1 is a block diagram of a thin-film electronic device according to the invention; 2 is a block diagram of a starting support, FIG. 4 is a diagram of another subsequent step of the manufacture of the screen, FIG. 5 is a diagram of a separation step involved in the manufacture of the screen, on the support of FIG. of the screen, Figure 6 is a diagram showing the result of this separation step, and Figure 7 is a diagram showing the final result of the manufacture of the screen. The figures represent, as an example of a thin-film electronic device according to the invention, an active pixel array screen of the OLED type, and a method of manufacturing it. FIG. 1 thus represents a flexible active matrix OLED screen, light and robust.
Dans cet exemple, la matrice active (c'est-à-dire la couche dans laquelle les composants sont réalisés) est faite avec du silicium amorphe ; mais on comprendra aisément que le procédé de l'invention est compatible avec des températures bien supérieures à celles impliquées par la formation par dépôtIn this example, the active matrix (i.e. the layer in which the components are made) is made with amorphous silicon; but it will be readily understood that the process of the invention is compatible with temperatures well above those involved in deposit formation
PECVD du silicium amorphe.PECVD of amorphous silicon.
Plus précisément, cet écran, désigné sous la référence générale 10, comporte un support final 11 , une couche mince 12 rapportée à ce support final, ici au moyen d'une zone intermédiaire 13, deux couches isolantes 14 et 15 au sein desquelles sont réalisés des contacts 16, et une couche d'encapsulation 17 recouvrant des composants électroluminescents 18A, 18B et 18C, et une couche 19 de protection. En pratique, il y a, entre les couches 12 et 14, une grille métallique et des contacts arrière qui ne sont pas représentés. Selon une caractéristique importante de l'invention, la couche 12 est une couche mince en verre, c'est-à-dire une couche d'épaisseur au plus égale à 100 microns, de préférence au plus égale à 50 microns, de manière à ce que la flexibilité de l'ensemble soit définie par la flexibilité du support 11.More specifically, this screen, designated under the general reference 10, comprises a final support 11, a thin layer 12 attached to this final support, here by means of an intermediate zone 13, two insulating layers 14 and 15 in which are made contacts 16, and an encapsulation layer 17 covering electroluminescent components 18A, 18B and 18C, and a protective layer 19. In practice, there is, between the layers 12 and 14, a metal gate and rear contacts that are not shown. According to an important characteristic of the invention, the layer 12 is a thin layer of glass, that is to say a layer of thickness at most equal to 100 microns, preferably at most equal to 50 microns, so as to that the flexibility of the assembly is defined by the flexibility of the support 11.
Un avantage du dispositif de la figure 1 est donc qu'il a pu être fabriqué en mettant en œuvre des techniques de dépôt de couches minces sur un substrat au moins superficiellement formé de verre, sans qu'il ait été nécessaire ensuite de dissocier les composants vis-à-vis de ce verre.An advantage of the device of Figure 1 is that it could be manufactured by implementing thin film deposition techniques on a substrate at least superficially formed of glass, without it was necessary later to separate the components vis-à-vis this glass.
Les figures 2 à 7 représentent comment cet écran 10 peut être fabriqué, conformément à l'invention. Ce procédé de fabrication d'un écran peut être décrit sommairement par les étapes suivantes :Figures 2 to 7 show how this screen 10 can be manufactured in accordance with the invention. This method of manufacturing a screen can be described briefly by the following steps:
- fabrication d'un substrat de départ composé d'un empilement d'une feuille mince de verre et d'une feuille rigide, avantageusement réalisée en verre elle aussi, les deux étant solidarisées temporairement par un collage direct (moléculaire) réversible en sorte de former un interface démontable ; fabrication, sur ce substrat, d'une matrice active de pixels, fabrication, au dessus de la matrice active de pixels, d'une couche d'affichage, séparation du support de verre rigide report de l'écran sur un support de maintien souple si besoin. Ces diverses étapes sont détaillées ci-dessous.- Manufacture of a starting substrate composed of a stack of a thin sheet of glass and a rigid sheet, advantageously also made of glass, both being temporarily secured by a reversible (molecular) direct bonding so as to form a removable interface; manufacturing, on this substrate, an active matrix of pixels, manufacturing, above the active matrix of pixels, a display layer, separation of the rigid glass support of the screen on a flexible support support if necessary. These various steps are detailed below.
1) réalisation d'un substrat de base1) Realization of a basic substrate
Le substrat de base est fabriqué à partir de deux plaques de verre 31 et 32 dont la forme et la taille ont peu d'importance, dépendant de l'application visée pour le dispositif final. Toutefois les épaisseurs de ces plaques sont choisies en sorte de satisfaire plusieurs critères : l'épaisseur globale de ces deux plaques est telle que leur ensemble est manipulable, typiquement au moins égale à de l'ordre de 0,4 à 0,7 mm, par exemple pour une surface de l'ordre de 4 m2, la plaque inférieure 31 a une épaisseur suffisante pour que cette plaque, massive, soit rigide.The base substrate is made from two glass plates 31 and 32 whose shape and size are of little importance, depending on the intended application for the final device. However, the thicknesses of these plates are chosen so as to satisfy several criteria: the overall thickness of these two plates is such that they can be handled together, typically at least on the order of 0.4 to 0.7 mm, for example for a surface of the order of 4 m 2 , the bottom plate 31 has a sufficient thickness for this plate, solid, is rigid.
Par exemple, on utilise deux plaques en verre borosilicate, de 100 ou 200 mm de diamètre, 0.7 mm d'épaisseur et 0.2 nm de rugosité (mesurée par AFM sur des champs de (1 x1 )μm2). Ces plaques sont destinées à être temporairement solidarisées. A cet effet, leur rugosité est avantageusement au plus égale au nanomètre, de préférence de l'ordre ou inférieure à 0,5 nm, ce qui est favorable à un bon collage moléculaire des faces en regard de ces plaques 31 et 32. Au besoin, des couches spécifiques peuvent être déposées pour obtenir la rugosité de surface requise. Cette rugosité peut être choisie pour rendre possible le démontage ultérieur au niveau de l'interface de collage.For example, two borosilicate glass plates, 100 or 200 mm in diameter, 0.7 mm thick and 0.2 nm in roughness (measured by AFM on fields of (1 x 1) μm 2 ) are used. These plates are intended to be temporarily secured. For this purpose, their roughness is advantageously at most equal to the nanometer, preferably of the order or less than 0.5 nm, which is favorable to a good molecular bonding of the faces facing these plates 31 and 32. If necessary specific layers can be deposited to obtain the required surface roughness. This roughness can be chosen to make possible the subsequent disassembly at the bonding interface.
La plaque inférieure, dont la fonction est d'être rigide et de bien résister aux traitements suivants de fabrication des composants peut être réalisée dans une grande variété de matériaux. Toutefois, il est avantageux qu'elle soit, comme indiqué ci-dessus, en verre également, de préférence en un verre de mêmes propriétés que celui de la plaque supérieure afin d'éviter les problèmes de dilatation thermique, par exemple un verre de type borosilicate standard de l'industrie LCD.The bottom plate, whose function is to be rigid and withstand the following component manufacturing processes, can be performed in a wide variety of materials. However, it is advantageous that it be, as indicated above, also in glass, preferably in a glass of the same properties as that of the top plate in order to avoid thermal expansion problems, for example a standard borosilicate type glass of the LCD industry.
En pratique on fait subir à ces plaques un nettoyage visant à enlever la contamination particulaire, organique ou métallique. Ce nettoyage peut être de type chimique (sec ou humide), de type thermique, du type polissage mécano-chimique ou de tout autre nature capable de nettoyer efficacement les surfaces en regard destinées à constituer un interface démontable. Dans le cas d'un nettoyage de type chimique humide, deux compositions de nettoyage peuvent être utilisées : H2SO4, H2O2, H2O, ou NH4OH, H2O2, H2O. Les surfaces sont ensuite, si besoin est, rincées à l'eau et séchées. L'homme du métier sait adapter le mode de nettoyage en fonction du cas d'espèce.In practice, these plates are cleaned to remove particulate contamination, organic or metallic. This cleaning may be chemical type (wet or dry), thermal type, chemical mechanical polishing type or any other nature capable of effectively cleaning the facing surfaces intended to form a removable interface. In the case of wet chemical cleaning, two cleaning compositions may be used: H 2 SO 4 , H 2 O 2 , H 2 O, or NH 4 OH, H 2 O 2 , H 2 O. are then, if necessary, rinsed with water and dried. The person skilled in the art knows how to adapt the cleaning method according to the particular case.
De manière avantageuse, les surfaces à coller sont en fin de nettoyage de nature hydrophile.Advantageously, the surfaces to be bonded are at the end of cleaning of hydrophilic nature.
Une fois le traitement de surface effectué les deux surfaces des plaques sont mises en contact au niveau de leurs faces préparées pour procéder au collage direct.Once the surface treatment has been carried out, the two surfaces of the plates are brought into contact at their prepared faces to carry out the direct bonding.
Les deux plaques ainsi collées peuvent subir un recuit, si besoin, pour augmenter l'énergie de collage. Par exemple, un recuit à 420 0C est appliqué pendant 30 minutes. Une des deux plaques, ici la plaque supérieure, est alors amincie à l'épaisseur de verre voulue pour le dispositif final, par une technique mécanique et / ou chimique de tout type connu approprié. Cette étape est facultative si la plaque considérée a d'emblée l'épaisseur requise.The two plates thus glued can be annealed, if necessary, to increase the bonding energy. For example, annealing at 420 ° C. is applied for 30 minutes. One of the two plates, here the top plate, is then thinned to the desired glass thickness for the final device, by a mechanical and / or chemical technique of any known type suitable. This step is optional if the plate considered immediately has the required thickness.
Par exemple, un des substrats est aminci à 100 μm ou alternativement à 75 μm ou encore à 64 μm.For example, one of the substrates is thinned to 100 μm or alternatively to 75 μm or to 64 μm.
L'épaisseur de la plaque amincie, ici la plaque supérieure 32, est telle que, compte tenu des propriétés du verre utilisé, cette plaque ait une flexibilité compatible avec l'application visée pour le produit fini ; cette épaisseur est en pratique au plus égale à 100 microns et de préférence au plus égale à 50 microns ; il est donc correct de définir la plaque supérieure 32 amincie comme étant une feuille mince de verre. Par comparaison la plaque inférieure 31 est une plaque massive rigide. On obtient alors l'empilement présenté figure 2, où les zones superficielles des deux plaques affectées par le collage, repérées 31 A et 32A, forment conjointement un interface de collage 33.The thickness of the thinned plate, here the upper plate 32, is such that, given the properties of the glass used, this plate has a flexibility compatible with the intended application for the finished product; this thickness is in practice at most equal to 100 microns and preferably at most equal to 50 microns; it is therefore correct to define the thinned upper plate 32 as being a thin sheet of glass. By comparison, the lower plate 31 is a rigid solid plate. The stack presented in FIG. 2 is then obtained, where the surface areas of the two plates affected by gluing, labeled 31A and 32A, together form a bonding interface 33.
Grâce aux dispositions mises en œuvre pour la préparation des surfaces, cet interface est démontable, c'est-à-dire réversible. Il est à la portée de l'homme de métier de s'inspirer des enseignements du document précité WO-02/084722 pour bien contrôler l'énergie de collage de cet interface.Thanks to the provisions implemented for the preparation of surfaces, this interface is removable, that is to say reversible. It is within the abilities of those skilled in the art to draw on the teachings of the aforementioned document WO-02/084722 to control the bonding energy of this interface.
Par exemple, l'énergie de collage est très faible, de l'ordre de 350 mJ/m2. Selon une variante de réalisation, l'énergie de collage est contrôlée en agissant préalablement sur la microrugosité des faces à assembler. On dépose sur l'une des couches de verre avant collage une couche d'un oxyde ou de plusieurs oxydes (par exemple du Siθ2), dont la microrugosité est ajustée. L'homme du métier sait ajuster la microrugosité, en modifiant l'épaisseur de la couche déposée, et/ou en utilisant un traitement chimique spécifique (par exemple par attaque à l'acide fluorhydrique HF). Si l'oxyde utilisé est du SiO2 l'homme du métier pourra en plus choisir d'appliquer ou non un traitement thermique pour donner à la couche de Siθ2 les propriétés de la silice thermique (voir par exemple l'article The bonding energy control : an original way to debondable substrates ; in Semiconductor Wafer Bonding : Science, Technology and Applications VII, Bengtsson ed, The Electrochemical Society 2003, p. 49, présenté à la conférence de l' Electrochemical Society à Paris en mai 2003).For example, the bonding energy is very low, of the order of 350 mJ / m 2 . According to an alternative embodiment, the bonding energy is controlled by acting beforehand on the microroughness of the faces to be assembled. One layer of an oxide or of several oxides (for example SiO 2 ), whose microroughness is adjusted, is deposited on one of the glass layers before bonding. Those skilled in the art can adjust the microroughness, by modifying the thickness of the deposited layer, and / or by using a specific chemical treatment (for example by etching with hydrofluoric acid HF). If the oxide used is SiO 2, the person skilled in the art will also be able to choose to apply a heat treatment or not to give the SiO 2 layer the properties of thermal silica (see for example the article The bonding energy Semiconductor Wafer Bonding: Science, Technology and Applications VII, Bengtsson ed, The Electrochemical Society 2003, 49, presented at the Electrochemical Society Conference in Paris, May 2003).
Dans une autre forme de mise en œuvre, l'énergie de collage est contrôlée en agissant sur la microrugosité des faces à assembler, puis en effectuant un nettoyage tel que décrit précédemment.In another form of implementation, the bonding energy is controlled by acting on the micro-roughness of the faces to be assembled, then by performing a cleaning as described above.
Le substrat de base 31-32 est ensuite utilisé comme une plaque de verre standard pour la fabrication d'une matrice active à composants en couches minces, ici de type TFT. On comprend en effet que la présence de l'interface démontable ne modifie pas sensiblement les propriétés mécaniques de l'empilement, par rapport à une plaque monobloc de même épaisseur. En variante, il est bien sûr possible d'utiliser pour la plaque inférieure un matériau différent du verre mais dont l'empilement avec la plaque supérieure est capable de subir les mêmes traitements mécaniques et thermiques que l'empilement 31-32 : l'homme de métier sait évaluer les caractéristiques requises pour un tel empilement (en particulier la nature et les épaisseurs des matériaux à retenir ainsi que les limitations thermiques associées).The base substrate 31-32 is then used as a standard glass plate for the manufacture of an active matrix with thin-film components, here of TFT type. It is understood that the presence of the removable interface does not substantially modify the mechanical properties of the stack, compared to a monobloc plate of the same thickness. Alternatively, it is of course possible to use for the bottom plate a material different from the glass but whose stack with the upper plate is capable of undergoing the same mechanical and thermal treatments as the stack 31-32: the skilled person can evaluate the characteristics required for such a stack (in particular the nature and the thicknesses of the materials to be retained as well as the associated thermal limitations).
2) Fabrication de la matrice active TFT2) Manufacture of the TFT active matrix
La figure 3 représente une plaque de matrices actives après la réalisation d'un réseau de composants TFT correspondant à des pixels en silicium amorphe, en technologie dite grille dessous.FIG. 3 represents a plate of active matrices after the realization of a network of TFT components corresponding to amorphous silicon pixels, in the so-called grid technology below.
D'autres technologies sont bien sûr possibles (comme la technologie dite grille dessus). De même, les composants peuvent en variante être à la base d'autres matériaux notamment du silicium polycristallin.Other technologies are of course possible (like the so-called grid technology). Similarly, the components may alternatively be the basis of other materials including polycrystalline silicon.
Les conditions de réalisation peuvent être exactement les mêmes que pour une fabrication sur substrat de verre classique ; notamment, la température maximale mise en oeuvre peut être la même (en général, 3000C, pour le dépôt des couches par la technique appelée PECVD). Ceci est rendu possible par la nature même (du verre) des couches du substrat de base et par la capacité du collage réversible à tenir ces températures. De plus, comme indiqué, l'épaisseur totale du substrat de base est très voisine de celle d'une plaque de verre classiquement utilisée dans ce genre de traitements, soit 0.7 mm.The conditions of realization can be exactly the same as for a manufacture on conventional glass substrate; in particular, the maximum temperature used can be the same (in general, 300 ° C., for depositing the layers by the technique known as PECVD). This is made possible by the very nature (of the glass) of the layers of the base substrate and by the ability of the reversible bonding to hold these temperatures. In addition, as indicated, the total thickness of the base substrate is very close to that of a glass plate conventionally used in this type of treatment, 0.7 mm.
La parfaite compatibilité de traitements avec les lignes de fabrication existantes est un avantage considérable de l'invention, notamment par rapport aux procédés nécessitant la présence d'une couche de plastique lors de la fabrication des TFT (dans le procédé « EPLAR »).The perfect compatibility of treatments with the existing manufacturing lines is a considerable advantage of the invention, particularly with respect to processes requiring the presence of a plastic layer during the manufacture of TFTs (in the "EPLAR" process).
Ainsi qu'on le sait, ce réseau de composants en couches minces comporte :As we know, this network of thin-film components comprises:
• une grille métallique 41 déposée par toute technique appropriée de dépôt à la surface libre de la feuille mince de verre,A metal grid 41 deposited by any appropriate technique for deposition on the free surface of the glass sheet,
• une couche isolante de grille 42, typiquement en nitrure de silicium SiNx, • des zones de silicium amorphe 44, déposées sur la couche isolante (empilement de couches intrinsèque et dopée),An insulating layer of gate 42, typically made of silicon nitride SiNx, Zones of amorphous silicon 44 deposited on the insulating layer (intrinsic and doped layer stack),
• des contacts 43 déposés par toute technique appropriée sur la couche de silicium et formant des sources et des drains métalliques,Contacts 43 deposited by any appropriate technique on the silicon layer and forming sources and metal drains,
• une couche isolante de passivation 45 recouvrant Ia couche isolante 42 ainsi que les contacts, etAn insulating passivation layer covering the insulating layer and the contacts, and
• des électrodes de pixel 46, de type ITO par exemple pour un écran LCD, réalisées sur cette couche de passivation, de toute manière connue appropriée.Pixel electrodes 46, of the ITO type, for example for an LCD screen, made on this passivation layer, in any appropriate known manner.
Pour un écran OLED, les électrodes seront plutôt en molybdène ou en aluminium ou tout autre matériau conducteur permettant l'injection de trous ou d'électrons dans l'OLED.For an OLED display, the electrodes will be more like molybdenum or aluminum or any other conductive material allowing the injection of holes or electrons into the OLED.
Des brins transversaux, tels que ceux repérés 47 (ces brins transversaux ne sont pas tous représentés sur les figures, pour des raisons de lisibilité de ceux-ci), sont prévus dans les couches isolantes en sorte d'établir les connexions appropriées.Transverse strands, such as those identified 47 (these transverse strands are not all shown in the figures, for reasons of readability thereof), are provided in the insulating layers so as to establish the appropriate connections.
La suite consiste à fabriquer une couche d'affichage sur cette matrice active de composants TFT.The next step is to make a display layer on this active matrix of TFT components.
3) Fabrication de l'écran de type OLED3) Production of the OLED type screen
La figure 4 représente l'étape d'ajout, sur les électrodes de pixel, de couches localisées comprenant des matériaux organiques électroluminescents appropriés, en pratique de couleur Rouge (48A), Vert (48B) et Bleu (48C), de sorte à réaliser un écran couleur OLED. Ces couches localisées peuvent être, au choix, des couches organiques à petites molécules (ce qui aboutit à des composants de type « OLED ») ou des couches polymères (ce qui aboutit à des composants de type « PLED »). Elles peuvent être déposées par évaporation, ou par jet d'encre, ou par enduction de type toumette. Pour plus de détails, on pourra se référer à l'article « High efficiency phosphorescent OLEDs and their addressing with PoIy or amorphous TFTS », M. Hack et al., Eurodisplay 2002FIG. 4 shows the step of adding, on the pixel electrodes, localized layers comprising appropriate organic electroluminescent materials, in practice of Red (48A), Green (48B) and Blue (48C) color, so as to realize an OLED color screen. These localized layers may be, optionally, small molecule organic layers (which results in "OLED" type components) or polymer layers (which results in "PLED" type components). They can be deposited by evaporation, or by ink jet, or by spin coating type. For further details, reference can be made to the article "High efficiency phosphorescent OLEDs and their resolution with PoIy or amorphous TFTS", M. Hack et al., Eurodisplay 2002
Conférence, Proc p 21-24, Nice Oct. 2002. Ces couches localisées sont couvertes par une couche conductrice formant une seconde électrode ou contre électrode, plus précisément une cathode 49, qui est ici un plan continu au-dessus des couches localisées. Cette cathode coopère avec les électrodes 46 pour former des composants électroluminescents émettant, selon le matériau ainsi pris en sandwich, de la lumière verte, rouge ou bleue.Conference, Proc 21-24, Nice Oct. 2002. These localized layers are covered by a conductive layer forming a second electrode or against electrode, more precisely a cathode 49, which is here a continuous plane above the localized layers. This cathode cooperates with the electrodes 46 to form electroluminescent components emitting, depending on the material thus sandwiched, green, red or blue light.
Ces composants OLED sont recouverts d'une couche d'encapsulation 50 qui peut être du SiNx. Dans l'exemple donné l'émission de lumière se fait vers le bas de l'écran (« Bottom émission »), ce qui n'était pas possible avec les procédés SUFTLA ou EPLAR. Il est possible néanmoins, avec une adaptation des matériaux, de fonctionner en émission vers le haut.These OLED components are covered with an encapsulation layer 50 which may be SiNx. In the example given, the emission of light is towards the bottom of the screen ("Bottom emission"), which was not possible with the SUFTLA or EPLAR methods. It is nevertheless possible, with an adaptation of the materials, to operate in emission upwards.
L'écran formé par la superposition des composants TFT et des composants OLED est ensuite recouvert par une ou plusieurs couches en matière plastique 51 qui a un rôle de protection ainsi que de poignée pour la manipulation ultérieure de la structure. Cette couche est par exemple déposée par laminage (c'est-à-dire en déroulant cette couche et en la pressant sur la surface de dépôt).The screen formed by the superposition of the TFT components and OLED components is then covered by one or more plastic layers 51 which has a role of protection as well as handle for the subsequent handling of the structure. This layer is for example deposited by rolling (that is to say by unwinding this layer and pressing on the deposition surface).
La fabrication de l'écran comporte en outre une étape de connexion des pilotes (« drivers ») à l'écran ; celle-ci peut être réalisée à ce stade. En fait le produit obtenu au terme de cette étape comporte l'écran à réaliser ainsi que la couche massive rigide de verre qui a facilité la manipulation de l'ensemble au cours des diverses étapes de fabrication.The manufacture of the screen further comprises a step of connecting the drivers ("drivers") on the screen; this can be done at this stage. In fact, the product obtained at the end of this step comprises the screen to be produced as well as the solid rigid glass layer which facilitated the handling of the assembly during the various manufacturing steps.
Il convient ensuite de dissocier cette couche rigide vis-à-vis de l'écran proprement dit.It is then necessary to separate this rigid layer vis-à-vis the screen itself.
4) Séparation4) Separation
L'étape de séparation consiste à séparer l'écran et la couche mince de verre mince vis-à-vis de la couche rigide de verre épais.The separation step consists in separating the screen and the thin layer of thin glass from the rigid layer of thick glass.
La séparation se fait à l'endroit de la zone de collage direct. Elle est avantageusement réalisée par l'insertion d'une lame, aux emplacements repérés par des flèches à la figure 5. Si la couche plastique d'encapsulation 50 est suffisamment solide pour ne pas se casser lors de la séparation, il n'est pas utile d'utiliser, par collage par au-dessus, une poignée de support comme dans les procédés explicités dans l'état de l'art.The separation is at the location of the direct bonding area. It is advantageously carried out by the insertion of a blade at the locations indicated by arrows in FIG. 5. If the plastic encapsulation layer 50 is strong enough not to break during the separation, it is not useful to use, by gluing from above, a support handle as in the processes explained in the state of the art.
La figure 6 représente le résultat de cette séparation, à l'endroit où les plaques d'origine ont été collées. Dans le mode de réalisation plus particulièrement décrit, on sépare donc des plaques dont l'une est amincie à 75 μm ou à 64 μm, et ce sans casser cette plaque.Figure 6 shows the result of this separation, where the original plates were glued. In the embodiment more particularly described, plates are thus separated, one of which is thinned to 75 μm or to 64 μm, without breaking the plate.
Il est intéressant de noter que, du fait que cette séparation résulte du démontage de l'interface initialement obtenu par collage, les surfaces mises à nu par cette séparation sont de bonne planéité et ne nécessitent pas de traitement lourd de planarisation et/ou de nettoyage. Elles sont de ce fait, notamment, transparentes en cas d'émission vers le bas (« bottom émission »).It is interesting to note that, because this separation results from the disassembly of the interface initially obtained by gluing, the surfaces exposed by this separation are of flatness and do not require heavy planarization and / or cleaning treatment. . They are therefore, in particular, transparent in the case of downward transmission ("bottom emission").
L'écran est donc dissocié du substrat de verre qui en a permis la manipulation lors des étapes de fabrication. Il est alors possible d'implanter cet écran à son emplacement de service.The screen is dissociated from the glass substrate which has allowed manipulation during the manufacturing steps. It is then possible to implant this screen at its service location.
5) Report5) Report
L'écran est ensuite reporté sur un support 60 en tout matériau approprié, compte tenu de l'application considérée, par exemple un support en matière plastique (voir la figure 7) ; ce support est par exemple en polymère comme par exemple en PET.The screen is then transferred to a support 60 of any suitable material, given the application in question, for example a plastic support (see Figure 7); this support is for example polymer such as PET.
Avantageusement, ce support 60 sera laminé sur l'écran. On peut noter par comparaison des figures 1 et 7 que le produit obtenu est bien conforme au produit voulu. On reconnaît la zone 13 qui est la zone superficielle 32A de la plaque 32 (voir point 1 et figure 2), et qui est la zone de cette plaque 32 concernée par le collage réversible.Advantageously, this support 60 will be laminated on the screen. It may be noted by comparison of Figures 1 and 7 that the product obtained is in accordance with the desired product. Zone 13, which is the surface area 32A of the plate 32 (see point 1 and FIG. 2), is recognized and which zone of this plate 32 is affected by the reversible bonding.
La fixation de l'écran, donc de sa couche mince de verre, peut se faire par collage.Fixing the screen, so its thin layer of glass, can be done by gluing.
Si l'on choisit un support qui est flexible, du fait de sa nature et/ou de son épaisseur (par exemple avec une épaisseur plutôt faible comprise dans la gamme de 20 à 50 microns) on obtient alors un écran flexible. Bien entendu, le support peut être plus rigide, en choisissant par exemple des épaisseurs plus importantes comprises entre 200 et 700 microns ; l'écran n'est alors pas particulièrement flexible, mais il a toutefois l'avantage d'être léger et robuste par rapport à un écran identique réalisé sur un support massif en verre, sans séparation.If one chooses a support that is flexible, because of its nature and / or its thickness (for example with a rather small thickness in the range of 20 to 50 microns) then a flexible screen is obtained. Of course, the support may be more rigid, for example by choosing larger thicknesses between 200 and 700 microns; the screen is not particularly flexible, but it has the advantage of being light and robust compared to an identical screen made on a solid glass support, without separation.
On comprend ainsi que, l'écran étant, à l'état isolé, flexible et souple, c'est en fonction de son application que l'homme de métier choisira de conserver l'une et/ou l'autre de ces propriétés.It is thus understood that, the screen being, in the isolated state, flexible and flexible, it is according to its application that the skilled person will choose to retain one and / or the other of these properties.
C'est ainsi que le produit mince obtenu par le procédé de l'invention peut, en variante en fonction des besoins, être notamment reporté sur des matériaux tels qu'un métal mince, par exemple un acier inoxydable d'épaisseur avantageusement comprise entre 50 à 200 microns, ce qui permet de conserver les qualités de flexibilité, et d'améliorer la solidité et la stabilité thermique de l'ensemble. On appréciera que, si la description vient d'être donnée à propos d'un écran de type OLED ou PLED, il est à la portée de l'homme de métier d'adapter les enseignements précités au point 3 à d'autres applications, telles que la fabrication d'écrans électrophorétiques, d'écrans de type LCD ou encore d'écrans de type PDLC : - pour un écran électrophorétique : dépôt par exemple par laminage d'une couche électrophorétique, pour un écran de type LCD, différentes technologies sont possibles (TN, PDLC, STN...) ; l'homme du métier saura adapter le procédé en conséquence. Pour la technologie TN : collage d'une plaque mince de filtres colorés (par exemple en verre) et remplissage, par du cristal liquide (on pourra se référer pour plus de détails, à l'ouvrage Liquid Crystal Displays, Addressing Schemes and Electrooptical Effects, Ernst Lueder, Wiley Editor, June 2001).Thus, the thin product obtained by the process of the invention may alternatively, depending on the requirements, be in particular carried on materials such as a thin metal, for example a stainless steel with a thickness advantageously of between 50.degree. at 200 microns, which allows to maintain the qualities of flexibility, and to improve the solidity and the thermal stability of the whole. It will be appreciated that, if the description has just been given about an OLED or PLED type screen, it is within the abilities of those skilled in the art to adapt the teachings mentioned in point 3 to other applications, such as the production of electrophoretic screens, LCD type screens or PDLC-type screens: for an electrophoretic screen: deposition, for example by rolling of an electrophoretic layer, for an LCD type screen, various technologies are possible (TN, PDLC, STN ...); those skilled in the art will be able to adapt the process accordingly. For TN technology: gluing a thin plate of colored filters (eg glass) and filling with liquid crystal (see Liquid Crystal Displays, Addressing Schemes and Electrooptical Effects for more details) , Ernst Lueder, Wiley Editor, June 2001).
Bien entendu, l'interface démontable peut être réalisé non pas directement entre des faces mises à nu de deux plaques de verre, mais aussi de manière indirecte, entre des couches d'accrochage déposées sur ces faces à solidariser.Of course, the removable interface can be made not directly between the exposed faces of two glass plates, but also indirectly, between the bonding layers deposited on these faces to be secured.
On notera que l'invention apporte divers avantages, notamment : lorsque la feuille mince de verre est rapportée sur une plaque rigide de verre, le support ainsi réalisé est complètement compatible avec les procédés TFT connus, d'où un coût très modéré et des transistors réalisés à des températures standard et donc de bonnes qualités, - le fait d'assurer la séparation au niveau d'un interface démontable permet un excellent contrôle de l'épaisseur de la couche mince résiduelle, pour garantir notamment, si besoin, un niveau de souplesse déterminé, ce qui permet de bien maîtriser les performances obtenues, le procédé de l'invention est sensiblement moins cher que les procédés connus sous les désignations de « SUFTLA » et « EPLAR », pourtant conçus pour des applications similaires, en raison du fait qu'il n'est pas nécessaire de prévoir des équipements laser, une émission vers le bas, ou « bottom émission » (voir figures 1 à 7 et la description ci-dessus), est possible pour les écrans OLED, ou pour d'autres écrans, le procédé de l'invention peut être mis en œuvre sans limitation en ce qui concerne les dimensions du dispositif à réaliser ; on peut ainsi prévoir des dispositifs de plusieurs centimètres, voire de plusieurs dizaines de centimètres en largeur et en longueur. It should be noted that the invention provides various advantages, in particular: when the thin sheet of glass is attached to a rigid plate of glass, the support thus produced is completely compatible with known TFT processes, hence a very moderate cost and transistors made at standard temperatures and therefore good qualities, the fact of ensuring the separation at the level of a removable interface allows an excellent control of the thickness of the residual thin layer, in particular to guarantee, if necessary, a determined level of flexibility, which makes it possible to control the performances obtained. , the method of the invention is substantially cheaper than the methods known under the designations of "SUFTLA" and "EPLAR", yet designed for similar applications, due to the fact that it is not necessary to provide equipment laser, a downward emission, or "bottom emission" (see Figures 1 to 7 and the description above), is possible for OLED screens, or for other rans, the method of the invention can be implemented without limitation as regards the dimensions of the device to achieve; it is thus possible to provide devices of several centimeters, or even several tens of centimeters in width and length.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un dispositif électronique flexible en couches minces du type écran, comportant une pluralité de composants en couches minces sur un support en verre, comportant des étapes selon lesquelles : on prépare un support de départ comportant un substrat massif rigide (31 ) et une feuille de verre (32) solidarisée à ce substrat massif rigide par un collage direct réversible en sorte d'obtenir un interface démontable (33), on fabrique la pluralité de composants en couche minces (41-49) sur cette feuille de verre, on sépare la feuille de verre, sur laquelle on a fabriqué la pluralité de composants en couches minces, vis-à-vis du substrat massif rigide, par démontage de l'interface,A method of manufacturing a flexible thin-film electronic device of the screen type, comprising a plurality of thin-film components on a glass support, comprising steps according to which: a starting support is prepared comprising a rigid solid substrate ( 31) and a glass sheet (32) secured to this rigid solid substrate by reversible direct bonding so as to obtain a removable interface (33), the plurality of thin-layer components (41-49) are made on this sheet. of glass, the glass sheet, on which the plurality of thin-layer components have been made, is separated from the solid rigid substrate by dismounting the interface,
2. Procédé selon la revendication 1 , caractérisé en ce que l'on reporte cette feuille de verre et la pluralité de composants en couches minces sur un support final (60).2. Method according to claim 1, characterized in that this sheet of glass and the plurality of thin-film components are transferred to a final support (60).
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que l'on prépare le support de départ par collage réversible de la feuille de verre (32) sur un substrat rigide de verre (31 ). 3. Method according to claim 1 or claim 2, characterized in that the starting support is prepared by reversibly bonding the glass sheet (32) to a rigid glass substrate (31).
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le collage direct réversible est précédé d'un traitement de préparation adapté à rendre hydrophiles les surfaces à coller.4. Method according to any one of claims 1 to 3, characterized in that the reversible direct bonding is preceded by a preparation treatment adapted to render hydrophilic surfaces to be bonded.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les surfaces à coller ont une rugosité inférieure au nanomètre.5. Method according to any one of claims 1 to 4, characterized in that the surfaces to be bonded have a roughness of less than one nanometer.
6. Procédé selon la revendication 5, caractérisé en ce que la rugosité des surfaces à coller est inférieure à 0.5 nanomètre.6. Method according to claim 5, characterized in that the roughness of the surfaces to be bonded is less than 0.5 nanometer.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'on prépare le support de départ par collage sur le support massif rigide d'une plaque de verre à laquelle on applique ensuite un traitement d'amincissement amenant l'épaisseur de la plaque à une valeur voulue. 7. Method according to any one of claims 1 to 6, characterized in that the starting support is prepared by gluing on the rigid solid support of a glass plate to which a subsequent thinning treatment is then applied. the thickness of the plate to a desired value.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la feuille mince de verre a une épaisseur au plus égale à 100 microns.8. Method according to any one of claims 1 to 7, characterized in that the thin sheet of glass has a thickness at most equal to 100 microns.
9. Procédé selon la revendication 8, caractérisé en ce que la feuille mince de verre a une épaisseur au plus égale à 50 microns.9. The method of claim 8, characterized in that the thin sheet of glass has a thickness at most equal to 50 microns.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que on fabrique la pluralité de composants en couche mince en une étape selon laquelle on fabrique une matrice active de pixels (41-47) sur la feuille mince de verre, et une étape selon laquelle on fabrique une couche d'affichage (48A-51) au-dessus de cette matrice active de pixels, grâce à quoi, après séparation on obtient un écran à matrice active.10. Method according to any one of claims 1 to 9, characterized in that the plurality of thin-layer components is manufactured in a step according to which an active matrix of pixels (41-47) is produced on the thin sheet of glass. and a step in which a display layer (48A-51) is fabricated over this active matrix of pixels, whereby after separation an active matrix screen is obtained.
11. Procédé selon la revendication 10, caractérisé en ce qu'on fabrique la matrice active de pixels en formant des composants en couches minces de type TFT. 11. The method of claim 10, characterized in that the active matrix of pixels is made by forming thin-film components of the TFT type.
12. Procédé selon la revendication 10 ou la revendication 11 , caractérisé en ce qu'on fabrique la couche d'affichage en formant des composants électroluminescents organiques de type OLED.12. The method of claim 10 or claim 11, characterized in that manufactures the display layer forming organic electroluminescent components OLED type.
13. Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que l'on dépose par laminage une couche électrophorétique en sorte d'obtenir un écran électrophorétique.13. Method according to any one of claims 1 to 11, characterized in that is deposited by rolling an electrophoretic layer so as to obtain an electrophoretic screen.
14. Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que l'on réalise un écran LCD.14. Method according to any one of claims 1 to 11, characterized in that an LCD screen is produced.
15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que l'on sépare la feuille de verre vis-à-vis du support massif rigide au moyen par insertion d'une lame.15. A method according to any one of claims 1 to 14, characterized in that the glass sheet is separated from rigid rigid support means by insertion of a blade.
16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que l'on reporte la feuille de verre et les composants qui y sont formés sur une feuille souple en matière plastique.16. A method according to any one of claims 1 to 15, characterized in that the sheet of glass and the components formed thereon is carried on a flexible sheet of plastic material.
17. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que l'on reporte la feuille de verre et les composants qui y sont formés sur une feuille métallique souple. 17. A method according to any one of claims 1 to 15, characterized in that the glass sheet and the components formed thereon are carried on a flexible metal sheet.
18. Dispositif électronique flexible du type écran comportant une pluralité de composants électroniques en couches minces (16-18C) situés sur un support formé d'une feuille de verre (12) dont l'épaisseur, au plus égale à 100 microns, lui confère une souplesse significative. 18. A flexible screen-type electronic device comprising a plurality of thin-layer electronic components (16-18C) located on a support formed of a glass sheet (12) whose thickness, at most equal to 100 microns, confers on it significant flexibility.
19. Dispositif électronique selon la revendication 18, caractérisé en ce que la feuille de verre a une épaisseur au plus égale à 50 microns.19. Electronic device according to claim 18, characterized in that the glass sheet has a thickness at most equal to 50 microns.
20. Dispositif électronique selon l'une quelconque des revendications 18 ou 19, caractérisé en ce que la pluralité de composants comporte une couche formée d'une matrice active de pixels et une couche d'affichage recouvrant la matrice active de pixels.20. An electronic device according to any one of claims 18 or 19, characterized in that the plurality of components comprises a layer formed of an active matrix of pixels and a display layer covering the active matrix of pixels.
21. Dispositif électronique selon l'une quelconque des revendications 18 à 20, caractérisé en ce qu'il est un écran à diodes électroluminescentes organiques.21. Electronic device according to any one of claims 18 to 20, characterized in that it is an organic electroluminescent diode screen.
22. Dispositif selon l'une quelconque des revendications 18 à 20, caractérisé en ce qu'il est un écran électrophorétique.22. Device according to any one of claims 18 to 20, characterized in that it is an electrophoretic screen.
23. Dispositif selon l'une quelconque des revendications 18 à 20, caractérisé en ce qu'il est un écran de type LCD.23. Device according to any one of claims 18 to 20, characterized in that it is an LCD type screen.
24. Dispositif électronique selon l'une quelconque des revendications 18 à 23, caractérisé en ce que lesdits composants électroniques (16-18C) sont conçus en sorte d'émettre de la lumière au travers de ladite feuille de verre.24. Electronic device according to any one of claims 18 to 23, characterized in that said electronic components (16-18C) are designed so as to emit light through said glass sheet.
25. Support de départ adapté à la fabrication d'un dispositif électronique flexible en couches minces du type écran selon le procédé de l'une quelconque des revendications 1 à 17 comportant un substrat massif rigide (31) et une feuille de verre (32) solidarisée à ce substrat massif rigide par un collage direct réversible en sorte d'obtenir un interface démontable.25. Starting support adapted to the manufacture of a flexible thin-film electronic device of the screen type according to the method of any one of claims 1 to 17 comprising a rigid solid substrate (31) and a glass sheet (32) secured to this rigid solid substrate by reversible direct bonding so as to obtain a removable interface.
26. Support selon la revendication 25, caractérisé en ce que le substrat rigide est en verre au moins en surface. 26. Support according to claim 25, characterized in that the rigid substrate is glass at least on the surface.
EP06831137A 2005-11-22 2006-11-20 Process for fabricating a flexible electronic device of the screen type, including a plurality of thin-film components Withdrawn EP1952441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0511798A FR2893750B1 (en) 2005-11-22 2005-11-22 METHOD FOR MANUFACTURING SCREEN TYPE FLEXIBLE ELECTRONIC DEVICE COMPRISING A PLURALITY OF THIN FILM COMPONENTS
PCT/FR2006/002543 WO2007060314A1 (en) 2005-11-22 2006-11-20 Process for fabricating a flexible electronic device of the screen type, including a plurality of thin-film components

Publications (1)

Publication Number Publication Date
EP1952441A1 true EP1952441A1 (en) 2008-08-06

Family

ID=36786003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06831137A Withdrawn EP1952441A1 (en) 2005-11-22 2006-11-20 Process for fabricating a flexible electronic device of the screen type, including a plurality of thin-film components

Country Status (5)

Country Link
US (1) US20090262294A9 (en)
EP (1) EP1952441A1 (en)
JP (1) JP2009516863A (en)
FR (1) FR2893750B1 (en)
WO (1) WO2007060314A1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866200B2 (en) * 2006-10-05 2012-02-01 パナソニック株式会社 Method for manufacturing light emitting device
US7968382B2 (en) * 2007-02-02 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
KR100889625B1 (en) 2007-07-19 2009-03-20 삼성모바일디스플레이주식회사 Joining method and method of fabricating OLED using the same
EP2178133B1 (en) 2008-10-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Flexible Light-Emitting Device, Electronic Device, and Method for Manufacturing Flexible-Light Emitting Device
US8419535B2 (en) * 2009-06-08 2013-04-16 Cfph, Llc Mobile playing card devices
US8613671B2 (en) * 2009-06-08 2013-12-24 Cfph, Llc Data transfer and control among multiple computer devices in a gaming environment
US8545328B2 (en) * 2009-06-08 2013-10-01 Cfph, Llc Portable electronic charge device for card devices
US8784189B2 (en) 2009-06-08 2014-07-22 Cfph, Llc Interprocess communication regarding movement of game devices
US8771078B2 (en) * 2009-06-08 2014-07-08 Cfph, Llc Amusement device including means for processing electronic data in play of a game of chance
US8545327B2 (en) * 2009-06-08 2013-10-01 Cfph, Llc Amusement device including means for processing electronic data in play of a game in which an outcome is dependant upon card values
US8287386B2 (en) * 2009-06-08 2012-10-16 Cfph, Llc Electrical transmission among interconnected gaming systems
JP5594522B2 (en) * 2009-07-03 2014-09-24 日本電気硝子株式会社 Glass film laminate for manufacturing electronic devices
CN101996535A (en) * 2009-08-25 2011-03-30 精工爱普生株式会社 Electro-optical device and electronic apparatus
EP2479151B1 (en) * 2009-09-18 2020-10-28 Nippon Electric Glass Co., Ltd. Method for producing glass film, method for processing glass film, and glass film laminate
JP5645123B2 (en) * 2010-01-12 2014-12-24 日本電気硝子株式会社 Glass film laminate, method for producing the same, and method for producing glass film
JP5748088B2 (en) * 2010-03-25 2015-07-15 日本電気硝子株式会社 Manufacturing method of glass substrate
KR101779586B1 (en) * 2010-09-27 2017-10-10 엘지디스플레이 주식회사 Method of fabricating display device using flexible plastic substrate
US10543662B2 (en) * 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
JP2013216513A (en) * 2012-04-05 2013-10-24 Nippon Electric Glass Co Ltd Method for cutting glass film and glass film lamination body
JP5888158B2 (en) * 2012-04-05 2016-03-16 日本電気硝子株式会社 Cleaving method of glass film
KR20150023312A (en) * 2012-05-29 2015-03-05 아사히 가라스 가부시키가이샤 Glass laminate and method for manufacturing electronic device
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
US10014177B2 (en) * 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
TWI617437B (en) 2012-12-13 2018-03-11 康寧公司 Facilitated processing for controlling bonding between sheet and carrier
US9340443B2 (en) * 2012-12-13 2016-05-17 Corning Incorporated Bulk annealing of glass sheets
DE102012112989A1 (en) * 2012-12-21 2014-06-26 Ev Group E. Thallner Gmbh Method for applying a temporary boundary layer
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
KR102151247B1 (en) * 2013-11-11 2020-09-03 삼성디스플레이 주식회사 Method of manufacturing flexible display panel and method of manufacturing flexible display apparatus
US20150209654A1 (en) 2013-11-12 2015-07-30 Deq Systems Corp. Reconfigurable playing cards and game display devices
US10046542B2 (en) 2014-01-27 2018-08-14 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
EP3129221A1 (en) 2014-04-09 2017-02-15 Corning Incorporated Device modified substrate article and methods for making
DE102015113041A1 (en) * 2014-12-01 2016-06-02 Schott Ag Method and device for processing thin glasses
KR20170107007A (en) * 2015-01-22 2017-09-22 코닝 인코포레이티드 Method for bonding a highly flexible substrate to a carrier and a product formed therefrom
JP2018524201A (en) 2015-05-19 2018-08-30 コーニング インコーポレイテッド Articles and methods for bonding sheets with carriers
JP7106276B2 (en) 2015-06-26 2022-07-26 コーニング インコーポレイテッド Articles and methods with sheets and carriers
FR3053046B1 (en) 2016-06-24 2018-08-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives REVERSIBLE BONDING PROCESS BETWEEN TWO ELEMENTS
TW202216444A (en) 2016-08-30 2022-05-01 美商康寧公司 Siloxane plasma polymers for sheet bonding
TWI821867B (en) 2016-08-31 2023-11-11 美商康寧公司 Articles of controllably bonded sheets and methods for making same
KR102652732B1 (en) 2016-12-15 2024-03-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Adhesive film
US10658592B2 (en) 2017-07-31 2020-05-19 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for fabricating flexible display device, flexible display device, and display apparatus
CN107464893A (en) * 2017-07-31 2017-12-12 武汉华星光电半导体显示技术有限公司 Preparation method, flexible display device and the display of flexible display device
JP7260523B2 (en) 2017-08-18 2023-04-18 コーニング インコーポレイテッド Temporary binding using polycationic polymers
CN111615567B (en) 2017-12-15 2023-04-14 康宁股份有限公司 Method for treating substrate and method for producing article including adhesive sheet
FR3077284B1 (en) 2018-01-30 2020-03-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD OF ENCAPSULATION OF A MICROELECTRONIC DEVICE, BY FINE OR ULTRAFIN SUBSTRATES, EASILY HANDLABLE
TWI800190B (en) * 2021-12-30 2023-04-21 欣興電子股份有限公司 Glass carrier protection structure and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084722A2 (en) * 2001-04-13 2002-10-24 Commissariat A L'energie Atomique Detachable substrate with controlled mechanical hold and method for production thereof
US20050136625A1 (en) * 2002-07-17 2005-06-23 Debora Henseler Ultra-thin glass devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427526B2 (en) * 1999-12-20 2008-09-23 The Penn State Research Foundation Deposited thin films and their use in separation and sacrificial layer applications
FR2823596B1 (en) * 2001-04-13 2004-08-20 Commissariat Energie Atomique SUBSTRATE OR DISMOUNTABLE STRUCTURE AND METHOD OF MAKING SAME
US6934001B2 (en) * 2001-08-13 2005-08-23 Sharp Laboratories Of America, Inc. Structure and method for supporting a flexible substrate
KR100484109B1 (en) * 2002-12-14 2005-04-18 삼성에스디아이 주식회사 Method for making substrate and method for making Organic electro luminescence display device using the same,Organic electro luminescence display device
KR100641793B1 (en) * 2002-12-26 2006-11-02 샤프 가부시키가이샤 Display panel and method for fabricating the same
JP4554180B2 (en) * 2003-09-17 2010-09-29 ソニー株式会社 Method for manufacturing thin film semiconductor device
KR20050096562A (en) * 2004-03-31 2005-10-06 엘지.필립스 엘시디 주식회사 Fabrication method for lcd using of thermal sensitive adhesive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084722A2 (en) * 2001-04-13 2002-10-24 Commissariat A L'energie Atomique Detachable substrate with controlled mechanical hold and method for production thereof
US20050136625A1 (en) * 2002-07-17 2005-06-23 Debora Henseler Ultra-thin glass devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007060314A1 *

Also Published As

Publication number Publication date
US20080309867A1 (en) 2008-12-18
FR2893750A1 (en) 2007-05-25
FR2893750B1 (en) 2008-03-14
US20090262294A9 (en) 2009-10-22
JP2009516863A (en) 2009-04-23
WO2007060314A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
EP1952441A1 (en) Process for fabricating a flexible electronic device of the screen type, including a plurality of thin-film components
EP1292975B1 (en) Method for making substrates and resulting substrates
EP1354346B1 (en) Method for producing a thin film comprising implantation of gaseous species
FR2736205A1 (en) SEMICONDUCTOR SENSOR DEVICE AND ITS FORMING METHOD
EP3151265B1 (en) Method for producing a semiconductor structure comprising a stressed portion
EP1378004A2 (en) Detachable substrate with controlled mechanical hold and method for production thereof
FR2856192A1 (en) PROCESS FOR PRODUCING HETEROGENEOUS STRUCTURE AND STRUCTURE OBTAINED BY SUCH A METHOD
EP1285461A1 (en) Embrittled substrate and method for making same
FR2889887A1 (en) METHOD FOR DEFERING A THIN LAYER ON A SUPPORT
FR2896913A1 (en) PROCESS FOR PRODUCING A QUASI-SUBSTRATE WAFER AND SEMICONDUCTOR BODY PRODUCED BY USING A QUASI-SUBSTRATE WAFER OF THIS TYPE
FR3041812A1 (en) PROCESS FOR FORMING A SEMICONDUCTOR PORTION BY EPITAXIAL GROWTH ON A CONSTRAINED PORTION
FR3055467A1 (en) METHOD FOR PRODUCING A TENSION-CONTAINING LAYER BASED ON GERMANIUM TIN
FR3073083B1 (en) METHOD FOR MANUFACTURING A FILM ON A FLEXIBLE SHEET
WO2020128245A1 (en) Method for manufacturing a device comprising a membrane extending over a cavity
FR3073082B1 (en) METHOD FOR MANUFACTURING A FILM ON A CARRIER HAVING A NON-PLANAR SURFACE
FR3042649B1 (en) METHOD FOR MANUFACTURING A HYBRID STRUCTURE
FR2933235A1 (en) GOOD-WAY SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
FR2866982A1 (en) Fabrication of electronic components using a noble support for front end fabrication and a less costly support, with specific desired physical properties, for back end fabrication
FR3115278A1 (en) Membrane Transfer Process
EP1861873A1 (en) Method of producing a hetero-structure comprising at least one thick layer of semiconductor material
WO2024184336A1 (en) Method for manufacturing a structure comprising a plurality of buried cavities
EP3961684B1 (en) Method for manufacturing a carrier substrate intended for temporary bonding of a substrate
FR3108439A1 (en) MANUFACTURING PROCESS OF A STACKED STRUCTURE
WO2002076881A1 (en) Method for making a structure with micromachined membrane
FR3106695A1 (en) Process for sealing a microelectronic device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080926

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090921