EP1948313A1 - Équipement de thérapie particulaire, protocole de thérapie et procédé de radiation pour un tel équipement de thérapie particulaire - Google Patents

Équipement de thérapie particulaire, protocole de thérapie et procédé de radiation pour un tel équipement de thérapie particulaire

Info

Publication number
EP1948313A1
EP1948313A1 EP06807775A EP06807775A EP1948313A1 EP 1948313 A1 EP1948313 A1 EP 1948313A1 EP 06807775 A EP06807775 A EP 06807775A EP 06807775 A EP06807775 A EP 06807775A EP 1948313 A1 EP1948313 A1 EP 1948313A1
Authority
EP
European Patent Office
Prior art keywords
irradiation
imaging
patient
particle
therapy system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06807775A
Other languages
German (de)
English (en)
Inventor
Sven Oliver GRÖZINGER
Klaus Herrmann
Eike Rietzel
Andres Sommer
Torsten Zeuner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1948313A1 publication Critical patent/EP1948313A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1078Fixed beam systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1063Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam maintaining the position when the patient is moved from an imaging to a therapy system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support

Definitions

  • Particle therapy system treatment plan and irradiation ⁇ method for such a particle therapy system
  • the invention relates to a particle therapy system for irradiating a volume of a patient with high-energy particles to be irradiated, which has a beam exit of a beam delivery and acceleration system from which exits a particle beam to interact with the positioned in an irradiation position patient, the irradiation position is given with respect to an irradiation isocenter of the particle therapy facility;
  • the particle therapy system further comprises an imaging device for verifying the position of the target volume with respect to the particle beam and a patient positioning device, with which the patient can be brought to the irradiation position for irradiation, wherein the imaging device is designed to verify the position of the volume to be irradiated in an imaging position of the patient that is from the
  • Radiation position is arranged spatially distant, and wherein the patient positioning device for automatic position change between imaging and irradiation position is formed. Furthermore, the patient positioning device for automatic position change between imaging and irradiation position is formed. Furthermore, the patient positioning device for automatic position change between imaging and irradiation position is formed. Furthermore, the patient positioning device for automatic position change between imaging and irradiation position is formed. Furthermore, the patient positioning device for automatic position change between imaging and irradiation position is formed. Furthermore, the
  • a particle therapy system is known, for example, from EP 0 986 070.
  • Claim 1 can be found for example in JP 11009708 A, wherein a patient positioning is arranged between a magnetic resonance device and the gantry of a treatment system.
  • a particle therapy system usually has an accelerator unit and a high-energy beam guidance system.
  • the acceleration of the particles e.g. Protons, pions, helium, carbon or oxygen ions, for example, using a synchrotron or cyclotron.
  • the high energy beam transport system directs the particles from the accelerator unit to one or more treatment rooms.
  • a control and safety system of the particle therapy systems ensures that a particle beam characterized by the required parameters is guided into the corresponding treatment room.
  • the parameters are defined in the so-called treatment or treatment plan. This indicates how many particles from which direction and with which energy should hit the patient.
  • the treatment plan is generated by means of imaging techniques.
  • a 3D data set is generated with a computed tomography device.
  • the tumor is localized within this image data set and the required radiation doses, directions of incidence, etc. are determined.
  • the patient During irradiation, it is necessary for the patient to assume the treatment position underlying the treatment plan. This is done, for example, with fixing masks.
  • the position of the Patients checked with imaging agents. In this case, the actual irradiation position is compared with the image data set on which the therapy planning is based.
  • images from different directions are compared with, for example, projections from the CT planning data record before irradiation. These are u.a. Also obtained radiographic images in the beam direction and orthogonal to the beam direction. These shots are taken in the irradiation position near the
  • Beam exit performed that is, there is limited space for imaging.
  • 3D image data sets can be obtained from the image data.
  • an imaging robot that can be freely aligned around a patient to be screened. For fluoroscopy of the patient from different directions, adequate space must be available.
  • Another way of obtaining 3D images is e.g. a C-arm X-ray machine.
  • imaging units for obtaining SD image data sets require sufficient space to be able to illuminate the patient from different directions. That is, imaging unit elements must be capable of being moved around the patient at a sufficient distance for imaging.
  • a usual distance between the isocenter of an irradiation site and the beam exit is about 60 cm.
  • the above-mentioned preferred distance of the irradiation isocenter from the beam exit restricts the imaging of the position verification to correspondingly less space consuming imaging devices.
  • An object of the invention is to enable the planning and execution of a patient's irradiation using a 3D imaging technique. Furthermore, it is an object of the invention to provide a method and a particle therapy system that allow to use also space-consuming imaging techniques in the position verification.
  • the object related to the above-mentioned particle therapy system is achieved by a particle therapy system according to claim 1. Furthermore, the object related to the planning or irradiation is achieved by a treatment plan according to claim 11 or an irradiation method according to claim 15.
  • the imaging device is designed to verify the position of the volume to be irradiated in an imaging position of the patient.
  • This imaging position is located spatially distant from the irradiation position and thus has at least the minimum distance of the imaging device from the beam exit necessary for 3D imaging.
  • the imaging position is arranged between the patient positioning device and the irradiation position, whereby the travel paths from the imaging position to the irradiation position and back are particularly short.
  • the patient positioning device is controlled, for example, by a control system that implements a corresponding therapy plan and if necessary causes the position change between imaging and irradiation position.
  • An advantage of the invention is that an optimal distance to the beam exit can be set for each type of particle and for each irradiation procedure, without having to forego 3D imaging by a correspondingly space-consuming imaging device. This makes it possible on the one hand to perform a very precise irradiation with a particle beam, which due to the proximity to the beam exit diverges less and thus has a small beam diameter, and on the other hand, the position verification with 3D or at least 3D-like data sets can be performed.
  • the particle therapy system of the imaging position is associated with an imaging center, preferably with the
  • Irradiation isocenter is arranged on a beam center axis.
  • the beam center axis is to be understood, for example, as the beam path given by the zero position of a raster scanning device.
  • the distance between the irradiation isocenter and the imaging center is not more than 2 m, preferably less than 1 m and, if possible, less than 0.5 m, so that during irradiation, the position verification, if possible without multiple loss of time by long travel paths, also multiple times can be made. This is particularly possible when the patient's travel is minimized, i.e. when e.g. the imaging center has or nearly the minimum distance to the irradiation iso center.
  • the patient positioning device comprises a robotic patient table.
  • the robotic patient table Preferably, the
  • Patient positioning device controlled by a therapy control unit of the particle therapy system controlled by a therapy control unit of the particle therapy system.
  • This has the advantage that, for example, the Parameters for performing a change of position in the treatment plan can be stored, which is the therapy control unit for controlling the radiation is based.
  • a therapy plan is a data set created, for example, with a computer unit, in which, among other things, patient-related data are stored. These may include, among other things, a medical image of the tumor to be treated, and / or selected areas to be irradiated in the body of a patient and / or organs at risk whose radiation exposure should be kept as low as possible. Furthermore, this includes, for example, parameters which characterize the particle beam and which indicate how many particles from which direction and with which energy should strike the patient or specific regions to be irradiated. The energy of the particles determines the depth of penetration of the particles into the patient, i. the location of the volume element at which the maximum interaction with the tissue occurs in the particle therapy; in other
  • the therapy control unit can determine the control instructions necessary for the control of the irradiation.
  • Such a therapy plan preferably comprises a reference point for positioning the patient in an imaging or irradiation position and information about the relative position of the imaging and irradiation positions relative to one another.
  • the latter can be present, for example, in the form of a displacement vector, which defines a displacement movement of the patient positioning device of the therapy system, with which the patient is displaceable from the imaging position to the irradiation position.
  • the displacement vector is parallel to the beam axis of the particle beam.
  • FIG. 1 shows schematically an embodiment of a
  • 3 and 4 are schematic representations of a
  • Radiation station where the patient is in the imaging position and in the irradiation position.
  • FIG. 1 schematically shows a particle therapy system 1 for irradiating a volume of a patient to be irradiated with high-energy particles.
  • Particle accelerator system 3 imitates a particle beam 7 from a jet outlet 5. If the particle therapy system comprises, for example, a raster scanning device 9, then a scan region of, for example, 40 cm ⁇ 40 cm can be scanned.
  • Isocenter 11 is preferably located centrally to the scan area.
  • the particle beam diverges due to scattering processes in the beam or with irradiated matter, so that the Isocenter as close to the beam exit 5 is arranged to irradiate with the smallest possible beam diameter.
  • a distance of 60 cm is preferably selected. At this distance, the beam diverges to the desired beam size assumed in the therapy plan; For example, the irradiation is carried out with a raster scan method with a beam diameter of about 3 to 5 mm.
  • the particle therapy system 1 has a
  • Imaging device 13 which is preferably also designed to generate a 3D data set of the patient in the region of the volume to be irradiated. By means of the imaging device 13, the position verification of the volume to be irradiated with respect to the particle beam is to be undertaken.
  • the imaging device 13 has an imaging center 15. The distance of the
  • Imaging center 15 from the beam exit 5 is due to the formation, i. the dimensions and structure, the imaging device 13 is greater than the distance of the
  • Irradiation isocenter 11 from the beam exit 5 Preferably, the imaging center 15 is also arranged on the beam center axis.
  • the distance between the irradiation isocenter 11 and the imaging center 15 is kept as small as possible, for example, the distance of the irradiation center 15 from the beam exit 5 is 100 cm. A displacement in or against the beam direction of 40 cm can be carried out quickly and without stressing the patient during an irradiation session.
  • FIG 2 illustrates an irradiation session 21, which is carried out on the basis of a treatment plan 23.
  • the treatment plan 23 has, in addition to the required beam parameters, the particle energy and particle intensity for, for example, different volume elements of the volume to be irradiated. In addition, it contains information about the position (X, Y, Z) of the irradiation isocenter and / or the position (X 1 , Y 1 , Z 1 ) of the imaging center and / or a displacement vector 25.
  • the irradiation session 21 preferably begins with a position verification 27 in which the patient is positioned in the imaging position according to the therapy planning in the irradiation center (X, Y, Z). Subsequently, a displacement 29 is performed according to the displacement vector 25. Now the patient is in the irradiation position. In this position, a first irradiation process 31 is performed.
  • a second displacement 33 can now take place back into the imaging position in order to carry out a further position verification 35.
  • Such positional verifications can occur repeatedly, be it on the basis of suspected changes in position, for safety reasons, or to carry out further irradiation, for example, from another direction of incidence.
  • the preparation of the treatment plan 23 on which the radiation session 21 is based takes place, for example. in several steps.
  • an imaging operation is planned in which an isocenter of the volume to be irradiated is located in the irradiation center of the imaging device. In this position (the imaging position), the imaging for verifying the position of the patient is to be performed according to the irradiation planning. No beam is planned and applied in this imaging position.
  • an irradiation process is planned.
  • an irradiation isocenter is defined and one or more irradiation fields are planned.
  • Planning of the irradiation process includes, for example, that at the beginning of the irradiation procedure, the patient is positioned by means of the patient positioning device such that the irradiation isocenter is located in an isocenter of the irradiation site.
  • the irradiation isocenter is planned so that the patient moves as close as possible to the beam exit without danger, ie, the isocenter of the volume to be irradiated is moved from the imaging center to the irradiation isocenter. In this position (the irradiation position) then the actual irradiation takes place.
  • FIG. 3 shows an example of a treatment room with a jet outlet 41, a patient positioning device 43 and an imaging device 45 with a
  • Imaging volume 47 The patient positioning device 43 has a patient couch 49 on which a patient 51 lies.
  • the volume of the patient 51 to be irradiated lies, for example, within a skull 53 of the patient 51.
  • the imaging volume 47 has an imaging center 55.
  • the imaging center 55 is preferably located on the beam center axis 57 of the particle beam, e.g. at a distance of 100 cm to the beam exit 41.
  • a photograph, preferably a 3D image of the volume to be irradiated is then taken with the aid of the imaging device 45.
  • the selected distance allows the imaging device to be positioned in all positions required for 3D imaging, i.e., e.g. to rotate around the imaging center.
  • the 3D image is compared with images on which the therapy planning was based and, if necessary, the patient 51 is readjusted with the aid of the patient positioning device 43 to the position underlying the therapy planning. He is then in the imaging position defined in the therapy plan.
  • the patient 51 is moved to the irradiation position shown in FIG. postponed.
  • the volume previously to be irradiated around the imaging center 55 is now around the
  • Irradiation isocenter 61 can be irradiated volume-specific, for example, using a raster scan device.

Abstract

L'invention concerne un équipement de thérapie particulaire pour irradier une zone donnée d'un patient à irradier avec des particules haute énergie, présentant : une sortie de rayons d'un système d'acheminement et d'accélération de rayons, dont sort un rayon de particules, pour agir de façon alternée sur le patient adoptant une position de radiation, la position de radiation étant définie dans un protocole de thérapie par rapport à un isocentre de radiation de l'équipement de thérapie particulaire, - un dispositif d'imagerie conçu pour vérifier la position de la zone à irradier par rapport au rayon de particules et - un dispositif de positionnement du patient, permettant au patient d'adopter la position de radiation, le dispositif d'imagerie conçu pour vérifier la position de la zone à irradier étant configuré dans une position d'imagerie du patient à une certaine distance de radiation, et le dispositif de positionnement du patient permettant un changement de position automatique entre la position d'imagerie et la position de radiation.
EP06807775A 2005-11-10 2006-11-08 Équipement de thérapie particulaire, protocole de thérapie et procédé de radiation pour un tel équipement de thérapie particulaire Withdrawn EP1948313A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005053719A DE102005053719B3 (de) 2005-11-10 2005-11-10 Partikeltherapieanlage, Therapieplan und Bestrahlungsverfahren für eine derartige Partikeltherapieanlage
PCT/EP2006/068228 WO2007054511A1 (fr) 2005-11-10 2006-11-08 Équipement de thérapie particulaire, protocole de thérapie et procédé de radiation pour un tel équipement de thérapie particulaire

Publications (1)

Publication Number Publication Date
EP1948313A1 true EP1948313A1 (fr) 2008-07-30

Family

ID=37719180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06807775A Withdrawn EP1948313A1 (fr) 2005-11-10 2006-11-08 Équipement de thérapie particulaire, protocole de thérapie et procédé de radiation pour un tel équipement de thérapie particulaire

Country Status (4)

Country Link
US (1) US7834334B2 (fr)
EP (1) EP1948313A1 (fr)
DE (1) DE102005053719B3 (fr)
WO (1) WO2007054511A1 (fr)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722456B2 (en) * 2003-03-04 2010-05-25 Igt Method and apparatus for associating symbols with a state of a gaming device
KR101081839B1 (ko) 2003-08-12 2011-11-09 로마 린다 유니버시티 메디칼 센터 모듈러 환자 서포트 시스템
EP3557956A1 (fr) 2004-07-21 2019-10-23 Mevion Medical Systems, Inc. Générateur de forme d'onde de fréquence radio programmable pour un synchrocyclotron
CN101361156B (zh) 2005-11-18 2012-12-12 梅维昂医疗系统股份有限公司 用于实施放射治疗的设备
US20100140500A1 (en) * 2007-06-19 2010-06-10 Therapy Positioning Technologies, Llc Apparatus and method for the treatment of breast cancer with particle beams
DE102007042340C5 (de) * 2007-09-06 2011-09-22 Mt Mechatronics Gmbh Partikeltherapie-Anlage mit verfahrbarem C-Bogen
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
WO2009105703A1 (fr) 2008-02-22 2009-08-27 Loma Linda University Medical Center Systèmes et procédés de caractérisation de la distorsion spatiale de systèmes d'imagerie en 3d
US8669533B2 (en) 2009-10-01 2014-03-11 Vladimir Bashkirov Ion induced impact ionization detector and uses thereof
US8644571B1 (en) 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
US10398912B2 (en) * 2012-01-31 2019-09-03 Varian Medical Systems International Ag Method and apparatus pertaining to configuring a radiation-delivery treatment plan
CN104813750B (zh) 2012-09-28 2018-01-12 梅维昂医疗系统股份有限公司 调整主线圈位置的磁垫片
JP6254600B2 (ja) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器
WO2014052721A1 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Système de commande pour un accélérateur de particules
WO2014052718A2 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focalisation d'un faisceau de particules
EP2901823B1 (fr) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Contrôle de l'intensité d'un faisceau de particules
JP6138947B2 (ja) 2012-09-28 2017-05-31 メビオン・メディカル・システムズ・インコーポレーテッド 磁場再生器
WO2014052734A1 (fr) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Commande de thérapie par particules
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
EP3581242B1 (fr) 2012-09-28 2022-04-06 Mevion Medical Systems, Inc. Réglage de l'énergie d'un faisceau de particules
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN105764567B (zh) 2013-09-27 2019-08-09 梅维昂医疗系统股份有限公司 粒子束扫描
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9884206B2 (en) 2015-07-23 2018-02-06 Loma Linda University Medical Center Systems and methods for intensity modulated radiation therapy
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
CN109803723B (zh) 2016-07-08 2021-05-14 迈胜医疗设备有限公司 一种粒子疗法系统
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
JP6940676B2 (ja) 2017-06-30 2021-09-29 メビオン・メディカル・システムズ・インコーポレーテッド リニアモーターを使用して制御される構成可能コリメータ
CN113811355A (zh) 2019-03-08 2021-12-17 美国迈胜医疗系统有限公司 穿过柱体输送辐射并为其产生治疗计划
CN113499548A (zh) * 2021-07-07 2021-10-15 中以康联国际医疗科技有限公司 患者摆位方法及摆位装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117829A (en) 1989-03-31 1992-06-02 Loma Linda University Medical Center Patient alignment system and procedure for radiation treatment
JPH119708A (ja) * 1997-06-25 1999-01-19 Hitachi Medical Corp 放射線治療システム
BE1012534A3 (fr) * 1997-08-04 2000-12-05 Sumitomo Heavy Industries Systeme de lit pour therapie par irradiation.
ATE472807T1 (de) * 1998-09-11 2010-07-15 Gsi Helmholtzzentrum Schwerionenforschung Gmbh Ionenstrahl-therapieanlage und verfahren zum betrieb der anlage
AU2001251364B2 (en) 2000-04-14 2005-06-16 General Mills Marketing, Inc. Freezer-to-oven, laminated, unproofed dough and products resulting therefrom
DE10025913A1 (de) * 2000-05-26 2001-12-06 Schwerionenforsch Gmbh Vorrichtung zum Plazieren eines Tumor-Patienten mit einem Tumor im Kopf-Halsbereich in einem Schwerionentherapieraum
AU2002332776A1 (en) * 2001-08-30 2003-03-18 Tolemac, Llc Antiprotons for imaging and termination of undesirable cells
JP4272157B2 (ja) * 2002-09-18 2009-06-03 パウル・シェラー・インスティトゥート 陽子療法を実施するための装置
EP1584353A1 (fr) * 2004-04-05 2005-10-12 Paul Scherrer Institut Systeme pour therapie protonique
DE102004062473B4 (de) * 2004-09-30 2006-11-30 Siemens Ag Medizinische Strahlentherapieanordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007054511A1 *

Also Published As

Publication number Publication date
DE102005053719B3 (de) 2007-07-05
WO2007054511A1 (fr) 2007-05-18
US20080237495A1 (en) 2008-10-02
US7834334B2 (en) 2010-11-16

Similar Documents

Publication Publication Date Title
DE102005053719B3 (de) Partikeltherapieanlage, Therapieplan und Bestrahlungsverfahren für eine derartige Partikeltherapieanlage
DE102006044139B4 (de) Strahlentherapieanlage und Verfahren zur Anpassung eines Bestrahlungsfeldes für einen Bestrahlungsvorgang eines zu bestrahlenden Zielvolumens eines Patienten
EP1785161A1 (fr) Espace de traitement d'un système de thérapie par particules, plan de traitement, méthode de création d'un plan et méthode de traitement par irradiation
DE102005041122B3 (de) Gantry-System für eine Partikeltherapieanlage, Partikeltherapieanlage und Bestrahlungsverfahren für eine Partikeltherapieanlage mit einem derartigen Gantry-System
EP1758649B1 (fr) Ensemble medical de radiotherapie
EP2352556B1 (fr) Irradiation d'au moins deux volumes cibles
EP2307096B1 (fr) Dispositif et procédé pour évaluer une répartition d'activité et installation d'irradiation
DE102005034912B4 (de) Partikeltherapieanlage, Verfahren zum Bestimmen von Steuerparametern einer derartigen Therapieanlage, Strahlentherapieplanungsvorrichtung und Bestrahlungsverfahren
DE102007054324B4 (de) Einrichtung zur Strahlentherapie unter Bildüberwachung
DE102009055902B4 (de) Verfahren und Vorrichtung zur Steuerung der Dosisapplikation bei der Bestrahlung
EP2352555B1 (fr) Dispositif et procédé pour déterminer des paramètres de commande pour une installation de radiothérapie
DE102006046193B3 (de) Partikeltherapieanlage für die Partikeltherapie eines einer Bewegung ausgesetzten Zielvolumens
EP2344250B1 (fr) Irradiation d'un volume cible en prenant en considération un volume à préserver
WO2001089625A2 (fr) Dispositif de mise en place d'un patient presentant une tumeur dans la region de la tete et du cou dans une chambre de traitement a ions lourds
EP2273856A2 (fr) Ensemble accélérateur et procédé de réglage d'une énergie des particules
EP2110161A1 (fr) Dispositif d'exécution d'un rayonnement et procédé de surveillance de celui-ci
EP1795230B1 (fr) Dispositif médicale de rayonnement
DE102011056339B3 (de) Erstellung eines Bestrahlungsplans bei bewegtem Zielvolumen ohne Bewegungskompensation
EP1479411B1 (fr) Dispostif d'irradiation de tumeur controlée
EP2366428B1 (fr) Procédé d'enregistrement d'un premier ensemble de données représentatives vers un second ensemble de données représentatives
DE102011081422B4 (de) Bildgestützte Strahlentherapie
DE102011056882B4 (de) Ermittlung eines Dosiseintrags in ein zu bestrahlendes Objekt
EP2453986B1 (fr) Procédé d'irradiation d'un volume cible en mouvement et installation d'irradiation
DE102011085946B4 (de) Bildgebungsverfahren bei einem Strahlentherapiegerät und Strahlentherapiegerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100505

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120601