EP1942264B1 - Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes - Google Patents

Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes Download PDF

Info

Publication number
EP1942264B1
EP1942264B1 EP07100025A EP07100025A EP1942264B1 EP 1942264 B1 EP1942264 B1 EP 1942264B1 EP 07100025 A EP07100025 A EP 07100025A EP 07100025 A EP07100025 A EP 07100025A EP 1942264 B1 EP1942264 B1 EP 1942264B1
Authority
EP
European Patent Office
Prior art keywords
cylinder head
shaft
cylinder
gas exchange
exchange channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07100025A
Other languages
English (en)
French (fr)
Other versions
EP1942264A1 (de
Inventor
Franz J. Brinkmann
Achim Mennicken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP07100025A priority Critical patent/EP1942264B1/de
Priority to DE502007005404T priority patent/DE502007005404D1/de
Priority to CN2007103073979A priority patent/CN101215998B/zh
Priority to US11/968,227 priority patent/US7726274B2/en
Publication of EP1942264A1 publication Critical patent/EP1942264A1/de
Application granted granted Critical
Publication of EP1942264B1 publication Critical patent/EP1942264B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/045Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0021Construction
    • F02F2007/0041Fixing Bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/006Camshaft or pushrod housings
    • F02F2007/0063Head bolts; Arrangements of cylinder head bolts

Definitions

  • the invention relates to a cylinder head for an at least one cylinder having internal combustion engine having at least two charge exchange channels, namely at least one inlet channel for supplying the fresh air or the fresh mixture through at least one inlet opening in the at least one cylinder and at least one outlet channel for discharging the combustion gases through at least one outlet opening from the at least one cylinder.
  • the invention relates to a method for forming such a cylinder head.
  • Internal combustion engines usually have a cylinder head and a cylinder block.
  • the cylinder block has a corresponding number of cylinder bores for receiving the pistons or the cylinder tubes.
  • the piston serves to transfer the gas forces generated by the combustion to the crankshaft.
  • the piston is pivotally connected by means of a connecting rod with the crankshaft.
  • the cylinder head is usually used for receiving the combustion chamber side of the necessary for the change of charge control organs.
  • four-stroke engines use almost exclusively globe valves, which perform an oscillating lifting movement during operation of the internal combustion engine and in this way release and close the inlet and outlet openings.
  • At least portions of the at least one inlet channel and the at least one outlet channel are integrated in the cylinder head.
  • a valve actuator is required, which is also integrated in the cylinder head according to the prior art or is to be arranged in the vicinity of the valves and thus to the cylinder head.
  • valve spring means To actuate a valve on the one hand a valve spring means is provided and on the other hand a camshaft used to open the valve against the biasing force of the valve spring means.
  • overhead camshafts are used to operate overhead valves.
  • An advantage of using overhead camshafts that in particular by the elimination of the bumper, the moving mass of the valve gear is reduced and the valve gear rigid d. H. less elastic.
  • An overhead camshaft must also be accommodated in the cylinder head, which is usually done by arranging bearings or bearing blocks. In general, a camshaft is provided in each case for the outlet side and the inlet side.
  • the required elements or components are not to be arranged in any way in or on the cylinder head, but usually a deliberately chosen arrangement and design of the inlet and outlet ports, but in particular the charge exchange channels is sought.
  • the geometry of the charge exchange channels has a significant influence on the charge movement and thus on the mixture formation, especially in direct-injection internal combustion engines.
  • a tumble is an air vortex about an imaginary axis which is parallel to the longitudinal axis of the crankshaft, as opposed to a swirl which is an air vortex whose axis is parallel to the piston or cylinder longitudinal axis.
  • spark-ignited internal combustion engines is also the required ignition device and beyond - especially in direct-injection internal combustion engines - to arrange the injector in the cylinder head.
  • the required space must be provided. Rather, a particular arrangement of the ignition device or the injection device in the combustion chamber and each other is often sought - to optimize the mixture formation and the combustion process.
  • an injection jet directed against the tumble can be effective in the event that the widest possible distribution of the fuel in the entire combustion chamber is sought. This requires a corresponding positioning of the injection nozzle.
  • a plurality of coolant channels are generally provided in the cylinder head, which guide the coolant through the cylinder head.
  • the arrangement of coolant channels leads to a very complex structure of Zylinderkoptkonstrutation.
  • the mechanically and thermally highly stressed cylinder head is weakened by the introduction of the coolant channels on the one hand in its strength.
  • the heat must not be directed to the cylinder head surface as in the air cooling, to be dissipated. It is endeavored to bring the coolant channels as close as possible to the thermally highly stressed areas of the cylinder head, i. near the combustion chamber.
  • liquid cooling Due to the much higher heat capacity of liquids compared to air can be dissipated with a liquid cooling much larger amounts of heat than is possible with air cooling. Taking into account that there is a trend towards small, supercharged engines, it can be seen that in practice liquid cooling is of much greater relevance than air cooling because the thermal load is greater with highly supercharged engines compared to conventional internal combustion engines.
  • bores are provided both in the cylinder head and in the cylinder block, wherein the cylinder block and the cylinder head are arranged for mounting in such a way to each other that the holes are aligned.
  • a seal is usually provided between the block and the head in order to achieve a secure seal of the combustion chambers.
  • the cylinder head is connected to the cylinder block by means of threaded bolts, which are inserted and screwed into the bores of the cylinder head and the cylinder block.
  • threaded bolts which are inserted and screwed into the bores of the cylinder head and the cylinder block.
  • four bores or bolts are regularly arranged around a cylinder bore, with the bores lying between two cylinder bores, ie. the internal bores are assigned to two cylinder bores.
  • a cylinder head is generally a cast part
  • casting-technical aspects must also be taken into account in the design and manufacture.
  • the wall thickness of the individual walls formed in the cylinder head should vary only slightly and not abruptly. Sharp-edged transitions must be avoided and a minimum wall thickness must be maintained.
  • the development towards more compact cylinder heads is also accelerated or driven by the fact that internal combustion engines are increasingly equipped with a charge.
  • the charge is a suitable means to increase the capacity of an internal combustion engine with unchanged displacement or to reduce the displacement at the same power.
  • the latter is also referred to as downsizing.
  • the load spectrum can be shifted to higher loads, where the specific fuel consumption is lower.
  • the reduction of the displacement, i. the downsizing of the internal combustion engine inevitably leads to more compact internal combustion engines or compact i. relatively small-volume cylinder heads.
  • German Offenlegungsschrift DE 37 31 211 A1 describes, for example, a fuel injection valve, which is formed integrally with an ignition device, ie injection device and ignition device form a coherent compact component.
  • a combined ignition / injection device of this type on the one hand forms a very expensive component.
  • a close arrangement of ignition device and injection device is not sought or preferred in all applications.
  • the igniter and the injector are spaced from each other in the cylinder head.
  • German Offenlegungsschrift DE 197 53 965 A1 describes an internal combustion engine in which the injection valve - to reduce the required installation space - extends substantially within the intake passage and is arranged adjacent to the inlet valve. This should also be advantageous because the injection valve is cooled due to the arrangement in the channel by the intake fresh air.
  • a cylinder head according to the preamble of claim 1 d. H. provide the generic type, which takes into account the very limited space in the cylinder head.
  • Another object of the present invention is to provide a method for forming such a cylinder head.
  • the first sub-task is solved by a cylinder head for an at least one cylinder having internal combustion engine with at least two charge exchange channels, namely at least one inlet channel for supplying the fresh air or the fresh mixture through at least one inlet opening in the at least one cylinder and at least one outlet channel for discharging the combustion gases at least one outlet opening of the at least one cylinder, which is characterized in that at least one shaft passes through at least one charge exchange channel, in the one Ignition device, an injection device or a cylinder head fixing means for mounting purposes is insertable.
  • a shaft is provided in at least one charge exchange channel.
  • the flow cross section of this channel is reduced by the arrangement of the at least one shaft in the inlet and / or outlet and the flow in the channel changed.
  • the charge change is not necessarily influenced uncontrollably, such as by - in the DE 197 53 965 A1 described - direct arrangement of an injection valve in the inlet channel. Rather, the shaft can be specifically designed in such a way that deliberately creates a twist, a tumble or another predetermined or suitable flow, that is generated.
  • the shaft serves to receive an ignition device, an injection device or a cylinder head fixing means and simultaneously isolates the respective component from the flow in the charge exchange channel d. H. with respect to the exhaust gas flow in the outlet channel or with respect to the fresh air or fresh mixture flow in the inlet channel.
  • a shaft also simplifies the assembly and disassembly of the corresponding introduced into the shaft component.
  • a sealing of the introduced into the charge exchange channel component is not required.
  • the at least one shaft must be sealed from the environment in the way that no leakage current escapes from the charge exchange channel. But this seal is much easier to implement, as if the component is introduced directly into the charge exchange channel.
  • the injection device introduced into the shaft can be an outwardly opening injection nozzle, for example an injection nozzle operating according to the piezoelectric principle, which opens its nozzle tip in the context of the injection directed outward into the combustion chamber.
  • an injection device but can also serve an inwardly opening multi-hole injection nozzle, which offers cost advantages over the aforementioned piezoelectrically controlled injection nozzle.
  • a spark plug may be used as an ignition device and a threaded bolt as a cylinder head fastener.
  • Embodiments of the cylinder head in which the at least one shaft is not completely enclosed by the associated charge exchange channel, but only partially extends into the charge exchange channel are to be regarded as cylinder heads according to the invention, as long as the shaft passes through the charge exchange channel.
  • the object underlying the invention is achieved, namely to provide a cylinder head, which takes into account the very limited space in the cylinder head.
  • a shaft arranged in a charge exchange channel can extend beyond the charge exchange channel in the cylinder head and if necessary also penetrate or cut through coolant channels and / or the like.
  • Embodiments of the cylinder head are advantageous in which, in the mounted state, the ignition device, injection device or cylinder head fastening means introduced into the at least one shaft is arranged at least partially outside the at least one charge exchange channel.
  • This embodiment takes into account the fact that the introduced into the shaft ignition device or injector must extend into the combustion chamber of the cylinder, so that the fuel injected by injection directly into the combustion chamber and ignited with the ignition device, the fuel-air mixture. On the other hand remains a residual wall thickness between cylinder or combustion chamber and channel to a Form charge exchange channel and give the cylinder head the necessary strength. Consequently, the component introduced into the shaft is preferably at least partially positioned outside the at least one charge exchange channel in the mounted state.
  • a cylinder head attachment means - for example, a threaded bolt - is inherently at least partially outside of the cylinder head and thus arranged outside of the charge exchange channel, since the bolt extends into the cylinder block to connect the cylinder head with the cylinder block.
  • Embodiments of the cylinder head in which the cylinder head is a casting are advantageous.
  • Embodiments of the cylinder head in which the at least one shaft is sealed in a gas-tight manner relative to the at least one charge exchange channel in order to avoid a leakage current emerging from the at least one charge exchange channel are advantageous.
  • Embodiments of the cylinder head in which the at least one shaft is formed in one piece with the at least one charge exchange channel are advantageous.
  • the at least one charge exchange channel and the shaft passing through this channel form a structural unit d.
  • the one-piece d. H. monolithic construction makes a seal dispensable, because in principle no joints between channel and shaft arise through the fresh mixture or exhaust gas could escape from the charge exchange channel. In particular, the latter is a significant advantage of the integral formation of channel and shaft.
  • a sleeve is arranged, which forms the at least one shaft.
  • shaft and charge exchange channel separate components ie the system of charge exchange channel and shaft is modular.
  • the cylinder head comprises at least one charge exchange channel into which a sleeve is introduced in the context of assembly or production, wherein the sleeve can be connected to the channel cohesively, positively or non-positively, which is not only the attachment of the sleeve in the channel, but also the seal the channel opposite the shaft and the surrounding area.
  • Embodiments of the cylinder head in which the sleeve connects two opposing openings provided in the at least one charge exchange channel are advantageous.
  • the shaft is completely integrated in the charge exchange channel, resulting in a maximum space savings in the cylinder head.
  • the at least one shaft is integrally formed with the at least one charge exchange channel, which can be done, for example, that the cylinder head, starting from a cast cylinder head blank into which a shaft has already been integrated, is manufactured by reworking.
  • a sleeve is used to form the at least one shaft and in which at least one charge exchange channel is arranged.
  • the shaft is formed by introducing a sleeve subsequently in the charge exchange channel.
  • process variants are advantageous in which two opposite breakthroughs are provided in the at least one charge exchange channel, which openings are connected to one another using the sleeve.
  • At least one shaft is sealed off from the at least one charge exchange channel.
  • a seal of the shaft with respect to other functional spaces such as a coolant channel or an oil reservoir, take place.
  • a seal can also be made by means of O-ring or the like.
  • FIG. 1 schematically shows a part of a cylinder head 1 in cross section along the cylinder longitudinal axis. 7
  • the cylinder 6 is formed by the cylinder head 1 and the cylinder block 2, wherein the combustion chamber 11 of the cylinder 6 is limited by a provided in the cylinder block 2 cylinder bore 13 and arranged in the cylinder head 1 combustion chamber roof fourteenth
  • a spark plug 10 serving as an ignition device 9 is arranged in the center of the combustion chamber roof 14 on the combustion chamber side.
  • two outlet openings 8 and two serving as outlet channels 4 charge exchange channels 3 are provided, wherein in FIG. 1 in each case only one outlet opening 8 and an outlet channel 4 is shown or visible.
  • the exhaust port 8 and the exhaust port 4 is closed to the combustion chamber 11 by means of a valve 12, wherein the valve 12 is a suspended lift valve 12 which is displaced or deflected for expelling the combustion gases into the combustion chamber 11.
  • bores 15, 16 are provided, wherein the cylinder block 1 and the cylinder head 2 for mounting - as in FIG. 1 shown - are arranged in the manner that the holes 15, 16 are aligned.
  • a shaft 5 which passes through the outlet channel 4 and is aligned with the bores 15, 16 of the cylinder head 1 and the cylinder block 2 and in which serving as a cylinder head fastener threaded bolt for mounting purposes can be inserted ,

Description

  • Die Erfindung betrifft einen Zylinderkopf für eine mindestens einen Zylinder aufweisende Brennkraftmaschine mit mindestens zwei Ladungswechselkanälen, nämlich mindestens einem Einlaßkanal zum Zuführen der Frischluft bzw. des Frischgemisches durch mindestens eine Einlaßöffnung in den mindestens einen Zylinder und mindestens einem Auslaßkanal zum Abführen der Verbrennungsgase durch mindestens eine Auslaßöffnung aus dem mindestens einen Zylinder.
  • Des weiteren betrifft die Erfindung ein Verfahren zur Ausbildung eines derartigen Zylinderkopfes.
  • Brennkraftmaschinen verfügen in der Regel über einen Zylinderkopf und einen Zylinderblock.
  • Der Zylinderblock weist zur Aufnahme der Kolben bzw. der Zylinderrohre eine entsprechende Anzahl an Zylinderbohrungen auf. Der Kolben dient der Übertragung der durch die Verbrennung generierten Gaskräfte auf die Kurbelwelle. Hierzu ist der Kolben mittels einer Pleuelstange gelenkig mit der Kurbelwelle verbunden.
  • Der Zylinderkopf dient üblicherweise zur brennraumseitigen Aufnahme der für den Ladungswechsel erforderlichen Steuerorgane. Zur Steuerung des Ladungswechsels werden bei Viertaktmotoren nahezu ausschließlich Hubventile verwendet, die während des Betriebs der Brennkraftmaschine eine oszillierende Hubbewegung ausführen und auf diese Weise die Ein- und Auslaßöffnungen freigeben und verschließen. Dabei sind zumindest Teilstücke des mindestens einen Einlaßkanals bzw. des mindestens einen Auslaßkanals im Zylinderkopf integriert. Zur Betätigung der Ventile ist eine Ventilbetätigungseinrichtung erforderlich, welche nach dem Stand der Technik ebenfalls im Zylinderkopf integriert ist bzw. in der Nachbarschaft zu den Ventilen und damit zum Zylinderkopf anzuordnen ist.
  • Zur Betätigung eines Ventils wird einerseits ein Ventilfedermittel vorgesehen und andererseits eine Nockenwelle eingesetzt, um das Ventil entgegen der Vorspannkraft des Ventilfedermittels zu öffnen.
  • Häufig werden obenliegende Nockenwellen zur Betätigung hängender Ventile verwendet. Vorteilhaft bei der Verwendung von obenliegenden Nockenwellen ist, daß insbesondere durch den Wegfall der Stoßstange die bewegte Masse des Ventiltriebes reduziert wird und der Ventiltrieb starrer d. h. weniger elastisch ist. Eine obenliegende Nockenwelle muß ebenfalls im Zylinderkopf aufgenommen werden, was in der Regel durch das Anordnen von Lagern bzw. Lagerblöcken erfolgt. In der Regel wird für die Auslaßseite und die Einlaßseite jeweils eine Nockenwelle vorgesehen.
  • Die voranstehenden Ausführungen machen deutlich, daß die Auslegung eines Zylinderkopfes maßgeblich durch die für den Ladungswechsel erforderlichen Elemente bzw. Bauteile mitbestimmt und beeinflußt wird, wobei sowohl Ladungswechselkanäle zum Zuführen der Frischluft bzw. des Frischgemisches und zum Abführen der Verbrennungsgase vorgesehen werden müssen, als auch ein Ventiltrieb zur Steuerung des Ladungswechsels, welcher die Ventile und die Ventilbetätigungseinrichtung umfaßt, erforderlich ist.
  • Zu berücksichtigen ist dabei insbesondere, daß die erforderlichen Elemente bzw. Bauteile nicht in beliebiger Weise im bzw. am Zylinderkopf anzuordnen sind, sondern in der Regel eine bewußt gewählte Anordnung und Ausbildung der Einlaß- und Auslaßöffnungen, insbesondere aber der Ladungswechselkanäle angestrebt wird. Die Geometrie der Ladungswechselkanäle hat maßgeblichen Einfluß auf die Ladungsbewegung und damit auf die Gemischbildung, insbesondere bei direkteinspritzenden Brennkraftmaschinen.
  • Beispielsweise kann die Erzeugung eines sogenannten Tumbles oder einer Drallströmung die Gemischbildung beschleunigen und unterstützen. Ein Tumble ist ein Luftwirbel um eine gedachte Achse, welche parallel zur Längsachse der Kurbelwelle verläuft, im Gegensatz zu einem Drall, der einen Luftwirbel darstellt, dessen Achse parallel zur Kolben- bzw. Zylinderlängsachse verläuft.
  • Die Problematik hinsichtlich des sehr begrenzten Bauraums im und am Zylinderkopf wird dadurch verstärkt, daß moderne Konzepte für Brennkraftmaschinen vier oder fünf Ventile je Zylinder vorsehen, was eine entsprechende Anzahl an Zylinderöffnungen und Ladungswechselkanälen erfordert bzw. bedingt.
  • Bei fremdgezündeten Brennkraftmaschinen ist zudem die erforderliche Zündvorrichtung und darüber hinaus - insbesondere bei direkteinspritzenden Brennkraftmaschinen - die Einspritzeinrichtung im Zylinderkopf anzuordnen. Hierzu muß nicht nur der erforderliche Bauraum bereitgestellt werden. Vielmehr wird häufig - zur Optimierung der Gemischbildung und des Verbrennungsprozesses - eine bestimmte Anordnung der Zündvorrichtung bzw. der Einspritzeinrichtung im Brennraum und zueinander angestrebt.
  • So kann bei direkteinspritzenden Brennkraftmaschinen ein gegen den Tumble gerichteter Einspritzstrahl zielführend sein, falls eine möglichst weiträumige Verteilung des Kraftstoffes im gesamten Brennraum angestrebt wird. Dies setzt eine entsprechende Positionierung der Einspritzdüse voraus.
  • Verfügt die Brennkraftmaschine über eine Flüssigkeitskühlung, werden in der Regel mehrere Kühlmittelkanäle im Zylinderkopf vorgesehen, die das Kühlmittel durch den Zylinderkopf hindurchführen. Die Anordnung von Kühlmittelkanälen führt zu einer überaus komplexen Struktur der Zylinderkoptkonstruktion. Dabei wird der mechanisch und thermisch hochbelastete Zylinderkopf durch das Einbringen der Kühlmittelkanäle einerseits in seiner Festigkeit geschwächt. Andererseits muß die Wärme nicht wie bei der Luftkühlung erst an die Zylinderkopfoberfläche geleitet werden, um abgeführt zu werden. Man ist dabei bestrebt, die Kühlmittelkanäle möglichst nahe an die thermisch hochbelasteten Bereiche des Zylinderkopfes heranzuführen d.h. in die Nähe des Brennraums.
  • Aufgrund der wesentlich höheren Wärmekapazität von Flüssigkeiten gegenüber Luft können mit einer Flüssigkeitskühlung wesentlich größere Wärmemengen abgeführt werden als dies mit einer Luftkühlung möglich ist. Wird berücksichtigt, daß sich eine Entwicklung hin zu kleinen, hochaufgeladenen Motoren vollzieht, ist ersichtlich, daß in der Praxis die Flüssigkeitskühlung von wesentlich höherer Relevanz ist als die Luftkühlung, denn die thermische Belastung ist bei hochaufgeladenen Motoren im Vergleich zu herkömmlichen Brennkraftmaschinen größer.
  • Die Auslegung der Flüssigkeitskühlung einer Brennkraftmaschine bzw. des Kühlmittelmantels im Inneren eines Zylinderkopfes als ein System einer Vielzahl zusammenhängender Kanäle muß dabei auch unter Berücksichtigung strömungstechnischer Aspekte erfolgen. So muß darauf geachtet werden, daß eine Blasenbildung durch Verdampfung von Kühlmittel vermieden wird und eine Entlüftung der Kühlkanäle im eingebauten Zustand der Brennkraftmaschine gewährleistet ist.
  • Zum Verbinden des Zylinderkopfes mit dem Zylinderblock werden sowohl im Zylinderkopf als auch im Zylinderblock Bohrungen vorgesehen, wobei der Zylinderblock und der Zylinderkopf zur Montage in der Weise zueinander angeordnet werden, daß die Bohrungen miteinander fluchten. Zwischen dem Block und dem Kopf wird in der Regel eine Dichtung vorgesehen, um eine sichere Abdichtung der Brennräume zu erzielen.
  • Der Zylinderkopf wird mit dem Zylinderblock mittels Gewindebolzen verbunden, die in die Bohrungen des Zylinderkopfes und des Zylinderblocks eingeführt und verschraubt werden. Nach dem Stand der Technik sind jeweils vier Bohrungen bzw. Bolzen regelmäßig um eine Zylinderbohrung herum angeordnet, wobei die zwischen zwei Zylinderbohrungen liegenden Bohrungen d.h. die innenliegenden Bohrungen jeweils zwei Zylinderbohrungen zuzuordnen sind.
  • Die einzelnen oben dargelegten Anforderungen, welche sich aus den jeweiligen Bauteilen und ihrer Funktion ableiten, stehen in Wechselwirkung zueinander und können nicht isoliert voneinander betrachtet werden, so daß beispielsweise eine Optimierung der Ladungswechselkanäle in Bezug auf die Gemischbildung und den Ladungswechsel gegebenenfalls nicht vorgenommen werden kann, da dies die Anordnung der Zylinderkopfbohrungen bzw. -bolzen nicht zuläßt. Des weiteren muß sichergestellt werden, daß insbesondere die Ventile, die Zündvorrichtung und die Einspritzvorrichtung zu Montagezwecken zugänglich sind.
  • Da es sich nach dem Stand der Technik bei einem Zylinderkopf in der Regel um ein Gussteil handelt, müssen darüber hinaus bei der Auslegung und Fertigung gußtechnische Aspekte mitberücksichtigt werden. Beispielsweise sollte die Wandstärke der einzelnen im Zylinderkopf ausgebildeten Wände nur geringfügig und dabei nicht sprunghaft variieren. Scharfkantige Übergänge sind zu vermeiden und eine Mindestwandstärke einzuhalten.
  • Bei der Entwicklung von Brennkraftmaschinen ist man darüber hinaus zunehmend bemüht, eine möglichst kompakte Bauweise zu realisieren, weshalb häufig eine Verringerung des Abstandes von benachbarten Zylinderbohrungen d. h. der entsprechenden Zylinderlängsachsen angestrebt wird. Diese Entwicklung verschärft zusätzlich die Problematik des sehr begrenzten Bauraums bzw. Platzangebots im und am Zylinderkopf.
  • Die Entwicklung hin zu kompakteren Zylinderköpfen wird auch dadurch forciert bzw. vorangetrieben, daß Brennkraftmaschinen zunehmend mit einer Aufladung ausgestattet werden. Die Aufladung ist ein geeignetes Mittel, bei unverändertem Hubraum die Leistung einer Brennkraftmaschine zu steigern oder bei gleicher Leistung den Hubraum zu reduzieren. Letzteres wird auch als Downsizing bezeichnet. Bei gleichen Fahrzeugrandbedingungen läßt sich das Lastkollektiv zu höheren Lasten hin verschieben, wo der spezifische Kraftstoffverbrauch niedriger ist. Die Reduzierung des Hubraums d.h. das Downsizing der Brennkraftmaschine führt zwangsläufig zu kompakteren Brennkraftmaschinen bzw. kompakten d.h. vergleichsweise kleinvolumigen Zylinderköpfen.
  • Um dem sehr begrenzten Platzangebot im Zylinderkopf Rechnung zu tragen, wurden bereits verschiedene Lösungskonzepte vorgestellt.
  • Gemäß einem eher allgemeinen Lösungsansatz wird es als zielführend angesehen, verschiedene im Zylinderkopf zu integrierende Bauteile als eine bauliche Einheit auszuführen. Die deutsche Offenlegungsschrift DE 37 31 211 A1 beschreibt beispielsweise ein Kraftstoffeinspritzventil, welches integral mit einer Zündvorrichtung ausgebildet ist, d.h. Einspritzeinrichtung und Zündeinrichtung bilden ein zusammenhängendes kompaktes Bauteil. Dadurch wird die Anzahl an Bauteilen, die im Zylinderkopf anzuordnen sind, reduziert und folglich der von diesen Bauteilen beanspruchte Bauraum vermindert.
  • Eine kombinierte Zünd-/Einspritzeinrichtung dieser Art bildet aber zum einen ein sehr kostenintensives Bauteil. Zum anderen wird auch nicht bei sämtlichen Anwendungsfällen eine derart nahe Anordnung von Zündvorrichtung und Einspritzeinrichtung angestrebt bzw. bevorzugt. Gegebenenfalls sollen die Zündvorrichtung und die Einspritzeinrichtung beabstandet zueinander im Zylinderkopf angeordnet werden.
  • Die deutsche Offenlegungsschrift DE 197 53 965 A1 beschreibt eine Brennkraftmaschine, bei der sich das Einspritzventil - zur Reduzierung des erforderlichen Bauraums - im wesentlichen innerhalb des Einlaßkanals erstreckt und dabei benachbart zum Einlaßventil angeordnet ist. Vorteilhaft soll dies auch deshalb sein, weil das Einspritzventil infolge der Anordnung im Kanal durch die angesaugte Frischluft gekühlt wird.
  • Dieser Vorteil entfällt zumindest bei einer Rückführung heißer Abgase in den Einlaßbereich der Brennkraftmaschine bei aktivierter Abgasrückführung. Sollte es erforderlich werden, das Einspritzventil in der Nähe des Auslasses anzuordnen, bietet die DE 197 53 965 A1 keinen Lösungsansatz, da die vorgeschlagene Integration des Einspritzventils - zu Recht - auf den Einlaßkanal beschränkt ist und die analoge Anordnung des Einspritzventils im Auslaßkanal aufgrund der thermischen Belastung nicht möglich ist.
  • Durch die direkte Anordnung des Einspritzventils im Einlaßkanal wird der Ladungswechsel zudem unkontrolliert beeinflußt. Das Einbringen des Ventils im Kanal erfordert auch eine Abdichtung des Ventils gegenüber dem Kanal, um ein Austreten von Frischluft bzw. Frischgemisch aus dem Einlaßkanal in die Umgebung zu verhindern. Ein Austausch des Einspritzventils bzw. ein Ausbau des Einspritzventils erfordert die vollständige Demontage des Einlaßbereichs der Brennkraftmaschine.
  • Vor dem Hintergrund des oben Gesagten ist es die Aufgabe der vorliegenden Erfindung, einen Zylinderkopf gemäß dem Oberbegriff des Anspruchs 1 d. h. der gattungsbildenden Art bereitzustellen, der dem sehr begrenzten Platzangebot im Zylinderkopf Rechnung trägt.
  • Eine weitere Teilaufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Ausbildung eines derartigen Zylinderkopfes aufzuzeigen.
  • Gelöst wird die erste Teilaufgabe durch einen Zylinderkopf für eine mindestens einen Zylinder aufweisende Brennkraftmaschine mit mindestens zwei Ladungswechselkanälen, nämlich mindestens einem Einlaßkanal zum Zuführen der Frischluft bzw. des Frischgemisches durch mindestens eine Einlaßöffnung in den mindestens einen Zylinder und mindestens einem Auslaßkanal zum Abführen der Verbrennungsgase durch mindestens eine Auslaßöffnung aus dem mindestens einen Zylinder, der dadurch gekennzeichnet ist, daß durch mindestens einen Ladungswechselkanal mindestens ein Schacht hindurchführt, in den eine Zündvorrichtung, eine Einspritzvorrichtung oder ein Zylinderkopfbefestigungsmittel zu Montagezwecken einführbar ist.
  • Erfindungsgemäß wird in mindestens einem Ladungswechselkanal ein Schacht vorgesehen. Zwar wird durch die Anordnung des mindestens einen Schachtes im Einlaß- und/oder Auslaßkanal der Strömungsquerschnitt dieses Kanals verkleinert und die Strömung im Kanal verändert. Der Ladungswechsel wird aber nicht zwangsläufig unkontrolliert beeinflußt, wie beispielsweise durch das - in der DE 197 53 965 A1 beschriebene - direkte Anordnen eines Einspritzventils im Einlaßkanal. Vielmehr kann der Schacht gezielt in der Art ausgebildet werden, daß bewußt ein Drall, ein Tumble oder eine andere vorgegebene bzw. geeignete Strömung entsteht d. h. generiert wird.
  • Der Schacht dient der Aufnahme einer Zündvorrichtung, einer Einspritzvorrichtung oder eines Zylinderkopfbefestigungsmittels und isoliert das jeweilige Bauteil gleichzeitig gegenüber der Strömung im Ladungswechselkanal d. h. gegenüber der Abgasströmung im Auslaßkanal bzw. gegenüber der Frischluft- bzw. Frischgemischströmung im Einlaßkanal. Infolge der Verwendung eines Schachtes wird daher auch die Anordnung von Bauteilen in der heißen Abgasströmung bzw. im Auslaßkanal ermöglicht.
  • Das Vorsehen eines Schachtes vereinfacht zudem die Montage und Demontage des entsprechenden in den Schacht eingeführten Bauteils. Eine Abdichtung des in den Ladungswechselkanal eingeführten Bauteils ist nicht erforderlich. Zwar muß auch der mindestens eine Schacht gegenüber der Umgebung in der Art abgedichtet werden, daß kein Leckagestrom aus dem Ladungswechselkanal entweicht. Diese Abdichtung ist aber wesentlich leichter zu realisieren, als wenn das Bauteil direkt in den Ladungswechselkanal eingebracht wird.
  • Die in den Schacht eingeführte Einspritzvorrichtung kann eine nach außen öffnende Einspritzdüse sein, beispielsweise eine nach dem piezoelektrischen Prinzip arbeitende Einspritzdüse, die ihre Düsenspitze im Rahmen der Einspritzung nach außen hin d.h. in den Brennraum hinein gerichtet öffnet. Als Einspritzvorrichtung kann aber auch eine nach innen öffnende Mehrlocheinspritzdüse dienen, die gegenüber der zuvor genannten piezoelektrisch gesteuerten Einspritzdüse Kostenvorteile bietet.
  • Eine Zündkerze kann als Zündvorrichtung und ein Gewindebolzen als Zylinderkopfbefestigungsmittel Verwendung finden.
  • Ausführungsformen des Zylinderkopfes, bei denen der mindestens eine Schacht nicht vollständig von dem dazugehörigen Ladungswechselkanal umschlossen ist, sondern nur teilweise in den Ladungswechselkanal hineinreicht, sind auch als erfindungsgemäße Zylinderköpfe anzusehen, solange der Schacht durch den Ladungswechselkanal hindurchführt.
  • Vorteilhaft sind aber Ausführungsformen, bei denen der Schacht vollständig in den Ladungswechselkanal integriert ist, da hierdurch die größte Platzersparnis erzielt wird.
  • Dadurch wird die der Erfindung zugrunde liegende Aufgabe gelöst, nämlich einen Zylinderkopf bereitzustellen, der dem sehr begrenzten Platzangebot im Zylinderkopf Rechnung trägt.
  • Grundsätzlich kann sich - bei einem erfindungsgemäßen Zylinderkopf - ein in einem Ladungswechselkanal angeordneter Schacht über den Ladungswechselkanal hinaus im Zylinderkopf erstrecken und dabei gegebenenfalls auch Kühlmittelkanäle und/oder dergleichen durchdringen bzw. schneiden.
  • Weitere vorteilhafte Ausführungsformen des Zylinderkopfes werden im Zusammenhang mit den Unteransprüchen erörtert.
  • Vorteilhaft sind Ausführungsformen des Zylinderkopfes, bei denen im montierten Zustand die in den mindestens einen Schacht eingeführte Zündvorrichtung, Einspritzvorrichtung bzw. das Zylinderkopfbefestigungsmittel zumindest teilweise außerhalb des mindestens einen Ladungswechselkanals angeordnet ist.
  • Diese Ausführungsform trägt dem Umstand Rechnung, daß die in den Schacht eingeführte Zündvorrichtung bzw. Einspritzvorrichtung bis in den Brennraum des Zylinders hineinreichen muß, damit der Kraftstoff mittels Einspritzung direkt in den Brennraum eingespritzt und mit der Zündvorrichtung das Kraftstoff-Luftgemisch gezündet werden kann. Hingegen verbleibt eine Restwandstärke zwischen Zylinder bzw. Brennraum und Kanal, um einen Ladungswechselkanal auszubilden und dem Zylinderkopf die notwendige Festigkeit zu verleihen. Folglich ist das in den Schacht eingeführte Bauteil vorzugsweise im montierten Zustand zumindest teilweise außerhalb des mindestens einen Ladungswechselkanals positioniert.
  • Ein Zylinderkopfbefestigungsmittel - beispielsweise ein Gewindebolzen - ist prinzipbedingt zumindest teilweise außerhalb des Zylinderkopfes und damit außerhalb des Ladungswechselkanals angeordnet, da der Bolzen bis in den Zylinderblock hineinreicht, um den Zylinderkopf mit dem Zylinderblock zu verbinden.
  • Vorteilhaft sind Ausführungsformen des Zylinderkopfes, bei denen der Zylinderkopf ein Gussteil ist.
  • Vorteilhaft sind Ausführungsformen des Zylinderkopfes, bei denen der mindestens eine Schacht gegenüber dem mindestens einen Ladungswechselkanal gasdicht abgedichtet ist, um einen aus dem mindestens einen Ladungswechselkanal austretenden Leckagestrom zu vermeiden.
  • Vorteilhaft sind Ausführungsformen des Zylinderkopfes, bei denen der mindestens eine Schacht einstückig mit dem mindestens einen Ladungswechselkanal ausgebildet ist. Dabei bilden der mindestens eine Ladungswechselkanal und der durch diesen Kanal hindurchführende Schacht eine bauliche Einheit d. h. ein monolithisches Bauteil, welches sich vorzugsweise dadurch ausbilden läßt, daß der Zylinderkopf im Gießverfahren hergestellt wird und ein Schacht bereits originär im Zylinderkopfrohling vorgesehen wird.
  • Die einstückige d. h. monolithische Bauweise macht eine Abdichtung entbehrlich, weil prinzipbedingt keine Fugen zwischen Kanal und Schacht entstehen, durch die Frischgemisch bzw. Abgas aus dem Ladungswechselkanal entweichen könnte. Insbesondere Letzteres ist ein wesentlicher Vorteil der einstückigen Ausbildung von Kanal und Schacht.
  • Vorteilhaft sind aber auch Ausführungsformen des Zylinderkopfes, bei denen in dem mindestens einen Ladungswechselkanal eine Hülse angeordnet ist, die den mindestens einen Schacht ausbildet. Im Gegensatz zu der zuvor beschriebenen Ausführungsform sind bei dem in Rede stehenden Zylinderkopf Schacht und Ladungswechselkanal separate Bauteile d. h. das System aus Ladungswechselkanal und Schacht ist modular aufgebaut.
  • Der Zylinderkopf umfaßt mindestens einen Ladungswechselkanal, in den im Rahmen der Montage bzw. Fertigung eine Hülse eingebracht wird, wobei die Hülse mit dem Kanal stoffschlüssig, formschlüssig oder kraftschlüssig verbunden sein kann, was nicht nur der Befestigung der Hülse im Kanal, sondern auch der Abdichtung des Kanals gegenüber dem Schacht und der Umgebung dient.
  • Vorteilhaft sind dabei Ausführungsformen des Zylinderkopfes, bei denen die Hülse zwei gegenüberliegende, in dem mindestens einen Ladungswechselkanal vorgesehene Durchbrüche miteinander verbindet. Bei dieser Ausführungsform ist der Schacht vollständig im Ladungswechselkanal integriert, was zu einer maximalen Platzersparnis im Zylinderkopf führt.
  • Die zweite der Erfindung zugrunde liegende Aufgabe wird gelöst durch ein Verfahren zur Ausbildung eines Zylinderkopfes einer zuvor genannten Art, bei dem
    • ■ mindestens zwei Ladungswechselkanäle im Zylinderkopf vorgesehen werden, und
    • ■ in mindestens einem Ladungswechselkanal mindestens ein Schacht in der Art angeordnet wird, daß dieser mindestens eine Schacht durch diesen mindestens einen Ladungswechselkanal hindurchführt, wobei der mindestens eine Schacht zur Aufnahme einer Zündvorrichtung, einer Einspritzvorrichtung oder eines Zylinderkopfbefestigungsmittel verwendet wird.
  • Das bereits weiter oben für den erfindungsgemäßen Zylinderkopf Gesagte gilt auch für das erfindungsgemäße Verfahren.
  • Vorteilhaft sind Verfahrensvarianten, bei denen der mindestens eine Schacht einstückig mit dem mindestens einen Ladungswechselkanal ausgebildet wird, was beispielsweise dadurch erfolgen kann, daß der Zylinderkopf ausgehend von einem gegossenen Zylinderkopfrohling, in den bereits ein Schacht integriert wurde, durch Nachbearbeitung gefertigt wird.
  • Vorteilhaft sind Verfahrensvarianten, bei denen zur Ausbildung des mindestens einen Schachtes eine Hülse verwendet und in dem mindestens einen Ladungswechselkanal angeordnet wird. Bei dieser Vorgehensweise wird der Schacht durch Einbringen einer Hülse nachträglich im Ladungswechselkanal ausgebildet.
  • Vorteilhaft sind dabei Verfahrensvarianten, bei denen in dem mindestens einen Ladungswechselkanal zwei gegenüberliegende Durchbrüche vorgesehen werden, die unter Verwendung der Hülse miteinander verbunden werden.
  • Vorteilhaft sind Verfahrensvarianten, bei denen der mindestens eine Schacht gegenüber dem mindestens einen Ladungswechselkanal abgedichtet wird. Gegebenenfalls kann auch eine Abdichtung des Schachtes gegenüber anderen Funktionsräumen, wie beispielsweise einem Kühlmittelkanal oder einem Ölreservoir, erfolgen. Eine Abdichtung kann dabei auch mittels O-Ring oder dergleichen vorgenommen werden.
  • Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles gemäß Figur 1 näher beschrieben. Hierbei zeigt:
  • Fig. 1
    schematisch einen Teilquerschnitt einer Ausführungsform eines Zylinderkopfes entlang der Zylinderlängsachse.
  • Figur 1 zeigt schematisch einen Teil eines Zylinderkopfes 1 im Querschnitt entlang der Zylinderlängsachse 7.
  • Der Zylinder 6 wird gebildet durch den Zylinderkopf 1 und den Zylinderblock 2, wobei der Brennraum 11 des Zylinders 6 begrenzt wird durch eine im Zylinderblock 2 vorgesehene Zylinderbohrung 13 und ein im Zylinderkopf 1 angeordnetes Brennraumdach 14.
  • Im Zylinderkopf 1 ist brennraumseitig eine als Zündvorrichtung 9 dienende Zündkerze 10 mittig im Brennraumdach 14 angeordnet. Zum Abführen der Verbrennungsgase aus dem Zylinder 6 bzw. dem Brennraum 11 sind zwei Auslaßöffnungen 8 und zwei als Auslaßkanäle 4 dienende Ladungswechselkanäle 3 vorgesehen, wobei in Figur 1 jeweils nur eine Auslaßöffnung 8 und ein Auslaßkanal 4 dargestellt bzw. sichtbar ist.
  • Die Auslaßöffnung 8 bzw. der Auslaßkanal 4 wird zum Brennraum 11 hin mittels eines Ventils 12 verschlossen, wobei das Ventil 12 ein hängendes Hubventil 12 ist, welches zum Ausschieben der Verbrennungsgase in den Brennraum 11 hinein verschoben bzw. ausgelenkt wird.
  • Zum Verbinden des Zylinderkopfes 1 mit dem Zylinderblock 2 sind Bohrungen 15, 16 vorgesehen, wobei der Zylinderblock 1 und der Zylinderkopf 2 zur Montage - wie in Figur 1 dargestellt - in der Art angeordnet sind, daß die Bohrungen 15, 16 miteinander fluchten.
  • In die Bohrungen 15, 16 des Zylinderkopfes 1 und des Zylinderblocks 2 wird ein Gewindebolzen eingeführt und verschraubt (nicht dargestellt).
  • Um den erforderlichen Bauraum im Zylinderkopf 1 zu reduzieren, ist ein Schacht 5 vorgesehen, der durch den Auslaßkanal 4 hindurchführt und mit den Bohrungen 15, 16 des Zylinderkopfes 1 bzw. des Zylinderblocks 2 fluchtet und in den ein als Zylinderkopfbefestigungsmittel dienender Gewindebolzen zu Montagezwecken einführbar ist.
  • Bezugszeichen
  • 1
    Zylinderkopf
    2
    Zylinderblock
    3
    Ladungswechselkanal
    4
    Auslaßkanal
    5
    Schacht
    6
    Zylinder
    7
    Längsachse des Zylinders
    8
    Auslaßöffnung
    9
    Zündvorrichtung
    10
    Zündkerze
    11
    Brennraum
    12
    Ventil
    13
    Zylinderbohrung
    14
    Brennraumdach
    15
    Bohrung des Zylinderkopfes
    16
    Bohrung des Zylinderblocks

Claims (12)

  1. Zylinderkopf (1) für eine mindestens einen Zylinder (6) aufweisende Brennkraftmaschine mit mindestens zwei Ladungswechselkanälen (3), nämlich mindestens einem Einlaßkanal zum Zuführen der Frischluft bzw. des Frischgemisches durch mindestens eine Einlaßöffnung in den mindestens einen Zylinder (6) und mindestens einem Auslaßkanal (4) zum Abführen der Verbrennungsgase durch mindestens eine Auslaßöffnung (8) aus dem mindestens einen Zylinder (6), dadurch gekennzeichnet, daß durch mindestens einen Ladungswechselkanal (3) mindestens ein Schacht (5) hindurchführt, in den eine Zündvorrichtung, eine Einspritzvorrichtung oder ein Zylinderkopfbefestigungsmittel zu Montagezwecken einführbar ist.
  2. Zylinderkopf (1) nach Anspruch 1, dadurch gekennzeichnet, daß im montierten Zustand die in den mindestens einen Schacht (5) eingeführte Zündvorrichtung, Einspritzvorrichtung bzw. das Zylinderkopfbefestigungsmittel zumindest teilweise außerhalb des mindestens einen Ladungswechselkanals (3) angeordnet ist.
  3. Zylinderkopf (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Zylinderkopf (!) ein Gussteil ist.
  4. Zylinderkopf (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der mindestens eine Schacht (5) gegenüber dem mindestens einen Ladungswechselkanal (3) gasdicht abgedichtet ist.
  5. Zylinderkopf (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der mindestens eine Schacht (5) einstückig mit dem mindestens einen Ladungswechselkanal (3) ausgebildet ist.
  6. Zylinderkopf (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in dem mindestens einen Ladungswechselkanal (3) eine Hülse angeordnet ist, die den mindestens einen Schacht (5) ausbildet.
  7. Zylinderkopf (1) nach Anspruch 6, dadurch gekennzeichnet, daß die Hülse zwei gegenüberliegende, in dem mindestens einen Ladungswechselkanal (3) vorgesehene Durchbrüche miteinander verbindet.
  8. Verfahren zur Ausbildung eines Zylinderkopfes (1) nach einem der vorherigen Ansprüche, bei dem
    ■ mindestens zwei Ladungswechselkanäle (3) im Zylinderkopf (1) vorgesehen werden, und
    ■ in mindestens einem Ladungswechselkanal (3) mindestens ein Schacht (5) in der Art angeordnet wird, daß dieser mindestens eine Schacht (5) durch diesen mindestens einen Ladungswechselkanal (3) hindurchführt, wobei der mindestens eine Schacht (5) zur Aufnahme einer Zündvorrichtung, einer Einspritzvorrichtung oder eines Zylinderkopfbefestigungsmittel verwendet wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der mindestens eine Schacht (5) einstückig mit dem mindestens einen Ladungswechselkanal (3) ausgebildet wird.
  10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß zur Ausbildung des mindestens einen Schachtes (5) eine Hülse verwendet und in dem mindestens einen Ladungswechselkanal (3) angeordnet wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß in dem mindestens einen Ladungswechselkanal (3) zwei gegenüberliegende Durchbrüche vorgesehen werden, die unter Verwendung der Hülse miteinander verbunden werden.
  12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß der mindestens eine Schacht (5) gegenüber dem mindestens einen Ladungswechselkanal (3) abgedichtet wird.
EP07100025A 2007-01-02 2007-01-02 Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes Expired - Fee Related EP1942264B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07100025A EP1942264B1 (de) 2007-01-02 2007-01-02 Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes
DE502007005404T DE502007005404D1 (de) 2007-01-02 2007-01-02 Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes
CN2007103073979A CN101215998B (zh) 2007-01-02 2007-12-27 内燃发动机的汽缸盖及形成该类型汽缸盖的方法
US11/968,227 US7726274B2 (en) 2007-01-02 2008-01-02 Internal combustion engine cylinder head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07100025A EP1942264B1 (de) 2007-01-02 2007-01-02 Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes

Publications (2)

Publication Number Publication Date
EP1942264A1 EP1942264A1 (de) 2008-07-09
EP1942264B1 true EP1942264B1 (de) 2010-10-20

Family

ID=38110213

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07100025A Expired - Fee Related EP1942264B1 (de) 2007-01-02 2007-01-02 Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes

Country Status (4)

Country Link
US (1) US7726274B2 (de)
EP (1) EP1942264B1 (de)
CN (1) CN101215998B (de)
DE (1) DE502007005404D1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308477B2 (ja) * 2011-05-24 2013-10-09 ヤマハ発動機株式会社 4サイクルエンジン
DE102018002929A1 (de) * 2018-04-11 2019-10-17 Mtu Friedrichshafen Gmbh Zylinderkopf

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316697A (en) * 1942-06-11 1943-04-13 Everett A Latta Internal combustion engine
US2687714A (en) * 1950-10-16 1954-08-31 Kloeckner Humboldt Deutz Ag Air-cooled cylinder head for internal-combustion engines
US3982504A (en) * 1973-02-27 1976-09-28 Nippon Soken, Inc. Internal combustion engine
FR2307960A1 (fr) 1975-04-16 1976-11-12 Moiroux Auguste Commande hydraulique de soupape de transfert pour une chambre de combustion separee de moteur thermique a piston
EP0164717B1 (de) * 1984-06-12 1990-01-24 Oki Electric Industry Company, Limited Automatisches System zum Hinterlegen und zur Ausgabe von Banknoten
DE3808672A1 (de) * 1987-03-13 1988-09-22 Orbital Eng Pty Verbrennungsmaschine
JPH065011B2 (ja) 1987-08-08 1994-01-19 国登 田熊 ガソリン機関のシリンダ−機構
DE3731211A1 (de) 1987-09-17 1989-03-30 Bosch Gmbh Robert Kraftstoffeinspritzventil
JP3300910B2 (ja) * 1994-02-04 2002-07-08 マツダ株式会社 直噴式ディーゼルエンジン
JPH0861190A (ja) 1994-06-15 1996-03-05 Yamaha Motor Co Ltd 燃料噴射式エンジン
US5630389A (en) * 1995-09-29 1997-05-20 Self; Kevin G. Cylinder head bolt plug
JP3195234B2 (ja) 1996-05-02 2001-08-06 日鍛バルブ株式会社 動弁機構
DE19753964A1 (de) 1997-12-05 1999-06-10 Audi Ag Einlaßsystem zur Versorgung einer Anzahl von Einlaßventilen einer Brennkraftmaschine
DE19753965A1 (de) * 1997-12-05 1999-06-10 Audi Ag Direkteinspritzende Brennkraftmaschine
DE19956825C1 (de) * 1999-11-25 2001-02-08 Porsche Ag Zylinderkopf für eine Brennkraftmaschine
JP3706809B2 (ja) * 2001-05-17 2005-10-19 本田技研工業株式会社 多気筒エンジン
CN2519025Y (zh) * 2001-09-30 2002-10-30 昆明云内动力股份有限公司 一种柴油发动机
US6748926B2 (en) * 2002-06-28 2004-06-15 Siemens Vdo Automotive Inc. Modular fuel injection pack

Also Published As

Publication number Publication date
CN101215998A (zh) 2008-07-09
DE502007005404D1 (de) 2010-12-02
US20080156288A1 (en) 2008-07-03
US7726274B2 (en) 2010-06-01
EP1942264A1 (de) 2008-07-09
CN101215998B (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
EP2003320B1 (de) Zylinderkopf für eine Brennkraftmaschine
EP2172635B1 (de) Zylinderkopf für eine Brennkraftmaschine mit zwei integrierten Abgaskrümmern und Verfahren zum Betreiben einer Brennkraftmaschine mit einem derartigen Zylinderkopf
EP1775455B1 (de) Selbstzündende Brennkraftmaschine mit Brennräumen für hohe Zünddrücke
EP3574204B1 (de) Verbrennungskraftmaschine mit kraftstoff-einspritzdüse mit zusätzlicher zuführung eines verbrennungsfördernden mediums in den brennraum
DE102017202154A1 (de) Aufgeladene flüssigkeitsgekühlte Brennkraftmaschine
DE102016222184B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine umfassend einen Zylinderblock und Verfahren zur Herstellung eines zugehörigen Zylinderblocks
DE102010038082A1 (de) Direkteinspritzende Brennkraftmaschine mit Einspritzdüse
DE102015211329B3 (de) Verfahren zum Betreiben einer abgasturboaufgeladenen Brennkraftmaschine mit Teilabschaltung und selbstzündende Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE19944710C2 (de) Brennkraftmaschine, insbesondere Diesel-Brennkraftmaschine
EP1942264B1 (de) Zylinderkopf für eine Brennkraftmaschine und Verfahren zur Ausbildung eines derartigen Zylinderkopfes
DE102006037413B4 (de) Direkteinspritzende fremdgezündete Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102005037383A1 (de) Zylinderkopf für eine Brennkraftmaschine
EP2627884B1 (de) Brennkraftmaschine sowie verfahren zum herstellen einer solchen brennkraftmaschine
EP2077386B1 (de) Zylinderkopf mit im Zylinderkopf integriertem Abgaskrümmer
DE102014208723B4 (de) Brennkraftmaschine mit mindestens einem Zylinderkopf
DE102016212084B4 (de) Brennkraftmaschine mit im Zylinderrohr angeordneter Einspritzvorrichtung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102019204078A1 (de) Verfahren zur Fertigung eines Zylinderkopfes einer Brennkraftmaschine und mit einem derartigen Verfahren gefertigter Zylinderkopf
DE102015219895A1 (de) Direkteinspritzende Brennkraftmaschine mit Kolben und Verfahren zur Herstellung eines Kolbens einer derartigen Brennkraftmaschine
WO2001077512A1 (de) Verbrennungsmotor mit zylindern in enger v-anordnung
DE102019216820B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit mindestens einem Zylinderrohr
DE102020000320B4 (de) Brennkraftmaschine mit Kolben umfassend eine Ölgalerie und Verfahren zur Herstellung eines zugehörigen Kolbens
EP1103712B1 (de) Zylinderkopf für eine Brennkraftmaschine
DE202016102651U1 (de) Direkteinspritzende Brennkraftmaschine mit im Zylinderrohr angeordneter Einspritzvorrichtung
DE102016204297B4 (de) Direkteinspritzende fremdgezündete Brennkraftmaschine mit im Zylinderrohr angeordneter Einspritzvorrichtung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102020202465A1 (de) Brennkraftmaschine mit flüssigkeitsgekühltem Zylinderblock und Verfahren zur Herstellung eines zugehörigen Zylinderblocks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090109

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007005404

Country of ref document: DE

Date of ref document: 20101202

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110721

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005404

Country of ref document: DE

Effective date: 20110721

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151230

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151230

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007005404

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102