EP1939329B1 - Kit for the manufacture of a process reactor for forming metallic layers on one or more substrate - Google Patents

Kit for the manufacture of a process reactor for forming metallic layers on one or more substrate Download PDF

Info

Publication number
EP1939329B1
EP1939329B1 EP06027073A EP06027073A EP1939329B1 EP 1939329 B1 EP1939329 B1 EP 1939329B1 EP 06027073 A EP06027073 A EP 06027073A EP 06027073 A EP06027073 A EP 06027073A EP 1939329 B1 EP1939329 B1 EP 1939329B1
Authority
EP
European Patent Office
Prior art keywords
reactor
substrate
reactor housing
kit according
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06027073A
Other languages
German (de)
French (fr)
Other versions
EP1939329A1 (en
Inventor
Dirk Habermann
Ernst Hartmannsgruber
Patrik MÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rena GmbH
Original Assignee
Rena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rena GmbH filed Critical Rena GmbH
Priority to AT06027073T priority Critical patent/ATE509144T1/en
Priority to EP06027073A priority patent/EP1939329B1/en
Priority to KR1020087023897A priority patent/KR101133085B1/en
Priority to CN2007800179912A priority patent/CN101448983B/en
Priority to PCT/EP2007/010739 priority patent/WO2008080515A2/en
Priority to TW096148749A priority patent/TWI378157B/en
Publication of EP1939329A1 publication Critical patent/EP1939329A1/en
Application granted granted Critical
Publication of EP1939329B1 publication Critical patent/EP1939329B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/007Current directing devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating

Definitions

  • the present invention relates to a kit for the production of a process reactor.
  • This process reactor is used to form metallic layers on one or more substrates, wherein the substrates may be, for example, essentially flat semiconductor wafers.
  • the present invention relates to electroplating, which is understood to mean the electrochemical deposition of metallic deposits (coatings) on articles.
  • electricity is sent through an electrolytic bath.
  • the metal to be applied e.g., copper or nickel
  • the negative pole cathode
  • the electric current dissolves metal ions from the consumable electrode and deposits them by reduction on the substrate.
  • the use of an inert anode is also possible, the metal ions required for the galvanization then being made available, for example, by addition to the plating solution. In this way, the substrate to be treated is more or less uniformly coated with the metal used. The longer the object is in the bath and the higher the electrical current, the stronger the metal layer becomes.
  • the present invention is particularly applicable in the field of functional electroplating technology.
  • the decorative electroplating technique mainly serves the beautification of objects
  • the functional electroplating technique is mainly used for corrosion protection, Wear protection or used for catalysis and to change or improve the electrical conductivity.
  • the present invention is particularly suitable in the field of semiconductor technology for the known in this context, the method for structured or unstructured application of electrically conductive layers for contacting, rewiring or soldering microelectronic circuits, as well as the structured or unstructured application of functional layers with, for example diffusion-blocking, adhesion-promoting, catalytic, as well as special optical, mechanical, magnetic or heat-conducting properties.
  • the present invention is also suitable for the electroplating of structured mold inserts (so-called mastering) for the molding of microcomponents or optical data carriers (CDs / DVDs), as well as for electrochemical replication.
  • the base materials are exposed to an electric field. Since an electric field and flow conditions of an electrolytic fluid do not adjust uniformly, but act on differently sized structures to be coated as well as on the edges of the substrate different high field strengths or currents, the deposited layer thicknesses will be different for these locations. These inhomogeneity effects are further enhanced by higher field strengths or flow rates, which in turn would be advantageous for achieving higher deposition rates and thus higher throughput rates in production.
  • inventions set forth in the context of the present invention are basically applicable to a wide range of substrates of different size, number and material quality.
  • present invention is set forth in the preferred example of treating substantially semiconductive substrates, so-called wafers.
  • the kit for producing a process reactor comprises a reactor housing which can be filled with fluid and has two ends.
  • the reactor housing is designed such that it flows through the fluid from one end to the other.
  • a device for receiving the substrate (s) is preferably arranged such that it can rotate relative to the reactor housing about its central longitudinal axis.
  • the process reactor is designed as a so-called overflow reactor. This means that the fluid flows through the interior of the reactor housing, for example from the lower end to the upper end, and leaves via an overflow, from where it is returned to the reactor housing of the process reactor via a collecting vessel by means of defined means.
  • the reactor housing can be made obliquely, horizontally or even reversed at any angle, so that the fluid can flow in accordance with the inclination of the reactor instead of from bottom to top in accordance with any angle.
  • the invention is illustrated below using the example of the vertical flow from bottom to top, wherein it is expressly pointed out that the individual elements of the kit according to the invention are independent of the angle of inclination of the reactor housing or the fluid flow and are applicable accordingly in arbitrarily inclined process reactor housings.
  • the process reactor comprises at least one anode with a positive potential, whereas the substrate is at the negative pole (cathode) and therefore has a negative potential.
  • the process reactor comprises at least one anode with a positive potential, whereas the substrate is at the negative pole (cathode) and therefore has a negative potential.
  • the setting of different potential sizes is conceivable.
  • overflow process reactors which comprise a reactor housing in which a fluid flow is generated.
  • the fluid is enriched by a self-dissolving anode (consumable electrode) with the desired metal ions, which are deposited due to the potential differences within the process reactor on the substrate to be coated and there a more or less homogeneous, i. train equally strong layer.
  • inert anodes which are used in place of the dissolving consumption anodes.
  • the metal ions required for the galvanization are added to the fluid in some other way, e.g. provided by addition.
  • a disadvantage of the prior art is that it focuses on the provision of rigid devices that are applicable only to a fixed size of a substrate and only a galvanotechnische application. For the desired processing of differently dimensioned substrates, which are, for example, larger or comprise a plurality of elements, it is therefore necessary to provide another, larger diameter reactor. Furthermore, the process reactors known in the prior art do not allow for alternative, kit-like formations, with which one can configure the reactor easily and flexibly with respect to different requirements of the possible applications.
  • the object of the invention is therefore to provide a kit for the production of a process reactor for the formation of metallic layers on one or more substrates, with which the mentioned disadvantages of the prior art are overcome.
  • the kit according to the invention is provided according to the main claim.
  • kit according to the invention can be completely and flexibly adapted to the particular intended application, both with regard to the desired type of processing and with respect to the dimensioning of a substrate to be processed.
  • a process reactor in a defined size, preferably in a standard size proposed, which can be optimized by simple measures, so that differently dimensioned such. Small, medium and large substrates can be processed with the same process reactor.
  • the means of the process reactor according to the invention which are also provided for this purpose alternatively or in combination relate, for example, to flow control devices for establishing or controlling a directed or directed fluid flow within the reactor housing, as well as field adjusting devices with which the electric field to be established or constructed within the reactor housing is controlled or influenced. can be optimized.
  • diaphragms are provided with which both the fields and the flows can be shaded so that, in particular, no elevations of the applied layer occur in the edge region of the substrate to be coated.
  • the preferred use of ring elements is the possibly desired reduction of the inner diameter of the standardized process reactor and thus allows its adaptation to the substrate to be coated.
  • the flow adjustment devices provided according to the invention serve to form or influence the flow within the reactor housing from its lower end (an) to the substrate. If, for example, it has been recognized during processing that an accumulation of material takes place in the substrate edge areas, which could lead to an uneven layer thickness, then the flow in these areas can be purposefully reduced.
  • the ability to variably and flexibly adjust the flow that impinges on or passes the substrate offers advantages in adapting the reactor to a variety of applications.
  • different means are provided, which can be used according to the invention individually or in combination both in singular and in a plurality.
  • These agents have the common property of influencing the fluid flow from one end, for example, the lower end of the process reactor, to the other, such as, for example, the upper end of the process reactor.
  • the changes in the fluid flow may be uniform over the cross-section of the process reactor and / or uniformly over its longitudinal extent, or the fluid flow may be influenced such that segmentwise, ie within defined ranges over the Cross-section and / or longitudinal parameters of the fluid flow are present.
  • a preferred means of a flow adjuster is a diffuser.
  • the diffuser is disc-shaped and preferably extends over the cross section of the reactor housing.
  • the diffuser has the property of changing both directional and non-directional flow in such a way that, downstream of the diffuser, a fluid flow arises in the direction of flow which is no longer oriented in a direction-oriented manner.
  • Another alternative or additional feature of the diffuser is that one can make the flow parameters (volume and / or velocity) different across the cross section.
  • nozzle array is a disk-like formation, which preferably extends over the cross section of the process reactor. Regularly or irregularly distributed over the cross-section of the array, one or more passage openings are provided, each with the same or different diameter.
  • the axes of the passage openings are preferably perpendicular to the substrate to be coated and are thus aligned parallel to the longitudinal axis of the reactor housing.
  • the individual passage openings can be opened or closed.
  • the nozzle array according to the main claim has the property that each passage opening with other parameters of the fluid flow (volume and speed) can be applied.
  • a further preferred embodiment of a flow adjustment device relates to the arrangement of tubular or annular tube-like formations in the longitudinal extent of the reactor housing, the individual formations having different cross sections. Also, due to the flow occurring within these tubes, different qualities can be achieved at the surface of the substrate. This is due to the different speeds that can be achieved within the tubes due to their different diameters.
  • One embodiment provides for the tubes to be arranged next to one another so that, seen in cross-section, a type of honeycomb construction is created. Another embodiment provides that the tubes are arranged inside each other, starting from a small diameter to a large diameter.
  • the tubes can be arranged either coaxially or offset to one another. Preferably, the tubes extend from the bottom (one) end of the process reactor to the region of the top (other) end of the process reactor.
  • the purpose of the flow adjustment device is to modulate the flow within the reactor housing in such a way that a flow characteristic is produced by which a substantially homogeneous or uniform thickness or thickness of the coating can be ensured.
  • the modulation can be configured such that certain areas of the substrate come into different contact with the fluid flow. As a result, an uneven deposition on the substrate can be specifically counteracted so that a homogeneous, uniform layer is achieved over the entire longitudinal extension of the substrate.
  • the device according to the invention advantageously comprises field setting devices.
  • the substrate forms the cathode, while the anode is arranged in the opposite region of the reactor housing.
  • the electric field existing within the reactor housing may be defined, for example, by one or more field adjusters located within the reactor housing, e.g. be adjusted by auxiliary electrodes or controlled or changed.
  • auxiliary electrode used herein is to be understood as an umbrella term for auxiliary anode and auxiliary cathode, wherein an auxiliary anode is characterized by a positive and an auxiliary cathode by a negative potential.
  • auxiliary electrodes within the reactor housing which are preferably introduced into the housing at any position and / or arranged displaceably, supports the production of the uniform coating pursued according to the invention.
  • the position of one or more auxiliary electrodes may extend over the entire cross section of the process reactor housing.
  • a coated electrode is used as auxiliary anode, so that deposits are avoided on this.
  • Alternative preferred embodiments relate to the use of so-called anode arrays.
  • auxiliary anodes which extend over the entire cross section of the process reactor, with each individual auxiliary anode can be assigned to a respective potential.
  • the segmentation makes it possible to obtain different field strengths and different potentials, whereby the procedure can be further optimized.
  • passages are provided in the anode array, which allow the fluid flow to pass from one end to the other end of the process reactor.
  • a particularly preferred embodiment provides that auxiliary electrodes are provided, in particular in the outlet or overflow region.
  • an electric field is generated, with the help of which, depending on the selected potential, an accumulation of deposited metal ions, in particular in the edge region, can be avoided or promoted.
  • auxiliary electrodes may, if appropriate, additionally be arranged on baffles, which can be positioned annularly in the reactor housing.
  • the auxiliary electrodes are arranged at the upper end of the reactor housing, preferably in the region of the overflow and on the opposite side, namely in the receiving device for the substrate.
  • the desired potential can be selected depending on the desired result targeted.
  • a particularly preferred embodiment relates to the combined use of nozzle array and anode array.
  • the passage openings provided in the case of an anode array are individually controlled with defined parameters of a fluid flow.
  • the formation of the desired product properties can be positively influenced by inventively proposed diaphragms for selective shading within the established flow or the electric field.
  • Blendrohre can be used to reduce the inner diameter of the reactor housing , By this measure, a selective shading of the electric field and the flow is again effected with respect to the substrate.
  • a further advantageous embodiment of the reactor housing provides that in the flow direction, i. in the direction of the substrate to be coated, a diaphragm is arranged.
  • This diaphragm is attached directly to the substrate or to the receiving device for the substrate. It serves to hide the field lines built up between anode and cathode, so that an uneven coating can be prevented or a uniformity of the coating can be brought about.
  • the diaphragm referred to as a flat diaphragm, serves, in particular, to compensate for any asymmetries of the substrate, as encountered, for example, in the case of a wafer flat.
  • the inner diameter of the reactor housing ring segments are provided according to the invention, which take in their height or length only part of the interior of the reactor housing and the inner diameter is smaller than that of the reactor housing.
  • the interior of the reactor housing can be reduced in a segment-like manner, wherein this reduction can be formed in the same way or differently both stepwise and homogeneously over the entire longitudinal extent.
  • the segment-like design offers the advantage that after inserting the respective segments further auxiliary elements such as auxiliary anodes or auxiliary cathodes or even diffusers arranged or inserted can be.
  • a control circuit is further provided and preferably designed such that the layer thickness during the coating process, if desired, can be measured continuously, whereby any irregularities detected and control functions can be triggered by which the flow setting and / or the field control devices according to the requirements activated, deactivated or can be regulated in any other way.
  • the control loop can also be designed so that the coating result is measured separately after the deposition has taken place and, based on the measurement result, the control functions described above for the subsequent coating are triggered or adjusted.
  • Another alternative embodiment provides that, instead of an overflow region, a fluid channel is provided so that the fluid can only escape at a certain point. Due to the rotation of the substrate relative to the reactor housing, a uniform distribution is achieved, and the auxiliary anode preferably arranged in the fluid channel contributes to avoiding an accumulation of material, in particular in the edge regions of the substrate.
  • a further preferred embodiment relates to the equipment of the reactor housing with an adjusting device, by which the distance of the substrate to the reactor housing can be controlled.
  • the at least one anode can rotate orthogonally to the substrate to be coated.
  • the apertures described above can either rotate with or are fixed.
  • a preferably provided quick-release closure allows a rapid replacement of the substrate having a receiving device, so that the process cycles can be shortened accordingly.
  • the substrates for this are already fixed outside of the process reactor on or on the receiving device, so that a continuous processing can be ensured by the simple replacement of correspondingly loaded recording devices with extremely low cycle times.
  • a standard version of a process reactor 1 is shown.
  • the process reactor 1 for coating a substrate 2 comprises a reactor housing 3.
  • the reactor housing 3 has an upper end 4 and a lower end 5.
  • a device 6 for receiving the substrate 2 is provided on the opposite side of the lower end 5.
  • the receiving device 6 rotates in the embodiment shown here with respect to the fixed reactor housing 3 about its longitudinal axis.
  • the Receiving device 6 is arranged in the region of the upper end 4 relative to the reactor housing 3 such that a distance 7 is formed which forms an overflow 8.
  • the overflow 8 is overflowed in the direction of arrow 9 by a fluid F, which is caused to flow within the reactor housing 3.
  • the overflowing fluid F passes into a collecting container 10 which at least partially surrounds the reactor housing 3, where it is returned by appropriate means 11 back into the reactor housing 3.
  • a pump 12 ensures that the circuit is maintained in the direction of arrow 9.
  • a supply line 13 is provided between the pump 12 and the lower end 5 of the reactor housing 3, a supply line 13 is provided.
  • the lower region 5 can also be designed differently. For example, it can be provided that the lower region 5 is funnel-shaped, wherein the funnel widens toward the walls of the reactor housing 3.
  • a power supply 14 is provided, with which the one anode 15 and the substrate 2 to be coated (as the cathode) are subjected to a potential.
  • the anode 15 can be configured differently; For example, it may be an inert anode or even a dissolving anode, such a consumption electrode must be renewed at regular intervals.
  • Fig. 1 serves the in Fig. 1 as a process reactor 1 illustrated standardized reactor type as a basic pattern.
  • a ring element R defined as a flow setting device S and a field setting device E is provided.
  • a previously mentioned ring element R is used to reduce the inner diameter 3 i of the reactor housing 3.
  • a plurality of segments of ring elements R are inserted into the interior of the reactor housing 3.
  • the interior of the original inner diameter 3 i is reduced to the inner diameter R i , which is predetermined by the inner diameter of the smallest ring element R.
  • the interior of the reactor housing 3 is reduced in a segment-like manner, wherein this reduction can be designed to be the same or different both stepwise and homogeneously over the entire longitudinal extent.
  • a flow adjustment device S for example a diffuser or other desired means such as an auxiliary electrode, an anode array and / or a nozzle array can be inserted.
  • auxiliary anode 16 defined as a field setting device E is provided.
  • This auxiliary anode 16 which is shown only schematically in the drawings, has passage openings through which fluid F (arrows 17) can pass. The fluid F thus flows from the anode 15 through passage openings of the auxiliary anode 16 in the direction of the substrate 2.
  • the substrate 2 has a negative potential and thus forms the cathode.
  • the auxiliary anode 16 may be formed such that the cross section of the preferably disk-like auxiliary anode 16 is segmented, wherein segments with positive potential (anode) and segments are provided with openings.
  • segments with positive potential anode
  • the number, the arrangement and the assignment with different parameters depend on the desired coating result.
  • the passage openings can be acted upon either with uniform or different fluid flows.
  • a diffuser 19 defined as a flow setting device S is provided. It is arranged in the lower region 5 of the reactor housing 3 and ensures that a flow distributed uniformly over the cross-section of the reactor housing is formed in the flow direction behind it.
  • auxiliary anode 16 provides that it can be positioned within the reactor housing 3 in and against the arrow 18 direction.
  • a dazzling tube 20 defined as a flow setting device S and a field setting device E is provided.
  • a flow setting device S and a field setting device E is provided.
  • the substrate to be processed 2 in its dimensions is smaller than the diameter of the reactor housing 3.
  • auxiliary electrodes 21 are provided on the free ends of the blending tubes 20 pointing toward the substrate 2.
  • additional auxiliary electrodes 26 may be disposed on the receiving device 6 on the opposite side.
  • auxiliary cathodes 21 By generating an electric field between the auxiliary electrodes 21, it is achieved that in particular in the edge regions of the substrate 2 no material accumulation takes place and so uniformly coated substrates 2 can be produced.
  • the auxiliary electrodes 21 in this embodiment preferably have a negative potential, which is why they can also be referred to as auxiliary cathodes.
  • a further modification of the basic pattern is shown. It comprises a fluid channel 22 defined as flow setting means S.
  • a fluid channel 22 is formed, which preferably produces a fluid connection between the interior of the reactor housing 3 and the collecting container 10 in a radially outward direction only.
  • at least one auxiliary electrode 23 is provided in the region of the overflow 8 within the fluid channel 22, wherein the arrangement of two respectively opposing auxiliary electrodes 23 is particularly preferred.
  • auxiliary cathodes 23 By generating an electric field between the auxiliary electrodes 23 it is achieved that in particular in the edge regions of the substrate 2 no material accumulation takes place and substrates 2 can be produced with a substantially uniform coating.
  • the auxiliary electrodes 23 preferably have a negative potential, which is why they can also be referred to as auxiliary cathodes.
  • Fig. 5 shows a further alternative embodiment of the defined basic pattern of the process reactor 1.
  • the flow direction of the Fluid F within the reactor housing 3 is not initially perpendicular to the top and then parallel to the substrate 2, but the flow is constant in the longitudinal extension of the reactor housing 3.
  • one or more passage openings 24 or an annular passage opening 24 are provided laterally on the receiving device 6.
  • 24 auxiliary electrodes 25 are provided in the areas of the passage opening.
  • the auxiliary electrodes 25 or further auxiliary electrodes can also be arranged in the receiving device 6.
  • nozzle array 30 is provided.
  • the nozzle array 30 is preferably designed disk-shaped and dimensioned so that it extends over the entire cross-section of the reactor housing 3. It can be arranged at any point of the reactor housing 3.
  • a preferred embodiment of this nozzle array 30 provides that on the disc-like configuration, a plurality of passage openings 31 are provided, wherein the remaining part of the enclosure 32 of the passage openings 31 is formed.
  • the passage openings 31 are arranged uniformly and have the same size.
  • a further embodiment provides that the individual passage openings 31 are individually controllable. This means that each passage opening 31 or a matrix of passage openings 31, ie a plurality of interconnected passage openings 31, can control the fluid flow separately and independently of one another. Thus, different fluid streams encounter the substrate 2, which in turn causes the coatings to be applied differently. The choice of parameters is made such that the coating is uniform and homogeneous.
  • Figs. 7A and 7B is provided as a field setting E a defined anode array 33.
  • the anode array 33 as in Fig. 7A is shown in plan view, is disc-shaped or circular and has essentially two different features.
  • the first feature of the disc relates to the passage openings 34, through which the fluid F the interior of the reactor housing 3 in the direction of arrow 9 (FIG. Fig. 1 ) can flow through.
  • the further feature is that areas are provided which can assume a corresponding potential. In the embodiment shown here, these anodes 35 are shown flat (dark).
  • the distribution of passages 34 and anodes 35 can be arbitrary or according to a defined pattern.
  • Fig. 7B is shown in sectional view, the arrangement of the anode array 33 within a basic pattern of the process reactor 1. It can be seen that the anode array has 33 discrete areas with anodes 35 and discrete areas with openings 34. Through the passage openings 34, the fluid flows in the direction of arrow 17th
  • Figs. 8A and 8B are provided as flow adjustment S one or more flow tubes 28.
  • flow tubes 28 are provided with different cross-sections. Due to the prevailing flow within these tubes different coating qualities can be achieved on the surface of the substrate. This is caused by the different flow velocities (shown in Fig. 8A by differently shaped flow arrows (arrow 9)), which are generated within the tubes due to the different diameters.
  • Fig. 8B shows a plan view of these flow tubes 28. It can be seen that the flow tubes 28 different Have diameters or distances from each other, whereby different flow velocities and thus also different ion accumulations in the region of the substrate 2 can be realized.
  • Fig. 9 are provided as field adjuster E a flat panel 29.
  • the flat diaphragm 29 is arranged directly on the receiving device 6 and can be adjusted at an angle to the receiving device or to the substrate 2. As a result, a corresponding shading on the substrate is achieved, whereby the field strength is reduced in this area and thus a lower ion deposition can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Kit for building a processing reactor for electrolytic deposition of metals on substrates (2) comprises a reactor vessel (3);#a substrate holder (6) near the vessel outlet (4);#an overflow (8);#a trap (10) for liquid from the overflow and a system for feeding it back into the reactor; and#an anode. In addition it contains one or more a flow guide (S);#an electric field adjusting system;#an auxiliary electrode (H);#a screen (B) for directing the field; and an annular sleeve (R) for reducing the diameter of the reactor. An independent claim is included for a method for electrolytic deposition of metals on substrates using the kit to build the reactor vessel.

Description

Die vorliegende Erfindung betrifft einen Bausatz zur Herstellung eines Prozessreaktors. Dieser Prozessreaktor dient der Ausbildung von metallischen Schichten auf einem oder mehreren Substraten, wobei die Substrate beispielsweise im Wesentlichen flach ausgebildete Halbleiterwafer sein können.The present invention relates to a kit for the production of a process reactor. This process reactor is used to form metallic layers on one or more substrates, wherein the substrates may be, for example, essentially flat semiconductor wafers.

Die vorliegende Erfindung betrifft insbesondere die Galvanotechnik, unter der man die elektrochemische Abscheidung von metallischen Niederschlägen (Überzügen) auf Gegenständen versteht. Dabei wird durch ein elektrolytisches Bad Strom geschickt. Am Pluspol (Anode) befindet sich das Metall, das aufgebracht werden soll (z.B. Kupfer oder Nickel), am Minuspol (Kathode) der zu bearbeitende oder veredelnde Gegenstand. Der elektrische Strom löst dabei Metallionen von der Verbrauchselektrode ab und lagert sie durch Reduktion auf dem Substrat ab. Alternativ zu der Verbrauchsanode ist auch die Verwendung einer Inert-Anode möglich, wobei die für die Galvanisierung benötigten Metallionen dann beispielsweise durch Zugabe in die Galvanisierlösung bereitgestellt werden. Auf diese Weise wird das zu behandelnde Substrat mehr oder weniger gleichmäßig mit dem eingesetzten Metall beschichtet. Je länger sich der Gegenstand im Bad befindet und je höher der elektrische Strom ist, desto stärker wird die Metallschicht.More particularly, the present invention relates to electroplating, which is understood to mean the electrochemical deposition of metallic deposits (coatings) on articles. In this case, electricity is sent through an electrolytic bath. At the positive pole (anode) is the metal to be applied (e.g., copper or nickel), at the negative pole (cathode) is the object to be worked or refined. The electric current dissolves metal ions from the consumable electrode and deposits them by reduction on the substrate. As an alternative to the consumption anode, the use of an inert anode is also possible, the metal ions required for the galvanization then being made available, for example, by addition to the plating solution. In this way, the substrate to be treated is more or less uniformly coated with the metal used. The longer the object is in the bath and the higher the electrical current, the stronger the metal layer becomes.

Generell wird zwischen funktionaler und dekorativer Galvanotechnik unterschieden, und die vorliegende Erfindung ist insbesondere auf dem Gebiet der funktionellen Galvanotechnik anwendbar. Während die dekorative Galvanotechnik vorwiegend der Verschönerung von Gegenständen dient, wird die funktionale Galvanotechnik vorwiegend zum Korrosionsschutz, Verschleißschutz oder zur Katalyse sowie zur Veränderung bzw. Verbesserung der elektrischen Leitfähigkeit eingesetzt. Die vorliegende Erfindung ist dabei insbesondere auf dem Gebiet der Halbleitertechnologie geeignet für die in diesem Zusammenhang bekannten Verfahren zur strukturierten oder auch unstrukturierten Aufbringung elektrisch leitfähiger Schichten für die Kontaktierung, Umverdrahtung oder auch Verlötung mikroelektrischer Schaltkreise, ebenso zur strukturierten oder auch unstrukturierten Aufbringung funktioneller Schichten mit beispielsweise diffusionssperrenden, haftvermittelnden, katalytischen, sowie auch speziellen optischen, mechanischen, magnetischen oder wärmeleitenden Eigenschaften. Ebenso geeignet ist die vorliegende Erfindung auch für die galvanotechnische Herstellung von strukturierten Formeinsätzen (sog. Mastering) für die Abformung von Mikrobauteilen oder auch optischer Datenträger (CDs/DVDs), sowie für die elektrochemische Replikation.In general, a distinction is made between functional and decorative electroplating technology, and the present invention is particularly applicable in the field of functional electroplating technology. While the decorative electroplating technique mainly serves the beautification of objects, the functional electroplating technique is mainly used for corrosion protection, Wear protection or used for catalysis and to change or improve the electrical conductivity. The present invention is particularly suitable in the field of semiconductor technology for the known in this context, the method for structured or unstructured application of electrically conductive layers for contacting, rewiring or soldering microelectronic circuits, as well as the structured or unstructured application of functional layers with, for example diffusion-blocking, adhesion-promoting, catalytic, as well as special optical, mechanical, magnetic or heat-conducting properties. The present invention is also suitable for the electroplating of structured mold inserts (so-called mastering) for the molding of microcomponents or optical data carriers (CDs / DVDs), as well as for electrochemical replication.

Bei der erfindungsgemäß interessierenden elektrochemischen Variante der Galvanotechnik werden die Grundwerkstoffe (vorliegend Substrate genannt) einem elektrischen Feld ausgesetzt. Da ein elektrisches Feld sowie Strömungsbedingungen eines elektrolytischen Fluids sich nicht gleichmäßig einstellen, sondern insbesondere an unterschiedlich großen zu beschichtenden Strukturen sowie an den Rändern des Substrates unterschiedlich hohe Feldstärken bzw. Strömungen wirken, werden sich die abgeschiedenen Schichtstärken zu diesen Stellen unterschiedlich einstellen. Diese Inhomogenitäts-Effekte verstärken sich zusätzlich durch höher werdenden Feldstärken bzw. Flussraten, welche andererseits wiederum vorteilhaft wären zur Erreichung höherer Abscheideraten und damit höherer Durchsatzraten in der Produktion.In the case of the electrochemical variant of electroplating according to the invention, the base materials (called substrates in the present case) are exposed to an electric field. Since an electric field and flow conditions of an electrolytic fluid do not adjust uniformly, but act on differently sized structures to be coated as well as on the edges of the substrate different high field strengths or currents, the deposited layer thicknesses will be different for these locations. These inhomogeneity effects are further enhanced by higher field strengths or flow rates, which in turn would be advantageous for achieving higher deposition rates and thus higher throughput rates in production.

Die im Rahmen der vorliegenden Erfindung dargelegten Ausführungsformen sind grundsätzlich für eine große Bandbreite an Substraten unterschiedlicher Größe, Anzahl und Materialbeschaffenheit anwendbar. Aus Gründen der Übersichtlichkeit wird die vorliegende Erfindung jedoch am bevorzugten Beispiel der Behandlung von im Wesentlichen halbleitenden Substraten, sogenannten Wafern, dargelegt.The embodiments set forth in the context of the present invention are basically applicable to a wide range of substrates of different size, number and material quality. For the sake of clarity, however, the present invention is set forth in the preferred example of treating substantially semiconductive substrates, so-called wafers.

Der Bausatz zur Herstellung eines Prozessreaktors gemäß Hauptanspruch umfasst ein Reaktorgehäuse, das mit Fluid befüllbar ist und zwei Enden aufweist. Das Reaktorgehäuse ist derart ausgestaltet, dass es vom Fluid vom einen zum anderen Ende durchströmt wird. Ferner ist im Bereich der Ausströmung aus dem Reaktorgehäuse eine Einrichtung zur Aufnahme des Substrats/der Substrate vorzugs-weise derart angeordnet, dass sie relativ zum Reaktorgehäuse um dessen zentrale Längsachse rotieren kann. Der Prozessreaktor ist als sogenannter Überlaufreaktor ausgebildet. Dies bedeutet, dass das Fluid das Innere des Reaktorgehäuses wie z.B. vom unteren Ende zum oberen Ende durchströmt und über einen Überlauf verlässt, um von dort über einen Auffangbehälter mittels definierter Mittel wieder in das Reaktorgehäuse des Prozessreaktors zurückgeführt zu werden. Nach einer alternativ bevorzugten Ausführungsform kann das Reaktorgehäuse auch in jedem beliebigen Winkel schräg, horizontal oder auch umgedreht gestellt sein, so dass das Fluid anstatt von unten nach oben entsprechend auch in jedem beliebigen Winkel entsprechend der Reaktorneigung strömen kann. Nachfolgend wird die Erfindung am Beispiel der senkrechten Strömung von unten nach oben veranschaulicht, wobei ausdrücklich darauf hingewiesen wird, dass die einzelnen Elemente des erfindungsgemäßen Bausatzes vom Neigungswinkel des Reaktorgehäuses bzw. der Fluidströmung unabhängig sind und in beliebig geneigten Prozessreaktorgehäusen entsprechend anwendbar sind.The kit for producing a process reactor according to the main claim comprises a reactor housing which can be filled with fluid and has two ends. The reactor housing is designed such that it flows through the fluid from one end to the other. Furthermore, in the region of the outflow from the reactor housing, a device for receiving the substrate (s) is preferably arranged such that it can rotate relative to the reactor housing about its central longitudinal axis. The process reactor is designed as a so-called overflow reactor. This means that the fluid flows through the interior of the reactor housing, for example from the lower end to the upper end, and leaves via an overflow, from where it is returned to the reactor housing of the process reactor via a collecting vessel by means of defined means. According to an alternative preferred embodiment, the reactor housing can be made obliquely, horizontally or even reversed at any angle, so that the fluid can flow in accordance with the inclination of the reactor instead of from bottom to top in accordance with any angle. The invention is illustrated below using the example of the vertical flow from bottom to top, wherein it is expressly pointed out that the individual elements of the kit according to the invention are independent of the angle of inclination of the reactor housing or the fluid flow and are applicable accordingly in arbitrarily inclined process reactor housings.

Ferner umfasst der Prozessreaktor mindestens eine Anode mit einem positiven Potential, wohingegen sich das Substrat am Minuspol (Kathode) befindet und daher ein negatives Potential aufweist. Erfindungsgemäß besteht die Möglichkeit, die Polaritäten der beteiligten Elektroden zu wechseln. Dies bedeutet, dass die ursprüngliche Anode ein negatives Potential und die ursprüngliche Kathode ein positives Potential annehmen. Ferner ist die Einstellung unterschiedlicher Potentialgrößen denkbar.Furthermore, the process reactor comprises at least one anode with a positive potential, whereas the substrate is at the negative pole (cathode) and therefore has a negative potential. According to the invention, it is possible to change the polarities of the electrodes involved. This means that the original anode has a negative potential and the original cathode has a positive potential. Furthermore, the setting of different potential sizes is conceivable.

Im Stand der Technik sind sogenannte Überlaufprozessreaktoren bekannt, die ein Reaktorgehäuse umfassen, in dem eine Fluidströmung erzeugt wird. Das Fluid wird durch eine sich selbst auflösende Anode (Verbrauchselektrode) mit den gewünschten Metallionen angereichert, die aufgrund der Potentialunterschiede innerhalb des Prozessreaktors am zu beschichtenden Substrat abgeschieden werden und dort eine mehr oder weniger homogene, d.h. gleichmäßig starke Schicht ausbilden.In the prior art so-called overflow process reactors are known which comprise a reactor housing in which a fluid flow is generated. The fluid is enriched by a self-dissolving anode (consumable electrode) with the desired metal ions, which are deposited due to the potential differences within the process reactor on the substrate to be coated and there a more or less homogeneous, i. train equally strong layer.

Aus dem Stand der Technik ist auch die Verwendung sogenannter Inert-Anoden bekannt, die anstelle der sich auflösenden Verbrauchsanoden eingesetzt werden. Die für die Galvanisierung erforderlichen Metallionen werden dem Fluid in anderer Weise wie z.B. durch Zugabe bereitgestellt.From the prior art, the use of so-called inert anodes is known, which are used in place of the dissolving consumption anodes. The metal ions required for the galvanization are added to the fluid in some other way, e.g. provided by addition.

In der US 5,000,827 wird ein Prozessreaktor für das Aufbringen von Kontaktierungspunkten auf mikroelektrischen Schaltkreisen beschrieben. Dieser Reaktor umfasst ein Reaktorgehäuse, in dessen unteres Ende mittels einer Pumpe ein Fluid eingebracht wird. Aufgrund seiner Einleitung strömt das Fluid in Richtung des zu beschichtenden Substrats. Zwischen dem Substrat und dem oberen Ende des Reaktorgehäuses ist ein Abstand vorgesehen, so dass ein ringförmiger Spalt entsteht, der als Überlauf ausgebildet ist. Aufgrund der herkömmlichen Reaktortypen eigenen Strömungscharakteristik und der daraus resultierenden bzw. damit einhergehenden Ausprägung unterschiedlicher Feldstärken am Substrat entstehen üblicherweise und insbesondere in dessen Randbereichen Überhöhungen, da die dort vorliegenden Parameter der Galvanotechnik wie die Ionenkonzentration des Fluids oder der Widerstand eine Materialabscheidung in diesen Bereichen begünstigen. Die im Stand der Technik vorgestellte Vorrichtung beschreibt Mittel zur Verhinderung einer Anhäufung von Material in diesen Randbereichen, wodurch der Erhalt einer gleichmäßigen Schichtdicke ermöglicht werden soll. Insbesondere werden strömungsrelevante Maßnahmen vorgeschlagen, durch die insbesondere im Überlaufbereich eine andere Strömungsqualität erzeugt werden soll.In the US 5,000,827 describes a process reactor for the application of contact points on microelectric circuits. This reactor comprises a reactor housing, in the lower end of which a fluid is introduced by means of a pump. Due to its introduction, the fluid flows in the direction of the substrate to be coated. Between the substrate and the upper end of the reactor housing, a distance is provided, so that an annular gap is formed, which is formed as an overflow. Due to the conventional reactor types own flow characteristics and the resulting or the concomitant occurrence of different field strengths on the substrate usually arise and in particular in its edge areas elevations, since the present there parameters of electroplating such as the ion concentration of the fluid or the resistance favor a material deposition in these areas. The device presented in the prior art describes means for preventing accumulation of material in these edge regions, which is to enable obtaining a uniform layer thickness. In particular, flow-related measures are proposed by which, especially in the overflow area, a different flow quality is to be generated.

Ein Nachteil des Standes der Technik besteht darin, dass er sich auf die Bereitstellung starrer Vorrichtungen konzentriert, die ausschließlich für eine festgelegte Größe eines Substrates und nur eine galvanotechnische Anwendung anwendbar sind. Zur gewünschten Bearbeitung anders dimensionierter Substrate, die beispielsweise größer sind oder mehrere Elemente umfassen, muss daher ein anderer, in seinem Durchmesser größerer Reaktor bereitgestellt werden. Ferner lassen die im Stand der Technik bekannten Prozessreaktoren keine alternativen, bausatzähnlichen Ausbildungen zu, mit denen man den Reaktor einfach und flexibel hinsichtlich unterschiedlicher Anforderungen der möglichen Anwendungen konfigurieren kann.A disadvantage of the prior art is that it focuses on the provision of rigid devices that are applicable only to a fixed size of a substrate and only a galvanotechnische application. For the desired processing of differently dimensioned substrates, which are, for example, larger or comprise a plurality of elements, it is therefore necessary to provide another, larger diameter reactor. Furthermore, the process reactors known in the prior art do not allow for alternative, kit-like formations, with which one can configure the reactor easily and flexibly with respect to different requirements of the possible applications.

Die Aufgabe der Erfindung besteht daher in der Bereitstellung eines Bausatzes zur Herstellung eines Prozessreaktors für die Ausbildung metallischer Schichten auf einem oder mehreren Substraten, mit dem die erwähnten Nachteile des Standes der Technik überwunden werden.The object of the invention is therefore to provide a kit for the production of a process reactor for the formation of metallic layers on one or more substrates, with which the mentioned disadvantages of the prior art are overcome.

Zur Lösung der gestellten Aufgabe wird der erfindungsgemäße Bausatz gemäß Hauptanspruch bereitgestellt.To achieve the object, the kit according to the invention is provided according to the main claim.

Bevorzugte Ausführungsformen des Prozessreaktors sind in den Unteransprüchen sowie in der vorliegenden Beschreibung dargelegt.Preferred embodiments of the process reactor are set forth in the subclaims as well as in the present description.

Einer der wesentlichen Vorteile des erfindungsgemäßen Bausatzes besteht darin, dass er sowohl hinsichtlich der gewünschten Bearbeitungsart als auch hinsichtlich der Dimensionierung eines zu bearbeitenden Substrats vollständig und flexibel an die jeweils konkret beabsichtigte Anwendung angepasst werden kann. Vorliegend wird daher ein Prozessreaktor in einer definierten Größe, vorzugsweise in einer Standardgröße, vorgeschlagen, der durch einfache Maßnahmen optimiert werden kann, so dass unterschiedlich dimensionierte wie z.B. kleine, mittlere und große Substrate mit demselben Prozessreaktor bearbeitet werden können.One of the essential advantages of the kit according to the invention is that it can be completely and flexibly adapted to the particular intended application, both with regard to the desired type of processing and with respect to the dimensioning of a substrate to be processed. In the present case, therefore, a process reactor in a defined size, preferably in a standard size, proposed, which can be optimized by simple measures, so that differently dimensioned such. Small, medium and large substrates can be processed with the same process reactor.

Ein weiterer wesentlicher Vorteil der Erfindung besteht in der Ermöglichung homogener, d.h. uniformer Abscheidungen mit im Wesentlichen gleichmäßiger Schichtdicke auf den jeweiligen Substraten. Die hierfür auch alternativ oder in Kombination vorgesehenen Mittel des erfindungsgemäßen Prozessreaktors betreffen beispielsweise Strömungseinstelleinrichtungen zur Herbeiführung oder Kontrolle einer gezielten bzw. gerichteten Fluidströmung innerhalb des Reaktorgehäuses, als auch Feldeinstelleinrichtungen, mit denen das innerhalb des Reaktorgehäuses aufzubauende bzw. aufgebaute elektrische Feld kontrolliert oder beeinflusst bzw. optimiert werden kann. Ferner sind in bevorzugten Ausführungsformen Blenden vorgesehen, mit denen sowohl die Felder als auch die Strömungen abgeschattet werden können, so dass insbesondere im Randbereich des zu beschichtenden Substrats keine Überhöhungen der aufgetragenen Schicht eintritt. Die bevorzugte Verwendung von Ringelementen dient der ggf. gewünschten Verkleinerung des Innendurchmessers des standardisierten Prozessreaktors und ermöglicht damit dessen Anpassung an das zu beschichtende Substrat.Another important advantage of the invention is the possibility of homogeneous, ie uniform deposits with substantially uniform layer thickness on the respective substrates. The means of the process reactor according to the invention which are also provided for this purpose alternatively or in combination relate, for example, to flow control devices for establishing or controlling a directed or directed fluid flow within the reactor housing, as well as field adjusting devices with which the electric field to be established or constructed within the reactor housing is controlled or influenced. can be optimized. Furthermore, in preferred embodiments diaphragms are provided with which both the fields and the flows can be shaded so that, in particular, no elevations of the applied layer occur in the edge region of the substrate to be coated. The preferred use of ring elements is the possibly desired reduction of the inner diameter of the standardized process reactor and thus allows its adaptation to the substrate to be coated.

Weitere nachfolgend beschriebene Mittel dienen der weiteren oder alternativen Optimierung des Beschichtungsverfahrens. Sämtliche Mittel können in Abhängigkeit der konkreten Anwendung jeweils einzeln, mehrfach oder auch in Kombination miteinander sowie in Modulform eingesetzt werden.Other means described below serve the further or alternative optimization of the coating process. All means can be used individually, repeatedly or in combination with each other and in modular form, depending on the specific application.

Die erfindungsgemäß vorgesehenen Strömungseinstelleinrichtungen dienen dazu, die Strömung innerhalb des Reaktorgehäuses von dessen unteren (einen) Ende bis hin zum Substrat auszubilden oder zu beeinflussen. Ist beispielsweise während der Bearbeitung erkannt worden, dass in den Substratrandbereichen eine Anhäufung von Material stattfindet, die zu einer ungleichmäßigen Schichtdicke führen könnte, so kann die Strömung in diesen Bereichen gezielt verkleinert werden. Die Möglichkeit der variablen und flexiblen Einstellung der Strömung, die auf das Substrat trifft bzw. an dem Substrat vorbeigeführt wird, bietet Vorteile beim Anpassen des Reaktors an die unterschiedlichsten Anwendungen.The flow adjustment devices provided according to the invention serve to form or influence the flow within the reactor housing from its lower end (an) to the substrate. If, for example, it has been recognized during processing that an accumulation of material takes place in the substrate edge areas, which could lead to an uneven layer thickness, then the flow in these areas can be purposefully reduced. The ability to variably and flexibly adjust the flow that impinges on or passes the substrate offers advantages in adapting the reactor to a variety of applications.

Für die Einstellung der Strömung innerhalb des Prozessreaktors sind unterschiedliche Mittel vorgesehen, die erfindungsgemäß einzeln oder auch in Kombination sowohl in Einzahl als auch in Mehrzahl eingesetzt werden können. Diese Mittel haben die gemeinsame Eigenschaft, den Fluidstrom vom einen wie z.B. unteren Ende des Prozessreaktors zum anderen wie z.B. oberen Ende des Prozessreaktors zu beeinflussen. Die Änderungen des Fluidstroms (beispielsweise Volumen und/oder Geschwindigkeit) können einheitlich über den Querschnitt des Prozessreaktors und/oder einheitlich über dessen Längserstreckung erfolgen, oder der Fluidstrom kann derart beeinflusst werden, dass segmentweise, d.h. innerhalb definierter Bereiche über den Querschnitt und/oder in Längsrichtung unterschiedliche Parameter des Fluidstroms vorliegen.For the adjustment of the flow within the process reactor different means are provided, which can be used according to the invention individually or in combination both in singular and in a plurality. These agents have the common property of influencing the fluid flow from one end, for example, the lower end of the process reactor, to the other, such as, for example, the upper end of the process reactor. The changes in the fluid flow (for example volume and / or speed) may be uniform over the cross-section of the process reactor and / or uniformly over its longitudinal extent, or the fluid flow may be influenced such that segmentwise, ie within defined ranges over the Cross-section and / or longitudinal parameters of the fluid flow are present.

Ein bevorzugtes Mittel einer Strömungseinstelleinrichtung ist ein Diffusor. Der Diffusor ist scheibenartig ausgebildet und erstreckt sich vorzugsweise über den Querschnitt des Reaktorgehäuses. Der Diffusor hat die Eigenschaft, sowohl gerichtete als auch ungerichtete Strömung derart zu verändern, dass in Strömungsrichtung hinter dem Diffusor ein Fluidstrom entsteht, der nicht mehr richtungsorientiert ausgerichtet ist. Eine weitere alternative oder zusätzliche Eigenschaft des Diffusors besteht darin, dass man die Strömungsparameter (Volumen und/oder Geschwindigkeit) über den Querschnitt unterschiedlich gestalten kann.A preferred means of a flow adjuster is a diffuser. The diffuser is disc-shaped and preferably extends over the cross section of the reactor housing. The diffuser has the property of changing both directional and non-directional flow in such a way that, downstream of the diffuser, a fluid flow arises in the direction of flow which is no longer oriented in a direction-oriented manner. Another alternative or additional feature of the diffuser is that one can make the flow parameters (volume and / or velocity) different across the cross section.

Ein weiteres erfindungsgemäß bevorzugtes Mittel einer Strömungseinstelleinrichtung ist ein sogenanntes Düsenarray. Es handelt sich dabei um eine scheibenartige Ausbildung, die sich vorzugsweise über den Querschnitt des Prozessreaktors erstreckt. Über den Querschnitt des Arrays regelmäßig oder unregelmäßig verteilt sind eine oder mehrere Durchtrittsöffnungen mit jeweils gleichem oder unterschiedlichem Durchmesser vorgesehen. Die Achsen der Durchtrittsöffnungen stehen vorzugsweise senkrecht zum zu beschichtenden Substrat und sind damit parallel zur Längsachse des Reaktorgehäuses ausgerichtet.Another inventively preferred means of flow adjustment is a so-called nozzle array. It is a disk-like formation, which preferably extends over the cross section of the process reactor. Regularly or irregularly distributed over the cross-section of the array, one or more passage openings are provided, each with the same or different diameter. The axes of the passage openings are preferably perpendicular to the substrate to be coated and are thus aligned parallel to the longitudinal axis of the reactor housing.

In einer besonders bevorzugten Ausführungsform ist vorgesehen, dass die einzelnen Durchtrittsöffnungen geöffnet oder geschlossen werden können.In a particularly preferred embodiment, it is provided that the individual passage openings can be opened or closed.

Das Düsenarray gemäß Hauptanspruch weist die Eigenschaft auf, dass jede Durchtrittsöffnung mit anderen Parametern des Fluidstroms (Volumen und Geschwindigkeit) beaufschlagt werden kann.The nozzle array according to the main claim has the property that each passage opening with other parameters of the fluid flow (volume and speed) can be applied.

Eine weitere erfindungsgemäß bevorzugte Ausführungsform einer Strömungseinstelleinrichtung betrifft die Anordnung röhrenartiger bzw. ringröhrenartiger Ausbildungen in Längserstreckung des Reaktorgehäuses, wobei die einzelnen Ausbildungen unterschiedliche Querschnitte aufweisen. Auch aufgrund der innerhalb dieser Röhren stattfindenden Strömung können unterschiedliche Qualitäten an der Oberfläche des Substrates erzielt werden. Hervorgerufen wird dies durch die unterschiedlichen Geschwindigkeiten, die innerhalb der Röhren aufgrund ihrer unterschiedlichen Durchmesser erzielt werden können.A further preferred embodiment of a flow adjustment device according to the invention relates to the arrangement of tubular or annular tube-like formations in the longitudinal extent of the reactor housing, the individual formations having different cross sections. Also, due to the flow occurring within these tubes, different qualities can be achieved at the surface of the substrate. This is due to the different speeds that can be achieved within the tubes due to their different diameters.

Eine Ausführungsform sieht vor, die Röhren nebeneinander anzuordnen, so dass im Querschnitt gesehen eine Art Wabenkonstruktion entsteht. Eine weitere Ausführungsform sieht vor, dass die Röhren ineinander angeordnet sind und zwar angefangen von einem kleinen Durchmesser bis zu einem großen Durchmesser. Die Röhren können entweder achsgleich oder auch versetzt zueinander angeordnet werden. Vorzugsweise erstrecken sich die Röhren von dem unteren (einen) Ende des Prozessreaktors bis in den Bereich des oberen (anderen) Endes des Prozessreaktors.One embodiment provides for the tubes to be arranged next to one another so that, seen in cross-section, a type of honeycomb construction is created. Another embodiment provides that the tubes are arranged inside each other, starting from a small diameter to a large diameter. The tubes can be arranged either coaxially or offset to one another. Preferably, the tubes extend from the bottom (one) end of the process reactor to the region of the top (other) end of the process reactor.

Somit ist Sinn und Zweck der Strömungseinstelleinrichtung, die Strömung innerhalb des Reaktorgehäuses derart zu modulieren, dass eine Strömungscharakteristik entsteht, durch die eine weitgehend homogene bzw. gleichmäßige Stärke oder Dicke der Beschichtung sichergestellt werden kann. Die Modulierung kann derart ausgestaltet sein, dass bestimmte Bereiche des Substrats mit dem Fluidstrom unterschiedlich in Kontakt gelangen. Dadurch kann gezielt einer ungleichmäßigen Ablagerung an dem Substrat entgegengewirkt werden, so dass über die gesamte Längserstreckung des Substrats eine homogene, uniforme Schicht erzielt wird.Thus, the purpose of the flow adjustment device is to modulate the flow within the reactor housing in such a way that a flow characteristic is produced by which a substantially homogeneous or uniform thickness or thickness of the coating can be ensured. The modulation can be configured such that certain areas of the substrate come into different contact with the fluid flow. As a result, an uneven deposition on the substrate can be specifically counteracted so that a homogeneous, uniform layer is achieved over the entire longitudinal extension of the substrate.

Ferner umfasst die erfindungsgemäße Vorrichtung vorteilhafterweise Feldeinstelleinrichtungen. Innerhalb des Prozessreaktors wird zwischen dem einen z.B. unteren Ende und dem anderen z.B. oberen Ende des Reaktorgehäuses ein elektrisches Feld aufgebaut. In der Regel bildet das Substrat die Kathode, während die Anode im gegenüberliegenden Bereich des Reaktorgehäuses angeordnet ist.Furthermore, the device according to the invention advantageously comprises field setting devices. Within the process reactor, between the one e.g. lower end and the other e.g. constructed an electric field at the upper end of the reactor housing. In general, the substrate forms the cathode, while the anode is arranged in the opposite region of the reactor housing.

Das innerhalb des Reaktorgehäuses bestehende elektrische Feld kann beispielsweise durch eine oder mehrere innerhalb des Reaktorgehäuses angeordnete Feldeinstelleinrichtungen wie z.B. durch Hilfselektroden eingestellt oder kontrolliert bzw. geändert werden. Der vorliegend verwendete Begriff der "Hilfselektrode" ist als Überbegriff für Hilfsanode und Hilfskathode zu verstehen, wobei eine Hilfsanode durch ein positives und eine Hilfskathode durch ein negatives Potential gekennzeichnet sind.The electric field existing within the reactor housing may be defined, for example, by one or more field adjusters located within the reactor housing, e.g. be adjusted by auxiliary electrodes or controlled or changed. The term "auxiliary electrode" used herein is to be understood as an umbrella term for auxiliary anode and auxiliary cathode, wherein an auxiliary anode is characterized by a positive and an auxiliary cathode by a negative potential.

Die Verwendung von Hilfselektroden innerhalb des Reaktorgehäuses, die vorzugsweise an beliebigen Stellen in das Gehäuse eingebracht und/oder verschiebbar angeordnet sind, unterstützt die Herbeiführung der erfindungsgemäß verfolgten gleichmäßigen Beschichtung. Die Position einer oder mehrerer Hilfselektroden kann sich über den gesamten Querschnitt des Prozessreaktorgehäuses erstrecken. In der Regel wird als Hilfsanode eine beschichtete Elektrode eingesetzt, so dass Anlagerungen an dieser vermieden werden.The use of auxiliary electrodes within the reactor housing, which are preferably introduced into the housing at any position and / or arranged displaceably, supports the production of the uniform coating pursued according to the invention. The position of one or more auxiliary electrodes may extend over the entire cross section of the process reactor housing. As a rule, a coated electrode is used as auxiliary anode, so that deposits are avoided on this.

Alternative bevorzugte Ausführungsformen betreffen den Einsatz sogenannter Anodenarrays. Dabei handelt es sich um segmentierte Hilfsanoden, die sich über den gesamten Querschnitt des Prozessreaktors erstrecken, wobei jede einzelne Hilfsanode mit einem jeweiligen Potential belegt werden kann. Die Segmentierung ermöglicht den Erhalt unterschiedlicher Feldstärken und unterschiedlicher Potentiale, wodurch die Verfahrensweise weiter optimiert werden kann. Zudem befinden sich in dem Anodenarray Durchtrittsöffnungen, die es erlauben, dass der Fluidstrom vom einen Ende zum anderen Ende des Prozessreaktors gelangen kann. Alternativ ist auch vorgesehen, die Hilfsanoden entweder teilweise oder vollständig durch Hilfskathoden zu ersetzen.Alternative preferred embodiments relate to the use of so-called anode arrays. These are segmented auxiliary anodes, which extend over the entire cross section of the process reactor, with each individual auxiliary anode can be assigned to a respective potential. The segmentation makes it possible to obtain different field strengths and different potentials, whereby the procedure can be further optimized. In addition, passages are provided in the anode array, which allow the fluid flow to pass from one end to the other end of the process reactor. Alternatively, it is also provided to replace the auxiliary anodes either partially or completely by auxiliary cathodes.

Eine besonders bevorzugte Ausführungsform sieht vor, dass insbesondere im Austritts- bzw. Überlaufbereich Hilfselektroden vorgesehen sind. Durch diese Anordnung wird ein elektrisches Feld erzeugt, mit dessen Hilfe in Abhängigkeit des gewählten Potentials eine Anhäufung abgeschiedener Metallionen, insbesondere im Randbereich, vermieden oder gefördert werden kann.A particularly preferred embodiment provides that auxiliary electrodes are provided, in particular in the outlet or overflow region. By this arrangement, an electric field is generated, with the help of which, depending on the selected potential, an accumulation of deposited metal ions, in particular in the edge region, can be avoided or promoted.

Eine weitere alternative Ausführungsform sieht vor, dass die Hilfselektroden ggf. zusätzlich an Blendrohren angeordnet werden können, die ringförmig in dem Reaktorgehäuse positionierbar sind. Dabei sind die Hilfselektroden am oberen Ende des Reaktorgehäuses wie vorzugsweise im Bereich des Überlaufs und auf der gegenüberliegenden Seite, nämlich in der Aufnahmeeinrichtung für das Substrat angeordnet. Auch hier kann das gewünschte Potential in Abhängigkeit des angestrebten Ergebnisses gezielt ausgewählt werden.A further alternative embodiment provides that the auxiliary electrodes may, if appropriate, additionally be arranged on baffles, which can be positioned annularly in the reactor housing. In this case, the auxiliary electrodes are arranged at the upper end of the reactor housing, preferably in the region of the overflow and on the opposite side, namely in the receiving device for the substrate. Again, the desired potential can be selected depending on the desired result targeted.

Eine besonders bevorzugte Ausführungsform betrifft die kombinierte Verwendung von Düsenarray und Anodenarray. Dabei werden die bei einem Anodenarray vorgesehenen Durchtrittsöffnungen einzeln mit definierten Parametern eines Fluidstroms angesteuert.A particularly preferred embodiment relates to the combined use of nozzle array and anode array. In this case, the passage openings provided in the case of an anode array are individually controlled with defined parameters of a fluid flow.

Die Entstehung der gewünschten Produkteigenschaften kann durch erfindungsgemäß vorgeschlagene Blenden zur selektiven Abschattung innerhalb der aufgebauten Strömung bzw. des elektrischen Feldes positiv beeinflusst werden.The formation of the desired product properties can be positively influenced by inventively proposed diaphragms for selective shading within the established flow or the electric field.

Sofern ein in seinen Abmaßen gegenüber einer Standardgröße kleineres Substrat oder ein Substrat, dessen zu beschichtende Strukturen nur partiell über das Substrat verteilt sind, bearbeitet werden soll, so können zur Verkleinerung des inneren Durchmessers des Reaktorgehäuses die vorliegend genannten Ringelemente und/oder sogenannte Blendrohre eingesetzt werden. Durch diese Maßnahme wird in Bezug auf das Substrat wieder eine selektive Abschattung des elektrischen Feldes und der Strömung bewirkt.If a smaller in size than a standard size substrate or a substrate, the structures to be coated are only partially distributed over the substrate to be processed, then the presently mentioned ring elements and / or so-called Blendrohre can be used to reduce the inner diameter of the reactor housing , By this measure, a selective shading of the electric field and the flow is again effected with respect to the substrate.

Eine weitere vorteilhafte Ausführung des Reaktorgehäuses sieht vor, dass in Strömungsrichtung, d.h. in Richtung des zu beschichtenden Substrats eine Blende angeordnet ist. Diese Blende ist unmittelbar an dem Substrat bzw. an der Aufnahmeeinrichtung für das Substrat befestigt. Sie dient dazu, die zwischen Anode und Kathode aufgebauten Feldlinien auszublenden, so dass eine ungleichmäßige Beschichtung verhindert bzw. eine Uniformität der Beschichtung herbeigeführt werden kann. Die als Flat-Blende bezeichnete Blende dient insbesondere dem Ausgleich eventueller Asymmetrien des Substrats, wie sie beispielsweise bei einem Waferflat angetroffen werden.A further advantageous embodiment of the reactor housing provides that in the flow direction, i. in the direction of the substrate to be coated, a diaphragm is arranged. This diaphragm is attached directly to the substrate or to the receiving device for the substrate. It serves to hide the field lines built up between anode and cathode, so that an uneven coating can be prevented or a uniformity of the coating can be brought about. The diaphragm, referred to as a flat diaphragm, serves, in particular, to compensate for any asymmetries of the substrate, as encountered, for example, in the case of a wafer flat.

Um den Innendurchmesser des Reaktorgehäuses zu verkleinern oder zu vergrößern, sind erfindungsgemäß Ringsegmente vorgesehen, die in ihrer Höhe bzw. Länge nur einen Teil des Innenraumes des Reaktorgehäuses einnehmen und deren Innendurchmesser geringer ist als derjenige des Reaktorgehäuses. Durch diese Mittel kann der Innenraum des Reaktorgehäuses segmentartig verkleinert werden, wobei diese Verkleinerung sowohl stufenartig als auch homogen über die gesamte Längserstreckung gleich oder unterschiedlich ausgebildet werden kann. Ferner bietet die segmentartige Ausbildung den Vorteil, dass nach Einlegen der jeweiligen Segmente weitere Hilfselemente wie beispielsweise Hilfsanoden oder Hilfskathoden oder aber auch Diffusoren angeordnet bzw. eingelegt werden können. Auch diese Ausführungen zeigen, dass mit dem erfindungsgemäßen Bausatz unterschiedlichsten Anforderungen auf hohem Qualitätsniveau reproduzierbar entsprochen werden kann, ohne dass der Grundkörper der erfindungsgemäßen Vorrichtung ausgetauscht oder gewechselt werden muss.In order to reduce or enlarge the inner diameter of the reactor housing ring segments are provided according to the invention, which take in their height or length only part of the interior of the reactor housing and the inner diameter is smaller than that of the reactor housing. By means of this, the interior of the reactor housing can be reduced in a segment-like manner, wherein this reduction can be formed in the same way or differently both stepwise and homogeneously over the entire longitudinal extent. Furthermore, the segment-like design offers the advantage that after inserting the respective segments further auxiliary elements such as auxiliary anodes or auxiliary cathodes or even diffusers arranged or inserted can be. These embodiments also show that the kit according to the invention can meet a wide variety of requirements at a high quality level in a reproducible manner, without having to exchange or replace the main body of the device according to the invention.

Vorteilhafterweise ist ferner ein Regelkreis vorgesehen und vorzugsweise derart ausgebildet, dass die Schichtdicke während des Beschichtungsprozesses gewünschtenfalls kontinuierlich gemessen werden kann, wodurch eventuell auftretende Unregelmäßigkeiten detektiert und Regelfunktionen ausgelöst werden können, durch welche die Strömungseinstelleinrichtungen und/oder die Feldsteuerungseinrichtungen den Anforderungen entsprechend aktiviert, deaktiviert oder in sonstiger Weise geregelt werden können. Alternativ kann der Regelkreis auch so ausgebildet werden, dass das Beschichtungsergebnis nach der erfolgten Abscheidung separat gemessen wird und aufgrund des Messergebnisses die oben beschriebenen Regelfunktionen für die nachfolgende Beschichtung ausgelöst oder eingestellt werden.Advantageously, a control circuit is further provided and preferably designed such that the layer thickness during the coating process, if desired, can be measured continuously, whereby any irregularities detected and control functions can be triggered by which the flow setting and / or the field control devices according to the requirements activated, deactivated or can be regulated in any other way. Alternatively, the control loop can also be designed so that the coating result is measured separately after the deposition has taken place and, based on the measurement result, the control functions described above for the subsequent coating are triggered or adjusted.

Eine andere alternative Ausführungsform sieht vor, dass anstelle eines Überlaufbereiches ein Fluidkanal vorgesehen ist, so dass das Fluid nur an einer bestimmten Stelle austreten kann. Durch die Rotation des Substrats gegenüber dem Reaktorgehäuse wird eine gleichmäßige Verteilung erreicht, und die in dem Fluidkanal bevorzugt angeordnete Hilfsanode trägt dazu bei, dass eine Anhäufung von Material insbesondere in den Randbereichen des Substrats vermieden wird.Another alternative embodiment provides that, instead of an overflow region, a fluid channel is provided so that the fluid can only escape at a certain point. Due to the rotation of the substrate relative to the reactor housing, a uniform distribution is achieved, and the auxiliary anode preferably arranged in the fluid channel contributes to avoiding an accumulation of material, in particular in the edge regions of the substrate.

Eine weitere bevorzugte Ausführungsform betrifft die Ausstattung des Reaktorgehäuses mit einer Verstelleinrichtung, durch welche der Abstand des Substrates zum Reaktorgehäuse geregelt werden kann.A further preferred embodiment relates to the equipment of the reactor housing with an adjusting device, by which the distance of the substrate to the reactor housing can be controlled.

Nach einer weiteren bevorzugten Ausführungsform kann die mindestens eine Anode (Hilfsanode) orthogonal zu dem zu beschichtenden Substrat rotieren. Die zuvor beschriebenen Blenden können entweder mit rotieren oder sind feststehend.According to another preferred embodiment, the at least one anode (auxiliary anode) can rotate orthogonally to the substrate to be coated. The apertures described above can either rotate with or are fixed.

Ein bevorzugt vorgesehener Schnellspannverschluss erlaubt ein schnelles Austauschen der ein Substrat aufweisenden Aufnahmeeinrichtung, so dass die Prozesszyklen entsprechend verkürzt werden können. Vorteilhafterweise werden die Substrate hierfür bereits außerhalb des Prozessreaktors auf bzw. an der Aufnahmeeinrichtung fixiert, so dass eine kontinuierliche Prozessierung durch den einfachen Austausch entsprechend beladener Aufnahmeeinrichtungen mit äußerst niedrigen Taktzeiten sichergestellt werden kann.A preferably provided quick-release closure allows a rapid replacement of the substrate having a receiving device, so that the process cycles can be shortened accordingly. Advantageously, the substrates for this are already fixed outside of the process reactor on or on the receiving device, so that a continuous processing can be ensured by the simple replacement of correspondingly loaded recording devices with extremely low cycle times.

Weitere vorteilhafte Ausgestaltungen gehen aus der nachfolgenden Beschreibung, den Zeichnungen sowie den Ansprüchen hervor.Further advantageous embodiments will become apparent from the following description, the drawings and the claims.

Zeichnungendrawings

Es zeigen:

Fig. 1
eine schematische Darstellung eines Prozessreaktors mit erfindungsgemäßen Bauelementen;
Fig. 2
eine schematische Darstellung eines Prozessreaktors, im Wesentlichen bestehend aus Hilfselektrode und Diffusor;
Fig. 3
eine weitere Ausführungsform des Prozessreaktors mit Blendrohren;
Fig. 4
ein weiteres Ausführungsbeispiel einer Ausbildung eines Prozessreaktors mit einem ausgebildeten Fluidkanal im Bereich des Überlaufs;
Fig. 5
eine weitere alternative Ausführung des Prozessreaktors mit einer alternativen Überlauf- einrichtung und im Überlaufbereich angeordneten Hilfselektroden;
Fig. 6
eine schematische Darstellung eines Düsenarrays in Draufsicht;
Fig. 7A
eine schematische Darstellung eines Anodenarrays in Draufsicht;
Fig. 7B
eine schematische Darstellung der Anordnung des Anodenarrays gemäß Fig. 7A in einem Prozessreaktor (nur teilweise dargestellt), im Schnitt;
Fig. 8A
eine schematische Darstellung eines Ausführungs- beispiels eines Prozessreaktors mit einer Ausführung einer Strömungseinstelleinrichtung;
Fig. 8B
eine schematische Draufsicht auf die Strömungs- einstelleinrichtung gemäß Fig. 8A;
Fig. 9
eine schematische Darstellung eines Prozessreaktors mit einer Flat-Blende, die im Bereich des Substrats angeordnet ist.
Show it:
Fig. 1
a schematic representation of a process reactor with components according to the invention;
Fig. 2
a schematic representation of a process reactor, consisting essentially of auxiliary electrode and diffuser;
Fig. 3
a further embodiment of the process reactor with glare tubes;
Fig. 4
a further embodiment of an embodiment of a process reactor with a formed fluid channel in the region of the overflow;
Fig. 5
a further alternative embodiment of the process reactor with an alternative overflow device and arranged in the overflow area auxiliary electrodes;
Fig. 6
a schematic representation of a nozzle array in plan view;
Fig. 7A
a schematic representation of an anode array in plan view;
Fig. 7B
a schematic representation of the arrangement of the anode array according to Fig. 7A in a process reactor (only partially shown), in section;
Fig. 8A
a schematic representation of an embodiment of a process reactor with an embodiment of a flow adjustment;
Fig. 8B
a schematic plan view of the flow adjusting according to Fig. 8A ;
Fig. 9
a schematic representation of a process reactor with a flat diaphragm, which is arranged in the region of the substrate.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Fig. 1 ist eine Standardausführung eines Prozessreaktors 1 gezeigt. In der Regel umfasst der Prozessreaktor 1 zur Beschichtung eines Substrates 2 ein Reaktorgehäuse 3. Das Reaktorgehäuse 3 weist ein oberes Ende 4 und ein unteres Ende 5 auf. Auf der dem unteren Ende 5 gegenüberliegenden Seite ist eine Einrichtung 6 zur Aufnahme des Substrats 2 vorgesehen. Die Aufnahmeeinrichtung 6 rotiert bei dem hier dargestellten Ausführungsbeispiel gegenüber dem feststehenden Reaktorgehäuse 3 um seine Längsachse. Die Aufnahmeeinrichtung 6 ist im Bereich des oberen Endes 4 gegenüber dem Reaktorgehäuse 3 derart angeordnet, dass ein Abstand 7 entsteht, der einen Überlauf 8 bildet. Der Überlauf 8 wird von einem Fluid F, das innerhalb des Reaktorgehäuses 3 in Strömung versetzt wird, in Pfeilrichtung 9 überströmt. Das überströmende Fluid F gelangt in einen das Reaktorgehäuse 3 zumindest teilweise umgebenden Auffangbehälter 10, wo es durch entsprechende Mittel 11 wieder in das Reaktorgehäuse 3 zurückgeführt wird. Eine Pumpe 12 sorgt dafür, dass der Kreislauf in Pfeilrichtung 9 erhalten bleibt. Zwischen der Pumpe 12 und dem unteren Ende 5 des Reaktorgehäuses 3 ist eine Zuleitung 13 vorgesehen. Der untere Bereich 5 kann jedoch auch anders ausgestaltet sein. Beispielsweise kann vorgesehen werden, dass der untere Bereich 5 trichterförmig ausgebildet ist, wobei der Trichter sich zu den Wandungen des Reaktorgehäuses 3 hin aufweitet.In Fig. 1 a standard version of a process reactor 1 is shown. As a rule, the process reactor 1 for coating a substrate 2 comprises a reactor housing 3. The reactor housing 3 has an upper end 4 and a lower end 5. On the opposite side of the lower end 5, a device 6 for receiving the substrate 2 is provided. The receiving device 6 rotates in the embodiment shown here with respect to the fixed reactor housing 3 about its longitudinal axis. The Receiving device 6 is arranged in the region of the upper end 4 relative to the reactor housing 3 such that a distance 7 is formed which forms an overflow 8. The overflow 8 is overflowed in the direction of arrow 9 by a fluid F, which is caused to flow within the reactor housing 3. The overflowing fluid F passes into a collecting container 10 which at least partially surrounds the reactor housing 3, where it is returned by appropriate means 11 back into the reactor housing 3. A pump 12 ensures that the circuit is maintained in the direction of arrow 9. Between the pump 12 and the lower end 5 of the reactor housing 3, a supply line 13 is provided. However, the lower region 5 can also be designed differently. For example, it can be provided that the lower region 5 is funnel-shaped, wherein the funnel widens toward the walls of the reactor housing 3.

Ferner ist eine Stromversorgung 14 vorgesehen, mit der die eine Anode 15 sowie das zu beschichtende Substrat 2 (als Kathode) mit einem Potential beaufschlagt werden.Furthermore, a power supply 14 is provided, with which the one anode 15 and the substrate 2 to be coated (as the cathode) are subjected to a potential.

Die Anode 15 kann unterschiedlich ausgestaltet sein; beispielsweise kann es eine Inert-Anode sein oder aber auch eine sich auflösende Anode, wobei eine solche Verbrauchselektrode in regelmäßigen Abständen erneuert werden muss.The anode 15 can be configured differently; For example, it may be an inert anode or even a dissolving anode, such a consumption electrode must be renewed at regular intervals.

Der erfindungsgemäße Bausatz sieht zur Optimierung der Beschichtung des Substrats 2 wahlweise mindestens ein der nachstehenden Bauelemente in Ein- oder auch Mehrzahl, gewünschtenfalls auch in Kombination vor:

  • eine Strömungseinstelleinrichtung S,
  • eine Feldeinstelleinrichtung E,
  • mindestens eine Hilfselektrode H,
  • mindestens ein Ringelement R,
  • mindestens eine Blende B.
In order to optimize the coating of the substrate 2, the kit according to the invention optionally provides at least one of the following components in one or even a plurality, if desired also in combination:
  • a flow adjuster S,
  • a field setting device E,
  • at least one auxiliary electrode H,
  • at least one ring element R,
  • at least one aperture B.

Nachfolgend werden die einzeln ausgewählten Bauelemente und Kombinationen derselben anhand unterschiedlicher nichtbeschränkender Ausführungsbeispiele beschrieben. Dabei dient der in Fig. 1 als Prozessreaktor 1 dargestellte standardisierte Reaktortyp als Grundmuster.Hereinafter, the individually selected components and combinations thereof will be described with reference to various non-limiting embodiments. It serves the in Fig. 1 as a process reactor 1 illustrated standardized reactor type as a basic pattern.

In Fig. 1 ist zusätzlich zu dem Grundmuster mindestens ein als Strömungseinstelleinrichtung S und Feldeinstelleinrichtung E definiertes Ringelement R vorgesehen. Ein solches bereits zuvor erwähntes Ringelement R dient der Verkleinerung des Innendurchmessers 3i des Reaktorgehäuses 3. Vorzugsweise werden mehrere Segmente von Ringelementen R in den Innenraum des Reaktorgehäuses 3 eingelegt. Dadurch verringert sich der Innenraum von dem ursprünglichen Innendurchmesser 3i auf den Innendurchmesser Ri, der durch den Innendurchmesser des kleinsten Ringelements R vorgegeben ist. Dadurch wird der Innenraum des Reaktorgehäuses 3 segmentartig verkleinert, wobei diese Verkleinerung sowohl stufenartig als auch homogen über die gesamte Längserstreckung gleich oder unterschiedlich ausgebildet sein kann. Zwischen die einzelnen Ringelemente R kann eine Strömungseinstelleinrichtung S, beispielsweise ein Diffusor oder aber auch andere gewünschte Mittel wie z.B. eine Hilfselektrode, ein Anodenarray und/oder ein Düsenarray eingelegt werden.In Fig. 1 In addition to the basic pattern, at least one ring element R defined as a flow setting device S and a field setting device E is provided. Such a previously mentioned ring element R is used to reduce the inner diameter 3 i of the reactor housing 3. Preferably, a plurality of segments of ring elements R are inserted into the interior of the reactor housing 3. As a result, the interior of the original inner diameter 3 i is reduced to the inner diameter R i , which is predetermined by the inner diameter of the smallest ring element R. As a result, the interior of the reactor housing 3 is reduced in a segment-like manner, wherein this reduction can be designed to be the same or different both stepwise and homogeneously over the entire longitudinal extent. Between the individual ring elements R, a flow adjustment device S, for example a diffuser or other desired means such as an auxiliary electrode, an anode array and / or a nozzle array can be inserted.

In Fig. 2 ist zusätzlich zu dem Grundmuster mindestens eine als Feldeinstelleinrichtung E definierte Hilfsanode 16 vorgesehen. Diese in den Zeichnungen nur schematisch dargestellte Hilfsanode 16 weist Durchtrittsöffnungen auf, durch die Fluid F (Pfeile 17) hindurchtreten kann. Das Fluid F strömt somit von der Anode 15 durch Durchtrittsöffnungen der Hilfsanode 16 in Richtung Substrat 2.In Fig. 2 In addition to the basic pattern, at least one auxiliary anode 16 defined as a field setting device E is provided. This auxiliary anode 16, which is shown only schematically in the drawings, has passage openings through which fluid F (arrows 17) can pass. The fluid F thus flows from the anode 15 through passage openings of the auxiliary anode 16 in the direction of the substrate 2.

Bei dem hier dargestellten Ausführungsbeispiel weist das Substrat 2 ein negatives Potential auf und bildet somit die Kathode.In the embodiment shown here, the substrate 2 has a negative potential and thus forms the cathode.

Die Hilfsanode 16 kann derart ausgebildet sein, dass der Querschnitt der vorzugsweise scheibenartig ausgebildeten Hilfsanode 16 segmentiert ist, wobei Segmente mit positivem Potential (Anode) und Segmente mit Durchtrittsöffnungen vorgesehen sind. Die Anzahl, die Anordnung sowie die Belegung mit unterschiedlichen Parametern sind abhängig vom gewünschten Beschichtungsergebnis. Auch die Durchtrittsöffnungen können entweder mit einheitlichen oder unterschiedlichen Fluidströmen beaufschlagt werden.The auxiliary anode 16 may be formed such that the cross section of the preferably disk-like auxiliary anode 16 is segmented, wherein segments with positive potential (anode) and segments are provided with openings. The number, the arrangement and the assignment with different parameters depend on the desired coating result. The passage openings can be acted upon either with uniform or different fluid flows.

Ferner ist bei dem hier dargestellten Ausführungsbeispiel ein als Strömungseinstelleinrichtung S definierter Diffusor 19 vorgesehen. Er ist im unteren Bereich 5 des Reaktorgehäuses 3 angeordnet und sorgt dafür, dass in Strömungsrichtung hinter ihm eine über den Querschnitt des Reaktorgehäuses gleichmäßig verteilte Strömung ausgebildet wird.Furthermore, in the exemplary embodiment illustrated here, a diffuser 19 defined as a flow setting device S is provided. It is arranged in the lower region 5 of the reactor housing 3 and ensures that a flow distributed uniformly over the cross-section of the reactor housing is formed in the flow direction behind it.

Eine Weiterbildung der Hilfsanode 16 sieht vor, dass sie innerhalb des Reaktorgehäuses 3 in und gegen die Pfeilrichtung 18 positionierbar ist.A development of the auxiliary anode 16 provides that it can be positioned within the reactor housing 3 in and against the arrow 18 direction.

In Fig. 3 ist zusätzlich zu dem Grundmuster mindestens ein als Strömungseinstelleinrichtung S und Feldeinstelleinrichtung E definiertes Blendrohr 20 vorgesehen. In Fig. 3 ist ein Ausführungsbeispiel gezeigt, bei dem das zu bearbeitende Substrat 2 in seinen Abmessungen kleiner ist als der Durchmesser des Reaktorgehäuses 3. Durch Einführen eines zylinderförmigen Blendrohres 20 wird der für das strömende Fluid innerhalb des Reaktorgehäuses 3 relevante Durchmesser auf die gewünschte Größe gebracht. Vorzugsweise sind an den freien, zu dem Substrat 2 hinweisenden Enden der Blendrohre 20 Hilfselektroden 21 vorgesehen. Bei einer weiterbildung können zusätzliche Hilfselektroden 26 auf der gegenüberliegenden Seite an der Aufnahmeeinrichtung 6 angeordnet sein. Durch Erzeugung eines elektrischen Feldes zwischen den Hilfselektroden 21 wird erreicht, dass insbesondere in den Randbereichen des Substrats 2 keine Materialanhäufung stattfindet und so gleichförmig beschichtete Substrate 2 erzeugt werden können. Die Hilfselektroden 21 weisen bei dieser Ausführungsform vorzugsweise ein negatives Potential auf, weshalb sie auch als Hilfskathoden bezeichnet werden können.In Fig. 3 In addition to the basic pattern, at least one dazzling tube 20 defined as a flow setting device S and a field setting device E is provided. In Fig. 3 an embodiment is shown in which the substrate to be processed 2 in its dimensions is smaller than the diameter of the reactor housing 3. By introducing a cylindrical baffle tube 20, the relevant for the flowing fluid within the reactor housing 3 diameter is brought to the desired size. Preferably, auxiliary electrodes 21 are provided on the free ends of the blending tubes 20 pointing toward the substrate 2. In a further education can additional auxiliary electrodes 26 may be disposed on the receiving device 6 on the opposite side. By generating an electric field between the auxiliary electrodes 21, it is achieved that in particular in the edge regions of the substrate 2 no material accumulation takes place and so uniformly coated substrates 2 can be produced. The auxiliary electrodes 21 in this embodiment preferably have a negative potential, which is why they can also be referred to as auxiliary cathodes.

In Fig. 4 ist eine weitere Abwandlung des Grundmusters dargestellt. Sie umfasst einen als Strömungseinstelleinrichtung S definierten Fluidkanal 22. Im Gegensatz zur Fig. 1 ist bei dem hier vorgesehenen Ausführungsbeispiel kein umlaufender Überlauf 8 im Bereich des oberen Endes 4 des Reaktorgehäuses 3 vorgesehen. Bei dem hier aufgezeigten Ausführungsbeispiel des Prozessreaktors 1 ist ein Fluidkanal 22 ausgebildet, der vorzugsweise nur in einer Richtung radial nach außen hin eine fluidmäßige Verbindung zwischen dem Inneren des Reaktorgehäuses 3 und dem Auffangbehälter 10 herstellt. Auch hier ist im Bereich des Überlaufs 8 innerhalb des Fluidkanals 22 mindestens eine Hilfselektrode 23 vorgesehen, wobei die Anordnung zwei sich jeweils gegenüberliegender Hilfselektroden 23 besonders bevorzugt ist. Durch Erzeugung eines elektrischen Feldes zwischen den Hilfselektroden 23 wird erreicht, dass insbesondere in den Randbereichen des Substrats 2 keine Materialanhäufung stattfindet und Substrate 2 mit im Wesentlichen gleichförmiger Beschichtung erzeugt werden können. Die Hilfselektroden 23 weisen dabei vorzugsweise ein negatives Potential auf, weshalb sie auch als Hilfskathoden bezeichnet werden können.In Fig. 4 a further modification of the basic pattern is shown. It comprises a fluid channel 22 defined as flow setting means S. In contrast to Fig. 1 is in the embodiment provided here, no circumferential overflow 8 in the region of the upper end 4 of the reactor housing 3 is provided. In the exemplary embodiment of the process reactor 1 shown here, a fluid channel 22 is formed, which preferably produces a fluid connection between the interior of the reactor housing 3 and the collecting container 10 in a radially outward direction only. Again, at least one auxiliary electrode 23 is provided in the region of the overflow 8 within the fluid channel 22, wherein the arrangement of two respectively opposing auxiliary electrodes 23 is particularly preferred. By generating an electric field between the auxiliary electrodes 23 it is achieved that in particular in the edge regions of the substrate 2 no material accumulation takes place and substrates 2 can be produced with a substantially uniform coating. The auxiliary electrodes 23 preferably have a negative potential, which is why they can also be referred to as auxiliary cathodes.

Fig. 5 zeigt eine weitere alternative Ausführung des definierten Grundmusters des Prozessreaktors 1. Im Gegensatz zu den Figuren 1 bis 3 verläuft die Strömungsrichtung des Fluids F innerhalb des Reaktorgehäuses 3 nicht zunächst senkrecht nach oben und dann parallel zum Substrat 2, sondern die Strömung verläuft gleichbleibend in Längserstreckung des Reaktorgehäuses 3. Hierfür sind seitlich an der Aufnahmeeinrichtung 6 eine oder mehrere Durchtrittsöffnungen 24 oder eine ringförmige Durchtrittsöffnung 24 vorgesehen. Vorteilhafterweise sind in den Bereichen der Durchtrittsöffnung 24 Hilfselektroden 25 vorgesehen. Die Hilfselektroden 25 oder weitere Hilfselektroden können auch in der Aufnahmeeinrichtung 6 angeordnet sein. Fig. 5 shows a further alternative embodiment of the defined basic pattern of the process reactor 1. In contrast to the FIGS. 1 to 3 runs the flow direction of the Fluid F within the reactor housing 3 is not initially perpendicular to the top and then parallel to the substrate 2, but the flow is constant in the longitudinal extension of the reactor housing 3. For this purpose, one or more passage openings 24 or an annular passage opening 24 are provided laterally on the receiving device 6. Advantageously, 24 auxiliary electrodes 25 are provided in the areas of the passage opening. The auxiliary electrodes 25 or further auxiliary electrodes can also be arranged in the receiving device 6.

In Fig. 6 ist als Strömungseinstelleinrichtung S ein definiertes Düsenarray 30 vorgesehen. Das Düsenarray 30 ist vorzugsweise scheibenförmig ausgestaltet und derart bemessen, dass es sich über den gesamten Querschnitt des Reaktorgehäuses 3 erstreckt. Es kann an jeder beliebigen Stelle des Reaktorgehäuses 3 angeordnet werden.In Fig. 6 is as Strömungseinstelleinrichtung S a defined nozzle array 30 is provided. The nozzle array 30 is preferably designed disk-shaped and dimensioned so that it extends over the entire cross-section of the reactor housing 3. It can be arranged at any point of the reactor housing 3.

Ein bevorzugtes Ausführungsbeispiel dieses Düsenarrays 30 sieht vor, dass auf der scheibenartigen Ausbildung eine Vielzahl von Durchtrittsöffnungen 31 vorgesehen sind, wobei der übrige Teil von der Umfassung 32 der Durchtrittsöffungen 31 gebildet wird. Die Durchtrittsöffnungen 31 sind gleichmäßig angeordnet und weisen die gleiche Größe auf.A preferred embodiment of this nozzle array 30 provides that on the disc-like configuration, a plurality of passage openings 31 are provided, wherein the remaining part of the enclosure 32 of the passage openings 31 is formed. The passage openings 31 are arranged uniformly and have the same size.

Eine Weiterbildung sieht vor, dass die einzelnen Durchtrittsöffnungen 31 einzeln ansteuerbar sind. Dies bedeutet, dass jede Durchtrittsöffnung 31 oder eine Matrix von Durchtrittsöffnungen 31, d.h. mehrere miteinander verbundene Durchtrittsöffnungen 31, den Fluidstrom separat und unabhängig voneinander steuern können. So treffen unterschiedliche Fluidströme auf das Substrat 2 auf, was wiederum bewirkt, dass die Beschichtungen unterschiedlich angelegt werden. Die Wahl der Parameter wird derart getroffen, dass die Beschichtung uniform und homogen ist.A further embodiment provides that the individual passage openings 31 are individually controllable. This means that each passage opening 31 or a matrix of passage openings 31, ie a plurality of interconnected passage openings 31, can control the fluid flow separately and independently of one another. Thus, different fluid streams encounter the substrate 2, which in turn causes the coatings to be applied differently. The choice of parameters is made such that the coating is uniform and homogeneous.

In Fig. 7A und 7B ist als Feldeinstelleinrichtung E ein definiertes Anodenarray 33 vorgesehen. Das Anodenarray 33, wie es in Fig. 7A in Draufsicht dargestellt ist, ist scheiben- bzw. kreisförmig ausgebildet und weist im Wesentlichen zwei unterschiedliche Merkmale auf. Das erste Merkmal der Scheibe betrifft die Durchtrittsöffnungen 34, durch die das Fluid F das Innere des Reaktorgehäuses 3 in Pfeilrichtung 9 (Fig. 1) durchströmen kann. Das weitere Merkmal ist, dass Bereiche vorgesehen sind, die ein entsprechendes Potential annehmen können. Bei dem hier dargestellten Ausführungsbeispiel sind diese Anoden 35 flächig (dunkel) dargestellt.In Figs. 7A and 7B is provided as a field setting E a defined anode array 33. The anode array 33, as in Fig. 7A is shown in plan view, is disc-shaped or circular and has essentially two different features. The first feature of the disc relates to the passage openings 34, through which the fluid F the interior of the reactor housing 3 in the direction of arrow 9 (FIG. Fig. 1 ) can flow through. The further feature is that areas are provided which can assume a corresponding potential. In the embodiment shown here, these anodes 35 are shown flat (dark).

Die Verteilung von Durchtrittsöffnungen 34 und Anoden 35 kann beliebig oder nach einem definierten Muster erfolgen.The distribution of passages 34 and anodes 35 can be arbitrary or according to a defined pattern.

In Fig. 7B ist in Schnittdarstellung die Anordnung des Anodenarrays 33 innerhalb eines Grundmusters des Prozessreaktors 1 gezeigt. Hieraus ist ersichtlich, dass das Anodenarray 33 diskrete Bereiche mit Anoden 35 sowie diskrete Bereiche mit Durchtrittsöffnungen 34 aufweist. Durch die Durchtrittsöffnungen 34 strömt das Fluid in Pfeilrichtung 17.In Fig. 7B is shown in sectional view, the arrangement of the anode array 33 within a basic pattern of the process reactor 1. It can be seen that the anode array has 33 discrete areas with anodes 35 and discrete areas with openings 34. Through the passage openings 34, the fluid flows in the direction of arrow 17th

In Fig. 8A und 8B sind als Strömungseinstelleinrichtung S eine oder mehrere Strömungsröhren 28 vorgesehen. In Längserstreckung des Reaktorgehäuses 3 sind Strömungsröhren 28 mit unterschiedlichen Querschnitten vorgesehen. Aufgrund der innerhalb dieser Röhren vorherrschenden Strömung können an der Oberfläche des Substrates unterschiedliche Beschichtungsqualitäten erzielt werden. Hervorgerufen wird dies durch die unterschiedlichen Strömungsgeschwindigkeiten (dargestellt in Fig. 8A durch unterschiedlich gestaltete Strömungspfeile (Pfeilrichtung 9)), die innerhalb der Röhren aufgrund der unterschiedlichen Durchmesser erzeugt werden.In Figs. 8A and 8B are provided as flow adjustment S one or more flow tubes 28. In the longitudinal extension of the reactor housing 3 flow tubes 28 are provided with different cross-sections. Due to the prevailing flow within these tubes different coating qualities can be achieved on the surface of the substrate. This is caused by the different flow velocities (shown in Fig. 8A by differently shaped flow arrows (arrow 9)), which are generated within the tubes due to the different diameters.

Fig. 8B zeigt eine Draufsicht auf diese Strömungsröhren 28. Hieraus ist ersichtlich, dass die Strömungsröhren 28 unterschiedliche Durchmesser bzw. Abstände zueinander aufweisen, wodurch unterschiedliche Strömungsgeschwindigkeiten und damit auch unterschiedliche Ionenanreicherungen im Bereich des Substrats 2 realisiert werden können. Fig. 8B shows a plan view of these flow tubes 28. It can be seen that the flow tubes 28 different Have diameters or distances from each other, whereby different flow velocities and thus also different ion accumulations in the region of the substrate 2 can be realized.

In Fig. 9 sind als Feldeinstelleinrichtung E eine Flat-Blende 29 vorgesehen. Die Flat-Blende 29 ist unmittelbar an der Aufnahmeeinrichtung 6 angeordnet und in einem Winkel zu der Aufnahmeeinrichtung bzw. zu dem Substrat 2 stellbar. Dadurch wird eine entsprechende Abschattung auf dem Substrat erreicht, wodurch die Feldstärke in diesem Bereich reduziert und damit eine geringere Ionenabscheidung erzielt werden kann.In Fig. 9 are provided as field adjuster E a flat panel 29. The flat diaphragm 29 is arranged directly on the receiving device 6 and can be adjusted at an angle to the receiving device or to the substrate 2. As a result, a corresponding shading on the substrate is achieved, whereby the field strength is reduced in this area and thus a lower ion deposition can be achieved.

Sämtliche der zuvor beschriebenen Maßnahmen zur Erreichung eines möglichst homogenen Beschichtungsergebnisses können sowohl einzeln als auch kombiniert miteinander angewendet werden. Dabei ist die Kombination nicht auf bereits dargestellte Ausführungsbeispiele begrenzt. Vielmehr kann jedes Bauelement zur erfindungsgemäß gewünschten Erzielung einer gleichmäßigen Beschichtung mit einem oder mehreren anderen Bauelementen kombiniert werden. Die Bauelemente sind derart ausgebildet, dass sie als Bausatz ausgebildet sind und daher je nach Anforderungsprofil wahlweise einzeln oder in Kombination miteinander zur Ausbildung eines Grundmusters eines Prozessreaktors herangezogen werden können.All of the measures described above for achieving the most homogeneous possible coating result can be used both individually and combined with one another. The combination is not limited to already illustrated embodiments. Rather, each component can be combined to achieve the invention desired achievement of a uniform coating with one or more other components. The components are designed such that they are designed as a kit and therefore depending on the requirement profile either individually or in combination with each other can be used to form a basic pattern of a process reactor.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1.1.
Prozessreaktorprocess reactor
2.Second
Substratsubstratum
3.Third
Reaktorgehäusereactor housing
4.4th
Oberes (ein) Ende / Bereich der AusströmungUpper (one) end / range of outflow
5.5th
Unteres (andere) Ende / Bereich der EinströmungLower (other) end / range of inflow
6.6th
Aufnahmeeinrichtungrecording device
7.7th
Abstanddistance
8.8th.
Überlaufoverflow
9.9th
Pfeilrichtung (der Strömungsrichtung)Arrow direction (the flow direction)
10.10th
Auffangbehälterreceptacle
11.11th
Mittelmedium
12.12th
Pumpepump
13.13th
Zuleitung zum unteren (anderen) Ende / zum Bereich der EinströmungSupply line to the lower (other) end / to the area of inflow
14.14th
Stromversorgungpower supply
15.15th
Hilfselektrodeauxiliary electrode
16.16th
Hilfsanodeauxiliary anode
17.17th
Pfeil (Strömung)Arrow (flow)
18.18th
Pfeilrichtung (Position der Hilfsanode)Arrow direction (position of auxiliary anode)
19.19th
Diffusordiffuser
20.20th
Blendrohrblend pipe
21.21st
Hilfselektrodeauxiliary electrode
22.22nd
Fluidkanalfluid channel
23.23rd
Hilfselektrodeauxiliary electrode
24.24th
DurchtrittsöffnungThrough opening
25.25th
Hilfselektrodeauxiliary electrode
26.26th
DurchtrittsöffnungThrough opening
27.27th
- -- -
28.28th
Strömungsröhreflow tube
29.29th
Flat-BlendeFlat-panel
30.30th
Düsenarraynozzle array
31.31st
DurchtrittsöffnungThrough opening
32.32nd
Fassungversion
33.33rd
Anodenarrayanode array
34.34th
DurchtrittsöffnungThrough opening
35.35th
Anodeanode
RiRi
Innendurchmesser RingelementInner diameter ring element
RR
Ringelementring element
3i3i
Innendurchmesser Reaktorgehäuse 3Inner diameter reactor housing 3
SS
Strömungseinstelleinrichtungflow adjustment
HH
Hilfselektrodeauxiliary electrode
BB
Blendecover
Ee
FeldeinstelleinrichtungFeldeinstelleinrichtung
FF
Fluidfluid

Claims (14)

  1. Kit for the fabrication of a process reactor for the formation of metallic layers on one or more substrates (2), wherein the layers are produced on the substrates by deposition of metal ions present within a fluid (F), and wherein the process reactor (1) essentially comprises the following components:
    - a reactor housing (3) with two ends (4; 5), wherein the interior of the reactor housing can be streamed through by a fluid from one end to the other;
    - a device (6) for the reception of the substrate that is arranged in the region of the outflow (4) from the reactor housing (3);
    - at least one overflow (8) in the region of the outflow (4) from the reactor housing (3), over which the fluid (F) that streams in direction of the substrate (2) can exit from the reactor housing (3);
    - a catchment tank (10) for reception of the fluid (F) that exits over the overflow (8);
    - means for recirculation of the collected fluid into the reactor housing (3);
    - at least one anode (15); as well as
    - at least one adjustment device (S and/or E) for the specific control of the stream of the fluid (F) and/or the electric field within the reactor housing (3);
    characterized in that the at least one adjustment device is designed either as nozzle array (30) whose passage openings (31) can individually and independently from each other be exposed to different parameters of the fluid stream, as flow tube (28), and/or as a blind tube (20), and/or that the process reactor as adjustment device further comprises at least one auxiliary electrode (H) which can either take a positive or a negative potential and which is arranged between the substrate (2) to be coated and the opposite end (5) of the reactor housing (3) either as an auxiliary anode (16) which can be moved along the longitudinal extension of the reactor housing (3), or as an anode array (33) with a disc-like design which comprises segments with anodes (35) and segments with passage openings (34).
  2. Kit according to claim 1, characterized in that the anodes (35) of the anode array (33) can be exposed to different potentials.
  3. Kit according to claim 1 or 2, characterized in that the passage openings (34) of the anode array (33) can individually and independently from each other be exposed to different parameters of the fluid stream.
  4. Kit according to any of the preceding claims, characterized in that the at least one blind tube (20) has an auxiliary electrode (21) on that side which points towards the substrate (2).
  5. Kit according to claim 4, characterized in that further auxiliary electrodes are arranged opposite to the auxiliary electrode (21) in the region of the reception device (6).
  6. Kit according to any of the preceding claims, characterized in that at least one auxiliary electrode (21; 23; 25) is arranged as adjustment device in the region of the overflow (8).
  7. Kit according to any of the preceding claims, characterized in that the auxiliary electrode (15; 21; 23; 25) is coated.
  8. Kit according to any of the preceding claims, characterized in that several flow tubes (28) of different diameters are nested into each other.
  9. Kit according to any of the preceding claims, characterized in that means for adjustment of the strength of the electrical field in dependence of the layer thickness detected on the substrate (2) are provided as adjustment device.
  10. Kit according to any of the preceding claims, characterized in that a flat-blind (29) is arranged at the reception device (6) in the region of the substrate (2).
  11. Kit according to any of the preceding claims, characterized in that the reception device (6) is exchangeable by means of a quick-clamping device.
  12. Kit according to any of the preceding claims, characterized in that the overflow (8) has at least one fluid channel (22).
  13. Kit according to any of the preceding claims, characterized in that the position of the substrate (2) is changeable relative to the reactor housing (3).
  14. Kit according to any of the preceding claims, characterized in that the process reactor (1) further comprises at least one ring element (R) for the reduction of the inner diameter (Ri) of the reactor housing (3).
EP06027073A 2006-12-29 2006-12-29 Kit for the manufacture of a process reactor for forming metallic layers on one or more substrate Not-in-force EP1939329B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT06027073T ATE509144T1 (en) 2006-12-29 2006-12-29 KIT FOR PRODUCING A PROCESS REACTOR FOR THE FORMATION OF METALLIC LAYERS ON ONE OR SEVERAL SUBSTRATES
EP06027073A EP1939329B1 (en) 2006-12-29 2006-12-29 Kit for the manufacture of a process reactor for forming metallic layers on one or more substrate
KR1020087023897A KR101133085B1 (en) 2006-12-29 2007-12-10 Kit for the assembly of a process reactor for the formation of metallic layers on one or more substrates, and method of using the same
CN2007800179912A CN101448983B (en) 2006-12-29 2007-12-10 Set for creating a process reactor for forming metallic layers on at least one substrate
PCT/EP2007/010739 WO2008080515A2 (en) 2006-12-29 2007-12-10 Set for creating a process reactor for forming metallic layers on at least one substrate
TW096148749A TWI378157B (en) 2006-12-29 2007-12-19 Kit for the assembly of a process reactor for the formation of metallic layers on one or more substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06027073A EP1939329B1 (en) 2006-12-29 2006-12-29 Kit for the manufacture of a process reactor for forming metallic layers on one or more substrate

Publications (2)

Publication Number Publication Date
EP1939329A1 EP1939329A1 (en) 2008-07-02
EP1939329B1 true EP1939329B1 (en) 2011-05-11

Family

ID=38284079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06027073A Not-in-force EP1939329B1 (en) 2006-12-29 2006-12-29 Kit for the manufacture of a process reactor for forming metallic layers on one or more substrate

Country Status (6)

Country Link
EP (1) EP1939329B1 (en)
KR (1) KR101133085B1 (en)
CN (1) CN101448983B (en)
AT (1) ATE509144T1 (en)
TW (1) TWI378157B (en)
WO (1) WO2008080515A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119158A1 (en) 2011-03-03 2012-09-07 Enchroma, Inc. Multi-band color vision filters and method by lp-optimization
KR101643276B1 (en) * 2015-05-12 2016-08-02 강구일 Hydrogen gas apparatus using electrolysis
KR102639119B1 (en) 2018-12-31 2024-02-20 엘지디스플레이 주식회사 Electroplating apparatus and electroplating method using the same
WO2021046068A1 (en) * 2019-09-03 2021-03-11 Lam Research Corporation Low angle membrane frame for an electroplating cell
JP7356401B2 (en) * 2020-05-12 2023-10-04 株式会社荏原製作所 Plate, plating equipment, and plate manufacturing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000827A (en) * 1990-01-02 1991-03-19 Motorola, Inc. Method and apparatus for adjusting plating solution flow characteristics at substrate cathode periphery to minimize edge effect
US6103085A (en) * 1998-12-04 2000-08-15 Advanced Micro Devices, Inc. Electroplating uniformity by diffuser design
US6261426B1 (en) * 1999-01-22 2001-07-17 International Business Machines Corporation Method and apparatus for enhancing the uniformity of electrodeposition or electroetching
EP1031647A3 (en) * 1999-02-19 2002-03-06 Solid State Equipment Corporation Apparatus and method for plating a wafer
JP3255145B2 (en) * 1999-04-06 2002-02-12 日本電気株式会社 Plating equipment
US20050284751A1 (en) * 2004-06-28 2005-12-29 Nicolay Kovarsky Electrochemical plating cell with a counter electrode in an isolated anolyte compartment
JP2002097598A (en) * 2000-09-25 2002-04-02 Mitsubishi Electric Corp Electrolytic plating equipment
US6964792B1 (en) * 2000-11-03 2005-11-15 Novellus Systems, Inc. Methods and apparatus for controlling electrolyte flow for uniform plating
TWM240034U (en) * 2002-02-19 2004-08-01 Advanced Semiconductor Eng Electric field adjustment device of electroplating tank
JP2004068158A (en) * 2002-08-08 2004-03-04 Texas Instruments Inc Method of improving current density inside ecd reactor and controlling filling into mechanism and apparatus therefor
TWI240766B (en) * 2003-09-09 2005-10-01 Ind Tech Res Inst Electroplating device having rectification and voltage detection function
US20060102467A1 (en) * 2004-11-15 2006-05-18 Harald Herchen Current collimation for thin seed and direct plating
US20060163058A1 (en) * 2005-01-26 2006-07-27 Kiyonori Watanabe Apparatus for plating a semiconductor wafer and plating solution bath used therein
TW200641189A (en) * 2005-02-25 2006-12-01 Applied Materials Inc Counter electrode encased in cation exchange membrane tube for electroplating cell

Also Published As

Publication number Publication date
EP1939329A1 (en) 2008-07-02
WO2008080515A3 (en) 2008-09-12
CN101448983A (en) 2009-06-03
TWI378157B (en) 2012-12-01
WO2008080515A2 (en) 2008-07-10
TW200842210A (en) 2008-11-01
ATE509144T1 (en) 2011-05-15
CN101448983B (en) 2012-11-07
KR101133085B1 (en) 2012-04-24
KR20080102266A (en) 2008-11-24

Similar Documents

Publication Publication Date Title
EP1688518B1 (en) Process and apparatus for continuous electrochemical treatment of pieces
EP1939329B1 (en) Kit for the manufacture of a process reactor for forming metallic layers on one or more substrate
DE202014011339U1 (en) Apparatus for crucible-free melting of a material and for atomising the molten material to produce powder
DE2648274A1 (en) PROCESS FOR SELECTIVE ELECTROPLATING OF A SURFACE
EP0541630A1 (en) Device for cooling extruded profiles.
WO2007014778A2 (en) Device for the treatment, particularly galvanization, of substrates
DE112017003666T5 (en) GALVANIC SEPARATION OF METAL LAYERS WITH SAME THICKNESS ON SEMICONDUCTOR WAFERS
WO2006000862A1 (en) Coating device for coating a substrate and coating method
DE112013002400T5 (en) Electroplating process device with geometric electrolyte flow path
DE112009001533T5 (en) Katodeneinheit and provided with the same sputtering device
DE3015282A1 (en) METHOD AND DEVICE FOR PARTIAL GALVANIZING OF CONDUCTIVE OR CONDUCTED SURFACES
WO2003078681A1 (en) Device for depositing thin layers on a substrate
DE102006062553B3 (en) Structural unit for production of adaptable for deposition of metal layers substrates useful in semiconductor technology, production of microstructural components and CDs DVDs gives homogeneous and uniform coatings
DE69923956T2 (en) Anode structure for the production of metal foils
DE3241452C2 (en) Method and device for the galvanic production of dispersion coatings and their application
EP1323463B1 (en) Method and device for the production of a metal membrane
EP0699781B1 (en) Electrolytic process for treating, particularly continuously plating a substrate
DE60104107T2 (en) METHOD AND DEVICE FOR ELECTROLYTIC COATING OF A METAL STRIP
DE102019105163B3 (en) Plasma nozzle and plasma device
DE19736340C2 (en) Device and method for producing electroplating layers on electrically conductive substrates
DE102005033784A1 (en) System for the electrodeposition of a conductive layer on a non-conductive substrate
DE19861248B4 (en) Electrodeposition unit for semiconductor wafer coating - has anode with central opening to promote uniform deposited layer thickness
WO2020025090A1 (en) Flow generator, deposition device and method for the deposition of a material
DE112014001729T5 (en) A method of forming a seed layer on a high aspect ratio via hole and a semiconductor device having a high aspect ratio via hole formed thereby
DE102010000479A1 (en) Device for homogenizing a vaporized aerosol and device for depositing an organic layer on a substrate with such a homogenizing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081201

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20101104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENA GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009493

Country of ref document: DE

Effective date: 20110622

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110812

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009493

Country of ref document: DE

Effective date: 20120214

BERE Be: lapsed

Owner name: RENA G.M.B.H.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131216

Year of fee payment: 8

Ref country code: CH

Payment date: 20131218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131217

Year of fee payment: 8

Ref country code: FR

Payment date: 20131213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131217

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006009493

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 509144

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141229