EP1936740B1 - System und Verfahren zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip - Google Patents
System und Verfahren zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip Download PDFInfo
- Publication number
- EP1936740B1 EP1936740B1 EP07024616.0A EP07024616A EP1936740B1 EP 1936740 B1 EP1936740 B1 EP 1936740B1 EP 07024616 A EP07024616 A EP 07024616A EP 1936740 B1 EP1936740 B1 EP 1936740B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- transponder
- frequency
- resonance frequency
- reading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000033001 locomotion Effects 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 6
- 238000005259 measurement Methods 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000005283 ground state Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 241000599985 Beijerinckia mobilis Species 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/002—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B15/00—Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
- G07B15/02—Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points taking into account a variable factor such as distance or time, e.g. for passenger transport, parking systems or car rental systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2208—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
- H01Q1/2225—Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
Definitions
- the invention relates to an antenna for measuring a movement information, in particular speed or distance, according to the Doppler principle, a transponder with such an antenna, a system with transponders and a reading antenna and a corresponding method.
- a transponder has an antenna and a chip which can be coupled or coupled to the antenna and which are arranged on a carrier.
- An exemplary microwave transponder according to the prior art is in Fig. 1 shown.
- the chip stores data which are contactlessly accessible via the antenna using a suitable reading device.
- Transponders are used for example in the so-called ticketing area as electronic tickets, for example in public transport.
- Each passenger liable to pay carries a transponder in the use of affected means of public transport, in which data is stored, which allow a calculation of the fare to be paid for the use.
- a credit can be stored in the chip, which is used directly for the payment of the fare.
- transponder detection readers are located at entrances to restricted access areas in the vicinity of the means of transport, such as platforms and / or at doors of transportation, and require that one or both of them passengers alighting, hold their transponder directly to the reader and thereby register their entry or exit.
- a system which registers passengers entering and / or exiting, is also referred to as a check-in / check-out system.
- long-range transponders are used for ticketing in so-called long-range systems, with a range of 1 m to typically 10 m, which operate at a resonant frequency in the microwave range of 2.45 GHz, 915 MHz or 868 MHz.
- Transponders in long-range systems also include transponders with a resonant frequency of 5.8 GHz or 24.125 GHz.
- an incoming or outgoing passenger does not have to actively hold his transponder to a reader, but the transponder carried in the pocket, for example, is detected automatically as soon as the passenger gets into the transmission range of the reader.
- a reading device is mounted on doors to a means of transport, which wakes up and registers the transponder from an idle state.
- a monitoring reader is mounted which continuously monitors the presence of registered transponders at short intervals. A fare is determined from the presence of the transponder within the means of transport or from the distance traveled during the journey.
- Such a system in which the presence of passengers is registered, is also referred to as Be-in / Be-out system.
- An example of a Be-in / Be-out system is the Dresden pilot project ALLFA (see for example http://efa.vvo-online.de/allfa/index.html).
- Transponders are still used, for example, in warehousing.
- a transponder is mounted on each stored goods or containers for storage of goods, in which specific for the goods Data are stored.
- a reader To read out the data from transponders, a reader must reach the range of the transponder.
- a Doppler radar speedometer for the microwave range is, for example, in DE 3219 819 C2 described.
- a Doppler radar sensor is attached to a moving body and emits microwaves that are reflected from the (stationary) ground. Parts of the emitted and reflected microwaves are mixed, thereby generating Doppler signals from which the velocity of the moving body is derived.
- US 5,680,459 describes an electronic identification system for an automatic fare collection with multiple transponders, in which the simultaneous identification of multiple transponders is made possible by the fact that the individual transponders are read in different time windows.
- a measurement of a movement information, in particular speed or distance, according to the Doppler principle would also be desirable, for example in ticketing or in storage. This would allow long-range measurements without the need to hold the transponder directly to a reader, thus making the capture of transponders comfortable.
- the Doppler frequency can be increased in other applications, for example in vehicle detection.
- the speed of movement during vehicle detection is usually high, so that the Doppler effect is easily measurable.
- the transmission frequency of the transponder transponders used is defined by standards such as ISO 18000-6 or ISO 18000-4 and must be in the microwave range of approximately 800 MHz to approximately 6 GHz.
- the speeds of movement v in, for example, ticketing and storage are generally low, for example of the order of magnitude of 1 m / s or even less.
- Direct transmission of a known for example for vehicle detection system speed detection by Doppler effect on areas such as ticketing or storage, with low frequencies and movement speeds, is therefore not possible because the Doppler frequency would be too low a frequency.
- Frequency-selective surfaces are periodic conductive structures on surfaces which have filter properties relative to electromagnetic waves. Depending on the geometric dimensioning of the structures, low-pass, high-pass, band-pass or band-stop filter properties can thus be realized in relation to an incident electromagnetic wave.
- z. B. building structures such as Radar domes, which should be uninterrupted for the radar frequency range, window covers for microwave ovens, which should achieve a particularly high attenuation in the microwave frequency range, or even wallpapers, which block specific frequency ranges (eg Bluetooth), but adjacent frequency ranges pass unhindered (z B. mobile communications).
- Frequency-selective layers are used in the micro and millimeter wave range for the effective use of reflector antennas, as filters and artificial dielectrics, as a mirror to increase the pumping efficiency of lasers and as polarizers, beam splitters or filters and in the optical field to increase the efficiency of solar panels.
- aperture geometries If there are conductive areas on a nonconductive surface, we speak of patch geometries, if there are nonconductive areas on a conductive surface, this is referred to as aperture geometries.
- an electromagnetic wave When an electromagnetic wave hits an FSS, it generates electrical currents on the conductive areas of the FSS. As a result, a part of the wave can be reflected when hitting the layer.
- the complex amplitudes of the reflected or transmitted components, based on the amplitude of the incident wave, are referred to as reflection or transmission coefficients.
- the so-called backscatter cross section of the FSS for the incident wave indicates what proportion of the incident wave is reflected at the FSS. If the wavelength of a wave incident on an FSS is of the same order of magnitude as the dimensions of the elementary cell (individual regions) of the FSS, strong resonances occur as the frequency of the incident wave changes.
- the backscatter cross section of FSS for the incident wave has a maximum at the FSS in patch geometry at the resonant frequency.
- the incident wave is substantially completely transmitted at the resonant frequency.
- the backscatter cross section of the FSS for the incident wave has a minimum at FSS in aperture geometry at the resonant frequency.
- WO 2006/027112 A1 describes the use of a frequency-selective surface as an authenticity feature for eg banknotes or chip cards.
- US 4,917,458 A discloses an arrangement of a frequency-selective surface, which is superimposed with an antenna to accommodate the antenna to save space in the frequency-selective surface area.
- WO 92/16031 A1 discloses a bandpass filter having an antenna structure with a frequency selective surface.
- the invention is based on the object to enable measurements of motion information, in particular speed or distance, according to the Doppler principle also for systems with transponders whose Doppler frequency is hardly or not measurable without further precautions.
- the system according to the invention for managing the use of at least one paid means of transport by passengers comprises: for each pay passenger at least one transponder, each paying passenger using the means of transport being obliged to carry the transponder during use of the means of transport; at least one reading antenna mounted on an access to the means of transport adapted for communication with the transponder at the second resonance frequency and capable of measuring movement information, in particular speed or distance, of a transponder relative to the reading antenna according to the Doppler principle at the second resonance frequency is such that between a transponder-equipped passenger who enters or leaves the means of transport or a restricted access area surrounding the means of transport is distinguishable.
- the transponder is equipped with an antenna according to one of the embodiments and variants described below and with a chip electrically coupled or coupleable to the antenna.
- the antenna and the chip are arranged on an arbitrarily designed carrier.
- the transponder is designed as a label, (contactless) chip card, voluminous transponder or transponder of other design.
- the antenna is provided for measuring movement information, in particular speed or distance, according to the Doppler principle and has an antenna surface made of a conductive material.
- the antenna has a predetermined antenna structure by which a first resonance frequency of the antenna is set.
- the antenna is characterized in that the antenna surface is provided with a frequency-selective surface (FSS), by which a second resonance frequency of the antenna is set, which is different from the first resonance frequency.
- FSS frequency-selective surface
- the second resonant frequency results in a second Doppler frequency which is also at a different frequency than the Doppler frequency due to the first resonant frequency, assuming the same relative velocity between the antenna and a reader antenna of a reader.
- the inventive system according to claim 1 is thus a ticketing system. It is particularly applicable for public transport.
- the system according to the invention is particularly convenient compared to known ticketing systems. Since in the system according to the invention the detection the transponder is done according to the Doppler principle, a very long-range measurement is possible. Consequently, it is possible to detect the boarding and disembarking of passengers without having to hold their transponder used as a ticket to a reader, which is an advantage over conventional check-in / check-out systems. On the other hand, within the vehicle no surveillance antenna need be provided to monitor the presence of detected passengers throughout the ride, which is an advantage over conventional long-range loading / unloading systems.
- the second resonant frequency is used to measure movement information according to the Doppler principle, in particular to detect the entry and exit of passengers.
- communication with the chip of the transponder preferably takes place at the first resonance frequency, which is determined, for example, by a standard such as e.g. ISO 18000-6 or ISO 18000-4, optionally according to any prior art communication method.
- the reader antenna is optionally configured to communicate with the antenna, but not to communicate with the chip.
- communication with the chip is possible at the first resonant frequency, optionally with a suitable reader other than the reader antenna.
- a door or a doorway or a doorway or the like of a means of transportation may be provided as access to the means of transportation be.
- a means of transportation eg, bus, subway train, railroad car, tramcar, etc.
- access to a platform may be provided as access to an access restricted area.
- a reader antenna is optionally arranged at each passenger access access to a means of transportation or to the restricted access area.
- the reading antenna for the Doppler measurement has a spatial directional characteristic such that the transponder is oriented in an inward direction the means of transport or the restricted access area with the reading antenna is more or less detectable than in an outside direction out of the means of transport or the restricted access area.
- a reading antenna on a doorway of a vehicle has a directional characteristic directed toward the exterior of the vehicle. An ascending passenger is thus detected as a transponder to be moved to the reading antenna until the passenger passes through the doorway.
- the system further optionally has a reading device attached to an access to the means of transport, which is set up for communication with the transponder, in particular with the chip of the transponder, at the first resonance frequency.
- the reading device is for example in particular adapted to write fare information about a payable by the passenger fare in the chip of the transponder or read from the chip.
- the second resonant frequency is at a higher frequency than the first resonant frequency.
- This alternative of the invention is particularly preferred for applications such as ticketing, warehousing, animal monitoring, and the like, since relatively low first resonance frequencies are enshrined in standards and, on the other hand, the relative movements of the antenna and reader antenna of a reader are low.
- the frequency-selective surface consists of a periodically structured conductive structure.
- the frequency-selective surface is designed in aperture geometry, wherein the electrically conductive antenna surface is provided with a periodic arrangement of apertures.
- the apertures may be designed as openings in the electrically conductive antenna surface and may optionally be filled with a dielectric.
- the frequency-selective surface is designed in patch geometry, the antenna surface being provided with a periodic array of electrically conductive elements which are electrically isolated from the antenna surface, e.g. through a dielectric interlayer.
- the first resonant frequency is optionally in the microwave range, in particular in the frequency range from about 800 MHz to about 6 GHz, in particular at a frequency of 868 MHz or 915 MHz or 2.45 GHz, optionally at a frequency fixed by a standard.
- the antenna with the frequency-selective surface further comprises an adjusting device with which a backscatter cross section of the frequency-selective surface in a frequency range encompassing at least the second resonant frequency can be changed.
- the adjusting device may have one or more load resistors, for example, in the case of a frequency-selective surface in patch geometry, which can be selectively coupled to or decoupled from the conductive elements.
- the backscatter cross section of the antenna is different due to the frequency-selective surface.
- the frequency-selective surface can optionally be switched on and off in relation to a reading antenna of a reading device which emits electromagnetic waves at a fixed frequency, in particular the second resonance frequency.
- a transponder is woken up at the "fundamental frequency" of the transponder (first resonance frequency) and then the Doppler measurement is carried out on the alert transponder at the "FSS frequency” (second resonance frequency).
- FSS frequency second resonance frequency
- a single transponder activated at a time. In this way, collisions are avoided by a simultaneous communication with the plurality of transponders.
- Fig.1 shows a transponder 100 with a chip 110 and an antenna 120, which are arranged on a carrier 130, according to the prior art.
- the transponder 100 is designed here by way of example as a chip card in the format ID-1 according to ISO 7810.
- the antenna 120 has a first resonance frequency at 868 MHz due to its design and its geometric dimensions. For this frequency, the in Fig. 1 exemplified planar antenna design, in which the antenna 120 has a planar antenna surface.
- Fig. 2 shows a transponder 200 with a chip 210 and an antenna 220 on a carrier 230, wherein the antenna 220 with an FSS 240 in aperture geometry is provided, according to a first embodiment of the invention.
- the transponder 200 off Fig.1 has the transponder 200 off Fig. 2 at the antenna surface of the antenna 220, a plurality of periodically arranged apertures (apertures) 250 which in their entirety constitute the frequency selective surface FSS 240.
- the antenna 220 has a first resonant frequency at 868 MHz due to its design and geometrical dimensions. Due to the FSS 240, the antenna 220 has a second resonant frequency at a frequency of over 10 GHz, typically about 70 ... 150 (200) ...
- Fig. 3 1 shows a transponder 300 with a chip 310 and an antenna 320 with a FSS 340 in patch geometry, arranged on a carrier 330, according to a second embodiment of the invention.
- the transponder 300 off Fig. 3 has the transponder 300 off Fig. 3 on the antenna surface of the antenna 320, a plurality of periodically arranged conductive elements 350, which in their entirety form the frequency-selective surface FSS 340.
- an electrically insulating intermediate layer 360 Arranged between the antenna surface of the antenna 320 and the conductive elements 350 of the FSS 340 is an electrically insulating intermediate layer 360, with which the antenna 320 and the conductive elements 350 of the FSS 340 are electrically isolated from each other.
- the intermediate layer 360 is formed from a dielectric, for example from a plastic, for example from a plastic film.
- the individual conductive elements 350 are electrically connected to each other.
- the interconnected conductive elements 350 are electrically coupled or coupled to the chip 310, eg via one or more supply lines and logic lines.
- To the conductive elements 350 is further on - preferably variable - load resistor (not shown separately) can be coupled.
- the layer structure of the transponder 300 with the carrier 330, the antenna 320 arranged on the carrier 330, the insulating intermediate layer 360 arranged on the antenna 320 and the electrically conductive elements 350 arranged on the intermediate layer 360 is in the lower part of FIG Fig. 3 in a sectional view along the line AB in the upper part of Fig. 3 illustrated.
- the antenna 320 has a first resonant frequency at 868 MHz due to its design and geometric dimensions. Due to the FSS 340, the antenna 320 has a second resonant frequency at a frequency of approximately well over 10 GHz, eg 70 ... 150 (200) ... GHz.
- the conductive elements 350 of the transponder 300 Fig. 3 are designed as rectangular areas.
- the elements 350 may have any other suitable shape.
- the apertures 250 of the transponder 200 can be made Fig. 2 have any suitable shape.
- a suitably dimensioned load resistor is coupled to the conductive elements 350.
- the signal for coupling the load resistor is transmitted to the chip 310 at the first resonant frequency with a suitable suitable reader.
- the chip 310 causes the coupling of the load resistor.
- the backscatter cross-section of the frequency-selective surface 340 which is low without the load resistor, is increased to a maximum value.
- the transponder 300 is activated and the Doppler measurement at the second resonance frequency can be performed.
Landscapes
- Business, Economics & Management (AREA)
- Finance (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
- Die Erfindung betrifft eine Antenne zur Messung einer Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, nach dem Doppler-Prinzip, einen Transponder mit einer solchen Antenne, ein System mit Transpondern und einer Leseantenne sowie ein entsprechendes Verfahren.
- Ein Transponder weist eine Antenne und einen mit der Antenne gekoppelten oder koppelbaren Chip auf, die auf einem Träger angeordnet sind. Ein beispielhafter Mikrowellen-Transponder gemäß dem Stand der Technik ist in
Fig. 1 dargestellt. Im Chip sind Daten abgespeichert, die mit einer geeigneten Leseeinrichtung über die Antenne kontaktlos zugänglich sind. - Transponder finden beispielsweise im sogenannten Ticketting-Bereich als elektronische Fahrscheine Anwendung, beispielsweise im öffentlichen Personenverkehr. Jeder zahlungspflichtige Fahrgast führt bei der Nutzung von betroffenen Verkehrsmitteln des öffentlichen Personenverkehrs einen Transponder mit sich, in dem Daten abgespeichert sind, die eine Berechnung des für die Nutzung zu bezahlenden Fahrpreises ermöglichen. Wahlweise kann in dem Chip ein Guthaben abgespeichert sein, das direkt für die Bezahlung des Fahrpreises verwendet wird.
- Als Transponder für das Ticketting werden beispielsweise Remote-Coupling-Systeme mit einer Reichweite von bis zu 1 m verwendet, genauer typischerweise Proximity-Coupling-Kontaktlos-Chipkarten gemäß der ISO-Norm 14443, die eine Reichweite von ca. 7 bis ca. 15 cm haben und bei einer Resonanzfrequenz von 13,56 MHz arbeiten. Lesegeräte zur Erfassung von Transpondern sind beispielsweise an Zugängen zu zugangsbeschränkten Bereichen in der Umgebung der Verkehrsmittel wie z.B. Bahnsteigen oder / und an Türen von Verkehrsmitteln angeordnet und erfordern, dass ein- oder aussteigende Fahrgäste ihren Transponder direkt an das Lesegerät halten und hierdurch ihr Ein- oder Aussteigen registrieren lassen. Ein derartiges System, bei dem das Ein- und/oder Aussteigen von Fahrgästen registriert wird, wird auch als Check-in- / Check-out-System bezeichnet.
- Alternativ werden für das Ticketting in sogenannten Long-Range-Systemen langreichweitige Transponder verwendet, mit einer Reichweite von 1 m bis typischerweise 10 m, die bei einer Resonanzfrequenz im Mikrowellenbereich von 2,45 GHz, 915 MHz oder 868 MHz arbeiten. Zu Transpondern bei Long-Range-Systemen zählen auch Transponder mit einer Resonanzfrequenz bei 5,8 GHz oder 24,125 GHz. In Long-Range-Systemen muss ein ein- oder aussteigender Fahrgast seinen Transponder nicht aktiv an ein Lesegerät halten, sondern der beispielsweise in der Tasche mitgeführte Transponder wird automatisch erfasst, sobald der Fahrgast in den Sendebereich des Lesegeräts gerät. Beispielsweise ist an Türen zu einem Verkehrsmittel ein Lesegerät angebracht, das den Transponder aus einem Ruhezustand aufweckt und registriert. Innerhalb des Verkehrsmittels ist ein Überwachungs-Lesegerät angebracht, das laufend in kurzen Zeitabständen die Anwesenheit von registrierten Transpondern überwacht. Ein Fahrpreis wird aus der Anwesenheit des Transponders innerhalb des Verkehrsmittels bzw. aus der während der Anwesenheit zurückgelegten Strecke ermittelt. Ein derartiges System, bei dem die Anwesenheit von Fahrgästen registriert wird, wird auch als Be-in- / Be-out-System bezeichnet. Ein Beispiel für ein Be-in- / Be-out-System stellt das Dresdner Pilotprojekt ALLFA dar (siehe z.B. http://efa.vvo-online.de/ allfa/ index.html).
- Transponder werden weiterhin beispielsweise bei der Lagerhaltung verwendet. Hierbei ist an jeder gelagerten Ware oder an Containern zur Lagerung von Waren ein Transponder angebracht, in dem für die Ware spezifische Daten abgespeichert sind. Um die Daten aus Transpondern auszulesen, muss ein Lesegerät in die Reichweite der Transponder gelangen.
- Relativ langreichweitige Messungen unter Verwendung von Transpondern sind nach dem Doppler-Prinzip möglich.
- Das Prinzip der Messung einer Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, nach dem Doppler-Prinzip mittels eines Mikrowellen-Transponders ist beispielsweise in "Klaus Finkenzeller, RFID-Handbuch, 2. Auflage 2000, Carl Hanser Verlag München Wien, ("RFID-Handbuch") Kapitel 10.4.2" beschrieben. Eine von einer Leseantenne zum Transponder ausgesandte und vom Transponder zur Leseantenne zurück reflektierte elektromagnetische Welle mit einer bestimmten Frequenz wird abhängig von der Relativbewegung von Leseantenne und Transponder zueinander verzerrt. Bewegen sich Leseantenne und Transponder aufeinander zu, wird die am Transponder reflektierte Welle gestaucht und somit die an der Leseantenne detektierte Frequenz gegenüber der Frequenz der ausgesandten Welle erhöht. Bewegen sich Leseantenne und Transponder voneinander weg, wird die reflektierte Welle gedehnt und somit die an der Leseantenne detektierte Frequenz gegenüber der Frequenz der ausgesandten Welle verringert. Die Frequenzdifferenz zwischen der von der Leseantenne ausgesandten Frequenz und der an der Leseantenne detektierten Frequenz der reflektierten Welle wird als Dopplerfrequenz bezeichnet. Durch eine Messung der Dopplerfrequenz kann die Relativgeschwindigkeit zwischen Transponder und Leseantenne bestimmt werden und zudem zwischen einen Transponder, der sich auf die Leseantenne zu bewegt, und einem Transponder, der sich von der Leseantenne weg bewegt, unterschieden werden.
- Ein Doppler-Radar-Geschwindigkeitsmesser für den Mikrowellenbereich ist beispielsweise in
DE 3219 819 C2 beschrieben. Bei dem Geschwindigkeitsmesser ist ein Doppler-Radar-Sensor an einem bewegten Körper befestigt und sendet Mikrowellen aus, die vom (unbewegten) Boden reflektiert werden. Teile der ausgesandten und der reflektierten Mikrowellen werden gemischt und dadurch Doppler-Signale erzeugt, aus denen die Geschwindigkeit des bewegten Körpers abgeleitet wird. -
US 5,680,459 beschreibt ein elektronisches Identifizierungssystem für eine automatische Fahrpreiserhebung mit mehreren Transpondern, bei dem die simultane Identifikation mehrerer Transponder dadurch ermöglicht wird, dass die einzelnen Transponder in unterschiedlichen Zeitfenstern ausgelesen werden. -
DE 100 56 148 A1 beschreibt eine Kontaktlos-Chipkarte mit zwei Antennen für zwei unterschiedliche Frequenzen, so dass die Kontaktlos-Chipkarte mit unterschiedlichen Lesegeräten betrieben werden kann. - Prinzipiell wäre eine Messung einer Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, nach dem Doppler-Prinzip auch z.B. im Ticketting oder bei der Lagerhaltung wünschenswert. Dies würde langreichweitige Messungen ermöglichen, ohne die Notwendigkeit, den Transponder direkt an ein Lesegerät zu halten, und somit die Erfassung von Transpondern komfortabel machen. Die Dopplerfrequenz fD ergibt sich aus der Differenz der ausgesendeten Frequenz f und der durch die Relativbewegung mit Relativgeschwindigkeit v von Lesegerät und Transponder verzerrten Frequenz f' als
mit der Lichtgeschwindigkeit c. Bei einer Resonanzfrequenz des Transponders von 868 MHz und einer relativen Bewegungsgeschwindigkeit zwischen Transponder und Lesegerät von 1 m/ s ergibt sich eine Dopplerfrequenz von 6 Hz, die zu messen fast unmöglich ist. Durch eine Erhöhung der ausgesendeten Frequenz kann in anderen Anwendungen die Dopplerfrequenz erhöht werden, beispielsweise bei der Fahrzeugerfassung. Zudem ist die Bewegungsgeschwindigkeit bei der Fahrzeugerfassung in der Regel hoch, so dass der Dopplereffekt problemlos messbar ist. In den Bereichen z.B. Ticketting und Lagerhaltung ist zu berücksichtigen, dass einerseits die Sendefrequenz der verwendeten Lesegeräte für die Transponder durch Normen wie z.B. ISO 18000-6 oder ISO 18000-4 festgelegt sind und im Mikrowellenbereich von ungefähr 800 MHz bis ungefähr 6 GHz liegen müssen. Die Bewegungsgeschwindigkeiten v bei z.B. Ticketting und Lagerhaltung sind andererseits in aller Regel gering, z.B. in der Größenordnung von 1 m/s oder sogar darunter. Eine direkte Übertragung eines für beispielsweise Fahrzeugerfassung bekannten Systems der Geschwindigkeitserfassung mittels Doppler-Effekt auf Bereiche wie Ticketting oder Lagerhaltung, mit niedrigen Frequenzen und Bewegungsgeschwindigkeiten, ist daher nicht möglich, da die Dopplerfrequenz bei einer zu niedrigen Frequenz liegen würde. - Frequenzselektive Oberflächen (FSS, frequency selective surfaces) sind periodische leitfähige Strukturen auf Oberflächen welche gegenüber elektromagnetischen Wellen Filtereigenschaften aufweisen. Je nach geometrischer Dimensionierung der Strukturen sind damit Tiefpass-, Hochpass-, Bandpass- oder Bandsperre-Eigenschaften gegenüber einer einfallenden elektromagnetischen Welle realisierbar.
- Frequenzselektive Oberflächen sind bereits seit fast 100 Jahren bekannt (erste Patente in 1919 durch Marconi) und werden seit den 60er Jahren intensiv untersucht. Bekannte Anwendungen sind z. B. Gebäudekonstruktionen wie Radarkuppeln, welche für den Radarfrequenzbereich ungehindert durchgängig sein sollen, Fensterabdeckungen für Mikrowellenherde, welche im Mikrowellenfrequenzbereich eine besonders hohe Dämpfung erreichen sollen, oder aber auch Tapeten, welche spezielle Frequenzbereiche sperren (z. B. Bluetooth), benachbarte Frequenzbereiche aber ungehindert passieren lassen (z. B. Mobilfunk). Frequenzselektive Schichten dienen im Mikro- und Millimeterwellenbereich zur effektiven Nutzung von Reflektorantennen, als Filter und künstliche Dielektrika, als Spiegel zur Erhöhung der Pumpeffektivität von Lasern sowie als Polarisatoren, Strahlteiler oder Filter und im optischen Bereich zur Steigerung der Effektivität von Sonnenkollektoren.
- Befinden sich auf einer nichtleitfähigen Fläche leitfähige Bereiche, spricht man von Patchgeometrien, befinden sich auf einer leitfähigen Fläche nichtleitfähige Bereiche, spricht man von Aperturgeometrien.
- Fällt eine elektromagnetische Welle auf eine FSS, erzeugt sie auf den leitfähigen Bereichen der FSS elektrische Ströme. Dadurch kann ein Teil der Welle beim Auftreffen auf die Schicht reflektiert werden. Die komplexen Amplituden der reflektierten bzw. transmittierten Anteile, bezogen auf die Amplitude der einfallenden Welle, werden als Reflexions- bzw. Transmissionskoeffizienten bezeichnet. Der sogenannte Rückstreuquerschnitt der FSS für die einfallende Welle gibt an, welcher Anteil der einfallenden Welle an der FSS reflektiert wird. Liegt die Wellenlänge einer auf eine FSS einfallenden Welle in der gleichen Größenordnung wie die Abmessungen der Elementarzelle (einzelnen Bereiche) der FSS, treten bei Veränderungen der Frequenz der einfallenden Welle starke Resonanzen auf. Bei einer Anregung einer Patchgeometrie durch eine einfallende elektromagnetische Welle wird bei der Resonanzfrequenz - und in realen FSS in einem umgebenden Frequenzbereich - im Wesentlichen die gesamte Welle reflektiert. Der Rückstreuquerschnitt der FSS für die einfallende Welle, hat bei einer FSS in Patchgeometrie bei der Resonanzfrequenz ein Maximum. Dagegen wird bei der Aperturgeometrie die einfallende Welle bei der Resonanzfrequenz im Wesentlichen vollständig transmittiert. Der Rückstreuquerschnitt der FSS für die einfallende Welle hat bei einer FSS in Aperturgeometrie bei der Resonanzfrequenz ein Minimum. Durch ein Ankoppeln eines Lastwiderstandes an die FSS lässt sich bei einer Frequenz der einfallenden elektromagnetischen Welle in der Nähe der Resonanzfrequenz der FSS der Rückstreuquerschnitt der FSS für die Welle stark verändern. Hierdurch kann durch An- bzw. Abkoppeln eines geeigneten Lastwiderstandes der an der RSS reflektierte Anteil der elektromagnetischen Welle stark variiert werden. Das Prinzip, den Rückstreuquerschnitt einer Antenne durch An- oder Abkoppeln eines geeigneten Lastwiderstandes wird auch als modulierter Rückstreuquerschnitt bezeichnet und ist beispielsweise im o.g. RFID-Handbuch, Kapitel 4.2.4 beschrieben.
-
WO 2006/027112 A1 beschreibt die Verwendung einer frequenzselektiven Oberfläche als Echtheitsmerkmal für z.B. Banknoten oder Chipkarten. -
US 4 917 458 A offenbart eine Anordnung einer frequenzselektiven Oberfläche, die mit einer Antenne überlagert ist, um die Antenne platzsparend im Bereich der frequenzselektiven Oberfläche unterzubringen. -
WO 92/16031 A1 -
DE 196 52 324 A1 beschreibt einen Transponder mit einer periodischen Antennenstruktur in Patch-Geometrie. - Der Erfindung liegt die Aufgabe zu Grunde, Messungen einer Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, nach dem Doppler-Prinzip auch für Systeme mit Transpondern zu ermöglichen, deren Dopplerfrequenz ohne weitere Vorkehrungen kaum oder nicht messbar ist.
- Die Aufgabe wird gelöst durch ein System nach Anspruch 1. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
- Das erfindungsgemäße System zur Verwaltung der Benutzung mindestens eines zahlungspflichtigen Verkehrsmittels durch Fahrgäste weist Folgendes auf: für jeden zahlungspflichtigen Fahrgast mindestens einen Transponder, wobei jeder zahlungspflichtige Fahrgast, der das Verkehrsmittel nutzt, verpflichtet ist, während der Nutzung des Verkehrsmittels den Transponder mit sich zu führen; mindestens eine an einem Zugang zu dem Verkehrsmittel angebrachte Leseantenne, die zur Kommunikation mit dem Transponder bei der zweiten Resonanzfrequenz eingerichtet ist, und mit der eine Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, eines Transponders relativ zur Leseantenne nach dem Doppler-Prinzip bei der zweiten Resonanzfrequenz messbar ist, derart, dass zwischen einem mit Transponder ausgestatteten Fahrgast, der das Verkehrsmittel oder einen das Verkehrsmittel umgebenden zugangsbeschränkten Bereich betritt bzw. verlässt, unterscheidbar ist.
- Der Transponder ist mit einer Antenne nach einer der unten beschriebenen Ausführungsformen und Varianten und mit einem mit der Antenne elektrisch gekoppelten oder koppelbaren Chip ausgestattet. Wahlweise sind die Antenne und der Chip auf einem beliebig gestalteten Träger angeordnet. Wahlweise ist der Transponder als Etikett, (Kontaktlos-) Chipkarte, volumiger Transponder oder Transponder sonstiger Bauform gestaltet.
- Die Antenne ist zur Messung einer Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, nach dem Doppler-Prinzip vorgesehen und weist eine Antennenfläche aus einem leitfähigen Material auf. Die Antenne hat eine vorbestimmte Antennenstruktur, durch welche eine erste Resonanzfrequenz der Antenne eingestellt ist. Die Antenne zeichnet sich dadurch aus, dass die Antennenfläche mit einer frequenzselektiven Oberfläche (FSS) versehen ist, durch welche eine zweite Resonanzfrequenz der Antenne eingestellt ist, die von der ersten Resonanzfrequenz unterschiedlich ist.
- Die zweite Resonanzfrequenz führt zu einer zweiten Dopplerfrequenz, die ebenfalls bei einer unterschiedlichen Frequenz liegt als die Dopplerfrequenz auf Grund der ersten Resonanzfrequenz, unter der Annahme der gleichen Relativgeschwindigkeit zwischen der Antenne und einer Leseantenne eines Lesegeräts.
- Mit der Antenne gemäß Anspruch 1 ist daher eine Möglichkeit geschaffen, Messungen einer Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, nach dem Doppler-Prinzip auch für Systeme mit Transpondern durchzuführen, deren Dopplerfrequenz ohne weitere Vorkehrungen kaum oder nicht messbar ist, da die Dopplerfrequenz zu niedrig oder zu hoch ist, um sie zu messen.
- Das erfindungsgemäße System nach Anspruch 1 ist somit ein Ticketting-System. Es ist insbesondere für öffentliche Verkehrsmittel anwendbar. Das erfindungsgemäße System ist gegenüber bekannten Ticketting-Systemen besonders komfortabel. Da bei dem erfindungsgemäßen System die Erfassung der Transponder nach dem Doppler-Prinzip erfolgt, ist eine sehr langreichweitige Messung möglich. Folglich lässt sich das Einsteigen und Aussteigen von Fahrgästen erfassen, ohne dass diese ihren als Fahrkarte verwendeten Transponder an ein Lesegerät zu halten brauchen, was einen Vorteil gegenüber herkömmlichen Check-in/ Check-out-Systemen darstellt. Andererseits braucht innerhalb des Fahrzeugs keine Überwachungsantenne vorgesehen zu sein, um die Anwesenheit erfasster Fahrgäste während der ganzen Fahrt zu überwachen, was einen Vorteil gegenüber herkömmlichen langreichweitigen Be-in/ Be-out-Systemen darstellt.
- Bei dem erfindungsgemäßen System zur Verwaltung der Benutzung mindestens eines zahlungspflichtigen Verkehrsmittels wird die zweite Resonanzfrequenz zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip verwendet, insbesondere um das Ein- bzw. Aussteigen von Fahrgästen zu erfassen. Eine Kommunikation mit dem Chip des Transponders erfolgt dagegen vorzugsweise bei der ersten Resonanzfrequenz, die beispielsweise durch eine Norm wie z.B. ISO 18000-6 oder ISO 18000-4 festgelegt ist, wahlweise gemäß einem beliebigen Kommunikationsverfahren nach dem Stand der Technik.
- Die Leseantenne ist wahlweise zur Kommunikation mit der Antenne eingerichtet, nicht aber zur Kommunikation mit dem Chip. Wahlweise ist eine Kommunikation mit dem Chip bei der ersten Resonanzfrequenz möglich, wahlweise mit einer von der Leseantenne unterschiedlichen geeigneten Leseeinrichtung.
- Als Zugang zu dem Verkehrsmittel kann beispielsweise eine Tür oder ein Türdurchgang oder ein Türrahmen oder dergleichen eines Verkehrsmittels (z.B. Bus, U-Bahn-Zug, Eisenbahnwaggon, Straßenbahnwagen etc.) vorgesehen sein. Als Zugang zu einem zugangsbeschränkten Bereich kann beispielsweise ein Zugang zu einem Bahnsteig vorgesehen sein.
- Bei dem System ist wahlweise an jedem für Fahrgäste vorgesehenen Zugang zu einem Verkehrsmittel oder zu dem zugangsbeschränkten Bereich eine Leseantenne angeordnet.
- Wahlweise ist zwischen einem mit Transponder ausgestatteten Fahrgast, der das Verkehrsmittel oder einen das Verkehrsmittel umgebenden zugangsbeschränkten Bereich betritt bzw. verlässt, dadurch unterscheidbar, dass die Leseantenne für die Doppler-Messung eine räumliche Richtcharakteristik aufweist, so dass der Transponder in eine Innen-Richtung in das Verkehrsmittel oder den zugangsbeschränkten Bereich hinein mit der Leseantenne stärker oder schwächer detektierbar ist als in eine Außen-Richtung aus dem Verkehrsmittel oder dem zugangsbeschränkten Bereich heraus. Beispielsweise hat eine Leseantenne an einem Türdurchgang eines Verkehrsmittels (Bus, Bahn etc.) eine ins Äußere des Verkehrsmittels gerichtete Richtcharakteristik. Ein einsteigender Fahrgast wird somit detektiert als ein sich auf die Leseantenne zu bewegender Transponder, bis der Fahrgast den Türdurchgang durchschreitet. Sobald der Fahrgast den Türdurchgang durchschritten hat, wird sein Transponder im Innern des Verkehrsmittels durch die Leseantenne nicht mehr detektiert. Ein aussteigender Fahrgast wird erst detektiert, sobald der den Türdurchgang von innen nach außen passiert und wird dann als sich von der Leseantenne weg bewegender Transponder detektiert.
- Das System weist weiter wahlweise eine an einem Zugang zu dem Verkehrsmittel angebrachte Leseeinrichtung auf, die zur Kommunikation mit dem Transponder, insbesondere mit dem Chip des Transponders, bei der ersten Resonanzfrequenz eingerichtet ist. Die Leseeinrichtung ist beispielsweise insbesondere dazu eingerichtet, Fahrpreisinformationen über einen durch den Fahrgast zu zahlenden Fahrpreis in den Chip des Transponders zu schreiben oder aus dem Chip zu lesen.
- Wahlweise liegt die zweite Resonanzfrequenz bei einer höheren Frequenz als die erste Resonanzfrequenz. Diese Alternative der Erfindung ist besonders für Anwendungen wie Ticketting, Lagerhaltung, Tierüberwachung und dergleichen bevorzugt, da hierbei relativ niedrige erste Resonanzfrequenzen durch Normen festgeschrieben sind und andererseits die Relativbewegungen von Antenne und Leseantenne eines Lesegeräts niedrig sind.
- Die frequenzselektive Oberfläche besteht wie aus dem Stand der Technik bekannt aus einer periodisch strukturierten leitfähigen Struktur.
- Wahlweise ist dabei die frequenzselektive Oberfläche in Aperturgeometrie gestaltet, wobei die elektrisch leitfähige Antennefläche mit einer periodischen Anordnung von Aperturen versehen ist. Die Aperturen können als Öffnungen in der elektrisch leitfähigen Antennenfläche gestaltet sein und wahlweise mit einem Dielektrikum gefüllt sein.
- Wahlweise ist die frequenzselektive Oberfläche in Patchgeometrie gestaltet, wobei die Antennefläche mit einer periodischen Anordnung von elektrisch leitfähigen Elementen versehen ist, die von der Antennenfläche elektrisch isoliert sind, z.B. durch eine dielektrische Zwischenschicht.
- Die erste Resonanzfrequenz liegt wahlweise im Mikrowellenbereich, insbesondere im Frequenzbereich von ungefähr 800 MHz bis ungefähr 6 GHz, insbesondere bei einer Frequenz von 868 MHz oder 915 MHz oder 2,45 GHz, wahlweise bei einer durch eine Norm festgesetzten Frequenz.
- Wahlweise weist die Antenne mit der frequenzselektiven Oberfläche weiter eine Einstelleinrichtung auf, mit der ein Rückstreuquerschnitt der frequenzselektiven Oberfläche in einem zumindest die zweite Resonanzfrequenz umfassenden Frequenzbereich veränderbar ist. Die Einstelleinrichtung kann beispielsweise bei einer frequenzselektiven Oberfläche in Patchgeometrie einen oder mehrere Lastwiderstände aufweisen, die an die leitfähigen Elemente wahlweise ankoppelbar oder abkoppelbar sind. In Abhängigkeit vom an die leitfähigen Elemente angekoppelten Lastwiderstand ist der Rückstreuquerschnitt der Antenne auf Grund der frequenzselektiven Oberfläche unterschiedlich. Bei dieser Variante kann die frequenzselektive Oberfläche gegenüber einer Leseantenne eines Lesegeräts, die bei einer festen Frequenz, insbesondere der zweiten Resonanzfrequenz, elektromagnetische Wellen aussendet, wahlweise ein- und ausgeschaltet werden.
- Das System, das zusätzlich eine zur Kommunikation mit dem Transponder bei der ersten Resonanzfrequenz eingerichtete Leseeinrichtung aufweist, ist wahlweise weiter folgendermaßen gestaltet.
- Die Transponder haben - wahlweise in Patchgeometrie gestaltete - frequenzselektive Oberflächen und eine Einstelleinrichtung, mittels derer ein Rückstreuquerschnitt der frequenzselektiven Oberfläche in einem zumindest die zweite Resonanzfrequenz umfassenden Frequenzbereich veränderbar ist.
- Die Transponder sind in einem Grundzustand des Systems nicht aktiviert, wobei die Transponder bei der zweiten Resonanzfrequenz einen Grundzustand-Rückstreuquerschnitt haben.
- Die Leseantenne für die zweite Resonanzfrequenz und die Leseeinrichtung für die erste Resonanzfrequenz sind derart zum Zusammenarbeiten eingerichtet, dass mindestens ein beliebiger einzelner Transponder durch die Leseeinrichtung für die erste Resonanzfrequenz (d.h. z.B. die Leseeinrichtung für insbesondere die Kommunikation mit dem Chip) mittels der Einstelleinrichtung aktivierbar ist, indem an dem Transponder ein vom Grundzustand-Rückstreuquerschnitt unterschiedlicher Aktiv-Rückstreuquerschnitt, insbesondere ein extremer - wahlweise maximaler oder minimaler - Rückstreuquerschnitt, einstellbar ist, und an dem aktivierten einzelnen Transponder bei der zweiten Resonanzfrequenz eine Messung einer Bewegungsinformation nach dem Doppler-Prinzip bei der zweiten Resonanzfrequenz durchführbar ist. Wahlweise wird der Transponder zudem durch die Leseeinrichtung bei der ersten Resonanzfrequenz mit Energie versorgt.
- Bei dem derart gestalteten System wird also ein Transponder bei der "Grundfrequenz" des Transponders (ersten Resonanzfrequenz) aufgeweckt und anschließend am aufgeweckten Transponder bei der "FSS-Frequenz" (zweiten Resonanzfrequenz) die Doppler-Messung durchgeführt. Hierdurch können bei einer Vielzahl von gleichzeitig vorhandenen Transpondern gezielt einzelne Transponder für die Messung nach dem Doppler-Prinzip isoliert werden, um Kollisionen zu vermeiden, die durch eine gleichzeitige Kommunikation mit der Vielzahl von Transpondern auftreten könnten.
- Wahlweise wird bei dem vorstehend beschriebenen System in einem vorbestimmten räumlichen Bereich, z.B. an einem einzelnen Zugang, z.B. an einem einzelnen Türdurchgang zu einem Verkehrsmittel, jeweils nur ein einzelner Transponder zeitgleich aktiviert. Auf diese Weise werden Kollisionen durch eine gleichzeitige Kommunikation mit der Vielzahl von Transpondern vermieden.
- Bei einem Verfahren zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip mit dem vorstehend beschriebenen System wird mindestens ein, wahlweise genau ein, beliebiger einzelner Transponder durch die Leseeinrichtung für die erste Resonanzfrequenz mittels der Einstelleinrichtung aktiviert und an dem aktivierten einzelnen Transponder eine Messung einer Bewegungsinformation nach dem Doppler-Prinzip bei der zweiten Resonanzfrequenz durchgeführt.
- Im Folgenden wird die Erfindung an Hand von Ausführungsbeispielen und unter Bezugnahme auf die Zeichnung näher erläutert, in der zeigen:
- Fig. 1
- einen Transponder mit einem Chip und einer Antenne, gemäß dem Stand der Technik;
- Fig. 2
- einen Transponder mit einem Chip und einer Antenne mit einer FSS in Aperturgeometrie, gemäß einer ersten Ausführungsform der Erfindung;
- Fig. 3
- einen Transponder mit einem Chip und einer Antenne mit einer FSS in Patchgeometrie, gemäß einer zweiten Ausführungsform der Erfindung.
-
Fig.1 zeigt einen Transponder 100 mit einem Chip 110 und einer Antenne 120, die auf einem Träger 130 angeordnet sind, gemäß dem Stand der Technik. Der Transponder 100 ist hier beispielhaft als Chipkarte im Format ID-1 gemäß ISO 7810 gestaltet. Die Antenne 120 hat durch ihre Bauform und ihre geometrischen Abmessungen eine erste Resonanzfrequenz bei 868 MHz. Für diese Frequenz eignet sich die inFig. 1 beispielhaft dargestellte flächige Antennen-Bauform, bei der die Antenne 120 eine flächige Antennenfläche hat. -
Fig. 2 zeigt einen Transponder 200 mit einem Chip 210 und einer Antenne 220 auf einem Träger 230, wobei die Antenne 220 mit einer FSS 240 in Aperturgeometrie versehen ist, gemäß einer ersten Ausführungsform der Erfindung. Im Vergleich zum Transponder 100 ausFig.1 hat der Transponder 200 ausFig. 2 an der Antennenfläche der Antenne 220 eine Vielzahl von periodisch angeordneten Aperturen (Öffnungen) 250, die in ihrer Gesamtheit die frequenzselektive Oberfläche FSS 240 bilden. Die Antenne 220 hat durch ihre Bauform und geometrischen Abmessungen eine erste Resonanzfrequenz bei 868 MHz. Auf Grund der FSS 240 hat die Antenne 220 eine zweite Resonanzfrequenz bei einer Frequenz von über 10 GHz, typischerweise ca. 70 ... 150 (200) ... GHz. Die der zweiten Resonanzfrequenz entsprechende Dopplerfrequenz liegt für v =1 m/s und eine zweite Resonanzfrequenz von 200 GHz bei größenordnungsmäßig ca. 1300 Hz, also in einem gut messbaren Frequenzbereich. -
Fig. 3 zeigt einen Transponder 300 mit einem Chip 310 und einer Antenne 320 mit einer FSS 340 in Patchgeometrie, angeordnet auf einem Träger 330, gemäß einer zweiten Ausführungsform der Erfindung. Im Vergleich zum Transponder 100 ausFig. 1 hat der Transponder 300 ausFig. 3 auf der Antennenfläche der Antenne 320 eine Vielzahl von periodisch angeordneten leitfähigen Elementen 350, die in ihrer Gesamtheit die frequenzselektive Oberfläche FSS 340 bilden. Zwischen der Antennenfläche der Antenne 320 und den leitfähigen Elementen 350 der FSS 340 ist eine elektrisch isolierende Zwischenschicht 360 angeordnet, mit der die Antenne 320 und die leitfähigen Elemente 350 der FSS 340 elektrisch voneinander isoliert sind. Die Zwischenschicht 360 ist aus einem Dielektrikum gebildet, beispielsweise aus einem Kunststoff, z.B. aus einer Kunststofffolie. Die einzelnen leitfähigen Elemente 350 sind untereinander elektrisch verbunden. Die untereinander verbundenen leitfähigen Elemente 350 sind, z.B. über ein oder mehrere Versorgungsleitungen und Logikleitungen, mit dem Chip 310 elektrisch gekoppelt oder koppelbar. An die leitfähigen Elemente 350 ist weiter ein - vorzugsweise variierbarer - Lastwiderstand (nicht gesondert dargestellt) ankoppelbar. Der Schichtaufbau des Transponders 300 mit dem Träger 330, der auf dem Träger 330 angeordneten Antenne 320, der auf der Antenne 320 angeordneten isolierenden Zwischenschicht 360 und den auf der Zwischenschicht 360 angeordneten elektrisch leitfähigen Elementen 350 ist im unteren Teil vonFig. 3 in einer Schnittansicht entlang der Linie AB im oberen Teil vonFig. 3 veranschaulicht. Die Antenne 320 hat durch ihre Bauform und geometrischen Abmessungen eine erste Resonanzfrequenz bei 868 MHz. Auf Grund der FSS 340 hat die Antenne 320 eine zweite Resonanzfrequenz bei einer Frequenz von ca. weit über 10 GHz, z.B. 70 ... 150(200) ... GHz. - Die leitfähigen Elemente 350 des Transponders 300 aus
Fig. 3 sind als rechteckige Flächen gestaltet. Wahlweise können die Elemente 350 jede beliebige geeignete andere Gestalt haben. Analog können die Aperturen 250 des Transponders 200 ausFig. 2 jede beliebige geeignete Gestalt haben. - Um an einem Transponder 300 mit einer Leseantenne eine Messung nach dem Doppler-Prinzip bei der zweiten Resonanzfrequenz durchzuführen, wird an die leitfähigen Elemente 350 ein geeignet dimensionierter Lastwiderstand angekoppelt. Das Signal zum Ankoppeln des Lastwiderstandes wird bei der ersten Resonanzfrequenz mit einem entsprechenden geeigneten Lesegerät an den Chip 310 übertragen. Der Chip 310 veranlasst das Ankoppeln des Lastwiderstands. Durch das Ankoppeln des Lastwiderstands wird der Rückstreuquerschnitt der frequenzselektiven Oberfläche 340, der ohne den Lastwiderstand niedrig ist, auf einem Maximalwert erhöht. Hierdurch ist der Transponder 300 aktiviert und die Doppler-Messung bei der zweiten Resonanzfrequenz kann durchgeführt werden.
Claims (12)
- System zur Verwaltung der Benutzung mindestens eines zahlungspflichtigen Verkehrsmittels durch Fahrgäste, mit- mindestens einem Transponder (200, 300), verwendet als elektronischer Fahrschein für zahlungspflichtige Verkehrsmittel, mit einer Antenne (220, 320), die eine aus einem leitfähigen Material gefertigte Antennenfläche mit einer vorbestimmten Antennenstruktur aufweist, durch welche eine erste Resonanzfrequenz der Antenne eingestellt ist, und mit einem mit der Antenne (220, 320) elektrisch gekoppelten oder koppelbaren Chip (210, 310), und- mindestens einer an einem Zugang zu dem Verkehrsmittel oder zu einem das Verkehrsmittel umgebenden zugangsbeschränkten Bereich angebrachten Leseantenne,
dadurch gekennzeichnet, dass- die Antenne (220, 320) zur Messung einer Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, nach dem Doppler-Prinzip, eingerichtet ist, wobei die Antennenfläche mit einer frequenzselektiven Oberfläche (240, 340) versehen ist, durch welche eine zweite Resonanzfrequenz der Antenne (220, 320) eingestellt ist, die von der ersten Resonanzfrequenz unterschiedlich ist,
und dass- die Leseantenne zur Kommunikation mit dem Transponder (200, 300) bei der zweiten Resonanzfrequenz eingerichtet ist, und mit der Leseantenne eine Bewegungsinformation, insbesondere Geschwindigkeit oder Abstand, eines Transponders (200, 300) relativ zur Leseantenne nach dem Doppler-Prinzip messbar ist, derart, dass zwischen einem mit Transponder (200, 300) ausgestatteten Fahrgast, der das Verkehrsmittel oder den das Verkehrsmittel umgebenden zugangsbeschränkten Bereich betritt bzw. verlässt, unterscheidbar ist. - System nach Anspruch 1, wobei an jedem für Fahrgäste vorgesehenen Zugang zu einem Verkehrsmittel oder zu dem zugangsbeschränkten Bereich eine Leseantenne angeordnet ist.
- System nach Anspruch 1 oder 2, wobei zwischen einem mit Transponder (200, 300) ausgestatteten Fahrgast, der das Verkehrsmittel oder einen das Verkehrsmittel umgebenden zugangsbeschränkten Bereich betritt bzw. verlässt, dadurch unterscheidbar ist, dass die Leseantenne eine räumliche Richtcharakteristik aufweist, so dass der Transponder (200, 300) in eine Innen-Richtung in das Verkehrsmittel oder den zugangsbeschränkten Bereich hinein mit der Leseantenne stärker oder schwächer detektierbar ist als in eine Außen-Richtung aus dem Verkehrsmittel oder dem zugangsbeschränkten Bereich heraus.
- System nach einem der Ansprüche 1 bis 3, das weiter eine an einem Zugang zu dem Verkehrsmittel angebrachte Leseeinrichtung aufweist, die zur Kommunikation mit dem Transponder (200, 300), insbesondere mit dem Chip (210, 310) des Transponders (200, 300), bei der ersten Resonanzfrequenz eingerichtet ist.
- System mit einer Antenne (220, 320) nach einem der Ansprüche 1 bis 4, wobei die zweite Resonanzfrequenz bei einer höheren Frequenz liegt als die erste Resonanzfrequenz.
- System mit einer Antenne (220) nach einem der Ansprüche 1 bis 5, wobei die frequenzselektive Oberfläche (240) in Aperturgeometrie gestaltet ist, wobei die Antennefläche mit einer periodischen Anordnung von Aperturen (250) versehen ist.
- System mit einer Antenne (320) nach einem der Ansprüche 1 bis 7, wobei die frequenzselektive Oberfläche (340) in Patchgeometrie gestaltet ist, wobei die Antennefläche mit einer periodischen Anordnung von elektrisch leitfähigen Elementen (350) versehen ist, die von der Antennenfläche elektrisch isoliert sind.
- System mit einer Antenne (220, 320) nach einem der Ansprüche 1 bis 7, wobei die erste Resonanzfrequenz im Mikrowellenbereich liegt, insbesondere im Frequenzbereich von ungefähr 800 MHz bis ungefähr 6 GHz, insbesondere bei einer Frequenz von 868 MHz oder 915 MHz oder 2,45 GHz.
- System mit einer Antenne (220, 320) nach einem der Ansprüche 1 bis 8, die weiter eine Einstelleinrichtung aufweist, mit der ein Rückstreuquerschnitt der frequenzselektiven Oberfläche in einem zumindest die zweite Resonanzfrequenz umfassenden Frequenzbereich veränderbar ist.
- System nach Anspruch 9, wobei- die Transponder (200, 300) in einem Grundzustand des Systems nicht aktiviert sind, wobei die Transponder (200, 300) einen Grundzustand-Rückstreuquerschnitt haben, und- die Leseantenne für die zweite Resonanzfrequenz und die Leseeinrichtung für die erste Resonanzfrequenz derart zum Zusammenarbeiten eingerichtet sind, dass durch die Leseeinrichtung für die erste Resonanzfrequenz, mittels der Einstelleinrichtung, mindestens ein beliebiger einzelner Transponder (200, 300) aktivierbar ist, indem an dem Transponder ein vom Grundzustand-Rückstreuquerschnitt unterschiedlicher Aktiv-Rückstreuquerschnitt, insbesondere ein extremer - wahlweise maximaler oder minimaler - Rückstreuquerschnitt, einstellbar ist, und dass an dem aktivierten einzelnen Transponder (200, 300) eine Messung einer Bewegungsinformation nach dem Doppler-Prinzip durchführbar ist.
- Verfahren zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip mit einem System nach Anspruch 10, wobei durch die Leseeinrichtung für die erste Resonanzfrequenz, mittels der Einstelleinrichtung, mindestens ein, vorzugsweise genau ein, beliebiger einzelner Transponder (300) aktiviert wird und an dem aktivierten einzelnen Transponder (300) eine Messung einer Bewegungsinformation nach dem Doppler-Prinzip durchgeführt wird.
- Verfahren nach Anspruch 11, wobei in einem vorbestimmten räumlichen Bereich jeweils nur ein einzelner Transponder (300) zeitgleich aktiviert wird.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610061312 DE102006061312A1 (de) | 2006-12-22 | 2006-12-22 | Antenne zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip, Transponder, System und Verfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1936740A1 EP1936740A1 (de) | 2008-06-25 |
EP1936740B1 true EP1936740B1 (de) | 2015-09-16 |
Family
ID=39156228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07024616.0A Active EP1936740B1 (de) | 2006-12-22 | 2007-12-19 | System und Verfahren zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1936740B1 (de) |
DE (1) | DE102006061312A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011012230A1 (de) | 2011-02-24 | 2012-08-30 | Giesecke & Devrient Gmbh | Verfahren zum Betreiben eines Datenträgers und Datenträger mit einer Antennenstruktur |
EP3862771A1 (de) * | 2020-02-04 | 2021-08-11 | Aptiv Technologies Limited | Radarvorrichtung |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5917458A (en) * | 1995-09-08 | 1999-06-29 | The United States Of America As Represented By The Secretary Of The Navy | Frequency selective surface integrated antenna system |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57194371A (en) | 1981-05-27 | 1982-11-29 | Hitachi Ltd | Doppler radar type vehicle speedometer |
IT1245423B (it) * | 1991-02-27 | 1994-09-20 | Alenia Aeritalia & Selenia | Struttura dicroica discriminante in frequenza con banda passante variabile, e sue applicazioni |
US5512901A (en) * | 1991-09-30 | 1996-04-30 | Trw Inc. | Built-in radiation structure for a millimeter wave radar sensor |
JPH07509793A (ja) * | 1992-05-11 | 1995-10-26 | サーブ スカニア コンビテック アクティボラグ | 検出及び情報転送を行う装置 |
US5471224A (en) * | 1993-11-12 | 1995-11-28 | Space Systems/Loral Inc. | Frequency selective surface with repeating pattern of concentric closed conductor paths, and antenna having the surface |
GB9408588D0 (en) | 1994-04-29 | 1994-06-22 | Disys Corp | Passive transponder |
GB2328319B (en) * | 1994-06-22 | 1999-06-02 | British Aerospace | A frequency selective surface |
DE19652324A1 (de) * | 1996-12-16 | 1998-06-25 | Siemens Ag | Transponder mit einer Mikrowellen-Empfangsantenne |
US6084530A (en) * | 1996-12-30 | 2000-07-04 | Lucent Technologies Inc. | Modulated backscatter sensor system |
DE10056148A1 (de) | 2000-11-13 | 2002-05-23 | Infineon Technologies Ag | Kontaktloser Datenträger |
WO2002073234A1 (en) * | 2001-03-14 | 2002-09-19 | Ip And Innovation Company Holdings (Proprietary) Limited | Presence detection |
US7190325B2 (en) * | 2004-02-18 | 2007-03-13 | Delphi Technologies, Inc. | Dynamic frequency selective surfaces |
DE102004043064A1 (de) | 2004-09-06 | 2006-03-09 | Giesecke & Devrient Gmbh | Sicherheitselement mit maschinenlesbarem Echtheitsmerkmal |
-
2006
- 2006-12-22 DE DE200610061312 patent/DE102006061312A1/de not_active Withdrawn
-
2007
- 2007-12-19 EP EP07024616.0A patent/EP1936740B1/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5917458A (en) * | 1995-09-08 | 1999-06-29 | The United States Of America As Represented By The Secretary Of The Navy | Frequency selective surface integrated antenna system |
Also Published As
Publication number | Publication date |
---|---|
DE102006061312A1 (de) | 2008-06-26 |
EP1936740A1 (de) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68925416T2 (de) | Reichweitenbegrenzendes System | |
EP1701287B1 (de) | Identifikationssystem und Verfahren zur Ermittlung von Bewegungsinformationen | |
DE69334088T2 (de) | System zum Identifizieren beweglicher Objekte | |
WO2001077468A1 (de) | System zur kontrolle der zugangsberechtigung zu einem fahrzeug | |
EP3261060B1 (de) | Verfahren zur zugangskontrolle bei einem zugangskontrollsystem für personen oder fahrzeuge sowie zugangskontrollsystem | |
EP2205990A1 (de) | Vorrichtung zur erfassung eines fahrzeuges auf einem rollweg eines flughafens | |
CH695907A5 (de) | Zugangskontrolleinrichtung. | |
EP2125449B1 (de) | Verfahren zur abstandscharakterisierung bei induktiv gekoppelten zugangssystemen für fahrzeuge | |
DE102015007040B4 (de) | Verfahren zur Detektion und Klassifikation von Fußgängern in einer Umgebung eines Kraftfahrzeugs und Kraftfahrzeug | |
EP2529981B1 (de) | Verfahren und Anordnung zur Erkennung einer Sitzplatzbelegung | |
EP1936740B1 (de) | System und Verfahren zur Messung einer Bewegungsinformation nach dem Doppler-Prinzip | |
DE102007058278A1 (de) | Sicherheitsgurtsystem | |
EP1860597B1 (de) | Übertragungseinheit für ein Induktives Identifikationssystem und Induktives Identifikationssystem | |
AT4044U1 (de) | Zugangskontrollsystem | |
EP3617009B1 (de) | System und verfahren zur erkennung des verriegelungs- und/oder funktionszustandes eines sicherheitsgurtsystems | |
EP1672560B1 (de) | Induktives Identifikationssystem | |
DE102007058277A1 (de) | Fahrzeuginsassen-Schutzvorrichtung | |
EP2306406B1 (de) | Zugangskontrollvorrichtung in kompakter Bauweise | |
EP3640896A1 (de) | Fahrzeugtürgriff mit nahfeld-kommunikationselektronik | |
EP1820139B1 (de) | Kommunikationsgerät | |
DE3636414A1 (de) | Kontrollsystem zur identifizierung von personen und objekten | |
DE102007039834A1 (de) | Radarsensorvorrichtung | |
WO1994025939A1 (de) | Abschirmelement und vereinzelungseinrichtung für eine berührungslose durchgangskontrolle | |
DE202022001868U1 (de) | Radarziel mit Identifikationsmerkmal | |
DE102015011022B4 (de) | Verfahren zum Betrieb von Radarsensoren in einem Kraftfahrzeug und Kraftfahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20081229 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090209 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150417 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 750449 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007014223 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160118 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007014223 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151219 |
|
26N | No opposition filed |
Effective date: 20160617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 750449 Country of ref document: AT Kind code of ref document: T Effective date: 20151219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20071219 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007014223 Country of ref document: DE Owner name: GIESECKE+DEVRIENT MOBILE SECURITY GMBH, DE Free format text: FORMER OWNER: GIESECKE & DEVRIENT GMBH, 81677 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150916 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: GIESECKE+DEVRIENT MOBILE SECURITY GMBH, DE Free format text: FORMER OWNER: GIESECKE AND DEVRIENT GMBH, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180301 AND 20180307 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: GIESECKE+DEVRIENT MOBILE SECURITY GMBH, DE Effective date: 20180619 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230520 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007014223 Country of ref document: DE Owner name: GIESECKE+DEVRIENT EPAYMENTS GMBH, DE Free format text: FORMER OWNER: GIESECKE+DEVRIENT MOBILE SECURITY GMBH, 81677 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231220 Year of fee payment: 17 Ref country code: DE Payment date: 20231231 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240110 Year of fee payment: 17 |