EP1934452B1 - Device for pressure-based load detection - Google Patents

Device for pressure-based load detection Download PDF

Info

Publication number
EP1934452B1
EP1934452B1 EP06792231A EP06792231A EP1934452B1 EP 1934452 B1 EP1934452 B1 EP 1934452B1 EP 06792231 A EP06792231 A EP 06792231A EP 06792231 A EP06792231 A EP 06792231A EP 1934452 B1 EP1934452 B1 EP 1934452B1
Authority
EP
European Patent Office
Prior art keywords
intake manifold
manifold pressure
pressure
determined
air mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06792231A
Other languages
German (de)
French (fr)
Other versions
EP1934452A1 (en
Inventor
Heiko Konrad
Maximilian Engl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1934452A1 publication Critical patent/EP1934452A1/en
Application granted granted Critical
Publication of EP1934452B1 publication Critical patent/EP1934452B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure

Definitions

  • the invention relates to a device for pressure-based load detection according to the subject-matter of claim 1.
  • In the load detection is the determination of the air mass, which is sucked for the purpose of combustion in the combustion chamber of a cylinder of an internal combustion engine.
  • two methods are to be distinguished here - those based on an immediate measurement of the air mass by means of sensors (eg hot-film air mass sensor, hot-wire air mass sensor or the like), and those which operate without a direct air mass measurement.
  • sensors eg hot-film air mass sensor, hot-wire air mass sensor or the like
  • direct air mass measurement the air mass flowing into the intake manifold is measured and the air mass flowing into the cylinder from the intake manifold is calculated by means of a calculation model which describes the intake manifold dynamics.
  • the measured intake manifold pressure is usually used, from which an air mass model is used to deduce the incoming air mass.
  • These methods are also referred to as pressure-based or suction tube pressure-based methods for load detection.
  • the air mass is determined as a function of the intake manifold pressure and the temperature of the air in the intake manifold.
  • complex calculation models are required, which describe the fresh air mass flow from the collector in the intake to the combustion chamber of the cylinder.
  • Parameters to be taken into account here are, in particular, the engine speed, the camshaft position and / or the lift positions and / or lift positions of exhaust and intake valves, the engine temperature and, with supercharged engines: the position of the bypass (Wastegate).
  • the fresh air mass remaining in the cylinders steadily increases with the intake manifold pressure with otherwise identical input parameters (parameters) ( FIG. 2 ).
  • Known devices for the pressure-based determination of the air mass (load) therefore include suction tube pressure sensors, which can cover or measure the entire intake manifold pressure range.
  • the invention has for its object to provide a device that ensures improved accuracy of the load detection, especially in low load ranges.
  • the invention is based on the finding that measurement errors occur due to the tolerance of the sensors, which have different effects in the different load ranges.
  • a distinction between an absolute measurement error, the proportion (amount) over the entire measuring range is always the same and which corresponds to a percentage of the final value, and a relative measurement error, the proportion of which changes depending on the height of the measured value .
  • the relative measurement error increases disproportionately at small intake pipe pressures (loads) and thus has a particularly disadvantageous effect on the accuracy of the load signal.
  • high accuracy of the load signal is extremely important for drivability of a motor vehicle (e.g., in the transition from high loads to idle).
  • load calculation models of direct-injection supercharged engines are sensitive to existing pressure sensor tolerances.
  • the gradient is twice that of non-supercharged engines due to high valve overlaps (i.e., phases in which both intake and exhaust valves are open) and the intake manifold pressure range to be sensed.
  • the device according to the invention is therefore particularly suitable for directly supercharged supercharged internal combustion engines.
  • a device according to the invention comprises a
  • the absolute measuring error is smaller than with a measuring device that covers the entire physical measuring range (total physical intake manifold pressure range). Further, due to the smaller relative measurement error, the error in determining the load as a function of the measured intake manifold pressure is considerably smaller for smaller loads. Outside the pressure range of the pressure sensor used, the intake manifold pressure is determined by means of a calculation model and the required load is calculated on the basis of the calculated intake manifold pressure. The present error due to the calculation model for calculating the intake manifold pressure in the upper intake manifold pressure range is significantly less noticeable, so that clearly outweigh the benefits of increased accuracy in the lower intake manifold pressure range.
  • the intake manifold pressure (value) measured in the lower part of the intake manifold pressure range is used directly as an input to a load sensing model to determine the load.
  • the intake manifold pressure can be simulated over the entire intake manifold pressure range via a calculation model, wherein the measured intake manifold pressure is supplied to a regulator device in the lower Saugrohrbuchteil Colour (in which the intake manifold pressure is detected by a sensor device) is adjusted over the modeled intake manifold pressure to the measured intake manifold pressure.
  • the sensor device is preferably designed such that it covers the entire Saugrohrbuch Kunststoff Kunststoff #2 without active supercharger (in this lower pressure range so the intake manifold pressure is determined directly via a measurement), while in the pressure range above the maximum mammoth pressure without active Charger device to intake manifold maximum pressure with active charger device, the intake manifold pressure is determined model-based.
  • FIG. 1 is schematically shown a cylinder 2 of an internal combustion engine of a motor vehicle together with its associated intake and its associated exhaust tract.
  • a piston 4 driven by a crankshaft not shown, moves up and down.
  • the valve drive represented in simplified form by an inlet valve EV and an outlet valve AV together with the associated valve control, which is preferably designed as a valve control variable with respect to the valve timing and / or the valve strokes, the various cycles of a combustion process are realized.
  • the intake tract comprises a suction pipe 6 with a collector 6a, wherein in the collector 6a for measuring the intake manifold pressure P SD is designed as a Saugrohrdrucksensor sensor device S SD is arranged and a controllable throttle 8.
  • P SD intake manifold pressure
  • S SD Saugrohrdrucksensor sensor
  • a controllable throttle 8 In the illustrated embodiment with Ladereihraum is seen in the intake further a in the air flow direction In front of the throttle valve 8 arranged boost pressure sensor S LD , a charge air cooler 10 and a compressor unit 12 of a charger provided.
  • an exhaust manifold 14 with an integrated turbine unit 16 of the charger and associated controllable bypass 18 (wastegate) is shown.
  • the air mass flowing into the combustion chamber is not equal to the air mass remaining in the combustion chamber at some operating points, since a so-called over-flushing can occur, especially in supercharger operation due to valve overlaps, in which portions of the air mass supplied to the combustion chamber are still in the intake stroke in the exhaust tract be forwarded and thus not available in the combustion process.
  • FIG. 3 a first preferred embodiment of the device according to the invention is illustrated.
  • the device according to the invention is designed such that via the intake manifold pressure P SD , P SD 'the incoming air mass LM can be determined by means of a calculation model M LE for load detection.
  • a sensor device S SD for direct detection of the intake manifold pressure P SD which is designed (designed) with respect to its measuring range such that the intake manifold pressure P SD can only be measured in a lower intake manifold pressure portion of the internal combustion engine.
  • a calculation model M SD for indirect detection of the intake manifold pressure P SD ' is present, which is designed such that hereby the intake manifold pressure P SD ' can be determined by calculation in an upper intake manifold pressure portion of the internal combustion engine.
  • the device is designed such that within the lower Saurohrbuchteilrios the incoming air mass LM is determined as a function of the measured by means of sensor S SD intake manifold pressure P SD , and that within the upper Saugrohrteilteil Schemes the incoming air mass LM via the determined by means of calculation model M SD intake manifold pressure P SD 'is determined.
  • a monitoring device ÜE is provided, by means of which it is monitored whether the actual intake manifold pressure is within the measuring range of the sensor device S SD or not.
  • the measured intake manifold pressure P SD is forwarded directly to the calculation model M LE for load detection for further processing. If there is an intake manifold pressure that is outside the measuring range (x> P sensor_max ) of the sensor device S SD , an intake manifold pressure P SD 'is calculated and this forwarded instead of the measured intake manifold pressure P SD for further processing to the calculation model M LE for load detection (or for determining the air mass LM).
  • the selection of which intake manifold pressure (measured intake manifold pressure P SD or model-based calculated intake manifold pressure P SD ') is relevant and is forwarded is realized via a diverter element W controlled by the monitoring device UE.
  • the device according to the invention for determining the load can be designed such that it always works with a model-based intake manifold pressure P SD 'as an input signal for the calculation model M LE for load detection.
  • a device according to FIG. 4 Use.
  • the intake manifold pressure P SD ' is always model-based determined, depending on whether the intake manifold pressure is within the measuring range of the sensor device S SD or not, the calculated intake manifold pressure P SD ' is adjusted via a correction value K to the measured intake manifold pressure P SD or calculated intake manifold pressure P SD 'remains unchanged.
  • a correction value K for calculating the intake manifold pressure P SD ' is determined via a balancing regulator R.
  • the correction quantity K is determined by means of a difference between measured intake manifold pressure P SD and calculated intake manifold pressure P SD 'fed to balancing regulator R, and the calculated intake manifold pressure P SD ' is compared to the measured intake manifold pressure P SD . If the intake manifold pressure value is outside the sensor measurement range, the calculation model M SD for calculating the intake manifold pressure P SD 'can not be adjusted to the measured intake manifold pressure P SD .
  • the unbalanced calculated intake manifold pressure value P SD ' is then used directly as input to the post-order calculation model M LE for load detection.
  • the calculation model for load detection instead of the correction value K, a neutral value N is fed to the calculation of the intake manifold pressure is not affected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a device for intake-pipe-pressure-based determination of the air mass (LM) flowing into the cylinder combustion chamber of an internal combustion engine cylinder of a motor vehicle. Said device comprises a logic unit, by means of which the air mass flowing in can be determined on the basis the intake-pipe pressure by means of a calculation model for load detection. According to the invention, a sensor device (SSD) for directly detecting the intake pipe pressure (PSD) is also provided, which sensor device (SSD) is designed so as to be capable of measuring the intake-pipe pressure only in a lower intake pipe partial region of the internal combustion engine. Also provided is a calculation model (MSD) for indirectly detecting the intake pipe pressure, which calculation model (MSD) is designed so as to be capable of determining, by means of calculation, the intake pipe pressure in an upper intake pipe partial region of the internal combustion engine. According to the invention, the logic unit is designed such that, within the lower intake pipe partial region, the air mass flowing in is determined as a function of the intake pipe pressure measured by means of the sensor device, and that, within the upper intake pipe partial region, the air mass flowing in is determined by means of the intake pipe pressure determined by means of the calculation model.

Description

Die Erfindung betrifft eine Vorrichtung zur druckbasierten Lasterfassung gemäß dem Gegenstand des Anspruchs 1.The invention relates to a device for pressure-based load detection according to the subject-matter of claim 1.

Bei der Lasterfassung handelt es sich um die Bestimmung der Luftmasse, die zum Zwecke der Verbrennung in den Brennraum eines Zylinders einer Brennkraftmaschine angesaugt wird.In the load detection is the determination of the air mass, which is sucked for the purpose of combustion in the combustion chamber of a cylinder of an internal combustion engine.

Hierbei sind insbesondere zwei Verfahren zu unterscheiden - diejenigen, die auf einer unmittelbaren Messung der Luftmasse mittels Sensorik (z.B. Heißfilm-Luftmassensensor, Hitzdraht-Luftmassensensor oder dergleichen) basieren, und diejenigen, die ohne eine direkte Luftmassenmessung arbeiten. Bei Verfahren mit direkter Luftmassenmessung wird die in das Saugrohr einströmende Luftmasse gemessen und die aus dem Saugrohr in die Zylinder einströmende Luftmasse mittels eines Berechnungsmodells, das die Saugrohrdynamik beschreibt, berechnet. Bei Verfahren ohne direkte Luftmassenmessung wird meist der gemessene Saugrohrdruck verwendet, aus dem über ein Luftmassenmodell auf die einströmende Luftmasse geschlossen wird. Bei diesen Verfahren spricht man auch von druckbasierten oder saugrohrdruckbasierten Verfahren zur Lasterfassung. Bei saugrohrdruckbasierten Verfahren zur Lasterfassung erfolgt die Bestimmung der Luftmasse in Abhängigkeit vom Saugrohrdruck und der Temperatur der Luft im Saugrohr. Um vom Saugrohrdruck auf die in die Brennkammer einströmende Luftmasse schließen zu können sind komplexe Berechnungsmodelle erforderlich, welche den Frischluftmassenstrom vom Sammler im Ansaugtrakt bis in die Brennkammer der Zylinder beschreiben. Hierbei zu berücksichtigende Parameter sind insbesondere die Motordrehzahl, die Nockenwellenposition bzw. die Steuerzeiten und/oder Hubpositionen von Auslass- und Einlassventilen, die Motortemperatur und bei aufgeladenen Motoren: die Position des Bypasses (wastegate). Die in den Zylindern verbleibende Frischluftmasse steigt bei sonst gleichen Eingangsgrößen (Parametern) mit dem Saugrohrdruck stetig an (Figur 2).In particular, two methods are to be distinguished here - those based on an immediate measurement of the air mass by means of sensors (eg hot-film air mass sensor, hot-wire air mass sensor or the like), and those which operate without a direct air mass measurement. In methods with direct air mass measurement, the air mass flowing into the intake manifold is measured and the air mass flowing into the cylinder from the intake manifold is calculated by means of a calculation model which describes the intake manifold dynamics. In processes without direct air mass measurement, the measured intake manifold pressure is usually used, from which an air mass model is used to deduce the incoming air mass. These methods are also referred to as pressure-based or suction tube pressure-based methods for load detection. With suction pipe pressure-based methods for load detection, the air mass is determined as a function of the intake manifold pressure and the temperature of the air in the intake manifold. In order to be able to close the intake manifold pressure on the air mass flowing into the combustion chamber complex calculation models are required, which describe the fresh air mass flow from the collector in the intake to the combustion chamber of the cylinder. Parameters to be taken into account here are, in particular, the engine speed, the camshaft position and / or the lift positions and / or lift positions of exhaust and intake valves, the engine temperature and, with supercharged engines: the position of the bypass (Wastegate). The fresh air mass remaining in the cylinders steadily increases with the intake manifold pressure with otherwise identical input parameters (parameters) ( FIG. 2 ).

Bekannte Vorrichtungen zur druckbasierten Bestimmung der Luftmasse (Last) umfassen daher Saurohrdrucksensoren, die den gesamten Saugrohrdruckbereich abdecken bzw. messen können.Known devices for the pressure-based determination of the air mass (load) therefore include suction tube pressure sensors, which can cover or measure the entire intake manifold pressure range.

Aus der Druckschrift WO 03/046356 A2 ist eine Vorrichtung bekannt, bei der in die Berechnung der in einen Zylinder einströmenden Luftmasse im gesamten Saugrohrdruckbereich sowohl ein gemessener, als auch ein modellierter Saugrohrdruckwert gemeinsam eingehen.From the publication WO 03/046356 A2 In the calculation of the air mass flowing into a cylinder in the entire intake manifold pressure range, both a measured and a modeled intake manifold pressure value are jointly considered.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die eine verbesserte Genauigkeit der Lasterfassung, insbesondere in niedrigen Lastbereichen, gewährleistet.The invention has for its object to provide a device that ensures improved accuracy of the load detection, especially in low load ranges.

Der Erfindung liegt die Erkenntnis zugrunde, dass aufgrund der Toleranzbehaftung der Sensoren Messfehler auftreten, die sich in den unterschiedlichen Lastbereichen unterschiedlich auswirken. Dabei ist zwischen einem absoluten Messfehler, dessen Anteil (Betrag) über den gesamten Messbereich stets der gleiche ist und der einem prozentualen Anteil bezogen auf den Endwert entspricht, und einem relativen Messfehler, dessen Anteil sich in Abhängigkeit von der Höhe des Messwertes ändert, zu unterscheiden. Der relative Messfehler steigt bei kleinen Saugrohrdrücken (Lasten) überproportional an und wirkt sich somit genau hier besonders nachteilig auf die Genauigkeit des Lastsignals aus. Gerade aber bei kleinen Lasten ist eine hohe Genauigkeit des Lastsignals aus Gründen der Fahrbarkeit eines Kraftfahrzeugs enorm wichtig (z.B. beim Übergang von hohen Lasten in den Leerlauf). Je größer der Messbereich eines Sensors ist und je größer der Gradient der Last über dem Saugrohrdruck ist, desto stärker ist der beschriebene nachteilige Effekt ausgeprägt. Aus diesen Gründen reagieren insbesondere Lastberechnungsmodelle direkt einspritzender aufgeladener Motoren empfindlich auf vorhandene Drucksensortoleranzen. Gerade bei diesen Motoren ist der Gradient wegen hoher Ventilüberschneidungen (d.h. Phasen, in denen sowohl Einlass- und Auslassventile geöffnet sind) und der zu erfassende bzw. zu messende Saugrohrdruckbereich doppelt so groß wie bei nicht aufgeladenen Motoren. Die erfindungsgemäße Vorrichtung eignet sich demnach besonders für direkt einspritzende aufgeladene Brennkraftmaschinen.The invention is based on the finding that measurement errors occur due to the tolerance of the sensors, which have different effects in the different load ranges. In this case, a distinction between an absolute measurement error, the proportion (amount) over the entire measuring range is always the same and which corresponds to a percentage of the final value, and a relative measurement error, the proportion of which changes depending on the height of the measured value , The relative measurement error increases disproportionately at small intake pipe pressures (loads) and thus has a particularly disadvantageous effect on the accuracy of the load signal. However, especially at low loads, high accuracy of the load signal is extremely important for drivability of a motor vehicle (e.g., in the transition from high loads to idle). The larger the measuring range of a sensor and the greater the gradient of the load over the intake manifold pressure, the stronger the disadvantageous effect described is pronounced. For these reasons, in particular load calculation models of direct-injection supercharged engines are sensitive to existing pressure sensor tolerances. Especially in these engines, the gradient is twice that of non-supercharged engines due to high valve overlaps (i.e., phases in which both intake and exhaust valves are open) and the intake manifold pressure range to be sensed. The device according to the invention is therefore particularly suitable for directly supercharged supercharged internal combustion engines.

Erfindungsgemäß wird die Aufgabe durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst, während in den Unteransprüchen bevorzugte Weiterbildungen der Erfindung angegeben sind. Eine erfindungsgemäße Vorrichtung umfasst eineAccording to the invention the object is achieved by the totality of the features of claim 1, while in the dependent claims preferred embodiments of the invention are given. A device according to the invention comprises a

Sensoreinrichtung (Saugrohrdrucksensor), deren Messbereich nur den unteren Teil des physikalischen Saugrohrdruckbereichs der Brennkraftmaschine abdeckt. Durch den kleineren Messbereich ist der absolute Messfehler kleiner als bei einer Messeinrichtung, die den kompletten physikalischen Messbereich (gesamter physikalischer Saugrohrdruckbereich) abdeckt. Ferner ist aufgrund des kleineren relativen Messfehlers der Fehler bei der Ermittlung der Last in Abhängigkeit von dem gemessenen Saugrohrdruck bei kleineren Lasten erheblich kleiner. Außerhalb des Druckbereichs des verwendeten Drucksensors wird der Saugrohrdruck über ein Berechnungsmodell ermittelt und an Hand des berechneten Saugrohrdruckes die erforderliche Last berechnet. Der vorliegende Fehler aufgrund des Berechnungsmodells zur Berechnung des Saugrohrdruckes im oberen Saugrohrdruckbereich macht sich erheblich weniger bemerkbar, so dass deutlich die Vorteile der erhöhten Genauigkeit im unteren Saugrohrdruckbereich überwiegen.Sensor device (intake manifold pressure sensor) whose measuring range covers only the lower part of the physical intake manifold pressure range of the internal combustion engine. Due to the smaller measuring range, the absolute measuring error is smaller than with a measuring device that covers the entire physical measuring range (total physical intake manifold pressure range). Further, due to the smaller relative measurement error, the error in determining the load as a function of the measured intake manifold pressure is considerably smaller for smaller loads. Outside the pressure range of the pressure sensor used, the intake manifold pressure is determined by means of a calculation model and the required load is calculated on the basis of the calculated intake manifold pressure. The present error due to the calculation model for calculating the intake manifold pressure in the upper intake manifold pressure range is significantly less noticeable, so that clearly outweigh the benefits of increased accuracy in the lower intake manifold pressure range.

In einer bevorzugten Ausführungsform wird der im unteren Teil des Saugrohrdruckbereichs gemessene Saugrohrdruck(wert) direkt als Eingangsgröße für ein Lasterfassungsmodell zur Bestimmung der Last verwendet. Alternativ kann der Saugrohrdruck über den gesamten Saugrohrdruckbereich über ein Berechnungsmodell nachgebildet werden, wobei im unteren Saugrohrdruckteilbereich (in dem der Saugrohrdruck über eine Sensoreinrichtung erfasst wird) der gemessene Saugrohrdruck einer Reglereinrichtung zugeführt wird über die der modellierte Saugrohrdruck auf den gemessenen Saugrohrdruck abgeglichen wird.In a preferred embodiment, the intake manifold pressure (value) measured in the lower part of the intake manifold pressure range is used directly as an input to a load sensing model to determine the load. Alternatively, the intake manifold pressure can be simulated over the entire intake manifold pressure range via a calculation model, wherein the measured intake manifold pressure is supplied to a regulator device in the lower Saugrohrdruckteilbereich (in which the intake manifold pressure is detected by a sensor device) is adjusted over the modeled intake manifold pressure to the measured intake manifold pressure.

Gemäß einer Weiterbildung der Erfindung für aufgeladene Motoren ist die Sensoreinrichtung vorzugsweise derart ausgebildet, dass sie den gesamten Saugrohrdruckbereich ohne aktive Ladereinrichtung abdeckt (in diesem unteren Druckbereich also der Saugrohrdruck direkt über eine Messung ermittelt wird), während im Druckbereich oberhalb des Säugrohr-Maximaldruckes ohne aktive Ladereinrichtung bis zum Saugrohrmaximaldruck mit aktiver Ladereinrichtung der Saugrohrdruck modellbasiert ermittelt wird.According to one embodiment of the invention for turbocharged engines, the sensor device is preferably designed such that it covers the entire Saugrohrdruckbereich without active supercharger (in this lower pressure range so the intake manifold pressure is determined directly via a measurement), while in the pressure range above the maximum mammoth pressure without active Charger device to intake manifold maximum pressure with active charger device, the intake manifold pressure is determined model-based.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigen:

Figur 1:
einen Zylinder einer Brennkraftmaschine mit zugehörigem Ansaug- und Abgastrakt in schematischer Darstellung,
Figur 2:
den schematisch dargestellten Verlauf der der Brennkammer eines Zylinders zugeführten Luftmasse in Abhängigkeit vom Saugrohrdruck,
Figur 3:
die erfindungsgemäße Vorrichtung in einer ersten möglichen Ausführungsform in schematischer Darstellung, und
Figur 4:
die erfindungsgemäße Vorrichtung in einer weiteren möglichen Ausführungsform in schematischer Darstellung.
An embodiment of the invention is illustrated in the drawing and will be described in more detail below. Show it:
FIG. 1:
a cylinder of an internal combustion engine with associated intake and exhaust tract in a schematic representation,
FIG. 2:
the schematically illustrated course of the combustion chamber of a cylinder supplied air mass as a function of intake manifold pressure,
FIG. 3:
the inventive device in a first possible embodiment in a schematic representation, and
FIG. 4:
the device according to the invention in a further possible embodiment in a schematic representation.

In Figur 1 ist schematisch ein Zylinder 2 einer Brennkraftmaschine eines Kraftfahrzeugs nebst seinem zugehörigen Ansaugtrakt und seinem zugehörigen Abgastrakt dargestellt. In der Brennkammer des Zylinders 2 bewegt sich ein Kolben 4 angetrieben durch eine nicht dargestellte Kurbelwelle auf und ab. Im Zusammenspiel mit dem durch ein Einlassventil EV und ein Auslassventil AV vereinfacht dargestellten Ventiltrieb nebst zugehöriger Ventilsteuerung, die vorzugsweise als im Hinblick auf die Ventilsteuerzeiten und/oder die Ventilhübe variable Ventilsteuerung ausgebildet ist, werden die verschiedenen Takte eines Verbrennungsprozesses realisiert.In FIG. 1 is schematically shown a cylinder 2 of an internal combustion engine of a motor vehicle together with its associated intake and its associated exhaust tract. In the combustion chamber of the cylinder 2, a piston 4 driven by a crankshaft, not shown, moves up and down. In conjunction with the valve drive represented in simplified form by an inlet valve EV and an outlet valve AV together with the associated valve control, which is preferably designed as a valve control variable with respect to the valve timing and / or the valve strokes, the various cycles of a combustion process are realized.

Der Ansaugtrakt umfasst ein Saugrohr 6 mit einem Sammler 6a, wobei im Sammler 6a zur Messung des Saugrohrdruckes PSD eine als Saugrohrdrucksensor ausgebildete Sensoreinrichtung SSD angeordnet ist sowie eine steuerbare Drosselklappe 8. Bei der dargestellten Ausführungsform mit Ladereihrichtung ist im Ansaugtrakt ferner ein in Luftströmungsrichtung gesehen vor der Drosselklappe 8 angeordneter Ladedrucksensor SLD, ein Ladeluftkühler 10 sowie eine Verdichtereinheit 12 einer Ladereinrichtung vorgesehen.The intake tract comprises a suction pipe 6 with a collector 6a, wherein in the collector 6a for measuring the intake manifold pressure P SD is designed as a Saugrohrdrucksensor sensor device S SD is arranged and a controllable throttle 8. In the illustrated embodiment with Ladereihrichtung is seen in the intake further a in the air flow direction In front of the throttle valve 8 arranged boost pressure sensor S LD , a charge air cooler 10 and a compressor unit 12 of a charger provided.

Im dargestellten Teil des Abgastraktes ist ein Abgaskrümmer 14 mit einer integrierten Turbineneinheit 16 der Ladereinrichtung und zugehörigem steuerbaren Bypass 18 (wastegate) dargestellt.In the illustrated part of the exhaust system, an exhaust manifold 14 with an integrated turbine unit 16 of the charger and associated controllable bypass 18 (wastegate) is shown.

Zur Steuerung der Last bzw. der aufgrund einer Lastanforderung zuzuführenden Luftmasse ist es erforderlich zu wissen, wie viel Luftmasse in der Brennkammer des Zylinders tatsächlich zum Zwecke der Verbrennung verbleibt. Dabei ist die in die Brennkammer einströmende Luftmasse in einigen Betriebspunkten nicht gleich der in der Brennkammer verbleibenden Luftmasse, da es insbesondere im Laderbetrieb aufgrund von Ventilüberschneidungen zu einem so genannten Überspülen kommen kann, bei dem Anteile der der Brennkammer zugeführten Luftmasse noch im Ansaugtakt in den Auslasstrakt weitergeleitet werden und somit nicht beim Verbrennungsprozess zur Verfügung stehen.To control the load or air mass to be supplied due to a load request, it is necessary to know how much air mass actually remains in the combustion chamber of the cylinder for the purpose of combustion. In this case, the air mass flowing into the combustion chamber is not equal to the air mass remaining in the combustion chamber at some operating points, since a so-called over-flushing can occur, especially in supercharger operation due to valve overlaps, in which portions of the air mass supplied to the combustion chamber are still in the intake stroke in the exhaust tract be forwarded and thus not available in the combustion process.

In Figur 3 ist eine erste bevorzugte Ausführung der erfindungsgemäßen Vorrichtung veranschaulicht. Die erfindungsgemäße Vorrichtung ist derart ausgebildet, dass über den Saugrohrdruck PSD, PSD' die einströmende Luftmasse LM mittels einem Berechnungsmodell MLE zur Lasterfassung bestimmbar ist. Weiterhin ist eine Sensoreinrichtung SSD zur direkten Erfassung des Saugrohrdruckes PSD vorhanden, welche (bezüglich ihres Messbereichs) derart ausgebildet (ausgelegt) ist, dass hiermit ausschließlich in einem unteren Saugrohrdruckteilbereich der Brennkraftmaschine der Saugrohrdruck PSD messbar ist. Ferner ist ein Berechnungsmodell MSD zur indirekten Erfassung des Saugrohrdruckes PSD' vorhanden, welches derart ausgebildet ist, dass hiermit in einem oberen Saugrohrdruckteilbereich der Brennkraftmaschine der Saugrohrdruck PSD' mittels Berechnung bestimmbar ist. Die Vorrichtung ist dabei derart ausgebildet, dass innerhalb des unteren Saurohrdruckteilbereichs die einströmende Luftmasse LM in Abhängigkeit von dem mittels Sensoreinrichtung SSD gemessenen Saugrohrdruck PSD bestimmt wird, und dass innerhalb des oberen Saugrohrdruckteilbereichs die einströmende Luftmasse LM über den mittels Berechnungsmodell MSD bestimmten Saugrohrdruck PSD' ermittelt wird. Hierfür ist eine Überwachungseinrichtung ÜE vorgesehen, mittels der überwacht wird, ob der tatsächliche Saugrohrdruck sich innerhalb des Messbereichs der Sensoreinrichtung SSD befindet oder nicht. Liegt ein Saugrohrdruck vor, der im Messbereich (PSensor_min<x<PSensor_max) der Sensoreinrichtung SSD liegt, wird der gemessene Saugrohrdruck PSD zur weiteren Verarbeitung unmittelbar an das Berechnungsmodell MLE zur Lasterfassung weitergeleitet. Liegt ein Saugrohrdruck vor, der außerhalb des Messbereichs (x>PSensor_max) der Sensoreineinrichtung SSD liegt, wird ein Saugrohrdruck PSD' berechnet und dieser anstelle des gemessenen Saugrohrdruckes PSD zur weiteren Verarbeitung an das Berechnungsmodell MLE zur Lasterfassung (bzw. zur Bestimmung der Luftmasse LM) weitergeleitet. Die Auswahl, welcher Saugrohrdruck (gemessener Saugrohrdruck PSD oder modellbasiert berechneter Saugrohrdruck PSD') relevant ist und weitergeleitet wird, wird über ein von der Überwachungseinrichtung ÜE angesteuertes Weichenglied W realisiert.In FIG. 3 a first preferred embodiment of the device according to the invention is illustrated. The device according to the invention is designed such that via the intake manifold pressure P SD , P SD 'the incoming air mass LM can be determined by means of a calculation model M LE for load detection. Furthermore, there is a sensor device S SD for direct detection of the intake manifold pressure P SD , which is designed (designed) with respect to its measuring range such that the intake manifold pressure P SD can only be measured in a lower intake manifold pressure portion of the internal combustion engine. Furthermore, a calculation model M SD for indirect detection of the intake manifold pressure P SD 'is present, which is designed such that hereby the intake manifold pressure P SD ' can be determined by calculation in an upper intake manifold pressure portion of the internal combustion engine. The device is designed such that within the lower Saurohrdruckteilbereichs the incoming air mass LM is determined as a function of the measured by means of sensor S SD intake manifold pressure P SD , and that within the upper Saugrohrdruckteilbereichs the incoming air mass LM via the determined by means of calculation model M SD intake manifold pressure P SD 'is determined. For this purpose, a monitoring device ÜE is provided, by means of which it is monitored whether the actual intake manifold pressure is within the measuring range of the sensor device S SD or not. If there is an intake manifold pressure which lies in the measuring range (P sensor_min <x <P sensor_max ) of the sensor device S SD , the measured intake manifold pressure P SD is forwarded directly to the calculation model M LE for load detection for further processing. If there is an intake manifold pressure that is outside the measuring range (x> P sensor_max ) of the sensor device S SD , an intake manifold pressure P SD 'is calculated and this forwarded instead of the measured intake manifold pressure P SD for further processing to the calculation model M LE for load detection (or for determining the air mass LM). The selection of which intake manifold pressure (measured intake manifold pressure P SD or model-based calculated intake manifold pressure P SD ') is relevant and is forwarded is realized via a diverter element W controlled by the monitoring device UE.

Alternativ zur Ausführung gemäß Figur 3 kann die erfindungsgemäße Vorrichtung zur Bestimmung der Last derart ausgebildet sein, dass sie stets mit einem modellbasiert ermittelten Saugrohrdruck PSD' als Eingangssignal für das Berechnungsmodell MLE zur Lasterfassung arbeitet. Hierfür findet beispielsweise eine Vorrichtung gemäß Figur 4 Verwendung. Gemäß Figur 4 wird der Saugrohrdruck PSD' stets modellbasiert ermittelt, wobei je nach dem, ob der Saugrohrdruck sich innerhalb des Messbereichs der Sensoreinrichtung SSD befindet oder nicht, der berechnete Saugrohrdruck PSD' über einen Korrekturwert K auf den gemessenen Saugrohrdruck PSD abgeglichen wird oder der berechnete Saugrohrdruck PSD' unverändert bleibt. Für den Fall, dass sich der Saugrohrdruck innerhalb des Messbereichs der Sensoreinrichtung SSD befindet, wird über einen Abgleichregler R ein Korrekturwert K zur Berechnung des Saugrohrdruckes PSD' ermittelt. Hierfür wird über eine dem Abgleichregler R zugeführte Differenz zwischen gemessenem Saugrohrdruck PSD und berechnetem Saugrohrdruck PSD' die Korrekturgröße K ermittelt und über diese der berechnete Saugrohrdruck PSD' auf den gemessenen Saugrohrdruck PSD abgeglichen. Liegt der Saugrohrdruckwert außerhalb des Sensormessbereichs, so kann das Berechnungsmodell MSD zur Berechnung des Saugrohrdrucks PSD' nicht auf den gemessenen Saugrohrdruck PSD abgeglichen werden. Der nicht abgeglichene berechnete Saugrohrdruckwert PSD' wird dann unmittelbar als Eingangsgröße für das nach geordnete Berechnungsmodell MLE zur Lasterfassung verwendet. Hierfür wird dem Berechnungsmodell zur Lasterfassung anstelle des Korrekturwertes K ein Neutralwert N zugeführt der die Berechnung des Saugrohrdruckes nicht beeinflusst.Alternatively to the execution according to FIG. 3 the device according to the invention for determining the load can be designed such that it always works with a model-based intake manifold pressure P SD 'as an input signal for the calculation model M LE for load detection. For this purpose, for example, a device according to FIG. 4 Use. According to FIG. 4 the intake manifold pressure P SD 'is always model-based determined, depending on whether the intake manifold pressure is within the measuring range of the sensor device S SD or not, the calculated intake manifold pressure P SD ' is adjusted via a correction value K to the measured intake manifold pressure P SD or calculated intake manifold pressure P SD 'remains unchanged. In the event that the intake manifold pressure is within the measuring range of the sensor device S SD , a correction value K for calculating the intake manifold pressure P SD 'is determined via a balancing regulator R. For this purpose, the correction quantity K is determined by means of a difference between measured intake manifold pressure P SD and calculated intake manifold pressure P SD 'fed to balancing regulator R, and the calculated intake manifold pressure P SD ' is compared to the measured intake manifold pressure P SD . If the intake manifold pressure value is outside the sensor measurement range, the calculation model M SD for calculating the intake manifold pressure P SD 'can not be adjusted to the measured intake manifold pressure P SD . The unbalanced calculated intake manifold pressure value P SD 'is then used directly as input to the post-order calculation model M LE for load detection. For this purpose, the calculation model for load detection instead of the correction value K, a neutral value N is fed to the calculation of the intake manifold pressure is not affected.

Claims (3)

  1. A device for determining the air mass (LM) flowing into the cylinder combustion chamber of an internal combustion engine cylinder of a motor vehicle, wherein the inflowing air mass (LM) can be determined by means of a calculation model (MLE) for detecting the load as a function of the intake manifold pressure (PSD), and the device contains,
    - a sensor device (SSD) for the direct detection of the intake manifold pressure (PSD), with a measurement range, so that the intake manifold pressure (PSD) can be measured by means of the sensor device (SSD) exclusively in a lower partial range of the intake manifold pressure of the internal combustion engine,
    - and a calculation model (MSD) for the indirect detection of the intake manifold pressure (PSD'), which is configured in such a way that the intake manifold pressure (PSD') can be determined with this by means of calculation in an upper partial range of the intake manifold pressure of the internal combustion engine,
    - and the device is configured in such a way that, within the lower partial range of the intake manifold pressure, the inflowing air mass (LM) is determined as a function of the intake manifold pressure (PSD) measured by means of a sensor device (SSD), and in that within the upper partial range of the intake manifold pressure, the inflowing air mass (LM) is determined by means of the intake manifold pressure (PSD') determined by means of the calculation model (MSD).
  2. A device according to claim 1, characterised in that the device is configured for a supercharged internal combustion engine, wherein the sensor device (SSD) has a measurement range, which corresponds to the pressure range up to the maximum intake manifold pressure without an activated supercharger device and the intake manifold pressure (PSD) in this pressure range can be determined directly by means of the sensor device (SSD), and wherein the intake manifold pressure (PSD') in the pressure range above the maximum intake manifold pressure without an activated supercharger device is determined up to the maximum pressure with an activated supercharger device by means of the calculation model (MSD).
  3. A device according to any one of the preceding claims, characterised in that the intake manifold pressure over the entire intake manifold pressure range is determined by means of the calculation model (MSD) to determine the intake manifold pressure (PSD'), the determined intake manifold pressure (PSD') in the lower partial range of the intake manifold pressure being matched to the measured intake manifold pressure (PSD).
EP06792231A 2005-09-29 2006-09-22 Device for pressure-based load detection Expired - Fee Related EP1934452B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005046504A DE102005046504A1 (en) 2005-09-29 2005-09-29 Device for determining the air mass flowing in the cylinder combustion chamber of an engine cylinder of a vehicle comprises a sensor arrangement for directly measuring the suction tube pressure and a calculating module
PCT/EP2006/009229 WO2007036330A1 (en) 2005-09-29 2006-09-22 Device for pressure-based load detection

Publications (2)

Publication Number Publication Date
EP1934452A1 EP1934452A1 (en) 2008-06-25
EP1934452B1 true EP1934452B1 (en) 2009-03-11

Family

ID=37433726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792231A Expired - Fee Related EP1934452B1 (en) 2005-09-29 2006-09-22 Device for pressure-based load detection

Country Status (4)

Country Link
US (1) US7546760B2 (en)
EP (1) EP1934452B1 (en)
DE (2) DE102005046504A1 (en)
WO (1) WO2007036330A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009003285B4 (en) * 2009-05-20 2021-01-07 Robert Bosch Gmbh Method for diagnosing pressure sensors of an air supply to an internal combustion engine
JP5204162B2 (en) * 2009-08-05 2013-06-05 本田技研工業株式会社 Vehicle speed change control device
DE102014003276A1 (en) * 2014-03-12 2015-09-17 Man Truck & Bus Ag Internal combustion engine, in particular gas engine, for a motor vehicle
CN110907165B (en) * 2019-12-26 2024-06-14 重庆科杰实业有限责任公司 Three comprehensive detection frock of air intake manifold

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5003950A (en) 1988-06-15 1991-04-02 Toyota Jidosha Kabushiki Kaisha Apparatus for control and intake air amount prediction in an internal combustion engine
BR9604813A (en) * 1995-04-10 1998-06-09 Siemens Ag Method for determining the mass flow of air inside cylinders of an internal combustion engine with the help of a model
KR100462458B1 (en) 1996-03-15 2005-05-24 지멘스 악티엔게젤샤프트 How to use the model to determine the mass of clean air flowing into the cylinder of an internal combustion engine that recycles external exhaust gas
US6078907A (en) * 1998-02-18 2000-06-20 Lamm; David Method and system for electronically presenting and paying bills
DE10049907B4 (en) 2000-10-10 2014-09-11 Robert Bosch Gmbh Method, computer program and control and / or regulating device for operating an internal combustion engine
DE10102914C1 (en) 2001-01-23 2002-08-08 Siemens Ag Method for determining an estimated value of a mass flow in the intake tract of an internal combustion engine
EP1507967A2 (en) * 2001-11-28 2005-02-23 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
US6804601B2 (en) * 2002-03-19 2004-10-12 Cummins, Inc. Sensor failure accommodation system
DE10227466B4 (en) * 2002-06-20 2004-06-09 Bayerische Motoren Werke Ag Method for determining cylinder loading in an internal combustion engine
JP4029739B2 (en) * 2003-02-05 2008-01-09 トヨタ自動車株式会社 Calculation of charge air quantity in internal combustion engine
WO2005005812A1 (en) * 2003-07-10 2005-01-20 Toyota Jidosha Kabushiki Kaisha Suction air amount predicting device of internal combustion engine
DE102004041708B4 (en) * 2004-08-28 2006-07-20 Bayerische Motoren Werke Ag Method for the model-based determination of fresh air mass flowing into the cylinder combustion chamber of an internal combustion engine during an intake phase
JP4143862B2 (en) * 2004-11-29 2008-09-03 トヨタ自動車株式会社 Air quantity estimation device for internal combustion engine

Also Published As

Publication number Publication date
DE502006003125D1 (en) 2009-04-23
US20080229816A1 (en) 2008-09-25
EP1934452A1 (en) 2008-06-25
DE102005046504A1 (en) 2007-04-05
WO2007036330A1 (en) 2007-04-05
US7546760B2 (en) 2009-06-16

Similar Documents

Publication Publication Date Title
DE102014210207B4 (en) Control device and control method for internal combustion engine
DE10362028B4 (en) Method for determining a quantity of fresh gas
WO2016034370A1 (en) Method and device for actuating an exhaust gas recirculation valve of a supercharged internal combustion engine with exhaust gas recirculation
DE102008043975B4 (en) Method and device for providing air mass flow information in a supercharged internal combustion engine
EP1934452B1 (en) Device for pressure-based load detection
DE102011079726A1 (en) Method and system for controlling an engine
EP1242739B1 (en) Method for detecting malfunctioning in a sensor
DE19753873A1 (en) IC engine operating method
EP1609970B1 (en) Method and device to operate an internal combustion engine
EP2924272A1 (en) Control device of internal combustion engine
DE10102914C1 (en) Method for determining an estimated value of a mass flow in the intake tract of an internal combustion engine
WO2009144194A1 (en) Method and device for operating an internal combustion engine and an internal combustion engine
DE102014226181A1 (en) Method and apparatus for testing a pressure-based mass flow sensor in an air supply system for an internal combustion engine
US11203994B2 (en) Method and control device for determining reliability regarding misfire determination of cylinders of an internal combustion engine
CN102192813B (en) The method and apparatus of the analogue value of pressure is determined in the engine system with internal combustion engine
WO2017178130A1 (en) Method for operating an internal combustion engine having an wastegate turbocharger, and internal combustion engine
EP1495220B1 (en) Method for controlling a combustion engine
WO2018224342A1 (en) Checking the plausibility of an air mass flow meter
EP1247967B1 (en) Method to determine the intake air mass flow in an internal combustion engine
DE102010050161A1 (en) Method for determining a pressure at the outlet of an exhaust system
CN108779728B (en) Method and control device for determining the amount of a filling composition in a cylinder of an internal combustion engine
JP6515903B2 (en) Control device for internal combustion engine
EP1375881B1 (en) Method for determining the filling of a cylinder in an internal combustion engine with variable valve timing, control unit and internal combustion engine
DE102009037272A1 (en) Method for operating internal combustion engine, involves regulating indicated medium pressure in operating cylinder of internal combustion engine according to cylinder pressure as actual value
DE10344709B4 (en) Method for determining an exhaust gas recirculation quantity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006003125

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170925

Year of fee payment: 12

Ref country code: GB

Payment date: 20170925

Year of fee payment: 12

Ref country code: DE

Payment date: 20170915

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006003125

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180922