EP1932978A1 - Elément d'armature pour l'absorption de forces dans des plaques de béton dans la zone d'éléments d'appui - Google Patents

Elément d'armature pour l'absorption de forces dans des plaques de béton dans la zone d'éléments d'appui Download PDF

Info

Publication number
EP1932978A1
EP1932978A1 EP06126164A EP06126164A EP1932978A1 EP 1932978 A1 EP1932978 A1 EP 1932978A1 EP 06126164 A EP06126164 A EP 06126164A EP 06126164 A EP06126164 A EP 06126164A EP 1932978 A1 EP1932978 A1 EP 1932978A1
Authority
EP
European Patent Office
Prior art keywords
reinforcing
elements
bar
base bar
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06126164A
Other languages
German (de)
English (en)
Other versions
EP1932978B1 (fr
Inventor
Urs Oelhafen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FJ Aschwanden AG
Original Assignee
Nivo AG
FJ Aschwanden AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivo AG, FJ Aschwanden AG filed Critical Nivo AG
Priority to ES06126164T priority Critical patent/ES2389563T3/es
Priority to EP20060126164 priority patent/EP1932978B1/fr
Publication of EP1932978A1 publication Critical patent/EP1932978A1/fr
Application granted granted Critical
Publication of EP1932978B1 publication Critical patent/EP1932978B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0645Shear reinforcements, e.g. shearheads for floor slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors

Definitions

  • the present invention relates to a reinforcing element for the absorption of forces in concrete slabs in the region of support elements, which reinforcing element is formed of reinforcing steel.
  • the invention relates to a reinforcement system for the absorption of forces in concrete slabs in the region of support elements, which is composed of a plurality of reinforcing elements.
  • the object of the present invention is now to provide a reinforcing element for the absorption of forces in concrete slabs in the range of support elements, which can accommodate large loads and which can be easily and inexpensively manufactured.
  • the solution of this object is achieved in that at least one basic bar is fixed at least one bracket having a stirrup bar, which stirrup bar has a first end area which is connected to the base bar, a first oblique area which runs away from the base bar, a central area , which is spaced from the base bar, has a second sloping area tapering towards the base bar is, and has a second end portion which is connected to the basic rod.
  • the central region of the bracket bar has a length which corresponds approximately to the width of the support element, resulting in a good power distribution.
  • an angle is formed in each case, which amounts to approximately 25 ° to 45 °.
  • the reinforcing element is formed from a base bar and two mutually parallel strap bars, and that the strap bars have a distance from each other, which corresponds approximately to the thickness of the base bar.
  • the reinforcing element in order to meet very specific requirements even better, are also designed so that this consists of two mutually parallel bars and three mutually parallel strap bars or three mutually parallel bars and two mutually parallel strap bars, that the strap bars each at a distance from each other have, which corresponds approximately to the thickness of a base bar, and that the base bars each have a distance from each other, which corresponds approximately to the thickness of a stirrup bar.
  • the basic rods and stirrup rods can also be optimally interconnected.
  • connection between the end regions of the stirrup rods with the basic rods by welding takes place, in addition still reinforcing elements can be used.
  • reinforcing elements can be used.
  • the end portions of the basic rods are provided with anchoring elements, whereby these end portions of the basic rods are anchored in an optimal manner in the concrete floor or in the foundation plate.
  • anchoring elements In a known manner can be attached as anchoring to the basic rods end plates or anchor heads, the end portions of the basic rods can also be provided with a turn, it is also conceivable to provide the basic rods with long end portions, resulting in a good anchorage in the concrete by the length the execution results.
  • the reinforcing elements are designed so that a reinforcement system for the absorption of forces in concrete ceilings or foundation plates in the area of support elements can be assembled from a plurality of reinforcing elements.
  • a reinforcement system for the absorption of forces in concrete ceilings or foundation plates in the area of support elements can be assembled from a plurality of reinforcing elements.
  • a support member whose cross-section has a width which corresponds approximately to the length thereby several reinforcing elements can be used crosswise.
  • reinforcing elements with two different heights are used in this crosswise use, so that the reinforcing elements are inserted with a lesser height in the reinforcement elements with greater height. This allows these reinforcing elements are optimally assembled for a variety of applications.
  • a rotating element is mounted in at least one intersection point in crossing reinforcing elements.
  • reinforcement systems that consist of intersecting reinforcement elements and are pre-assembled, be merged for transport around the rotating elements, whereby the space requirement is low.
  • a plurality of reinforcing elements can be used in an advantageous manner, which are parallel to each other and transverse to the longitudinal direction The support element are aligned, whereby an optimal reinforcement system, for example, for retaining walls is reached.
  • a first embodiment of an inventive reinforcement element 1 is shown.
  • This reinforcing element 1 consists of an elongated base rod 2, to which a respective first bracket bar 3 having the shape of a bracket and a second, the first bracket bar 3 corresponding bracket bar 3 'is attached.
  • These two stirrup bars 3 and 3 ' have a first end region 4, which is connected to the base bar 2 in each case.
  • both stirrup rods 3 and 3 ' comprise a first oblique region 5 which runs away from the base rod 2, specifically at an angle ⁇ 1 which in the present embodiment is approximately 30 °.
  • the first oblique region 5 is completed by a bend 6, which is formed so that the stirrup rods 3 and 3 'extend in the following central region 7 approximately parallel to the base bar 2.
  • This middle region 7 is then completed by a further bend 8, whereby the bail bar 3, 3 'merges into a second inclined region 9, which is tapered to the base bar 2, and at an angle ⁇ 2, which in the present embodiment also about 30 ° is.
  • the second inclined region 9 of the two stirrup rods 3, 3 ' terminates in the second end region 10, which in each case is in turn connected to the base rod 2.
  • reinforcing elements 11 can additionally be used, which will be described in detail later.
  • the base bar 2 is provided at its end with anchoring elements 12, which are formed in the illustrated embodiment of bending the end portions of the base bar 2, but these anchoring elements 12 could also be formed in a known manner from anchor heads, it is also conceivable that the end portions of the base bar 2 are extended, and that the anchoring in the concrete is achieved by the length of the base bar 2 in sufficient mass.
  • the base bar 2 and the stirrup bars 3 are formed of commercially available reinforcing steel, the diameter of these reinforcing bars being adapted to the intended use and the load, it is also conceivable to manufacture such reinforcing elements from stainless steel instead of reinforcing steel, if a corresponding application so requires, However, other suitable materials are also conceivable.
  • a support member 13 is shown schematically, which is to support a concrete plate 14.
  • the reinforcing element 1 is used in such a way that the respective base bar 2 is adjacent to the supporting element 13, while the stirrup bars 3 face away from the supporting element 13.
  • the base bar 2 can come to rest during installation, for example, to the height of the first lower bending reinforcement layers of the ceiling.
  • the central region 7 of the reinforcement element 1 can then come to lie on the height of the fourth uppermost bending reinforcement layer of the ceiling. As a result, this reinforcing element 1 is optimally integrated into the bending reinforcement layers of the ceiling.
  • the central region 7 has a length which corresponds approximately to the width of the support element 13.
  • Fig. 4 shows in a spatial representation the formation of a connection between the two hanger bars 3, 3 'and the base bar 2.
  • the respective end region 4 of the hanger bars 3 and 3' is laterally welded to the base bar 2.
  • For reinforcement are on the base bar 2 and on the hanger bars 3 and 3 'four short rod pieces 15 welded, which are each outwardly lying covered with a bridge element 16, which bridge element 16 with the hanger bars 3 and 3' is also welded.
  • an optimal connection between the base bar 2 and hanger bars 3, 3 ' is achieved, which can absorb the loads optimally.
  • the opposite connection on the reinforcing element 1 is the same.
  • Fig. 5 shows another possibility of the connection between the hanger bars 3 and 3 'and the base bar 2.
  • the hanger bars 3 and 3' are in turn laterally welded to their end portions 4 on the base bar 2, above a reinforcing plate is placed in the region of the end portions 4 of the hanger bars 3 and 3 'each have a recess 18, this reinforcing plate 17 is in turn welded to the base bar 2 and the hanger bars 3 and 3'. This also gives you an optimal connection.
  • Fig. 6 shows the one half of another embodiment of a reinforcing element 1.
  • This embodiment is in turn composed of the basic bars 2 and bar members 3, which are formed identically, as those according to the first embodiment.
  • rod pieces 15 can again be inserted and welded to the corresponding bars.
  • the Fig. 7 to 9 show a first embodiment of a reinforcement system 19, which consists of two reinforcing elements 1, as to the Fig. 1 to 3 have been described.
  • a first reinforcing element 1 is arranged crosswise to a second reinforcing element 1 '.
  • the second reinforcing element 1 ' has a lower height relative to the first reinforcing element 1 between the base bar 2 and the central area 7, so that the second reinforcing element 1' can be inserted into the first reinforcing element 1.
  • This reinforcement system 19 comes when inserted into the concrete floor 14, as in Fig. 7 is shown, between the first and fourth reinforcement layer, that is to lie on the height of the second and third reinforcement system of the ceiling, so that this system 19 is optimally integrated into the bending reinforcement layers of the ceiling.
  • this embodiment is composed of a first reinforcing element 1, in which transversely to two second reinforcing elements 1 ', at a distance from each other, are inserted transversely.
  • the location of this embodiment of a reinforcement system 19 in the supported by the support member 13 ceiling 14, as shown in Fig. 10 is shown in the same manner as in the previous embodiment. How out Fig. 12 it can be seen, this reinforcement system 19 is suitable with a first reinforcing element 1 and two reinforcing elements 1 'arranged transversely thereto, in particular for supports 13 which have a rectangular shape.
  • FIGS Fig. 13 to 15 Another embodiment of a reinforcement system 19 is shown in FIGS Fig. 13 to 15 shown.
  • this reinforcement system 19 two parallel aligned first reinforcing elements 1 are used, in which two second reinforcing elements 1 'are inserted transversely thereto.
  • the position and arrangement in the ceiling 14 is carried out in the same manner as in the previous embodiments, so that an optimal integration in the first to fourth bending reinforcement layer of the ceiling is achieved here.
  • Reinforcement systems can be used in particular for support elements 13, which have a greater width and length, as in Fig. 15 can be seen and which larger loads have to take over.
  • FIGS. 16 and 17 shows the embodiment of a reinforcement system 19, which corresponds to that in the Fig. 7 to 9 has been described.
  • This reinforcement system 19 can be delivered in the preassembled state.
  • a rotary member 20 is mounted in the upper intersection of the two reinforcing elements 1 and 1 ', which will be described in detail below.
  • the rotary member 20 consists of an upper cap 21 and a lower cap 22 which comprise the respective stirrup rods 3, 3 "of the first reinforcing element 1 and the second reinforcing element 1 '
  • This screw 23 can be loosened, the first reinforcing element 1 and the second reinforcing element 1 'can then be folded around the axis of this screw 23, as shown in particular Fig. 20 it can be seen, these preassembled reinforcement systems 19 can thus be transported to save space in this folded position and opened at the site and fixed by tightening the screw 23 in the unfolded position.
  • a reinforcement system 19 is shown, which is formed from a first reinforcing element 1 and a second reinforcing element 1 ', as have been previously described, which form a cross.
  • This reinforcement system is arranged centrally on the support element 13. In the corner areas of this support member 13 and between the reinforcing elements 1 and 1 'can be used as additional reinforcement or reinforcement cages 24, which have the known structure of reinforcing steel. It is also conceivable that 24 anchor anchors are used instead of the reinforcement cages.
  • Fig. 22 shows a plan view of a support member 13 which has a substantially greater length than width.
  • This can be, for example, a retaining wall.
  • a Row of first reinforcing elements 1 are used, which are spaced apart and aligned parallel to each other. This gives you an optimal support here.
  • the reinforcing elements as described above, can be combined in various ways, depending on the load to be absorbed, but also on the cross-sectional shape of the support element. It is particularly advantageous in this case that these reinforcing elements, which form the respective desired reinforcement system, in the region of the support element are each continuous, which allows optimal load bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)
EP20060126164 2006-12-14 2006-12-14 Elément d'armature pour l'absorption de forces dans des plaques de béton dans la zone d'éléments d'appui Active EP1932978B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES06126164T ES2389563T3 (es) 2006-12-14 2006-12-14 Elemento de armadura para la absorción de fuerzas en placas hormigonadas en el sector de elementos de apoyo
EP20060126164 EP1932978B1 (fr) 2006-12-14 2006-12-14 Elément d'armature pour l'absorption de forces dans des plaques de béton dans la zone d'éléments d'appui

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060126164 EP1932978B1 (fr) 2006-12-14 2006-12-14 Elément d'armature pour l'absorption de forces dans des plaques de béton dans la zone d'éléments d'appui

Publications (2)

Publication Number Publication Date
EP1932978A1 true EP1932978A1 (fr) 2008-06-18
EP1932978B1 EP1932978B1 (fr) 2012-06-13

Family

ID=37998403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060126164 Active EP1932978B1 (fr) 2006-12-14 2006-12-14 Elément d'armature pour l'absorption de forces dans des plaques de béton dans la zone d'éléments d'appui

Country Status (2)

Country Link
EP (1) EP1932978B1 (fr)
ES (1) ES2389563T3 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143851A1 (fr) * 2008-07-09 2010-01-13 F.J. Aschwanden AG Elément d'armature pour l'absorption de forces dans les bords latéraux de plaques en béton aux alentours d'éléments d'appui
EP2290167A1 (fr) 2009-08-21 2011-03-02 Sybaco AG Armature de poinçonnement
WO2011067027A1 (fr) * 2009-12-03 2011-06-09 Fischer Rista Ag Dispositif d'armature
EP3907342A1 (fr) 2020-05-07 2021-11-10 F.J. Aschwanden AG Élément de renfort et système de renfort pour l'absorption des forces dans des panneaux en béton

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1672887A (en) * 1927-01-18 1928-06-12 Gross Carl Truss
FR1221815A (fr) * 1959-01-14 1960-06-03 élément de construction préfabriqué à multiples usages
NL6400104A (fr) * 1963-01-09 1964-07-10
BE819409A (fr) * 1973-06-13 1974-12-16 Poutre en treillis
EP0688613A1 (fr) 1994-06-24 1995-12-27 Fischer Reinach Ag Armature pour plancher en béton pourvue d'armatures aux abords des supports et procédé et machine à plier pour sa fabrication
DE29808491U1 (de) * 1998-05-11 1999-09-23 Dausend Hans Werner Bewehrungselement für Schubbewehrungen
US6385930B1 (en) * 1999-07-16 2002-05-14 Carl-Erik Broms Concrete structure and method of making it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1672887A (en) * 1927-01-18 1928-06-12 Gross Carl Truss
FR1221815A (fr) * 1959-01-14 1960-06-03 élément de construction préfabriqué à multiples usages
NL6400104A (fr) * 1963-01-09 1964-07-10
BE819409A (fr) * 1973-06-13 1974-12-16 Poutre en treillis
EP0688613A1 (fr) 1994-06-24 1995-12-27 Fischer Reinach Ag Armature pour plancher en béton pourvue d'armatures aux abords des supports et procédé et machine à plier pour sa fabrication
DE29808491U1 (de) * 1998-05-11 1999-09-23 Dausend Hans Werner Bewehrungselement für Schubbewehrungen
US6385930B1 (en) * 1999-07-16 2002-05-14 Carl-Erik Broms Concrete structure and method of making it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143851A1 (fr) * 2008-07-09 2010-01-13 F.J. Aschwanden AG Elément d'armature pour l'absorption de forces dans les bords latéraux de plaques en béton aux alentours d'éléments d'appui
EP2290167A1 (fr) 2009-08-21 2011-03-02 Sybaco AG Armature de poinçonnement
WO2011067027A1 (fr) * 2009-12-03 2011-06-09 Fischer Rista Ag Dispositif d'armature
EP3907342A1 (fr) 2020-05-07 2021-11-10 F.J. Aschwanden AG Élément de renfort et système de renfort pour l'absorption des forces dans des panneaux en béton

Also Published As

Publication number Publication date
ES2389563T3 (es) 2012-10-29
EP1932978B1 (fr) 2012-06-13

Similar Documents

Publication Publication Date Title
DE1684795C3 (de) Raumkasten mit Betonwandungen, die von Metall-Profilbalken eingefaßt sind
WO2006103033A2 (fr) Clavette pour relier au moins deux elements de construction, et systeme d'elements de construction relies les uns aux autres
DE19756358A1 (de) Schubbewehrung für Flachdecken und Dübelleiste hierfür
EP0495334A1 (fr) Armature de cisaillement pour des plafonds plats
EP1932978B1 (fr) Elément d'armature pour l'absorption de forces dans des plaques de béton dans la zone d'éléments d'appui
EP2281959B1 (fr) Elément de connexion pour dalle en porte-à-faux
EP2754765B1 (fr) Dispositif permettant de relier, avec transmission des forces, une première partie de bâtiment porteuse à une seconde partie de bâtiment portée
EP0023042B1 (fr) Elément de plancher préfabriqué pour planchers de bâtiments
WO2009083002A1 (fr) Elément de construction en béton armé avec ancre transversale
EP0988430B1 (fr) Panne de couplage constituee de deux ou plusieurs poutres en bois jointes l'une a l'autre par chevauchement longitudinal, ainsi qu'element de fixation pour relier deux zones d'extremite se chevauchant de poutres en bois a utiliser pour une panne de couplage
EP2055845A2 (fr) Elément de montage de dalles en porte-à-faux
EP2130984A2 (fr) Corps de répartition de charge doté d'un système de support de profil
EP2954125B1 (fr) Construction porteuse en bois comportant un élément porteur en forme de barre ou plat et au moins un deuxième élément porteur en forme de barre ou plat
EP2290167A1 (fr) Armature de poinçonnement
DE2140137A1 (de) Tragersystem fur Betonschalungen
DE9401717U1 (de) Stützenkopfverstärkung
EP2143851B1 (fr) Elément d'armature pour l'absorption de forces dans les bords latéraux de plaques en béton aux alentours d'éléments d'appui
EP0947640A2 (fr) Armature à haute adhérence
WO2003006758A1 (fr) Element de raccordement et procede de raccordement d'un composant en beton prefabrique a une partie d'un immeuble
AT522359B1 (de) Verbindungsvorrichtung zum kraftschlüssigen Verbinden wenigstens zweier Betonfertigteile
EP2080841A2 (fr) Elément de pose de dalles en console
WO2004099516A1 (fr) Systeme d'elements de construction assembles
DE2651777A1 (de) Bausatz fuer gebaeude
DE7635823U1 (de) Bausatz fuer gebaeude
EP4015732A1 (fr) Élément d'appui pour une pièce préfabriquée en béton armé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: F.J. ASCHWANDEN AG

17P Request for examination filed

Effective date: 20081208

17Q First examination report despatched

Effective date: 20090127

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: RS

Payment date: 20081208

Extension state: HR

Payment date: 20081208

Extension state: AL

Payment date: 20081208

Extension state: BA

Payment date: 20081208

Extension state: MK

Payment date: 20081208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 562100

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011577

Country of ref document: DE

Effective date: 20120809

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2389563

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

26N No opposition filed

Effective date: 20130314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011577

Country of ref document: DE

Effective date: 20130314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120913

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20161227

Year of fee payment: 11

Ref country code: NL

Payment date: 20161221

Year of fee payment: 11

Ref country code: DE

Payment date: 20161213

Year of fee payment: 11

Ref country code: GB

Payment date: 20161222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161222

Year of fee payment: 11

Ref country code: BE

Payment date: 20161221

Year of fee payment: 11

Ref country code: FR

Payment date: 20161222

Year of fee payment: 11

Ref country code: ES

Payment date: 20161213

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161227

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011577

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 562100

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180101

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171214

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171214

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171214

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 18