EP1928727A2 - Freediving safety apparatus - Google Patents

Freediving safety apparatus

Info

Publication number
EP1928727A2
EP1928727A2 EP06816097A EP06816097A EP1928727A2 EP 1928727 A2 EP1928727 A2 EP 1928727A2 EP 06816097 A EP06816097 A EP 06816097A EP 06816097 A EP06816097 A EP 06816097A EP 1928727 A2 EP1928727 A2 EP 1928727A2
Authority
EP
European Patent Office
Prior art keywords
buoyancy
inflation
inflation source
control unit
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06816097A
Other languages
German (de)
French (fr)
Inventor
Sheri Gayle Daye
Henry M. Bissell Iv
Jason R. Bush
Terry L. Maas
David Sipperly
Kenneth J. Samel
Robert Fairchild
Peter Madnick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceanic Safety Systems LLC
Original Assignee
Oceanic Safety Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceanic Safety Systems LLC filed Critical Oceanic Safety Systems LLC
Publication of EP1928727A2 publication Critical patent/EP1928727A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/08Life-buoys, e.g. rings; Life-belts, jackets, suits, or the like
    • B63C9/11Life-buoys, e.g. rings; Life-belts, jackets, suits, or the like covering the torso, e.g. harnesses
    • B63C9/125Life-buoys, e.g. rings; Life-belts, jackets, suits, or the like covering the torso, e.g. harnesses having gas-filled compartments
    • B63C9/1255Life-buoys, e.g. rings; Life-belts, jackets, suits, or the like covering the torso, e.g. harnesses having gas-filled compartments inflatable

Definitions

  • the present invention generally relates to life-saving equipment used by swimmers and underwater breath-hold divers and, more particularly, to devices and apparatus for use by freedivers* to aid in returning them to the surface and/or maintaining them at the surface in the event of their losing consciousness due to hypoxia, a phenomenon often referred to among freedivers as "Shallow Water Blackout” (SWB) . Without some form of rapid and immediate rescue effort, Shallow Water Blackout usually results in death. (*Freedivers are those individuals who venture underwater while holding their breath, and must therefore return to the surface to breathe.)
  • SWB Shallow Water Blackout
  • Trained freedivers become adept at ignoring their desire to breathe.
  • freedivers often are intensely- focused and concentrating on a goal, be it depth, duration, or the pursuit of game. Add to this the hesitation experienced by many divers when faced with deciding whether to jettison their weight belt, and potentially ruin a day's diving, or to wait just a bit longer.
  • Shallow Water Blackout does not often come on gradually. Rather, the freediver often experiences a sudden "lights out", and falls unconscious. Once unconscious, the opportunities for successful rescue diminish rapidly as minutes pass .
  • CO 2 inflation devices are mechanical and are highly prone to corrosion problems. If the inflation device's cylinder cap piercing pin is allowed to become rusted, blunted, or if the CO 2 pressure cap is unusually thick, these devices will not function properly in an emergency.
  • the proposed freediving safety apparatus of the present invention provides the freediver with a customized emergency flotation device that will automatically inflate under a number of life-threatening circumstances. If the freediver stays down beyond his personal limit, or descends to an unsafe depth, the device will inflate and quickly return him to the surface in a face up position. If the freediver decides to manually activate the device, presumably in an emergency situation, he may easily do so. The freediver may not deactivate the apparatus unless he is at or near the surface.
  • the safety apparatus has an inflatable buoyancy- portion, an inflation source, an actuator portion for enabling inflation of the buoyancy portion, and a control unit for activating the actuator portion under appropriate, predetermined circumstances .
  • the safety apparatus When worn during the regular course of freediving, the safety apparatus is sleek, stylish, and streamlined. The wearer can move through the water unhindered by, and possibly even unaware of its presence.
  • the appearance of the apparatus may take the form of a harness or garment similar to a vest, a sleeved shirt, a pair of suspenders, or even a horse collar type or other arrangement.
  • a variety of straps, zippers, hook-and-loop type fasteners, snaps, clips, and other means may be used to secure the apparatus on the freediver.
  • the apparatus must be adequately secure in order to preclude its rising up, or slipping off, the wearer during an emergency ascent .
  • the buoyancy portion may consist of one or more inflatable bladders or chambers, positioned so as to aid in bringing an unconscious freediver to the surface in a face-up position. Ample buoyancy should be provided in the chest area, as well as adequate support for the head and neck.
  • the buoyancy portion is readily able to be stored in, or retained by, retention or storage devices, such as envelopes, sleeves, or comparable arrangements in order to streamline the apparatus, thereby reducing drag and increasing wearability. While any number of materials can be used for the purpose, stretchable, flexible, and elastic materials like lycra or neoprene are more appropriate for constructing the storage arrangements for the buoyancy portion. If desired, hook-and- loop fastener materials could be used to help retain the buoyancy portion in its storage configuration.
  • the apparatus may be made a nondescript color such as black, or even camouflage, in order not to interfere with a freediver' s hunting.
  • the buoyancy portion may consist of a single or multiple, even redundant buoyancy bladders or chambers in order to provide effective lift and increased fail-safe reliability. In its inflated state, the buoyancy portion may provide additional benefit from materials of highly visible color or pattern, such as bright yellow or orange, to announce the freediver' s position and emergency status.
  • the apparatus may also be equipped with a packet or capsule of colored dye or other signaling medium, which would be released either in conjunction with the apparatus's activation or shortly thereafter. It is desirable that the freediver's position be made as readily apparent as possible. Visible signals, such as the inflated buoyancy portion, the release of dye markers at or near the surface, or other similar methods can be complemented by the incorporation of an audible alert system into the design of the apparatus. Battery powered beepers or similar can be activated by the control unit upon apparatus activation or shortly thereafter.
  • Signaling means may be incorporated into the device to, one at the surface, transmit a signal that could be received by a nearby receiver.
  • This receiver could be the units of other users, or perhaps located aboard a diving vessel, thereby notifying potential rescuers. Or in the event of an emergency, an operator of a vessel could activate a transmitter that could signal all users in the nearby water.
  • the buoyancy portion of the apparatus inflates and rapidly deploys from its storage envelopes to rush the freediver to the surface.
  • the buoyancy portions may be constructed to selectively expand away from the freediver, in order not to apply compression forces to their body. Stretchable materials may be used to achieve this
  • Over-pressure valve or valves may be used to release excess air from the buoyancy portion and thereby prevent over-filling.
  • a manual dump valve may be incorporated in buoyance portion to allow easy and rapid deflation as desired, thereby also permitting re-packing of the apparatus for re-use .
  • buoyancy portion may be repacked within the storage and retention devices, and the inflation source refilled.
  • the actuator and control unit may be reset, and the apparatus is once again ready for use.
  • the inflation source may take a variety of forms.
  • One preferred form is that of a small cylinder for compressed air.
  • Single or multiple cylinders may be used.
  • Resembling a miniature SCUBA tank, such a cylinder may ,be utilized to allow the advantage of being able to recharge the device from a regular SCUBA tank.
  • This ability to easily and conveniently refill the inflation source greatly increases the likelihood that a freediver will elect to manually activate the apparatus in an emergency situation, rather than demonstrate reluctance because of costly replacement CO 2 cylinders required by the prior art.
  • the program logic of the device processes data from high pressure sensors to determine the pressure of the
  • the logic controls of the apparatus may be programmed to calculate, or use a look-up table, to determine the maximum depth at which adequate buoyancy will be available (with perhaps a margin of safety added) .
  • the control unit will then reduce the maximum depth allowed as a depth limit (or trigger depth) that may be selected by a user.
  • the inflation source may be outfitted with a mouthpiece, tube, or comparable device, to permit the freediver to orally inflate the apparatus. This feature would permit a freediver to orally inflate the apparatus in the event that they desire the benefit of additional buoyancy, and serves as an alternate inflation method.
  • the actuator portion is situated between the inflation source and the buoyancy portion of the safety apparatus, and is adapted to direct the flow of the inflation source contents to the buoyancy portion.
  • the actuator portion may be equipped with a valve mechanism, a stopper, or other methods of retaining the contents of the inflation source.
  • the actuator portion can provide a connector appropriate to attach to a SCUBA
  • the inflation source may be mounted directly to the actuator portion, or at a distance, connected by an appropriate hose or manifold.
  • the actuator portion mounts directly to the inflation source.
  • the actuator is positioned alongside the inflation source, and the two are connected by a manifold or hose.
  • the control unit may be mounted in a wide variety of locations.
  • One possible arrangement has the control unit located on the freediver's chest.
  • Another arrangement has the control unit adapted for mounting on the freediver's wrist or arm, similar to a watch or data console.
  • the control unit conducts internal polling of the different components of the apparatus in order to ensure the apparatus's ability to function properly. Thorough verification of the apparatus's readiness is essential, and if the internal polling reveals a component or feature that does not check out, then the control unit is programmed to signal the user through a combination of associated alarms, displays, or even lock-outs to prevent the device from being used in a dysfunctional state.
  • control unit could communicate the low power condition through a message on an LCD display, an illuminated LED, or an audible beeping.
  • control unit detects a situation other than fully operational, then the control unit is capable of entering a locked mode to prevent use of a malfunctioning apparatus .
  • the control unit can be programmed to prevent such action.
  • One example would be a situation where a freediver attempts to continue diving even though the control unit has indicated that the pressure inside the inflation source is insufficient to provide adequate inflation of the buoyancy portion in an emergency. If the freediver persists in wearing the apparatus and enters the water, the control unit can be programmed to trigger the inflation of the apparatus at a very shallow depth, thereby preventing the freediver from continuing to dive with a false sense of security. Similarly, this auto- inflation upon initiation of a dive may be used by the device to prevent a user from attempting to continue diving under circumstances in which the device indicates a deficiency or error.
  • the control unit communicates with the actuator portion, providing the necessary monitoring of potentially triggering variables and .other necessary signals. Such communication may be achieved through a waterproof direct connection or, preferably, through wireless means. Radio frequency transmitters and receivers, or even infra-red units, may be used to enable communication between the control unit and
  • the control unit gathers data from various sources and monitors for the occurrence of conditions which require triggering of the actuator portion and release of the contents of the inflation source.
  • the control unit gathers signals from a variety of sensors .
  • the type and number of sensors is determined by the conditions under which the apparatus is intended to operate. Time, depth, inflation source pressure, power supply condition (e.g., battery charge level), blood oxygen saturation level, pulse rate, and more, are all potentially useful candidates.
  • Sensors may be located within the control unit, within the actuator portion, or at other remote locations convenient to a particular arrangement of the apparatus. Sensors and associated control units may be located in more than one location, in order to provide redundancy of operation or to simplify presentation or availability of data.
  • the sensors are preferably electronic and solid state, although mechanical sensors may be used.
  • control unit contains a processor unit, which gathers and analyzes the output from the various sensors.
  • the processor unit compares the sensor outputs to a set or sets of preprogrammed values.
  • control unit determines when and whether to trigger inflation of the apparatus, to enter a lock-out mode, or
  • One or more memory chips or other storage means are used to allow storage of, and access to, logic and control instructions, programming, entered data values, sampled data values, dive history data, service information, diagnostic information, error codes, and other user or apparatus data .
  • the control unit may be configured to accept input from the user.
  • a variety of buttons, switches, touch screen, or other methods for interfacing with a user may be incorporated. This provides each user/freediver with the ability to customize their own apparatus to accurately reflect their individual diving capabilities. For example, individualized settings for maximum elapsed time and maximum depth may be designated, entered, selected, or changed by the user. As the user desires, perhaps with changing diving conditions or personal preference, the selected individualized values may be changed repeatedly throughout the day, or as often or infrequently as wished.
  • the actuator portion and the buoyancy portion should be engineered and constructed with redundant fail-safe mechanisms.
  • the actuator portion should be, in essence, two actuator systems in one unit. Redundant watertight compartments, power supplies, actuation valves, control units, electronics, sensors, and communications systems
  • AOS_2114-PCT_Appl.wpd may be incorporated to provide a high level of redundancy and ensure operability despite failure of significant components.
  • the buoyancy portion may also consist of two systems. In this manner, even if one system were to fail, the back-up unit would be activated, and the apparatus would still function as needed.
  • the safety apparatus of the present invention may be programed by each freediver to reflect their maximum desired safe operating conditions. In so doing, the danger of a "one size fits all" solution is avoided.
  • the present invention provides the maximum degree of protection available .
  • This safety apparatus will automatically begin its preprogramed time countdown, when it detects that the freediver has descended. Throughout the dive, the apparatus monitors the elapsed dive time and maximum depth. The timer count down continues even as the freediver returns to the surface. It is not uncommon for freedivers to be disoriented or even lose consciousness despite being back at the surface and breathing. For this reason, the apparatus will continue with its countdown until the freediver manually resets the device using a provided disarming means.
  • this disarming means is provided by a magnetic trigger and corresponding sensor. The trigger may be located in the remote mounted control unit, perhaps worn on the wrist of a user.
  • -16- AOS_2114-PCT_Appl.wpd corresponding deactivation sensor may be located in a variety of places, but it is preferred to incorporate it into the wearable harness or garment portion of the device for ease of use. In order to disable the device and signal a safe return to the surface, a user must bring the trigger into close proximity of the deactivation sensor. If the deactivation sensor is affixed in the shoulder, arm, or chest area of the apparatus, a user would be required to bring the wrist mounted control unit close to or in contact with the deactivation sensor in order to prevent automatic inflation of the device, and to reset the device for another dive .
  • the freediver is locked out from prematurely disarming the device, unless and until they have returned to the surface. This feature precludes a freediver from prematurely disarming the device while underwater.
  • manually activated emergency inflation of the unit while underwater or at the surface is available to a user, and may be achieved by depressing a predetermined button for an interval of time, or combination of buttons.
  • warning will be given for a period of time, in attempt to gain the freediver' s attention prior to automatic inflation.
  • Such warning can take various, and even multiple forms. For example, constant or flashing lights, LEDs, or LCD displayed messages, audible tones, or vibrating pulses
  • a variety of other variables may be monitored and used as potential triggers. For example, oximetry (measuring of blood oxygen saturation) levels or rate of change of those levels, could be used to activate inflation.
  • a measuring probe could be attached to the freediver's finger inside a glove, or attached to the ear, the nose (preferably the ala of the nose) inside the mask, or measurement could occur at other locations.
  • the freediver's pulse could be monitored, and its rate or rate of change could be used as a trigger.
  • the present invention provides for the use of refillable compressed air containers, rather than expensive disposable CO 2 cylinders. Preferably these are small, readily available, compressed air cylinders.
  • the invention's design provides means for the air cylinder to be easily refilled from a standard scuba tank.
  • the inflation source may be filled with air or other harmless gas, e.g. nitrox.
  • the benefits of a refillable, reusable device should not be discounted.
  • the apparatus of the present invention once deployed, can easily be re-packed by the freediver, and the cylinder refilled from a scuba tank or other source. These features effectively counter the reluctance of some freedivers
  • the compressed air cylinder (s) may be worn in a variety of locations. On the freediver's back would be a primary choice, though chest or abdomen mounting, or even waist or hip mounting are possibilities.
  • the cylinder When the device is triggered, compressed air is released from the storage cylinder by the actuator portion and flows into the buoyancy portion of the- device.
  • the cylinder may be mounted at some distance from the buoyancy portion, and connected thereto by a hose or manifold.
  • Such connecting portion may be fitted with quick disconnect fittings to permit ease of disassembly and maintenance.
  • This display may be designed to be worn on the wrist like a watch, on the chest or waist, or even in the mask with a "heads-up" type display. Other varieties of monitoring display locations are possible and contemplated as within the scope of the present invention.
  • Another embodiment of the present invention provides for a configuration that is specifically suited to serve as a useful safety device for apneists.
  • Freedivers who are engaging in the pursuit of achieving maximum depths or durations, rather than hunting or photographing, have different needs from a safety apparatus .
  • the present invention may be configured to allow programming with the desired depth and the estimated time of that depth's attainment and subsequent return to the surface .
  • the apparatus would be programmed to alert the user of a disruption of the expected depth/time curve, and provide emergency inflation.
  • the apparatus could also observe a user's return to the surface and if progress toward the surface slowed or reversed, emergency inflation could be initiated.
  • the implementation of such an embodiment would prove very beneficial and could greatly reduce the risks and costs associated with apnea training.
  • FIG. 1 is a plan view of one particular arrangement in accordance with the invention.
  • FIG. 2 is a rear quarter view of one particular arrangement in accordance with the invention, depicted on a human figure;
  • FIG. 3 is a plan view of one particular arrangement of an inflation source and an actuator portion in accordance with the invention.
  • FIG. 4 is a block diagram of one particular arrangement of an inflation source and actuator portion in accordance with the invention.
  • FIG. 5 is a rear quarter view of one particular arrangement of an inflation source, actuator portion, buoyancy
  • FIG. 6 is a communications block diagram of one particular arrangement of an actuator portion in accordance with the present invention.
  • FIG. 7 is a communications block diagram of one particular arrangement of a remotely locatable control unit in accordance with the present invention.
  • FIG. 8 is a plan view of the display portion of a remotely locatable control unit in accordance with the present invention.
  • FIG. 1 illustrates a freediving safety apparatus 10 having an inflation source 12, an actuator portion 14, here shown in cross-section, a buoyancy portion 16, and a remotely located control unit (not shown) .
  • Flexible hose 18 connects buoyancy portion 16 and actuator portion 14.
  • Inflation source 12 has threaded connection means 20 for mounting to threaded receiving port 22 within actuator portion 14.
  • Redundant power supplies, in the form of batteries 24a and 24b, are mounted within actuator portion 14.
  • Redundant solenoids 26a and 26b are mounted within actuator portion 14 and serve to effect the release of the compressed gas contents of inflation source 12.
  • Multiple pressure sensors 28a, 28b, 28c, and 28d serve to detect and measure pressure in various chambers within actuator
  • Transmitter 30 transmits sensor data, via radio frequencies, to control unit (not shown) .
  • Receiver 32 receives radio frequency signals from control unit.
  • buoyancy portion 16 In use, buoyancy portion 16 would be worn about the neck and chest of a freediver, with actuator portion 14 and inflation source 12 mounted in a harness (not shown) and worn on the body, preferably the back.
  • a control unit detects conditions which required the inflation of the apparatus, for example, maximum depth exceeded, maximum time exceeded, manual deployment activated, or other preprogrammed conditions, then the control unit would signal the actuator unit 14 to activate the primary solenoid 26a to release the contents of inflation source 12 through passageways within actuator 14 and through connecting hose 18 to inflate buoyancy portion 16.
  • control unit monitors the status of the various components of the apparatus. If control unit detects that, despite commanding actuator portion 14 to inflate buoyancy portion 16, no inflation has occurred, then control unit will command activation of secondary solenoid 26b within actuator portion 14 to release the contents of inflation source 12 into buoyancy portion 16.
  • FIG. 2 illustrates a rear quarter view of one
  • the inflation source 12, actuator portion 14, and buoyancy portion 16 are contained within the wearable garment 40.
  • Access panel 42, formed in garment 40, provides ready access to inflation source 12 and actuator portion 14, for inspection and maintenance.
  • Control unit 50 may be wrist-mounted (as shown) or otherwise remotely located, and communicates with actuator portion 14 using radio frequency or other method of communication, preferably wireless.
  • Fig. 3 illustrates another embodiment of an inflation source 12 and an actuator portion 14 in accordance with the present invention.
  • Inflation source 12 is connected to actuator portion 14.
  • Actuator portion 14 is equipped with a burst disk 60 or similar means for releasing pressure from the inflation source in the event of dangerous over-pressurization.
  • Fill port 62 is provided to enable convenient refilling of the inflation source 12.
  • Fill port 62 may be adapted to provide convenient refilling of inflation source 12 through the use of common scuba tanks .
  • Redundant actuator controls 64a and 64b manage data and logic processing and memory storage means for monitoring and operation of actuator functions . Redundant actuator controls 64a and 64b are capable of receiving programming and data transfer and other communications with
  • Such communications are preferably wireless.
  • Redundant function capability is preferably incorporated into the design of the present invention, through the implementation of redundant power sources 24a and 24b, which are preferably conveniently replaceable batteries . Redundancy may be provided throughout the actuator unit 14, including: high pressure sensors 28a and 28b for sensing pressure level of inflation source 12, low pressure sensors 28c and 28d for sensing and detecting effective release of contents of inflation source 12, valves 26a and 26b for controlling the release of pressurized contents of inflation source 12.
  • Inflation source 12 connects to actuator portion 14 through threaded portion 20 on inflation source 12, which attaches to threaded receptacle 22 formed in actuator portion
  • FIG. 4 illustrates the relation of various components to another embodiment of actuator portion 14.
  • Redundant power sources 24a and 24b provide electrical energy required to operate actuator unit 14.
  • the actuator portion 14 provides a level of performance redundancy by isolating each redundant system from the other. Even if one system fails, the
  • a deactivation sensor 68 is provided to signal actuator controls 64a and 64b.
  • Deactivation sensor 68 operates in concert with disable trigger 104 (not shown) incorporated in remotely locatable control unit 50. Upon resurfacing following a dive a user is required to bring the disable trigger 104 in close proximity to deactivation sensor 68, in order to signal that the user is conscious and operational at the end of the dive. Other mechanical or electrical Signaling or switching means may be used if desired.
  • the magnetic deactivation sensor 68 of the present invention is beneficial in that it allows a user to locate or mount the deactivation sensor 68 in a location of their choosing.
  • the control unit 50 will communicate the activation of disable trigger 104 to actuator portion 14 in order to effect a reset of the apparatus .
  • the logic programmed in the apparatus may be configured to initiate emergency inflation if a user submerges below a predetermined depth within a relatively brief period after reaching the surface. In the unusual event of a situation
  • buttons on control unit 50 may provide for a temporary override of this feature.
  • FIG. 5 illustrates a basic apparatus in accordance with the present invention.
  • Inflation source 12 attached to actuator portion 14, is affixed to harness 52 which is then partially or completely covered by garment 40.
  • Access panel 42 (not shown) may be provided to enable inspection, removal, or refilling of actuator portion 14 or other components.
  • Access panel 42 may be configured as a compartment, pocket, or sleeve feature of garment 40 or harness 52.
  • Buoyancy portion 16 is retained by harness 52 or garment 40 to reduce drag while swimming. Secure linkage or attachment of buoyancy portion 16 to harness 52 may be provided by straps, clips or other means. Garment 40 permits buoyancy portion 16 during inflation, through expansion or release. Connection hose 18 allows released air from actuator portion 14 to pass into buoyancy portion 16 to cause inflation. Connection hose 18 may incorporate quick disconnect fittings and utilize flexible materials to facilitate maintenance and component placement. Alternately, actuator portion 14 may provide direct connection to buoyancy portion 16, thereby allowing direct passage of gas from inflation source 12.
  • An automatic release mechanism may be incorporated
  • FIG. 6 depicts a block diagram flow chart of information and data communication of an actuator portion 14 in accordance with the present invention.
  • Control processors 64a and 64b receive data of inflation source 12 pressure from high pressure sensors 28a and 28b, data of buoyancy portion 16 pressure from low pressure sensors 28c and 28d, and relative depth information from external pressure sensor 28e.
  • Batteries 24a and 24b provide necessary electrical power for the system.
  • Diagnostic communications controller 78 enables programming and communication with actuator portion 14. Controller 78 is preferably a convenient computer connection or port, such as USB, but may be wireless, e.g., bluetooth.
  • the manufacturer, dealer, service center, or a user may utilize diagnostic communications controller 78 for additional programming of the apparatus for system updates; provide for initial configuration and set up,- allow customization through additional optional features or functions of the apparatus which may be provided; allow diagnostic information to be retrieved; provide detailed reports of stored data to be downloaded and viewed or charted using a computer.
  • Control processors 64a and 64b monitor data from sensors and perform comparisons to predetermined values selected
  • control processors 64a and 64b allow recognition of circumstances requiring emergency inflation, and initiate activation of inflation valve 26a. If sensors do not reflect the successful opening of valve 26a and subsequent release of compressed gas from inflation source 12, processors 64a and 64b initiate activation of valve 26b.
  • Communication with control unit 50 is provided by transmitter communication controller 30, which establishes communications transmission with receiver 32.
  • FIG. 7 depicts a block diagram flow chart of information and data communication of a control unit 50 in accordance with the present invention.
  • Control unit 50 is remotely mountable by a user, and is preferably worn "watch style" on the wrist or arm of a user.
  • Control processor 164 receives data of external or water temperature from sensor 129; data of external pressure or depth from sensor 128; and communicates with communication controller 30 of actuator unit 14 by communication controller 130.
  • a display 102 preferably LCD alphanumeric, provides a means for control unit 50 to provide a user with information (current or historical) , allows interaction with the control unit 50, and also may be used to alert a user through visual signals.
  • Control unit 50 allows a user to select, or enter, values for configuring the apparatus and programming the values that will be used to determine the occurrence of emergency
  • FIG. 8 depicts a top plan view of control unit 50, showing sample characters represented upon display 102.
  • a display 102 is preferably an LCD device, providing excellent resolution and pixel selection.
  • Exemplary data values that might be displayed could include a user's preselected depth value and time value for triggering inflation; time elapsed during a current dive - which could change to display a counting down of time to inflation as the "trigger" time approaches; current or maximum dive depth - which could change to display a counting down of depth to inflation as the "trigger" depth approaches; water or ambient temperature.
  • Pressure sensor 128 provides data related to depth values, while temperature sensor 129 provides for temperature readings on display 102. Data values for depth, temperature and time are recorded at predetermined intervals and stored for subsequent retrieval by a user or others. Sufficient memory is provided to enable storage of data sampled each second of a dive, for several days of diving. After passage of a predetermined period of time, for
  • control unit 50 directs display 102 to revert to displaying usual watch values. Time of day, day of month, month and year, along with other desirable values may be displayed.

Abstract

An apparatus for use in the activity of freediving, providing the freediver with increased safety and protection in the event of Shallow Water Blackout, incapacitating hypoxia, or other emergency occurring in or under the water, while providing greater reliability of functioning, and comfort of wearing during the activity of freediving.

Description

FREEDIVING SAFETY APPARATUS
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to life-saving equipment used by swimmers and underwater breath-hold divers and, more particularly, to devices and apparatus for use by freedivers* to aid in returning them to the surface and/or maintaining them at the surface in the event of their losing consciousness due to hypoxia, a phenomenon often referred to among freedivers as "Shallow Water Blackout" (SWB) . Without some form of rapid and immediate rescue effort, Shallow Water Blackout usually results in death. (*Freedivers are those individuals who venture underwater while holding their breath, and must therefore return to the surface to breathe.)
///
2. Description of the Related Art
Every year well-trained freedivers, who know the risks of Shallow Water Blackout (SWB) , die at an alarming and almost predictable rate. All divers know to jettison their weight belts in an emergency situation. Yet, despite this knowledge, most SWB victims are found on the bottom with their (potentially) life saving weight belts still securely buckled in place.
AOS_2114-PCT_Appl .wpd The reasons behind this counterintuitive fact have been elusive. A recent global poll of freedivers revealed that the population of freedivers is greater than had been thought, and in conjunction, that deaths from SWB are greater as well.
Below is a table presenting the data gathered by this poll. As the data was collected and tallied, a trend began to emerge; that those who freedive in clearer waters are more apt to experience death from SWB .
The reason or reasons behind the all-to-frequent occurrence of SWB among experienced freedivers has, until recently, defied rational explanation. However, greater attention and careful scrutiny of the physiology and psychology
-2- A0S_2114-PCT_Appl .wpd of freedivers have yielded valuable insight.
Trained freedivers become adept at ignoring their desire to breathe. In addition, freedivers often are intensely- focused and concentrating on a goal, be it depth, duration, or the pursuit of game. Add to this the hesitation experienced by many divers when faced with deciding whether to jettison their weight belt, and potentially ruin a day's diving, or to wait just a bit longer.
Through their having made thousands of successful freedives, some freedivers become over confident, especially under the influence of increasing hypoxia. One, some, or all of these factors can combine to cause a diver, who did not intend this freedive to be his last, to succumb to the often lethal effects of Shallow Water Blackout.
Human physiology changes day-by-day and minute-by- minute . What the experienced freediver has grown accustomed to as normal, may simply be beyond his/her ability to survive in special instances. In some cases, blackout occurs without warning. In other cases, the severely hypoxic freediver is incapable of operating his weight-belt quick-release mechanism. It is theorized that as the freediver approaches the end of a dive, there occurs a profound shift in their psychology, i.e., the freediver simply can no longer rely on their "internal clock" or whatever physiological/psychological mechanism it is that tells them it is time to ascend to safety. As a result,
~3- AOS_2114-PCT_Appl.wpd the freediver misperceives his remaining time underwater, and ventures unknowingly closer to unconsciousness due to SWB.
Shallow Water Blackout does not often come on gradually. Rather, the freediver often experiences a sudden "lights out", and falls unconscious. Once unconscious, the opportunities for successful rescue diminish rapidly as minutes pass .
Others have attempted to reduce the risk of SWB through the use of inflatable belts, vests, or harnesses that could be inflated by a carbon-dioxide (CO2) filled cylinder in case of emergency. Some have gone so far as to connect a spring driven or mechanical timer to an inflatable buoyancy device. The timer would be activated by the freediver upon descent, and would count down during the dive. When the timer reached its end, it would activate the emergency inflation of the buoyancy device. Upon surfacing prior to the timed period elapsing, the freediver could reset the timer for the next dive, thereby providing some measure of protection against SWB.
These prior attempts have all incorporated mechanical timers of one form or another. Regardless of form, these timers were all relatively constant with regard to the timed period. That is, they possessed little, if any, ability to vary the period of time elapsed. And none presented the individual end user/freediver with the ability to easily and reliably customize the time interval to reflect their own capabilities.
-4- AOS_2114-PCT_Appl .wpd Despite the immediate appeal of such devices, all they could do is provide the freediver with a false sense of security, in that all prior approaches to the problem of SWB have failed to realistically examine the variety of circumstances under which it occurs .
None of the prior devices address the fact that, once unconscious, the freediver frequently begins to sink into the depths. By the time a mechanical timer has run out, the freediver is often too deep for the CO2 cylinders to inflate the buoyancy device sufficiently to return the freediver to the surface. Boyle's law states that, for any gas at a constant temperature, the volume will vary inversely with the absolute pressure, while the density will very directly with the absolute pressure .
A simple application of Boyle's law to these circumstances reveals that, as a freediver descends underwater, the absolute pressure increases, and the volume of gas available for emergency release from a CO2 cylinder decreases. While the CO2 cylinder's volume might have been sufficient at the surface or near-surface depths, it often proves alarmingly incapable of lifting an unconscious freediver from depth.
In addition, while manual activation of an inflatable device is desirable in an emergency, all of the prior attempts have utilized CO2 cylinders, which are not refillable by the user. The not insignificant cost of these disposable cylinders
-5- A0S_2114-PCT_Appl .wpd raises the operating cost of the device, and thereby creates a disincentive for the freediver to deploy it. In addition, CO2 inflation devices are mechanical and are highly prone to corrosion problems. If the inflation device's cylinder cap piercing pin is allowed to become rusted, blunted, or if the CO2 pressure cap is unusually thick, these devices will not function properly in an emergency.
/// i SUMMARY OF THE INVENTION
The flaws described above and other deficiencies inherent in previous attempts to reduce the danger of Shallow Water Blackout, combined with the fact that freedivers have, so far, refused to adopt any of the products that have been introduced, has led to the development of this unique and revolutionary device.
The proposed freediving safety apparatus of the present invention provides the freediver with a customized emergency flotation device that will automatically inflate under a number of life-threatening circumstances. If the freediver stays down beyond his personal limit, or descends to an unsafe depth, the device will inflate and quickly return him to the surface in a face up position. If the freediver decides to manually activate the device, presumably in an emergency situation, he may easily do so. The freediver may not deactivate the apparatus unless he is at or near the surface.
-6- AOS_2114-PCT_Appl .wpd The safety apparatus has an inflatable buoyancy- portion, an inflation source, an actuator portion for enabling inflation of the buoyancy portion, and a control unit for activating the actuator portion under appropriate, predetermined circumstances .
When worn during the regular course of freediving, the safety apparatus is sleek, stylish, and streamlined. The wearer can move through the water unhindered by, and possibly even unaware of its presence.
The appearance of the apparatus may take the form of a harness or garment similar to a vest, a sleeved shirt, a pair of suspenders, or even a horse collar type or other arrangement. A variety of straps, zippers, hook-and-loop type fasteners, snaps, clips, and other means may be used to secure the apparatus on the freediver. The apparatus must be adequately secure in order to preclude its rising up, or slipping off, the wearer during an emergency ascent .
The buoyancy portion may consist of one or more inflatable bladders or chambers, positioned so as to aid in bringing an unconscious freediver to the surface in a face-up position. Ample buoyancy should be provided in the chest area, as well as adequate support for the head and neck.
It is important that the apparatus deliver the freediver to the surface in a face-up, as opposed to face-down, position. In order to have a better chance of recovery, an
-7- AOS_2114-PCT_Appi .Wpd unconscious freediver must be in a face-up position. If the freediver is to survive, they must be able to draw a breath of air - thus the necessity of being face-up at the surface. If an unconscious freediver is face-down1, it will matter little that he has been brought to the surface.
The buoyancy portion is readily able to be stored in, or retained by, retention or storage devices, such as envelopes, sleeves, or comparable arrangements in order to streamline the apparatus, thereby reducing drag and increasing wearability. While any number of materials can be used for the purpose, stretchable, flexible, and elastic materials like lycra or neoprene are more appropriate for constructing the storage arrangements for the buoyancy portion. If desired, hook-and- loop fastener materials could be used to help retain the buoyancy portion in its storage configuration.
In its stored configuration, the apparatus may be made a nondescript color such as black, or even camouflage, in order not to interfere with a freediver' s hunting.
The buoyancy portion may consist of a single or multiple, even redundant buoyancy bladders or chambers in order to provide effective lift and increased fail-safe reliability. In its inflated state, the buoyancy portion may provide additional benefit from materials of highly visible color or pattern, such as bright yellow or orange, to announce the freediver' s position and emergency status.
AOS_2114-PCT_Appl . wpd The apparatus may also be equipped with a packet or capsule of colored dye or other signaling medium, which would be released either in conjunction with the apparatus's activation or shortly thereafter. It is desirable that the freediver's position be made as readily apparent as possible. Visible signals, such as the inflated buoyancy portion, the release of dye markers at or near the surface, or other similar methods can be complemented by the incorporation of an audible alert system into the design of the apparatus. Battery powered beepers or similar can be activated by the control unit upon apparatus activation or shortly thereafter.
Signaling means may be incorporated into the device to, one at the surface, transmit a signal that could be received by a nearby receiver. This receiver could be the units of other users, or perhaps located aboard a diving vessel, thereby notifying potential rescuers. Or in the event of an emergency, an operator of a vessel could activate a transmitter that could signal all users in the nearby water.
Once the control unit signals the activator to release the compressed gas into the buoyancy portion, the buoyancy portion of the apparatus inflates and rapidly deploys from its storage envelopes to rush the freediver to the surface. The buoyancy portions may be constructed to selectively expand away from the freediver, in order not to apply compression forces to their body. Stretchable materials may be used to achieve this
-9- AOS_2114-PCT_Appl .wpd goal, as may a variety of construction methods including panels, pleats, etcetera. Over-pressure valve or valves may be used to release excess air from the buoyancy portion and thereby prevent over-filling. A manual dump valve may be incorporated in buoyance portion to allow easy and rapid deflation as desired, thereby also permitting re-packing of the apparatus for re-use .
A significant advantage provided by this safety apparatus is its reusability. The buoyancy portion may be repacked within the storage and retention devices, and the inflation source refilled. The actuator and control unit may be reset, and the apparatus is once again ready for use.
The inflation source may take a variety of forms. One preferred form is that of a small cylinder for compressed air. Single or multiple cylinders may be used. Resembling a miniature SCUBA tank, such a cylinder may ,be utilized to allow the advantage of being able to recharge the device from a regular SCUBA tank. This ability to easily and conveniently refill the inflation source greatly increases the likelihood that a freediver will elect to manually activate the apparatus in an emergency situation, rather than demonstrate reluctance because of costly replacement CO2 cylinders required by the prior art.
The program logic of the device processes data from high pressure sensors to determine the pressure of the
- 10 - AOS_2114-PCT_Appl .wpd compressed gas inflation source. This pressure value, along with the know capacity of the inflation source or tank, is used to determine a maximum depth for which operation of the device will be permitted. If for some reason, the inflation source is not fully refilled to capacity, the reduced pressure will be translated into a reduction in the availably buoyancy for emergency inflation. The logic controls of the apparatus may be programmed to calculate, or use a look-up table, to determine the maximum depth at which adequate buoyancy will be available (with perhaps a margin of safety added) . The control unit will then reduce the maximum depth allowed as a depth limit (or trigger depth) that may be selected by a user.
Similarly, the inflation source may be outfitted with a mouthpiece, tube, or comparable device, to permit the freediver to orally inflate the apparatus. This feature would permit a freediver to orally inflate the apparatus in the event that they desire the benefit of additional buoyancy, and serves as an alternate inflation method.
The actuator portion is situated between the inflation source and the buoyancy portion of the safety apparatus, and is adapted to direct the flow of the inflation source contents to the buoyancy portion. The actuator portion may be equipped with a valve mechanism, a stopper, or other methods of retaining the contents of the inflation source. In addition, the actuator portion can provide a connector appropriate to attach to a SCUBA
-11- AOS_2114-PCT_Appi .wpd tank and permit refilling of the inflation source.
The inflation source may be mounted directly to the actuator portion, or at a distance, connected by an appropriate hose or manifold. In one configuration, the actuator portion mounts directly to the inflation source. In another arrangement, the actuator is positioned alongside the inflation source, and the two are connected by a manifold or hose.
The control unit may be mounted in a wide variety of locations. One possible arrangement has the control unit located on the freediver's chest. Another arrangement has the control unit adapted for mounting on the freediver's wrist or arm, similar to a watch or data console.
The control unit conducts internal polling of the different components of the apparatus in order to ensure the apparatus's ability to function properly. Thorough verification of the apparatus's readiness is essential, and if the internal polling reveals a component or feature that does not check out, then the control unit is programmed to signal the user through a combination of associated alarms, displays, or even lock-outs to prevent the device from being used in a dysfunctional state.
As an example, if the control unit detects that power supply for the actuator portion is inadequate to ensure the safe functioning of the apparatus, then the control unit could communicate the low power condition through a message on an LCD display, an illuminated LED, or an audible beeping. In
-12- AOS_2114-PCT_Appl.wpd addition, if the control unit detects a situation other than fully operational, then the control unit is capable of entering a locked mode to prevent use of a malfunctioning apparatus .
Should a freediver persist in attempting to use the apparatus while diving, the control unit can be programmed to prevent such action. One example would be a situation where a freediver attempts to continue diving even though the control unit has indicated that the pressure inside the inflation source is insufficient to provide adequate inflation of the buoyancy portion in an emergency. If the freediver persists in wearing the apparatus and enters the water, the control unit can be programmed to trigger the inflation of the apparatus at a very shallow depth, thereby preventing the freediver from continuing to dive with a false sense of security. Similarly, this auto- inflation upon initiation of a dive may be used by the device to prevent a user from attempting to continue diving under circumstances in which the device indicates a deficiency or error.
The control unit communicates with the actuator portion, providing the necessary monitoring of potentially triggering variables and .other necessary signals. Such communication may be achieved through a waterproof direct connection or, preferably, through wireless means. Radio frequency transmitters and receivers, or even infra-red units, may be used to enable communication between the control unit and
-13- AOS_2114-PCT_Appl .wpd the other portions of the apparatus. The control unit gathers data from various sources and monitors for the occurrence of conditions which require triggering of the actuator portion and release of the contents of the inflation source.
The control unit gathers signals from a variety of sensors . The type and number of sensors is determined by the conditions under which the apparatus is intended to operate. Time, depth, inflation source pressure, power supply condition (e.g., battery charge level), blood oxygen saturation level, pulse rate, and more, are all potentially useful candidates.
Sensors may be located within the control unit, within the actuator portion, or at other remote locations convenient to a particular arrangement of the apparatus. Sensors and associated control units may be located in more than one location, in order to provide redundancy of operation or to simplify presentation or availability of data. The sensors are preferably electronic and solid state, although mechanical sensors may be used.
One embodiment calls the control unit contains a processor unit, which gathers and analyzes the output from the various sensors. The processor unit compares the sensor outputs to a set or sets of preprogrammed values. Depending upon the algorithms used by the processor and the sensor outputs received, the control unit determines when and whether to trigger inflation of the apparatus, to enter a lock-out mode, or
-14- AOS__2114-PCT_Appl .wpd to remain on stand-by. One or more memory chips or other storage means are used to allow storage of, and access to, logic and control instructions, programming, entered data values, sampled data values, dive history data, service information, diagnostic information, error codes, and other user or apparatus data .
The control unit may be configured to accept input from the user. A variety of buttons, switches, touch screen, or other methods for interfacing with a user may be incorporated. This provides each user/freediver with the ability to customize their own apparatus to accurately reflect their individual diving capabilities. For example, individualized settings for maximum elapsed time and maximum depth may be designated, entered, selected, or changed by the user. As the user desires, perhaps with changing diving conditions or personal preference, the selected individualized values may be changed repeatedly throughout the day, or as often or infrequently as wished.
In order to ensure reliability, multiple redundant systems are incorporated into the construction of the apparatus wherever possible. It is desirable for the actuator portion and the buoyancy portion to be engineered and constructed with redundant fail-safe mechanisms. The actuator portion should be, in essence, two actuator systems in one unit. Redundant watertight compartments, power supplies, actuation valves, control units, electronics, sensors, and communications systems
-15- AOS_2114-PCT_Appl.wpd may be incorporated to provide a high level of redundancy and ensure operability despite failure of significant components. The buoyancy portion may also consist of two systems. In this manner, even if one system were to fail, the back-up unit would be activated, and the apparatus would still function as needed.
The safety apparatus of the present invention may be programed by each freediver to reflect their maximum desired safe operating conditions. In so doing, the danger of a "one size fits all" solution is avoided. By programming each device to reflect the diving capabilities and limits of its wearer, the present invention provides the maximum degree of protection available .
This safety apparatus will automatically begin its preprogramed time countdown, when it detects that the freediver has descended. Throughout the dive, the apparatus monitors the elapsed dive time and maximum depth. The timer count down continues even as the freediver returns to the surface. It is not uncommon for freedivers to be disoriented or even lose consciousness despite being back at the surface and breathing. For this reason, the apparatus will continue with its countdown until the freediver manually resets the device using a provided disarming means. In a preferred embodiment, this disarming means is provided by a magnetic trigger and corresponding sensor. The trigger may be located in the remote mounted control unit, perhaps worn on the wrist of a user. The
-16- AOS_2114-PCT_Appl.wpd corresponding deactivation sensor may be located in a variety of places, but it is preferred to incorporate it into the wearable harness or garment portion of the device for ease of use. In order to disable the device and signal a safe return to the surface, a user must bring the trigger into close proximity of the deactivation sensor. If the deactivation sensor is affixed in the shoulder, arm, or chest area of the apparatus, a user would be required to bring the wrist mounted control unit close to or in contact with the deactivation sensor in order to prevent automatic inflation of the device, and to reset the device for another dive .
The freediver is locked out from prematurely disarming the device, unless and until they have returned to the surface. This feature precludes a freediver from prematurely disarming the device while underwater. However, manually activated emergency inflation of the unit while underwater or at the surface is available to a user, and may be achieved by depressing a predetermined button for an interval of time, or combination of buttons.
Should a freediver begin to approach any of the preset limits of this apparatus, a warning will be given for a period of time, in attempt to gain the freediver' s attention prior to automatic inflation. Such warning can take various, and even multiple forms. For example, constant or flashing lights, LEDs, or LCD displayed messages, audible tones, or vibrating pulses
-IV- AOS_2114-PCT_Appl.wpd are just some of the possibilities.
In addition to elapsed dive time and maximum depth as variables which may trigger automatic inflation, a variety of other variables may be monitored and used as potential triggers. For example, oximetry (measuring of blood oxygen saturation) levels or rate of change of those levels, could be used to activate inflation. A measuring probe could be attached to the freediver's finger inside a glove, or attached to the ear, the nose (preferably the ala of the nose) inside the mask, or measurement could occur at other locations. The freediver's pulse could be monitored, and its rate or rate of change could be used as a trigger.
The present invention provides for the use of refillable compressed air containers, rather than expensive disposable CO2 cylinders. Preferably these are small, readily available, compressed air cylinders. In addition, the invention's design provides means for the air cylinder to be easily refilled from a standard scuba tank. The inflation source may be filled with air or other harmless gas, e.g. nitrox.
The benefits of a refillable, reusable device should not be discounted. The apparatus of the present invention, once deployed, can easily be re-packed by the freediver, and the cylinder refilled from a scuba tank or other source. These features effectively counter the reluctance of some freedivers
-18- AOS_2114-PCT_Appl .wpd to drop their weight belts in an emergency. Many freedivers are reluctant to drop their weight belts, as such action often results in the permanent loss of the weight belt. The weight belts worn by freedivers are often highly customized to suit the individual freedivers' needs and preferences.
For convenience, comfort, and wearability, the compressed air cylinder (s) may be worn in a variety of locations. On the freediver's back would be a primary choice, though chest or abdomen mounting, or even waist or hip mounting are possibilities.
When the device is triggered, compressed air is released from the storage cylinder by the actuator portion and flows into the buoyancy portion of the- device. If desired, the cylinder may be mounted at some distance from the buoyancy portion, and connected thereto by a hose or manifold. Such connecting portion may be fitted with quick disconnect fittings to permit ease of disassembly and maintenance.
As an option, provisions can be made for the present invention to incorporate a device which automatically releases the weight belt upon inflation. Various types of release mechanisms could be incorporated into the design to effect this option. Releasable pins, latches, or buckles are all possibilities .
One embodiment of the present invention provides a display which provides the freediver with information pertaining
-19- AOS_2114-PCT_Appl . wpd to their current dive and/or their diving profile. This display may be designed to be worn on the wrist like a watch, on the chest or waist, or even in the mask with a "heads-up" type display. Other varieties of monitoring display locations are possible and contemplated as within the scope of the present invention.
Another embodiment of the present invention provides for a configuration that is specifically suited to serve as a useful safety device for apneists. Freedivers who are engaging in the pursuit of achieving maximum depths or durations, rather than hunting or photographing, have different needs from a safety apparatus . In the case of freedivers who seek to achieve a set maximum depth and return to the surface, the present invention may be configured to allow programming with the desired depth and the estimated time of that depth's attainment and subsequent return to the surface . The apparatus would be programmed to alert the user of a disruption of the expected depth/time curve, and provide emergency inflation. The apparatus could also observe a user's return to the surface and if progress toward the surface slowed or reversed, emergency inflation could be initiated. The implementation of such an embodiment would prove very beneficial and could greatly reduce the risks and costs associated with apnea training.
In order to prevent difficulties resulting from multiple users diving together, and the risk of miscommunication
"20- AOS_2114-PCT_Appl.wpd among their safety apparatus, a system of serial, numbers, multiple communication frequencies, and "handshaking" recognition protocols may be incorporated. Similarly, to provide for upgrades or replacement of individual components, the apparatus is able to perform a registration process, in order that a particular remote control unit may establish recognition with a particular actuator portion. BRIEF DESCRIPTION OF THE DRAWINGS
A better understanding of the present invention may be realized from a consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a plan view of one particular arrangement in accordance with the invention;
FIG. 2 is a rear quarter view of one particular arrangement in accordance with the invention, depicted on a human figure;
FIG. 3 is a plan view of one particular arrangement of an inflation source and an actuator portion in accordance with the invention;
FIG. 4 is a block diagram of one particular arrangement of an inflation source and actuator portion in accordance with the invention;
FIG. 5 is a rear quarter view of one particular arrangement of an inflation source, actuator portion, buoyancy
"21- AOS_2114-PCT_Appl.wpd portion, and harness, in accordance with the invention, depicted in combination with a freediver' s weight belt;
FIG. 6 is a communications block diagram of one particular arrangement of an actuator portion in accordance with the present invention.
FIG. 7 is a communications block diagram of one particular arrangement of a remotely locatable control unit in accordance with the present invention.
FIG. 8 is a plan view of the display portion of a remotely locatable control unit in accordance with the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 illustrates a freediving safety apparatus 10 having an inflation source 12, an actuator portion 14, here shown in cross-section, a buoyancy portion 16, and a remotely located control unit (not shown) . Flexible hose 18 connects buoyancy portion 16 and actuator portion 14. Inflation source 12 has threaded connection means 20 for mounting to threaded receiving port 22 within actuator portion 14. Redundant power supplies, in the form of batteries 24a and 24b, are mounted within actuator portion 14. Redundant solenoids 26a and 26b are mounted within actuator portion 14 and serve to effect the release of the compressed gas contents of inflation source 12. Multiple pressure sensors 28a, 28b, 28c, and 28d, serve to detect and measure pressure in various chambers within actuator
-22- AOS_2114-PCT_Appl .wpd portion 14. Transmitter 30 transmits sensor data, via radio frequencies, to control unit (not shown) . Receiver 32 receives radio frequency signals from control unit.
In use, buoyancy portion 16 would be worn about the neck and chest of a freediver, with actuator portion 14 and inflation source 12 mounted in a harness (not shown) and worn on the body, preferably the back. When a control unit detects conditions which required the inflation of the apparatus, for example, maximum depth exceeded, maximum time exceeded, manual deployment activated, or other preprogrammed conditions, then the control unit would signal the actuator unit 14 to activate the primary solenoid 26a to release the contents of inflation source 12 through passageways within actuator 14 and through connecting hose 18 to inflate buoyancy portion 16.
Through analysis of data reported by redundant sensors 28a, 28b, 28c, and 28d, in the different passageways within actuator portion 14, and others (not shown), the remotely located control unit (not shown) monitors the status of the various components of the apparatus. If control unit detects that, despite commanding actuator portion 14 to inflate buoyancy portion 16, no inflation has occurred, then control unit will command activation of secondary solenoid 26b within actuator portion 14 to release the contents of inflation source 12 into buoyancy portion 16.
FIG. 2 illustrates a rear quarter view of one
~23- AOS_2114-PCT_Appl.wpd embodiment of. a freediving safety apparatus 10, depicted being worn by a human figure. The inflation source 12, actuator portion 14, and buoyancy portion 16 are contained within the wearable garment 40. Access panel 42, formed in garment 40, provides ready access to inflation source 12 and actuator portion 14, for inspection and maintenance. Control unit 50 may be wrist-mounted (as shown) or otherwise remotely located, and communicates with actuator portion 14 using radio frequency or other method of communication, preferably wireless.
Fig. 3 illustrates another embodiment of an inflation source 12 and an actuator portion 14 in accordance with the present invention. Inflation source 12 is connected to actuator portion 14. Actuator portion 14 is equipped with a burst disk 60 or similar means for releasing pressure from the inflation source in the event of dangerous over-pressurization. Fill port 62 is provided to enable convenient refilling of the inflation source 12. Fill port 62 may be adapted to provide convenient refilling of inflation source 12 through the use of common scuba tanks .
Additional sensor means 28e provides data reflecting external pressure, i.e., depth. Redundant actuator controls 64a and 64b manage data and logic processing and memory storage means for monitoring and operation of actuator functions . Redundant actuator controls 64a and 64b are capable of receiving programming and data transfer and other communications with
-24- AOS_2114-PCT_Appl .wpd remote control unit 50, through use of transmitter means 30. Such communications are preferably wireless.
Redundant function capability is preferably incorporated into the design of the present invention, through the implementation of redundant power sources 24a and 24b, which are preferably conveniently replaceable batteries . Redundancy may be provided throughout the actuator unit 14, including: high pressure sensors 28a and 28b for sensing pressure level of inflation source 12, low pressure sensors 28c and 28d for sensing and detecting effective release of contents of inflation source 12, valves 26a and 26b for controlling the release of pressurized contents of inflation source 12.
Inflation source 12 connects to actuator portion 14 through threaded portion 20 on inflation source 12, which attaches to threaded receptacle 22 formed in actuator portion
14.
FIG. 4 illustrates the relation of various components to another embodiment of actuator portion 14. Redundant power sources 24a and 24b provide electrical energy required to operate actuator unit 14. .Along with other redundant components, including redundant controls 64a and 64b, redundant valves 26a and 26b, redundant high pressure sensors 28a and 28b, redundant low pressure sensors 28c and 28d, the actuator portion 14 provides a level of performance redundancy by isolating each redundant system from the other. Even if one system fails, the
-25- AOS_2114-PCT_Appl.wpd other redundant system will allow actuator portion 14 to function as anticipated.
In order to enable a user to disable the apparatus at the end of a current dive, and prepare it for a subsequent dive, a deactivation sensor 68 is provided to signal actuator controls 64a and 64b. Deactivation sensor 68 operates in concert with disable trigger 104 (not shown) incorporated in remotely locatable control unit 50. Upon resurfacing following a dive a user is required to bring the disable trigger 104 in close proximity to deactivation sensor 68, in order to signal that the user is conscious and operational at the end of the dive. Other mechanical or electrical Signaling or switching means may be used if desired. The magnetic deactivation sensor 68 of the present invention is beneficial in that it allows a user to locate or mount the deactivation sensor 68 in a location of their choosing. The control unit 50 will communicate the activation of disable trigger 104 to actuator portion 14 in order to effect a reset of the apparatus .
If a user reaches the surface following a dive and is able to disable the apparatus using the disable trigger 104 and deactivation sensor 68, it is still possible for that user to blackout . The logic programmed in the apparatus may be configured to initiate emergency inflation if a user submerges below a predetermined depth within a relatively brief period after reaching the surface. In the unusual event of a situation
"26- AOS_2114-PCT_Appl .wpd requiring a user to immediately dive again upon reaching the surface, e.g. a boat bearing down on them, a selecting of certain buttons on control unit 50 (not shown) may provide for a temporary override of this feature.
FIG. 5 illustrates a basic apparatus in accordance with the present invention. Inflation source 12, attached to actuator portion 14, is affixed to harness 52 which is then partially or completely covered by garment 40. Access panel 42 (not shown) may be provided to enable inspection, removal, or refilling of actuator portion 14 or other components. Access panel 42 may be configured as a compartment, pocket, or sleeve feature of garment 40 or harness 52.
Buoyancy portion 16 is retained by harness 52 or garment 40 to reduce drag while swimming. Secure linkage or attachment of buoyancy portion 16 to harness 52 may be provided by straps, clips or other means. Garment 40 permits buoyancy portion 16 during inflation, through expansion or release. Connection hose 18 allows released air from actuator portion 14 to pass into buoyancy portion 16 to cause inflation. Connection hose 18 may incorporate quick disconnect fittings and utilize flexible materials to facilitate maintenance and component placement. Alternately, actuator portion 14 may provide direct connection to buoyancy portion 16, thereby allowing direct passage of gas from inflation source 12.
An automatic release mechanism may be incorporated
-27- AOS_2114-PCT_Appl .wpd into the apparatus, preferably into harness 52, to enable the actuator portion 14 to automatically ditch the user's weight belt in emergency inflation conditions.
FIG. 6 depicts a block diagram flow chart of information and data communication of an actuator portion 14 in accordance with the present invention. Control processors 64a and 64b receive data of inflation source 12 pressure from high pressure sensors 28a and 28b, data of buoyancy portion 16 pressure from low pressure sensors 28c and 28d, and relative depth information from external pressure sensor 28e. Batteries 24a and 24b provide necessary electrical power for the system. Diagnostic communications controller 78 enables programming and communication with actuator portion 14. Controller 78 is preferably a convenient computer connection or port, such as USB, but may be wireless, e.g., bluetooth. The manufacturer, dealer, service center, or a user may utilize diagnostic communications controller 78 for additional programming of the apparatus for system updates; provide for initial configuration and set up,- allow customization through additional optional features or functions of the apparatus which may be provided; allow diagnostic information to be retrieved; provide detailed reports of stored data to be downloaded and viewed or charted using a computer.
Control processors 64a and 64b monitor data from sensors and perform comparisons to predetermined values selected
-28- AOS_2114-PCT_Appl .wpd by a user. Logic commands programmed and stored in control processors 64a and 64b allow recognition of circumstances requiring emergency inflation, and initiate activation of inflation valve 26a. If sensors do not reflect the successful opening of valve 26a and subsequent release of compressed gas from inflation source 12, processors 64a and 64b initiate activation of valve 26b. Communication with control unit 50 is provided by transmitter communication controller 30, which establishes communications transmission with receiver 32.
FIG. 7 depicts a block diagram flow chart of information and data communication of a control unit 50 in accordance with the present invention. Control unit 50 is remotely mountable by a user, and is preferably worn "watch style" on the wrist or arm of a user. Control processor 164 receives data of external or water temperature from sensor 129; data of external pressure or depth from sensor 128; and communicates with communication controller 30 of actuator unit 14 by communication controller 130.
A display 102, preferably LCD alphanumeric, provides a means for control unit 50 to provide a user with information (current or historical) , allows interaction with the control unit 50, and also may be used to alert a user through visual signals. Control unit 50 allows a user to select, or enter, values for configuring the apparatus and programming the values that will be used to determine the occurrence of emergency
-29- AOS_2114-PCT_Appl .wpd conditions requiring inflation. This may be achieved through buttons 140, or other means that enable a user to enter data or select values related to the operation or configuration of the apparatus. A . battery 124 provides power for the operation of control unit 50. Control unit 50 also provides a means for disabling the actuator device 14. Preferably, this is achieved by a magnetic disable trigger 104 provided by control unit 50. FIG. 8 depicts a top plan view of control unit 50, showing sample characters represented upon display 102. Such a display 102 is preferably an LCD device, providing excellent resolution and pixel selection. Exemplary data values that might be displayed could include a user's preselected depth value and time value for triggering inflation; time elapsed during a current dive - which could change to display a counting down of time to inflation as the "trigger" time approaches; current or maximum dive depth - which could change to display a counting down of depth to inflation as the "trigger" depth approaches; water or ambient temperature. Pressure sensor 128 provides data related to depth values, while temperature sensor 129 provides for temperature readings on display 102. Data values for depth, temperature and time are recorded at predetermined intervals and stored for subsequent retrieval by a user or others. Sufficient memory is provided to enable storage of data sampled each second of a dive, for several days of diving. After passage of a predetermined period of time, for
- 30 - AOS_2114-PCT_Appl .wpd example 15 minutes, following returning to the surface, control unit 50 directs display 102 to revert to displaying usual watch values. Time of day, day of month, month and year, along with other desirable values may be displayed.
Although there have been described hereinabove various specific arrangements of a FREEDIVING SAFETY APPARATUS in accordance with the invention for the purpose of illustrating the manner in which the invention may be used to advantage, it will be appreciated that the invention is not limited thereto. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art should be considered to be within the scope of the invention as defined in the annexed claims . /// /// /// /// /// /// /// /// /// /// /// ///
-31- AOS_2114-PCT_Appl .wpd

Claims

What is claimed is:
1. An inflatable buoyancy apparatus, wearable by a user engaging in freediving, for providing buoyancy under predetermined circumstances, said apparatus comprising: a refillable inflation source for containing compressed gas; a buoyancy portion having an inflatable portion operably connected to and adapted for receiving the contents of said inflation source; actuator means disposed between said inflation source and said buoyancy portion for releasing the contents of said inflation source and employing a plurality of sensors for providing data regarding selected parameters, control means in operable communication with said actuator means : for programming and storing of selected data values defining emergency buoyancy circumstances, for identifying occurrences of pre-defined emergency buoyancy circumstances, and for communicating with said actuator means; at least one power supply in operable communication with said actuator means and said control means, and a wearable harness providing, secure retention of the apparatus when worn by a user,
-1- AOS-2114-PCT_Claimsl.wpd releasable restraint of said buoyancy portion prior to inflation, and retention of ' said inflation source and said actuator means.
2. The inflatable buoyancy apparatus of claim 1 wherein said plurality of sensors comprises sensors for providing data regarding the parameters of depth and elapsed dive time.
3. The inflatable buoyancy apparatus of claim 1 wherein said plurality of sensors comprises sensors for providing data regarding at least one parameter selected from the group consisting of time, inflation source pressure, ambient pressure, internal actuator means pressure, power supply condition, blood oxygen level, or pulse rate.
4. The inflatable buoyancy apparatus of claim 1 wherein said inflation source is releasably connected to said actuator means by a threaded manifold assembly.
5. The inflatable buoyancy apparatus of claim 1 wherein said buoyancy portion is releasably connected to said actuator means by a flexible hose member.
6. The inflatable buoyancy apparatus of claim 1
~ 2 ~ AOS-2114-PCT_Claimsl . wpd wherein said actuator means comprises at least one valve for controlling the release of compressed gas from said inflation source .
7. The inflatable buoyancy apparatus of claim 1 wherein said control means comprises a control unit having the ability of being remotely worn by a user.
8. The inflatable buoyancy apparatus of claim 7, wherein said control means comprises: a visual display for providing a user with information, memory means for storing data and operating instructions, at least one sensor for providing data regarding selected parameters, processing means for executing programmed logic operations in response to inputs from a user, sensors, and other components, a power supply in operable communication with said visual display, said memory chip, said sensor, and said processing means.
9. The buoyancy apparatus of claim 1 further comprising a garment feature for selectively retaining said
—3— AOS-2114-PCT_Claimsl .wpd buoyancy portion, said actuator portion, and said inflation source . 5
10. The buoyancy apparatus of claim 1 wherein said actuator portion further comprises a system of redundancy among components such that flooding or failure of an individual component will not prevent said apparatus from functioning.
11. A freediving safety apparatus for providing emergency buoyancy to a user-freediver under predetermined circumstances, said apparatus comprising: an inflation source for containing compressed gas; an inflatable buoyancy portion operably connected to said inflation source; an actuator portion interposed between said inflation source and said inflatable buoyancy portion, for enabling inflation of said buoyancy portion by releasing compressed gas contained in said inflation source upon determination of the occurrence of predetermined selectable circumstances defining an emergency inflation condition; control means, in operable communication with said actuator portion, for monitoring selected parameters and identifying and communicating circumstances appropriate for emergency inflation of said apparatus in accordance with programmed values, and
-4- AOS-2114-PCT_Claimsl.wpd harness means adapted to selectively retain said inflation source, said inflatable buoyancy portion and said actuator portion.
12. The freediving safety apparatus of claim 11, further including a remotely operable control unit for wearing by a user, said remote control unit providing a data interface and display and having means for communications with actuator portion.
21. Freediving safety apparatus for transport by a freediver during an underwater dive, said apparatus comprising: an inflation source in the form of a container for carrying a supply of compressed gas; a buoyancy portion in the form of a flotation device coupled to said container for inflation from said container upon the occurrence of one or more selected events; a plurality of sensors which are individually responsive to the occurrence of corresponding ones of said selected events; and valve means coupled between said container and said flotation device for controlling the transfer of gas to said flotation device; said valve means being responsive to an activating signal from a sensor signaling the occurrence of one of said
-5- AOS-2114-PCT_Claimsl.wpd selected events in order to inflate said flotation device to bring the freediver to the surface of the water.
22. The apparatus of Claim 21, further including a control unit having a display device for providing visual information to the diver.
23. The apparatus of Claim 22, wherein said control unit is adapted for transport by the diver in a location which is readily visible to the diver.
24. The apparatus of Claim 23, wherein said control unit is structurally adapted for mounting on one of the diver' s wrists .
25. The apparatus of Claim 21, wherein the gas container is of limited capacity and is adapted for coupling to a SCUBA tank for refilling therefrom.
26. The apparatus of Claim 21 further including a power supply for activating the valve means upon demand.
27. The apparatus of Claim 26, wherein a first one of said sensors is coupled to monitor the power supply and provide an alarm signal upon the detection of a power level below a
~6- AOS~2114~PCT_Claxmsl.wpd selected threshold.
28. The apparatus of Claim 22, wherein the control unit includes a processor unit for gathering output signals from said sensors, comparing said sensor outputs to corresponding reference values which are pre-programmed in the processor unit, and activating the apparatus correspondingly.
29. The apparatus of Claim 21, wherein the control unit includes means for inputting signal values developed by manipulation from the user.
30. The apparatus of Claim 29, wherein the values input by manipulation from the user include settings for maximum desired safe operating conditions which include settings for maximum elapsed time and maximum depth.
31. The apparatus of Claim 21, wherein the inflation source is refillable and the flotation device can be re-packed after use to enable the apparatus to be safely reusable.
32. The apparatus of Claim 22, wherein the display device also includes means for receiving sensor output signals and providing visual information pertaining to his current dive to the diver.
-7- AOS~2114-PCT_Claimsl.wpd
33. The apparatus of Claim 21, wherein said valve means includes at least one electrically activated solenoid coupled to respond to said sensor signals.
34. The apparatus of Claim 21, wherein said flotation device is structurally configured so that, when worn by the diver, it is capable of bringing the diver to the surface in a face-up position.
35. The apparatus of Claim 21, wherein the flotation device has an outer surface bearing a color which is readily visible from a distance.
AOS-2114-PCT_Claimsl.wpd
EP06816097A 2005-09-29 2006-09-28 Freediving safety apparatus Withdrawn EP1928727A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72288305P 2005-09-29 2005-09-29
PCT/US2006/038592 WO2007038794A2 (en) 2005-09-29 2006-09-28 Freediving safety apparatus

Publications (1)

Publication Number Publication Date
EP1928727A2 true EP1928727A2 (en) 2008-06-11

Family

ID=37900513

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06816097A Withdrawn EP1928727A2 (en) 2005-09-29 2006-09-28 Freediving safety apparatus

Country Status (5)

Country Link
US (1) US7988511B2 (en)
EP (1) EP1928727A2 (en)
AU (1) AU2006294447A1 (en)
WO (1) WO2007038794A2 (en)
ZA (1) ZA200803209B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9443039B2 (en) 2002-07-08 2016-09-13 Pelagic Pressure Systems Corp. Systems and methods for dive computers with remote upload capabilities
US8174436B2 (en) 2002-07-08 2012-05-08 American Underwater Products, Inc. Dive computer with global positioning system receiver
DE502006002838D1 (en) * 2006-11-06 2009-03-26 Juergen Puls Method and device for detecting the danger of drowning for a person in the water
US7797124B2 (en) 2006-12-28 2010-09-14 American Underwater Products, Inc. Dive computer with free dive mode and wireless data transmission
IL181533A (en) * 2007-02-25 2010-12-30 Sosmart Rescue Ltd Inflatable life-saving swimming garment
DE102007047143A1 (en) * 2007-10-02 2009-04-09 Uemis Ag Device for analyzing a dive
NZ581268A (en) * 2009-07-09 2011-04-29 William Edgar Flotation device with an outer garment and an inner inflatable bladder having neck and chest regions
US20150360759A1 (en) * 2010-09-16 2015-12-17 Zactill Intellectual Property Pty Ltd Safety Device and Inflating Apparatus Therefor
EP2785208B1 (en) 2011-11-28 2018-09-05 Roka Sports Inc. Wetsuit design
ITTO20120396A1 (en) * 2012-05-03 2012-08-02 Costantino Tenuta SALVAVITA SELF-SLIPING GARMENT FOR APNEISTS AND VESSELS
EP2920055B1 (en) 2012-11-19 2019-02-06 Philip Maechler Life jacket having additional lifesaving means and lifesaving means for arrangement in buoyancy aids or life jackets
FR2998862A1 (en) * 2012-12-05 2014-06-06 Franck Jean Marie Luc Chesneau Individual shoulder belt for recue of e.g. spearfishing practitioners, has cord that is connected to push-button and vibrator, and another cord connected to solenoid valve connected with carbon dioxide bottle to allow inflation of bladder
CA2898632A1 (en) * 2013-01-21 2014-07-24 Zactill Intellectual Property Pty Ltd Safety device and adapter therefor
CH708495A1 (en) * 2013-08-28 2015-03-13 Dr Philip Maechler Apparatus for triggering automatic lifejackets.
EP3079981A4 (en) 2013-12-11 2017-03-22 Safe Swim Ltd. Controllable water floatation garment
FR3017854A1 (en) * 2014-02-26 2015-08-28 Crasto Laurent De PORTABLE SAFETY EQUIPMENT IN AQUATIC ENVIRONMENT
US9957026B2 (en) 2014-09-16 2018-05-01 United Arab Emirates University Device for providing buoyancy
US9821893B2 (en) 2014-10-06 2017-11-21 Pelagic Pressure Systems Corp. System and methods for configurable dive masks with multiple interfaces
US9692474B2 (en) 2015-02-13 2017-06-27 James Vincent Sullivan Mobile phone glove
US10413225B1 (en) 2015-06-30 2019-09-17 Government Of The United States As Represented By The Secretary Of The Air Force Pulse oximeter sensor assembly and methods of using same
WO2017078637A1 (en) 2015-11-03 2017-05-11 Ergun Onur A free-diving equipment
US9888730B2 (en) 2016-03-30 2018-02-13 Roka Sports, Inc. Aquatic sport performance garment with restraints and method of making same
US9888731B2 (en) 2016-03-30 2018-02-13 Roka Sports, Inc. Aquatic sport performance garment with arms-up construction and method of making same
US10131412B2 (en) 2017-02-13 2018-11-20 Christopher B. Hulbert Ascent and buoy system for divers
EP3770058A1 (en) 2019-07-24 2021-01-27 Marco Macchi Safety device for a diver and safety apparatus comprising said device
IL268998B2 (en) * 2019-08-29 2023-02-01 Ofer Nidam Inflatable item
US11753125B2 (en) 2020-08-24 2023-09-12 Mark A. Gummin Shape memory alloy actuator for inflation device
US11840319B2 (en) 2020-12-09 2023-12-12 Brian Joseph Stasey Actuator for inflation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090205A (en) * 1959-11-23 1963-05-21 Hypro Diving Equipment Corp Harness pack for free diving apparatus
US4137585A (en) * 1977-06-10 1979-02-06 U.S. Divers Co. Buoyancy compensator and inflation system
US5800228A (en) * 1997-04-14 1998-09-01 Hernandez; Ricardo G. Free-driver permanently wearable self-rescue system
US6843694B2 (en) * 2002-12-26 2005-01-18 Light Bulb, Llc Wearable emergency flotation device
HRP20030827A2 (en) * 2003-10-13 2005-04-30 Krstini� Damir Breath-hold diving life-jacket

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007038794A2 *

Also Published As

Publication number Publication date
WO2007038794B1 (en) 2007-08-09
ZA200803209B (en) 2009-02-25
WO2007038794A2 (en) 2007-04-05
WO2007038794A3 (en) 2007-06-28
US7988511B2 (en) 2011-08-02
AU2006294447A1 (en) 2007-04-05
US20100167608A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US7988511B2 (en) Freediving safety apparatus
US10040527B2 (en) Lifesaving device and lifesaving control method
US8613637B2 (en) Water survival system and a method for detecting the danger of a person drowning
US20120274471A1 (en) Methods and devices for rescuing a distressed diver
US20060019560A1 (en) Personal flotation device and method for same
US4681552A (en) Combined life vest device and buoyancy compensator
US20130210297A1 (en) Submersible actuator apparatus
AU2011262227B2 (en) Methods and devices for rescuing a distressed diver
US9475557B2 (en) Life jacket having additional lifesaving means and lifesaving means for arrangement in buoyancy aids or life jackets
US20080146105A1 (en) Personal flotation device and method for same
US20070123121A1 (en) Water safety device
AU2014313844B2 (en) Activation device for triggering an automatic rescue means
CN109069781A (en) Low-pressure surface supplies air system and method
CN207045644U (en) A kind of heart rate band with drowned warning and self-rescue function
US20210403132A1 (en) Personal aquatic safety device
EP1689637B1 (en) Breath-hold diving life-jacket
JP7222931B2 (en) Color life preserver for water sports
US20150070173A1 (en) Signalling device for divers
KR102640453B1 (en) Portable Life Saving Bag
WO2010125529A2 (en) Anti drowning life saving device
CA2720574C (en) Electronic aquatic survival device
EP2826705A1 (en) Self-contained diving system having an automatic alarm
CN215155544U (en) Prevent drowned automatic rescue system
CN110697008A (en) Diving self-rescue equipment control device
CN209700901U (en) Water life-saving device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080328

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20110627

REG Reference to a national code

Ref country code: GB

Ref legal event code: S117

Free format text: CORRECTIONS ALLOWED; REQUEST FOR CORRECTION UNDER SECTION 117 FILED ON 22 APRIL 2010, ALLOWED 29 DECEMBER 2011 CASE DECIDED BY THE COMPTROLLER