US20070123121A1 - Water safety device - Google Patents
Water safety device Download PDFInfo
- Publication number
- US20070123121A1 US20070123121A1 US11/306,778 US30677806A US2007123121A1 US 20070123121 A1 US20070123121 A1 US 20070123121A1 US 30677806 A US30677806 A US 30677806A US 2007123121 A1 US2007123121 A1 US 2007123121A1
- Authority
- US
- United States
- Prior art keywords
- water safety
- safety device
- output signal
- monitoring
- remote
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C9/00—Life-saving in water
- B63C9/0005—Life-saving in water by means of alarm devices for persons falling into the water, e.g. by signalling, by controlling the propulsion or manoeuvring means of the boat
Definitions
- the present invention relates to safety devices for monitoring individuals engaged in water-related sports activities such as swimming, boating, snorkeling, surfing, diving, and the like.
- Parents are often concerned about their children when the children are in a body of water such as a swimming pool.
- the children can be giggling away as they splash each other, practice holding their breath, and bob in and out of the water in a game of Marco Polo. Everything may seem perfectly safe.
- Loss of consciousness can happen within two minutes after submersion—the time it may take simply to answer the phone. Brain damage may occur within 4 to 6 minutes after submersion.
- Drowning is the second leading cause of unintentional injury related to death of children ages 14 and under in the United States, and the leading cause in Arizona and other states. Drowning is the single leading cause of injury or death for children under 5 years. Drowning takes more than 1,000 children's lives each year. For every child who drowns, four or more are hospitalized for near drowning: for every hospital admission, four children are treated in emergency rooms.
- pool safety devices that have been directed to this problem, including personal flotation devices, safety turtle devices, pool fences, pool alarms and many others. Some examples of these include:
- U.S. Pat. App. No. 2004/0095248 Al describes a drowning alarm.
- This device comprises of two units (worn by each swimmer on the forehead) and a base station. Potential drowning is detected and alarmed either when a portable unit senses that it is submerged in water longer than a certain number of seconds, or when the swimmer activates a manual alarm push button on the portable unit.
- U.S. Pat. No. 6, 317,050 B1 describes a water entry alarm system.
- the device functions to alert parents that the child entered the water or takes off the device, but does not help signal that a child in the water is in danger of drowning.
- U.S. Pat. No. 6,930,608 B2 describes a multiple sensor device alarm, especially for firefighters.
- Floatation devices are utilized for users or particularly children, to prevent accidental drowning in a body of water such as a swimming pool, and as swimming aids.
- many such flotation devices are bulky and very uncomfortable to wear. Children resist wearing such floatation apparel because of their unsightliness or lack of a ‘cool’ appearance. For children who can swim, such devices can be very uncomfortable and can inhibit skill development.
- Floatation devices can be inflated by mouth, by pump means, or automatically, such as by chemical reaction.
- the present invention provides a floatation device for the safety of swimming children that will self inflate if the child is in danger of drowning. In this manner, the device will provide immediate rescue to the child to stay afloat in a safe position for an acceptable amount of time.
- the present invention provides at the same time a local alarm for alerting supervising adults to the danger.
- the present invention provides a wireless monitor alarm to alert parents of the emergency situation.
- the present invention includes a detector including a physiological sensor that will detect a physiological change, such as the “fight or flight” response of a person in danger of drowning.
- the present invention includes a compact floatation device that will automatically inflate to keep a child afloat in a safe position.
- the present invention includes a detector that activates alarm systems to alert parents and others nearby that a life-threatening event is occurring.
- the present invention includes monitors the distance of the child from a receiver unit and/or the direction of the child from the receiver unit.
- the present invention provides a water safety device comprising at least one monitoring device for sensing a physiological parameter of a subject and providing at least one monitoring output signal responsive to the at least one sensed physiological parameter, and comparator means for comparing the at least one output signal with a corresponding predetermined value and providing a comparator output signal.
- the water safety device further includes a floatation device for an individual and inflation means for inflating the floatation device responsive to the comparator output signal.
- the monitoring output signal is a radio frequency signal.
- the physiological parameter sensed in the pulse rate of the subject is also preferred that the predetermined condition be a threshold pulse rate.
- the physiological parameter sensed is the motion of a portion of the subject's body.
- the water safety device further comprises a remote receiver; and transmission means for transmitting a signal derived from at least one of the at least one monitoring output signal, and the comparator output signal to the remote receiver.
- the water safety device further comprises alarm means for providing a perceivable alarm responsive to a predetermined condition, such as a highly elevated or unexpectedly reduced pulse rate.
- the water safety device preferably further includes means for monitoring the distance between the at least one monitoring device and the remote receiver.
- present invention provides a water safety device including means for determining the direction from the remote receiver to the at least one monitoring device.
- the water safety device of the present invention provides as integral unit, the at least one monitoring device, the comparator means, the floatation device, and the inflation means.
- the comparator means and the remote receiver means comprise an integral remote unit.
- the water safety device preferably further comprises at least one GPS device.
- the present invention provides a water safety device further comprising remote triggering means for inflating the floatation device from a location remote from the floatation device.
- the water safety device further includes recording means for recording the at least one monitoring output signal; and analysis means for selecting at least one predetermined value based on the recording of the at least one monitoring output signal.
- the present invention provides a water safety device comprising at least one monitoring device for sensing a physiological parameter of a subject and providing at least one monitoring output signal responsive to the at least one sensed physiological parameter, and comparator means for comparing the at least one output signal with a corresponding predetermined value and providing a comparator output signal.
- the water safety device also includes alarm means for providing a perceivable alarm responsive to the comparator output signal, but does not include a floatation device.
- the water safety device of the present invention also includes a remote receiver; and transmission means for transmitting a signal derived from at least one of the at least one monitoring output signal and the comparator output signal to the remote receiver.
- the of the water safety device the physiological parameter sensed in the pulse rate of the subject.
- the predetermined condition is a threshold pulse rate.
- the water safety device further includes means for monitoring the distance between the at least one monitoring device and the remote receiver. In this embodiment, the water safety device further comprises means for determining the direction from the remote receiver to the at least one monitoring device.
- FIG. 1 is a block diagram schematically illustrating a water safety device according to the present invention.
- FIG. 2 is perspective view of a flotation device according to the present invention shown in an uninflated state.
- FIG. 3 is a schematic front elevational view of a remote-monitoring unit of a water safety device according to the present invention.
- the present invention preferably includes a compact automatic inflatable floatation device assembly and a detector unit.
- the detector unit preferably includes at least one physiological sensor that senses a physiological characteristic of an individual, such as a swimming child, being monitored.
- the detector unit preferably includes a processing and evaluation means for permitting predetermined parameter value(s) to be stored, and means for comparing the output of the at least one physiological sensor with a respective predetermined parameter value, and providing an output signal responsive to that comparison.
- the predetermined parameter value(s) correspond to risk threshold(s) for the particular individual being monitored.
- the output signal can be used to trigger an local alarm, such as a siren and/or a bank of flashing lights, and/or a remote alarm, and to inflate the floatation device assembly. For example, when a sensor for pulse rate is employed, when the monitored pulse rate falls below a predetermined risk threshold, the floatation device will automatically inflate, and alarms will be activated.
- the detector unit when the monitored individual's heart rate goes abnormally high or abnormally low from the setting, the detector unit will preferably activate a three-step rescue system. First, a floatation device will automatically inflate. Second, the detector unit will preferably sound an alarm to alert others nearby that a life-threatening event is occurring. Third, the detector unit will signal a remote wireless monitor to activate a remote alarm to alert parents or other responsible persons.
- the self-inflating floatation device is compact, comfortable to wear, and not easily removable.
- the self-inflating floatation device will buoy the individual wearing the device to face up when unconscious, so that his or her airways are not in contact with the water.
- the self-inflating device is configured to be worn around the neck and upper chest.
- the self-inflating floatation device is configured so the its lies relatively flat against the wearer when not inflated.
- the uninflated device is V shaped around the neck to avoid the trachea, so that it does not press tightly against the neck, which could restrict breathing.
- the self-inflating floatation device has netting or straps under the arms to hold the floatation device in place when inflated.
- the self-inflating floatation device responds to an activation signal by inflating within no more than one minute, and preferably in less than 20 seconds. While the self-inflating floatation device preferably inflates fast enough to save someone from drowning, it preferably does not inflate so fast so as to cause neck injury to the individual wearing the floatation device, such as a child.
- the self-inflating floatation device is preferably adapted for rough water conditions.
- the self-inflating floatation device is provided with highly visible colors as well as reflective material for search and rescue.
- the self-inflating floatation device includes a short strap, that can be easily grasped by rescue personnel.
- the present invention also includes a remote monitor.
- the remote monitor is preferably adapted to be worn on the wrist of a person monitoring the individual wearing the self-inflating floatation device, such as a mother supervising her child in a swimming pool.
- the remote monitor will function the to alert the wearer when the monitored individual is in danger of drowning, or when there is a malfunction of the device.
- the remote monitor provides special alarm sounds, as well as a highly visible visual alarm.
- the remote monitor also includes an indicator for warning of low battery function, or other malfunction.
- the remote monitor also provides a visible indication of the heart rate of the monitored individual.
- the monitor provides an indication of the distance from the monitor to the individual being monitored, and/or an indication of the direction from the remote monitor to the individual being monitored, and/or other aid for locating the individual being monitored.
- the water safety device is adapted to be worn around the neck, like a collar.
- the water safety device includes a pulse sensor for monitoring the heart rate on the carotid artery of the neck.
- the detector unit will activate inflation of an inflatable vest when the pulse rate is either abnormally high (in the case of a ‘fight or flight’ response) or abnormal low (such as in the case of a child who faints after a head injury).
- any dramatic change in the monitored pulse rate will exceed on the risk threshold, and device will be activated.
- the monitoring unit of the present invention can be used with a pre-inflated floatation device for non-swimmers or weak swimmers to provide similar protection.
- the detector unit of the present invention is adapted to be worn by bigger children who are strong swimmers and who will refuse to wear any flotation device, in this case the detector unit is preferably made as small as possible, and to be worn around the neck, to alert parents or other responsible adults that an emergency situation is occurring.
- FIG. 1 a block diagram schematically illustrating a water safety device 10 according to the present invention.
- the water safety device 10 includes a rapidly inflatable personal floatation device 20 adapted to be worn by an individual engaged in a water-related sport, such as swimming, boating, or the like.
- the personal floatation device 20 includes an inflatable vest 22 and an associated, attached sensing and control unit 40 for sensing one or more physiological characteristics of an individual wearing the personal floatation device 20 .
- the water safety device 10 optionally also includes a remote monitoring device 80 responsive to signals generated by the sensing and control unit 40 of the personal floatation device 20 .
- the sensing and control unit 40 includes one or more sensor units 26 , such as a pulse sensor unit, for monitoring one or more physiological characteristics of the individual wearing the personal floatation device 20 .
- Sensor units 26 such as a pulse sensor unit
- Pulse sensors are well known in the art, and are available in the form of piezoelectric film elements, such as are available from Measurement Specialties, Inc., 1000 Lucas Way, Hampton Va. 23666. While pulse sensors are presently preferred, other types of sensors of physiological activity can be used instead or in addition to a pulse sensor. For example, one or more pulse sensors can be used to provide a measure of blood pressure. Similarly, one or more one-, two-, or three-dimensional accelerometers can be used to monitor movement of one or more extremities.
- the sensor unit 26 includes a sensing element and associated signal conditioning, filtering and amplification circuits, such as sample and hold amplifiers, analog-to-digital converters, and the like, and provides an output signal 42 responsive to a comparator unit 44 .
- the output signal 42 can be either an analog signal or a digital signal, but is preferably a digital signal.
- One or more predetermined values for the sensed physiological characteristic are stored in associated memory 46 , and are provided as an output signal 48 to the comparator unit 44 .
- the stored values memory 46 can include both a predefined minimum value and a predefined maximum value for inputting to the comparator unit 44 .
- the comparator unit 44 compares the sensor signal 42 with the predefined values output from the stored values memory 46 , and generates a comparator output signal 50 when the sensor output signal 42 exceeds a predefined maximum value or drops below a predefined minimum value.
- the comparator output signal 50 is input to a signal processing unit 52 , which in response outputs a local alarm signal 54 to a local alarm 56 on the floatation device 20 .
- the local alarm 56 can include a siren and an associated driver circuit, one or more highly visible lamps and associated circuitry, a radio frequency beacon, and/or other perceptible signaling devices (not shown).
- the signal-processing unit 52 provides a broadcast output signal 58 to a transmitter device 60 , preferably having transceiver capabilities, which in turn generates a radiofrequency signal 62 responsive to the comparator output.
- the signal processing unit 52 generates an inflation signal 64 which is received by an inflation device 70 , which in response thereto initiates a rapid but safe inflation of the inflatable vest 22 .
- the inflation device 70 preferably includes a compressed gas inflation unit, such as a carbon dioxide, or other compressed gas, cylinder, for delivering inflation gas to the inflatable device in a controlled, but rapid manner.
- a compressed gas inflation unit such as a carbon dioxide, or other compressed gas, cylinder
- other sources of inflation gas can be employed, such as sources based on rapid chemical reaction, pumps, and the like.
- the inflation device 70 can include a backup source of inflation gas if a carbon dioxide cylinder is detected to fail to deliver the desired inflation gas.
- the sensor signal 42 can be provided directly to the signal processing unit 52 , which in turn can condition and provide the signal to the transmitter unit 60 , which in turn can transmit a radio-frequency signal based on the sensor signal 42 .
- the sensing and control unit 40 can also include a first GPS module 72 for sensing the location of the floatation device 20 and providing a responsive output signal 74 to the signal processing unit 52 , which in turn provides a responsive signal to the transmitter unit 60 .
- the transmitter unit 60 then provides a radiofrequency signal based on the GPS output signal 74 .
- the sensor and control unit 40 is preferably powered by conventional battery sources (not shown), and one or more of the functional units of the sensor and control unit 40 can be implemented by discrete components, or integrally, such as by custom dedicated digital circuits, suitably programmed microprocessors, or the like.
- the receiver/signal processing unit 82 can include a second GPS module for sensing the location of the remote monitoring device 80 , as well as suitable means for computing the distance and/or direction of the first GPS module 72 from the second GPS module, such as a microprocessor. Signals characteristic of the distance and direction can then be provided by the receiver/signal-processing unit 82 to the display 90 , so that visually perceptible indications of the location of the floatation device 20 can be displayed.
- the remote monitoring device 80 is adapted to simultaneously monitor a plurality of floatation devices 20 , so that multiple individuals (for example, all the children in a family, or a child and his or her friends playing together in a pool) can be simultaneously monitored.
- the remote monitor 80 can be adapted to provide a single alarm for each of the monitored flotation devices 20 or a plurality of alarms each characteristic of a specific corresponding floatation device 20 .
- the remote monitoring device 80 can be adapted to provide and display distance and direction information characteristic of each of the monitored flotation devices 20 .
- FIG. 2 is a perspective view of a floatation device 20 of the water safety device 10 according to the present invention.
- the floatation device 20 includes an inflatable vest 22 shown in an uninflated configuration.
- the inflatable vest 22 has a “V”-shaped central aperture 24 for receiving the head of an individual, and a pulse sensor 26 proximate the edge of the central aperture.
- the central aperture is preferably shaped for comfort and to avoid any possible restriction of the trachea of the person wearing the vest 22 .
- the corners of inflatable vest 22 are rounded to comfort and to reduce the likelihood of injury from contact.
- the floatation device 20 also includes at least one strap band 28 for securing the floatation device 20 to the individual being monitored.
- the strap band 28 preferably includes an alarm 30 which is triggered by opening the strap band 28 to remove the floatation device 20 , as well as a water-proof case 34 in which the sensing and control unit 40 is mounted.
- Status lights 36 are provided on the exterior of the electronics case 34 to provide a visual indication of the status of the floatation device 20 , and signal an alarm.
- the floatation device 20 also preferably includes a retractable retrieval cord 32 to aid in the rescue of an individual wearing the floatation device 20 .
- FIG. 3 is front elevational view of a remote monitoring device 80 of a water safety device 10 according to the present invention.
- the remote monitoring device 80 includes an external antenna 92 for receiving a radio-frequency signal 62 from the floatation device 20 , as well as a multi-component display 90 including a first display unit 94 for providing a numerical indication of the distance and direction of the floatation device 20 from the remote monitoring unit 80 , and a second display unit 96 for providing a graphical indication of the direction of the floatation device 20 from the remote monitoring unit 80 .
- the remote monitoring unit 80 also includes status lights 98 indicative of the status of the remote monitoring unit 80 and/or the floatation device 20 .
- the remote monitoring unit 80 also preferably includes a keypad 100 for manually inputting information into the remote monitoring device 80 .
- predetermined minimum and maximum values for pulse rate can be entered with the keypad, and subsequently transmitted by the receiver/signal processor 82 of the remote monitoring unit 80 to the transmitter unit 60 of the floatation device 20 , and in turn, be stored in the stored valued memory 46 through a suitable signal 76 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Alarm Systems (AREA)
Abstract
A water safety device includes an inflatable vest and a remote monitor. A pulse sensor is monitored and compared with a predetermined value. When the threshold is exceeded, the vest is rapidly inflated and an alarm is transmitted to the remote monitor.
Description
- The present application claims the priority benefit of U.S. Provisional Patent Application Ser. No. 60/593,426 filed Jan. 13, 2005.
- 1. Field of the Invention
- The present invention relates to safety devices for monitoring individuals engaged in water-related sports activities such as swimming, boating, snorkeling, surfing, diving, and the like.
- 2. Brief Description of the Prior Art
- Parents are often concerned about their children when the children are in a body of water such as a swimming pool.
- Contrary to what many people believe, drowning is a quick and silent killer, and often occurred while children are being supervised. According to a recent study by the national SAFE KIDS Campaign, nearly 90% of drowning deaths in children between the ages of 1 and 14 happened under the supervision of another person, usually a family member.
- The children can be giggling away as they splash each other, practice holding their breath, and bob in and out of the water in a game of Marco Polo. Everything may seem perfectly safe.
- But the truth is that many things can happened to children, both swimmers and non-swimmers, while they are in a body of water, such as, for example, a muscle spasm, leg cramps, a head trauma, etc.
- In such situations, there may be little noise to alert parents that the child is in danger. However, even a few seconds can mean the difference between life and death.
- Loss of consciousness can happen within two minutes after submersion—the time it may take simply to answer the phone. Brain damage may occur within 4 to 6 minutes after submersion.
- Drowning is the second leading cause of unintentional injury related to death of children ages 14 and under in the United States, and the leading cause in Arizona and other states. Drowning is the single leading cause of injury or death for children under 5 years. Drowning takes more than 1,000 children's lives each year. For every child who drowns, four or more are hospitalized for near drowning: for every hospital admission, four children are treated in emergency rooms.
- Swimming pools are the most common place for drowning for young children.
- The total annual economic losses due to swimming pool drowning and near drowning of young children in the United States are estimated to be between $450 and $650 million.
- There are many pool safety devices that have been directed to this problem, including personal flotation devices, safety turtle devices, pool fences, pool alarms and many others. Some examples of these include:
- U.S. Pat. App. No. 2004/0095248 Al describes a drowning alarm. This device comprises of two units (worn by each swimmer on the forehead) and a base station. Potential drowning is detected and alarmed either when a portable unit senses that it is submerged in water longer than a certain number of seconds, or when the swimmer activates a manual alarm push button on the portable unit.
- U.S. Pat. No. 6, 317,050 B1 describes a water entry alarm system. The device functions to alert parents that the child entered the water or takes off the device, but does not help signal that a child in the water is in danger of drowning.
- U.S. Pat. No. 6,930,608 B2 describes a multiple sensor device alarm, especially for firefighters.
- Personal flotation devices are utilized for users or particularly children, to prevent accidental drowning in a body of water such as a swimming pool, and as swimming aids. However, many such flotation devices are bulky and very uncomfortable to wear. Children resist wearing such floatation apparel because of their unsightliness or lack of a ‘cool’ appearance. For children who can swim, such devices can be very uncomfortable and can inhibit skill development. Floatation devices can be inflated by mouth, by pump means, or automatically, such as by chemical reaction.
- The so-called “fight or flight” response was originally discovered by Harvard physiologist Walter Cannon. This response is “hard wired” into our brains and represents a genetic wisdom designed to protect us from bodily harm. This response corresponds to an area of the brain called the hypothalamus. When the ‘fight or flight’ response is activated, sequences of nerve cell firing occur and chemicals like adrenaline, noradrenaline and cortisol are released into our bloodstream. The patterns of nerve cell firing and chemical release cause the body to undergo a series of very dramatic changes. For example, respiratory rate increases. Similarly, blood pressure increases, as does pulse rate and oxygen consumption. Blood is shunted away from the digestive tract and directed into muscles and limbs, which require extra energy and fuel for running and fighting. In addition, pupils dilate; wariness intensifies; and the immune system mobilizes with increased activation. We become prepared physically and psychologically for “fight or flight.”
- There is a continuing need for devices that help reduce the likelihood and incidence of drowning, especially in children.
- In one aspect, the present invention provides a floatation device for the safety of swimming children that will self inflate if the child is in danger of drowning. In this manner, the device will provide immediate rescue to the child to stay afloat in a safe position for an acceptable amount of time. In another aspect, the present invention provides at the same time a local alarm for alerting supervising adults to the danger. In another aspect, the present invention provides a wireless monitor alarm to alert parents of the emergency situation.
- In one presently preferred embodiment, the present invention includes a detector including a physiological sensor that will detect a physiological change, such as the “fight or flight” response of a person in danger of drowning. In another aspect, the present invention includes a compact floatation device that will automatically inflate to keep a child afloat in a safe position. In one presently preferred aspect, the present invention includes a detector that activates alarm systems to alert parents and others nearby that a life-threatening event is occurring. In another presently preferred aspect, the present invention includes monitors the distance of the child from a receiver unit and/or the direction of the child from the receiver unit.
- Thus in one aspect the present invention provides a water safety device comprising at least one monitoring device for sensing a physiological parameter of a subject and providing at least one monitoring output signal responsive to the at least one sensed physiological parameter, and comparator means for comparing the at least one output signal with a corresponding predetermined value and providing a comparator output signal. In this aspect the water safety device further includes a floatation device for an individual and inflation means for inflating the floatation device responsive to the comparator output signal. Preferably, the monitoring output signal is a radio frequency signal.
- Preferably, the physiological parameter sensed in the pulse rate of the subject. It is also preferred that the predetermined condition be a threshold pulse rate. In another aspect, the physiological parameter sensed is the motion of a portion of the subject's body.
- Preferably, the water safety device according to the present invention further comprises a remote receiver; and transmission means for transmitting a signal derived from at least one of the at least one monitoring output signal, and the comparator output signal to the remote receiver. Preferably, the water safety device further comprises alarm means for providing a perceivable alarm responsive to a predetermined condition, such as a highly elevated or unexpectedly reduced pulse rate.
- In another aspect, the water safety device preferably further includes means for monitoring the distance between the at least one monitoring device and the remote receiver. In yet another aspect, present invention provides a water safety device including means for determining the direction from the remote receiver to the at least one monitoring device.
- In one presently preferred embodiment, the water safety device of the present invention provides as integral unit, the at least one monitoring device, the comparator means, the floatation device, and the inflation means. Similarly, in a presently preferred embodiment, the comparator means and the remote receiver means comprise an integral remote unit.
- In another aspect, the water safety device preferably further comprises at least one GPS device.
- In yet another aspect, the present invention provides a water safety device further comprising remote triggering means for inflating the floatation device from a location remote from the floatation device.
- In another aspect the water safety device further includes recording means for recording the at least one monitoring output signal; and analysis means for selecting at least one predetermined value based on the recording of the at least one monitoring output signal.
- In another presently preferred embodiment, the present invention provides a water safety device comprising at least one monitoring device for sensing a physiological parameter of a subject and providing at least one monitoring output signal responsive to the at least one sensed physiological parameter, and comparator means for comparing the at least one output signal with a corresponding predetermined value and providing a comparator output signal. In this embodiment, the water safety device also includes alarm means for providing a perceivable alarm responsive to the comparator output signal, but does not include a floatation device.
- In this embodiment, the water safety device of the present invention also includes a remote receiver; and transmission means for transmitting a signal derived from at least one of the at least one monitoring output signal and the comparator output signal to the remote receiver.
- Preferably, in this embodiment, the of the water safety device, the physiological parameter sensed in the pulse rate of the subject. Preferably, in this embodiment, the predetermined condition is a threshold pulse rate.
- In this embodiment, the water safety device further includes means for monitoring the distance between the at least one monitoring device and the remote receiver. In this embodiment, the water safety device further comprises means for determining the direction from the remote receiver to the at least one monitoring device.
-
FIG. 1 is a block diagram schematically illustrating a water safety device according to the present invention. -
FIG. 2 is perspective view of a flotation device according to the present invention shown in an uninflated state. -
FIG. 3 is a schematic front elevational view of a remote-monitoring unit of a water safety device according to the present invention. - The present invention preferably includes a compact automatic inflatable floatation device assembly and a detector unit. The detector unit preferably includes at least one physiological sensor that senses a physiological characteristic of an individual, such as a swimming child, being monitored. The detector unit preferably includes a processing and evaluation means for permitting predetermined parameter value(s) to be stored, and means for comparing the output of the at least one physiological sensor with a respective predetermined parameter value, and providing an output signal responsive to that comparison. Preferably, the predetermined parameter value(s) correspond to risk threshold(s) for the particular individual being monitored. The output signal can be used to trigger an local alarm, such as a siren and/or a bank of flashing lights, and/or a remote alarm, and to inflate the floatation device assembly. For example, when a sensor for pulse rate is employed, when the monitored pulse rate falls below a predetermined risk threshold, the floatation device will automatically inflate, and alarms will be activated.
- In one presently preferred embodiment, when the monitored individual's heart rate goes abnormally high or abnormally low from the setting, the detector unit will preferably activate a three-step rescue system. First, a floatation device will automatically inflate. Second, the detector unit will preferably sound an alarm to alert others nearby that a life-threatening event is occurring. Third, the detector unit will signal a remote wireless monitor to activate a remote alarm to alert parents or other responsible persons.
- Preferably, the self-inflating floatation device is compact, comfortable to wear, and not easily removable. Preferably, the self-inflating floatation device will buoy the individual wearing the device to face up when unconscious, so that his or her airways are not in contact with the water. Preferably, the self-inflating device is configured to be worn around the neck and upper chest. Preferably, the self-inflating floatation device is configured so the its lies relatively flat against the wearer when not inflated. Preferably, the uninflated device is V shaped around the neck to avoid the trachea, so that it does not press tightly against the neck, which could restrict breathing. Preferably, the self-inflating floatation device has netting or straps under the arms to hold the floatation device in place when inflated. Preferably, the self-inflating floatation device responds to an activation signal by inflating within no more than one minute, and preferably in less than 20 seconds. While the self-inflating floatation device preferably inflates fast enough to save someone from drowning, it preferably does not inflate so fast so as to cause neck injury to the individual wearing the floatation device, such as a child. The self-inflating floatation device is preferably adapted for rough water conditions. Preferably, the self-inflating floatation device is provided with highly visible colors as well as reflective material for search and rescue. Preferably, the self-inflating floatation device includes a short strap, that can be easily grasped by rescue personnel.
- Preferably, the present invention also includes a remote monitor. The remote monitor is preferably adapted to be worn on the wrist of a person monitoring the individual wearing the self-inflating floatation device, such as a mother supervising her child in a swimming pool. Preferably, the remote monitor will function the to alert the wearer when the monitored individual is in danger of drowning, or when there is a malfunction of the device. Preferably, the remote monitor provides special alarm sounds, as well as a highly visible visual alarm. Preferably, the remote monitor also includes an indicator for warning of low battery function, or other malfunction. In another aspect of the present invention, the remote monitor also provides a visible indication of the heart rate of the monitored individual. In yet another aspect, the monitor provides an indication of the distance from the monitor to the individual being monitored, and/or an indication of the direction from the remote monitor to the individual being monitored, and/or other aid for locating the individual being monitored.
- Preferably, the water safety device is adapted to be worn around the neck, like a collar. Preferably, the water safety device includes a pulse sensor for monitoring the heart rate on the carotid artery of the neck. Preferably, the detector unit will activate inflation of an inflatable vest when the pulse rate is either abnormally high (in the case of a ‘fight or flight’ response) or abnormal low (such as in the case of a child who faints after a head injury). Preferably, any dramatic change in the monitored pulse rate will exceed on the risk threshold, and device will be activated.
- In another aspect of the present invention, the monitoring unit of the present invention can be used with a pre-inflated floatation device for non-swimmers or weak swimmers to provide similar protection.
- In yet another aspect of the present invention, the detector unit of the present invention is adapted to be worn by bigger children who are strong swimmers and who will refuse to wear any flotation device, in this case the detector unit is preferably made as small as possible, and to be worn around the neck, to alert parents or other responsible adults that an emergency situation is occurring.
- Referring now to the drawings, in which like numerals refer to like elements in each of the several views, there is shown in
FIG. 1 a block diagram schematically illustrating awater safety device 10 according to the present invention. Thewater safety device 10 includes a rapidly inflatablepersonal floatation device 20 adapted to be worn by an individual engaged in a water-related sport, such as swimming, boating, or the like. Thepersonal floatation device 20 includes aninflatable vest 22 and an associated, attached sensing andcontrol unit 40 for sensing one or more physiological characteristics of an individual wearing thepersonal floatation device 20. Thewater safety device 10 optionally also includes aremote monitoring device 80 responsive to signals generated by the sensing andcontrol unit 40 of thepersonal floatation device 20. - The sensing and
control unit 40 includes one ormore sensor units 26, such as a pulse sensor unit, for monitoring one or more physiological characteristics of the individual wearing thepersonal floatation device 20. Pulse sensors are well known in the art, and are available in the form of piezoelectric film elements, such as are available from Measurement Specialties, Inc., 1000 Lucas Way, Hampton Va. 23666. While pulse sensors are presently preferred, other types of sensors of physiological activity can be used instead or in addition to a pulse sensor. For example, one or more pulse sensors can be used to provide a measure of blood pressure. Similarly, one or more one-, two-, or three-dimensional accelerometers can be used to monitor movement of one or more extremities. Thesensor unit 26 includes a sensing element and associated signal conditioning, filtering and amplification circuits, such as sample and hold amplifiers, analog-to-digital converters, and the like, and provides anoutput signal 42 responsive to acomparator unit 44. Theoutput signal 42 can be either an analog signal or a digital signal, but is preferably a digital signal. - One or more predetermined values for the sensed physiological characteristic are stored in associated
memory 46, and are provided as anoutput signal 48 to thecomparator unit 44. For example, when the sensed physiological characteristic is the individual's pulse, the storedvalues memory 46 can include both a predefined minimum value and a predefined maximum value for inputting to thecomparator unit 44. - The
comparator unit 44 compares thesensor signal 42 with the predefined values output from the storedvalues memory 46, and generates acomparator output signal 50 when thesensor output signal 42 exceeds a predefined maximum value or drops below a predefined minimum value. - The
comparator output signal 50 is input to asignal processing unit 52, which in response outputs alocal alarm signal 54 to alocal alarm 56 on thefloatation device 20. Thelocal alarm 56 can include a siren and an associated driver circuit, one or more highly visible lamps and associated circuitry, a radio frequency beacon, and/or other perceptible signaling devices (not shown). - At the same time the signal-processing
unit 52 provides abroadcast output signal 58 to atransmitter device 60, preferably having transceiver capabilities, which in turn generates aradiofrequency signal 62 responsive to the comparator output. - Also, at the same time the
signal processing unit 52 generates aninflation signal 64 which is received by aninflation device 70, which in response thereto initiates a rapid but safe inflation of theinflatable vest 22. Theinflation device 70 preferably includes a compressed gas inflation unit, such as a carbon dioxide, or other compressed gas, cylinder, for delivering inflation gas to the inflatable device in a controlled, but rapid manner. Alternatively, or in addition, other sources of inflation gas can be employed, such as sources based on rapid chemical reaction, pumps, and the like. For example, theinflation device 70 can include a backup source of inflation gas if a carbon dioxide cylinder is detected to fail to deliver the desired inflation gas. - Optionally, the
sensor signal 42 can be provided directly to thesignal processing unit 52, which in turn can condition and provide the signal to thetransmitter unit 60, which in turn can transmit a radio-frequency signal based on thesensor signal 42. - Optionally, the sensing and
control unit 40 can also include afirst GPS module 72 for sensing the location of thefloatation device 20 and providing aresponsive output signal 74 to thesignal processing unit 52, which in turn provides a responsive signal to thetransmitter unit 60. Thetransmitter unit 60 then provides a radiofrequency signal based on theGPS output signal 74. - The sensor and
control unit 40 is preferably powered by conventional battery sources (not shown), and one or more of the functional units of the sensor andcontrol unit 40 can be implemented by discrete components, or integrally, such as by custom dedicated digital circuits, suitably programmed microprocessors, or the like. - The
water safety device 10 preferably includes aremote monitoring device 80, which includes a receiver/signal processing unit 82, preferably with transceiver capabilities, for receiving the signal(s) transmitted by thetransmitter 60 of thefloatation device 20. When a signal characteristic of thecomparator output signal 50 is detected by the receiver/signal processing unit 82, a responsiveremote alarm signal 84 is generated. Theremote alarm signal 82 is provided to aremote alarm 86, which can include a siren, flashing lights, or other attention-attracting devices. The receiver/signal processing unit 82 also generates adisplay signal 88 responsive to the signal received from thefloatation device 20, which in turn is input to a visuallyperceptible display 90. The receiver/signal processing unit 82 can include a second GPS module for sensing the location of theremote monitoring device 80, as well as suitable means for computing the distance and/or direction of thefirst GPS module 72 from the second GPS module, such as a microprocessor. Signals characteristic of the distance and direction can then be provided by the receiver/signal-processingunit 82 to thedisplay 90, so that visually perceptible indications of the location of thefloatation device 20 can be displayed. - In another presently preferred embodiment of the present invention, the
remote monitoring device 80 is adapted to simultaneously monitor a plurality offloatation devices 20, so that multiple individuals (for example, all the children in a family, or a child and his or her friends playing together in a pool) can be simultaneously monitored. In this case, theremote monitor 80 can be adapted to provide a single alarm for each of the monitoredflotation devices 20 or a plurality of alarms each characteristic of a specificcorresponding floatation device 20. At the same time, theremote monitoring device 80 can be adapted to provide and display distance and direction information characteristic of each of the monitoredflotation devices 20. -
FIG. 2 is a perspective view of afloatation device 20 of thewater safety device 10 according to the present invention. Thefloatation device 20 includes aninflatable vest 22 shown in an uninflated configuration. Theinflatable vest 22 has a “V”-shapedcentral aperture 24 for receiving the head of an individual, and apulse sensor 26 proximate the edge of the central aperture. The central aperture is preferably shaped for comfort and to avoid any possible restriction of the trachea of the person wearing thevest 22. The corners ofinflatable vest 22 are rounded to comfort and to reduce the likelihood of injury from contact. Thefloatation device 20 also includes at least onestrap band 28 for securing thefloatation device 20 to the individual being monitored. Thestrap band 28 preferably includes analarm 30 which is triggered by opening thestrap band 28 to remove thefloatation device 20, as well as a water-proof case 34 in which the sensing andcontrol unit 40 is mounted. Status lights 36 are provided on the exterior of theelectronics case 34 to provide a visual indication of the status of thefloatation device 20, and signal an alarm. Thefloatation device 20 also preferably includes aretractable retrieval cord 32 to aid in the rescue of an individual wearing thefloatation device 20. -
FIG. 3 is front elevational view of aremote monitoring device 80 of awater safety device 10 according to the present invention. Theremote monitoring device 80 includes anexternal antenna 92 for receiving a radio-frequency signal 62 from thefloatation device 20, as well as amulti-component display 90 including afirst display unit 94 for providing a numerical indication of the distance and direction of thefloatation device 20 from theremote monitoring unit 80, and asecond display unit 96 for providing a graphical indication of the direction of thefloatation device 20 from theremote monitoring unit 80. Theremote monitoring unit 80 also includes status lights 98 indicative of the status of theremote monitoring unit 80 and/or thefloatation device 20. - The
remote monitoring unit 80 also preferably includes akeypad 100 for manually inputting information into theremote monitoring device 80. - For example, predetermined minimum and maximum values for pulse rate can be entered with the keypad, and subsequently transmitted by the receiver/
signal processor 82 of theremote monitoring unit 80 to thetransmitter unit 60 of thefloatation device 20, and in turn, be stored in the stored valuedmemory 46 through asuitable signal 76. - Alternatively, the sensing and
control unit 40, by the provision of suitable hardware and software, can be programmed to “learn” suitable predetermined values by monitoring the output of the sensor during conventional use of the floatation device, storing the results, and analyzing the results to determine minima and maxima, and then setting the predetermined values by use of a suitable algorithm. - Various modifications can be made in the details of the various embodiments of the methods and articles of the present invention, all within the scope and spirit of the invention and defined by the appended claims.
Claims (20)
1. A water safety device comprising:
(a) at least one monitoring device for sensing a physiological parameter of a subject and providing at least one monitoring output signal responsive to the at least one sensed physiological parameter;
(b) comparator means for comparing the at least one output signal with a corresponding predetermined value and providing a comparator output signal;
(c) a floatation device for an individual;
(d) inflation means for inflating the floatation device responsive to the comparator output signal.
2. A water safety device according to claim 1 further comprising
(a) a remote receiver; and
(b) transmission means for transmitting a signal derived from at least one of the at least one monitoring output signal and the comparator output signal to the remote receiver.
3. A water safety device according to claim 1 further comprising alarm means for providing a perceivable alarm responsive to a predetermined condition.
4. A water safety device according to claim 2 further comprising means for monitoring the distance between the at least one monitoring device and the remote receiver.
5. A water safety device according to claim 4 further comprising means for determining the direction from the remote receiver to the at least one monitoring device.
6. A water safety device according to claim 1 wherein the physiological parameter sensed in the pulse rate of the subject.
7. A water safety device according to claim 6 wherein the predetermined condition is a threshold pulse rate.
8. A water safety device according to claim 1 wherein the physiological parameter sensed is the motion of a portion of the subject's body.
9. A water safety device according to claim 2 wherein the signal is a radio frequency signal.
10. A water safety device according to claim 1 further comprising at least one GPS device.
11. A water safety device according to claim 1 wherein the at least one monitoring device, the comparator means; the floatation device, and the inflation means comprise an integral water safety unit.
12. A water safety device according to claim 1 wherein the comparator means and the remote receiver means comprise an integral remote unit.
13. A water safety device according to claim 1 further comprising remote triggering means for inflating the floatation device from a location remote from the floatation device.
14. A water safety device according to claim 1 further comprising
(a) recording means for recording the at least one monitoring output signal; and
(b) analysis means for selecting at least one predetermined value based on the recording of the at least one monitoring output signal.
15. A water safety device comprising:
(a) at least one monitoring device for sensing a physiological parameter of a subject and providing at least one monitoring output signal responsive to the at least one sensed physiological parameter; and
(b) comparator means for comparing the at least one output signal with a corresponding predetermined value and providing a comparator output signal; and
(c) alarm means for providing a perceivable alarm responsive to the comparator output signal.
16. A water safety device according to claim 15 further comprising
(a) a remote receiver; and
(b) transmission means for transmitting a signal derived from at least one of the at least one monitoring output signal and the comparator output signal to the remote receiver.
17. A water safety device according to claim 16 further comprising means for monitoring the distance between the at least one monitoring device and the remote receiver.
18. A water safety device according to claim 16 further comprising means for determining the direction from the remote receiver to the at least one monitoring device.
19. A water safety device according to claim 15 wherein the physiological parameter sensed in the pulse rate of the subject.
20. A water safety device according to claim 15 wherein the predetermined condition is a threshold pulse rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/306,778 US20070123121A1 (en) | 2005-01-13 | 2006-01-11 | Water safety device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59342605P | 2005-01-13 | 2005-01-13 | |
US11/306,778 US20070123121A1 (en) | 2005-01-13 | 2006-01-11 | Water safety device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070123121A1 true US20070123121A1 (en) | 2007-05-31 |
Family
ID=38088122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/306,778 Abandoned US20070123121A1 (en) | 2005-01-13 | 2006-01-11 | Water safety device |
Country Status (1)
Country | Link |
---|---|
US (1) | US20070123121A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100255809A1 (en) * | 2008-05-15 | 2010-10-07 | Peter Aschauer | Triggering mechanism for avalanche rescue devices |
ITGR20100001A1 (en) * | 2010-02-11 | 2011-08-12 | Andrea Benedetti | SYSTEM AND METHOD OF SAFETY AND RESCUE - WITH TELEDIAGNOSIS, CONTROL AND PROCEDURES AND / OR AUTOMATED AND ASSISTED MEDIA - INTEGRATED IN COMMUNICATION NETWORKS SUBMARINE AND MARINE CONNECTED TO AIR OR TERRESTRIAL NETWORKS IN GENERAL. |
CN103072671A (en) * | 2013-01-30 | 2013-05-01 | 刘小红 | Alarming floater device for chemical leakage |
CN103745572A (en) * | 2013-12-30 | 2014-04-23 | 深圳市德高智科技有限公司 | Portable lifesaving device, lifesaving management system and lifesaving method |
US9251686B1 (en) * | 2015-06-01 | 2016-02-02 | iSHADOW Technology Inc. | Personal safety tracking using an apparatus comprising multiple sensors |
ITUB20152721A1 (en) * | 2015-07-31 | 2017-01-31 | Fortuna Urbis S R L | INDIVIDUAL WATER RESCUE DEVICE |
US20170029081A1 (en) * | 2015-03-17 | 2017-02-02 | Bogdan Michalski | Modular electronic activation system |
CN106865002A (en) * | 2017-03-29 | 2017-06-20 | 韩汭希 | A kind of Turnover Box with automatic inflatable air sac |
CN107886682A (en) * | 2017-11-06 | 2018-04-06 | 程荟霖 | A kind of real-time security monitoring device |
JP2018520924A (en) * | 2015-06-18 | 2018-08-02 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | Wearable device for swimming and wearable device for upper limb |
US10803724B2 (en) | 2011-04-19 | 2020-10-13 | Innovation By Imagination LLC | System, device, and method of detecting dangerous situations |
US11004324B1 (en) * | 2020-07-24 | 2021-05-11 | Jet Rocafort of America, Inc. | Pool alarm |
CN112927477A (en) * | 2021-03-11 | 2021-06-08 | 浙江工业大学 | Multi-dimensional swimming pool drowning early warning method and system and electronic equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5803022A (en) * | 1994-08-29 | 1998-09-08 | Nelson; Daniel Emmet | Combustion and steam engine system and methods |
US6317050B1 (en) * | 2000-11-02 | 2001-11-13 | Pool Alarm Corporation | Water entry alarm system |
US6570503B1 (en) * | 2000-04-21 | 2003-05-27 | Izaak A. Ulert | Emergency signaling device |
US20040095248A1 (en) * | 2002-11-15 | 2004-05-20 | Mandel Yaron Nahum | Drowning alarm |
US6930608B2 (en) * | 2002-05-14 | 2005-08-16 | Motorola, Inc | Apparel having multiple alternative sensors and corresponding method |
US7018338B2 (en) * | 2001-09-28 | 2006-03-28 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Method and device for pulse rate detection |
-
2006
- 2006-01-11 US US11/306,778 patent/US20070123121A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5803022A (en) * | 1994-08-29 | 1998-09-08 | Nelson; Daniel Emmet | Combustion and steam engine system and methods |
US6570503B1 (en) * | 2000-04-21 | 2003-05-27 | Izaak A. Ulert | Emergency signaling device |
US6317050B1 (en) * | 2000-11-02 | 2001-11-13 | Pool Alarm Corporation | Water entry alarm system |
US7018338B2 (en) * | 2001-09-28 | 2006-03-28 | Csem Centre Suisse D'electronique Et De Microtechnique Sa | Method and device for pulse rate detection |
US6930608B2 (en) * | 2002-05-14 | 2005-08-16 | Motorola, Inc | Apparel having multiple alternative sensors and corresponding method |
US20040095248A1 (en) * | 2002-11-15 | 2004-05-20 | Mandel Yaron Nahum | Drowning alarm |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100255809A1 (en) * | 2008-05-15 | 2010-10-07 | Peter Aschauer | Triggering mechanism for avalanche rescue devices |
US8494480B2 (en) * | 2008-05-15 | 2013-07-23 | Peter Aschauer | Triggering mechanism for avalanche rescue devices |
ITGR20100001A1 (en) * | 2010-02-11 | 2011-08-12 | Andrea Benedetti | SYSTEM AND METHOD OF SAFETY AND RESCUE - WITH TELEDIAGNOSIS, CONTROL AND PROCEDURES AND / OR AUTOMATED AND ASSISTED MEDIA - INTEGRATED IN COMMUNICATION NETWORKS SUBMARINE AND MARINE CONNECTED TO AIR OR TERRESTRIAL NETWORKS IN GENERAL. |
US10803724B2 (en) | 2011-04-19 | 2020-10-13 | Innovation By Imagination LLC | System, device, and method of detecting dangerous situations |
CN103072671A (en) * | 2013-01-30 | 2013-05-01 | 刘小红 | Alarming floater device for chemical leakage |
CN103745572A (en) * | 2013-12-30 | 2014-04-23 | 深圳市德高智科技有限公司 | Portable lifesaving device, lifesaving management system and lifesaving method |
US20170029081A1 (en) * | 2015-03-17 | 2017-02-02 | Bogdan Michalski | Modular electronic activation system |
US10011332B2 (en) * | 2015-03-17 | 2018-07-03 | Bogdan Michalski | Modular electronic activation system |
WO2016196665A1 (en) * | 2015-06-01 | 2016-12-08 | iSHADOW Technology Inc. | Personal safety tracking using an apparatus comprising multiple sensors |
US9741228B1 (en) | 2015-06-01 | 2017-08-22 | iSHADOW Technology Inc. | Personal safety tracking using an apparatus comprising multiple sensors |
US9251686B1 (en) * | 2015-06-01 | 2016-02-02 | iSHADOW Technology Inc. | Personal safety tracking using an apparatus comprising multiple sensors |
JP2018520924A (en) * | 2015-06-18 | 2018-08-02 | 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. | Wearable device for swimming and wearable device for upper limb |
EP3311734A4 (en) * | 2015-06-18 | 2019-02-20 | BOE Technology Group Co., Ltd. | Swimming wearable device and upper limb wearable device |
ITUB20152721A1 (en) * | 2015-07-31 | 2017-01-31 | Fortuna Urbis S R L | INDIVIDUAL WATER RESCUE DEVICE |
CN106865002A (en) * | 2017-03-29 | 2017-06-20 | 韩汭希 | A kind of Turnover Box with automatic inflatable air sac |
CN107886682A (en) * | 2017-11-06 | 2018-04-06 | 程荟霖 | A kind of real-time security monitoring device |
US11004324B1 (en) * | 2020-07-24 | 2021-05-11 | Jet Rocafort of America, Inc. | Pool alarm |
CN112927477A (en) * | 2021-03-11 | 2021-06-08 | 浙江工业大学 | Multi-dimensional swimming pool drowning early warning method and system and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070123121A1 (en) | Water safety device | |
US8613637B2 (en) | Water survival system and a method for detecting the danger of a person drowning | |
US7125302B2 (en) | Personal flotation device and method for same | |
US7988511B2 (en) | Freediving safety apparatus | |
US8144020B2 (en) | Water alarm devices, systems and related methods | |
US20080266118A1 (en) | Personal emergency condition detection and safety systems and methods | |
WO2017118041A1 (en) | Life-saving device and life-saving control method | |
US20070132578A1 (en) | Monitoring system and method | |
US20080146105A1 (en) | Personal flotation device and method for same | |
US20040095248A1 (en) | Drowning alarm | |
US20210403132A1 (en) | Personal aquatic safety device | |
AU2009222455A1 (en) | Life-saving apparatus | |
US7937770B1 (en) | Inflatable swimsuit | |
US8730049B2 (en) | Water sensing electrode circuit | |
WO2017202182A1 (en) | Lifesaving rope apparatus and life jacket, water lifesaving apparatus | |
AU2011262227A1 (en) | Methods and devices for rescuing a distressed diver | |
CN106976533B (en) | A kind of safe swimming protection aeration zone | |
WO2018146368A1 (en) | Smart life-saving swimming garment | |
CN105913617B (en) | A kind of alarm module device for ejecting alarmed in bracelet in water | |
US20220309897A1 (en) | Wearable Safety Device for Swimming | |
EP1689637B1 (en) | Breath-hold diving life-jacket | |
CN105901845B (en) | It alarms in a kind of water bracelet device | |
CN205795067U (en) | Warning bracelet device in water | |
KR101702095B1 (en) | A Lifesaving Air Band | |
JPH09305877A (en) | Alarm device and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |