EP1915527B1 - Partially dethrottled injection valve member for fuel injectors - Google Patents

Partially dethrottled injection valve member for fuel injectors Download PDF

Info

Publication number
EP1915527B1
EP1915527B1 EP06819042.0A EP06819042A EP1915527B1 EP 1915527 B1 EP1915527 B1 EP 1915527B1 EP 06819042 A EP06819042 A EP 06819042A EP 1915527 B1 EP1915527 B1 EP 1915527B1
Authority
EP
European Patent Office
Prior art keywords
cone
valve member
injection valve
seat
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06819042.0A
Other languages
German (de)
French (fr)
Other versions
EP1915527A1 (en
Inventor
Holger Rapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1915527A1 publication Critical patent/EP1915527A1/en
Application granted granted Critical
Publication of EP1915527B1 publication Critical patent/EP1915527B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1893Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings

Definitions

  • the invention relates to a UNEtdrosseltes injection valve member for fuel injectors, in particular for injector-controlled injectors, which are used in high-pressure accumulator injection systems.
  • actuator-controlled fuel injectors For injecting fuel into combustion chambers of self-igniting internal combustion engines, actuator-controlled fuel injectors are used whose injectors have a conically shaped seat in the nozzle body.
  • the conical seat opens at a defined diameter, which is also referred to as a blind hole diameter, in a blind hole, from which then the injection openings of the nozzle are fed.
  • the injection openings are not located in the abovementioned blind hole but at the level of a pointed cone of the injection valve member in the seat of the injector body.
  • the first-mentioned variant with a conical seat in the injector body has a geometric seat diameter (contact line injection valve member / injector body in the powerless state), at which the injection valve member at the end facing away from the injection openings adjoins a seat cone.
  • the injection valve member has a smaller cone angle than the injector body.
  • this seat cone is delimited on the injection valve member by a cylindrical projection of defined diameter.
  • G0-measure The distance that is established in the force and pressure-free state between the injection valve member and the injector body at an edge between the seat cone and said cylindrical projection.
  • the tip cone follows on this undercut.
  • the injection valve member has a larger cone angle than the injector body or nozzle body. Consequently, the gap between the injection valve member and the injector body continuously grows between the lower edge of the undercut and the blind hole diameter.
  • the distance, which sets in the non-pressurized state between the injection valve member and the injector body at the blind hole diameter is referred to as G3-measure, the distance which is established at the transition between the undercut and the tip cone, referred to as G-measure.
  • the variable over the switching state of a switching valve control chamber pressure at the circular surface formed by the guide diameter causes a defined closing force on the needle-shaped injection valve member.
  • the opening force may only be slightly larger than the stationary with the switching valve open adjusting closing force.
  • the seat diameter is chosen only slightly smaller than that theoretical seat diameter, in which just after the opening of the switching valve, a balance of forces between opening and closing force, the injection valve member does not open.
  • the diameter of the cylindrical projection must still be below the above-mentioned theoretical limit. It follows that the seat cone of the injection valve member builds very short in such fuel injectors.
  • a pressure field is formed whose course is dependent on the stroke of the injection valve member and the fine geometry of the gap between the injection valve member and the injector body or the nozzle body.
  • This pressure field can change very much over the life of the injection valve member at the same stroke, since the fine geometry of the gap between the injection valve member to the body changes when the needle-shaped injection valve member during operation of the fuel injector successively in the nozzle body or in the injector body incorporated. Due to the very short seat cone (length 150 ⁇ m), the pressure field below this seat cone changes when the seat is worn Injection valve member only very little. In contrast, this pressure field undergoes a considerable change under the peak cone and consequently also in the undercut.
  • the wear protection layer is first removed on the seat cone and at the transition between the undercut and the top cone.
  • the wear rate in the injector body or in the nozzle body initially increases considerably.
  • the surface pressure decreases below the region of the injection valve member which is no longer coated with the wear protection layer, while it clearly increases at the still coated region of the wear protection layer.
  • the resulting gap geometry has in the powerless state an inhomogeneous seat gap between the injection valve member and the injector body.
  • the injection valve member sits only on an annular transition between still existing and worn through wear protection layer. Since this area during operation of the fuel injector, ie approaches the end of the broken fiber laser tip cone, it comes inevitably even at very low wear depths to leakage and a significant increase in quantity.
  • the wear protection layer considerably reduces the progress of wear on the nozzle body or on the injector body, precisely this property leads, in the case of the seat geometry used, to a significantly increased sensitivity of tightness and injection quantity as a function of the wear depth.
  • the document DE 10 2004 013 600.9 describes the preamble of claim 1.
  • seat geometries are developed with which a coated with a wear protection layer seat of an injection valve member is optimized with respect to its drift behavior.
  • the seat cone has been lengthened and the seat angle of the injection valve member has been reduced.
  • Both measures cause an increase of the G0-measure, so that this optimized seat geometry is of the same order of magnitude as the G3-measure. This can avoid that the wear protection layer on the seat is prematurely completely rubbed through.
  • an annular transition between still coated and already stripped regions now forms on both the tip cone and on the seat cone, so that the injection valve member rests on both annular transitions at low system pressures.
  • the injection valve member Since the upper of these two transitions lies on the sealing seat cone, the injection valve member remains tight over the entire pressure range and prevents the increase in volume associated with leakage. However, this function is retained only as long as on both sealing surface portions of the injection valve member still cone sections are obtained with preserved wear protection layer. Once one of the sealing surface sections has completely lost its wear protection layer, there is only one transition between uncoated and coated area of the injection valve member, on which the injection valve member is seated at low pressures. If this area lies on the tip cone of the injection valve member, leakage and an increase in volume again occur. On the other hand, if the transition is on the seat cone, the injection valve member will remain tight, but a considerable decrease in volume will occur.
  • the object of the invention is to optimize the wear occurring over the service life of a fuel injector and to significantly reduce the risk of occurring leaks and an increase in volume or a significant decrease in quantity over the service life of the fuel injector.
  • the seat angle of the injection valve member is selected to be greater than the seat angle in the injector body while the tip cone of the injection valve member is selected to be smaller than the seat angle in the injector or nozzle body.
  • the previously executed undercut can be omitted, the cylindrical approach, however, remains. This results between the cylindrical projection and the blind hole diameter now a concave gap.
  • the angles and lengths of the cone sections on the injection valve member are chosen so that this rests in a powerless state at the level of the cylindrical projection and adjusts a small gap at the blind hole diameter, whose height is referred to below as G3-measure.
  • the G3 dimension is preferably dimensioned in such a way that, although it is very small, it is in any case greater than 0 when the manufacturing tolerances are utilized.
  • the greatest distance between the injection valve member and the Injektor- or nozzle body is now at the height of the intersection between the seat cone and the tip cone within a concave gap between the injection valve member and the nozzle / injector body (G dimension).
  • the wear of the wear protection layer no longer begins at the two mutually facing ends of the cone sections of the injection valve member, but at the ends facing away from each other (blind hole diameter at the top cone and cylindrical projection on the seat cone).
  • the two transition points between the existing and already worn wear protection layer no longer away from each other (divergent wear protection layer wear) but to move towards each other (converging wear protection layer wear).
  • angles and lengths of the conical sections can also be designed so that the seat of the injection valve member initially rests only at the blind hole inlet in the new state and has a gap on the cylindrical projection. Equally well, a transition dimensioning is possible in which arises depending on the actual value of the angle within their tolerances a support on the cylindrical approach or the blind hole diameter.
  • the tip cone of the injection valve member can be wholly or partially executed with a targeted out-of-roundness at the injection valve member or on the injector body or nozzle body (eg laser grooves in the injection valve member), which ensures a Entdrosselung this seating area even if the preferably needle-shaped injection valve member slowly into the Injektor stresses or ., incorporates the nozzle body.
  • the de-throttled area ends securely before the intersection between the seat cone and the tip cone.
  • the beginning or the end of the de-throttled region can be marked by a circumferential groove in the injection valve member or in the injector or nozzle body in order to achieve a uniform flow of the Entschrosselten bodies.
  • the seat is designed such that the injection valve member initially rests on the blind hole diameter, then instead of the tip cone the seat cone can be throttled and the tip cone assumes the sealing function.
  • the intersection between seat cone and tip cone on the injection valve member may be provided with a radius or a defined edge break.
  • the concave seat shape can also be brought about by any other contour of the injection valve member, through which a concave gap between injection valve member and injector body or nozzle body is formed.
  • the concave gap has no further local maxima in addition to the maximum of its gap height.
  • the concave gap can also be created by a non-linear conical contour of the body seat.
  • the wear protection layers used today which are made of, for example, amorphous diamond-like carbon
  • other materials for forming the wear protection layer may also be used, e.g. Silicate layers on the body seat or nitriding layers in the body seat.
  • FIG. 1 The representation according to FIG. 1 is a section of a fuel injector 10 can be seen, which is constructed rotationally symmetrical to a symmetry axis 12.
  • a preferably needle-shaped injection valve member 14 cooperates with an inner sealing surface 20 of a nozzle or injector body 18.
  • Figure 1.1 shows a reproduced in an elevation of 50: 1 detail view of FIG. 1 , With an elevation 24 of 50: 1, the injection valve member 14 is shown. This includes a tip cone 26 and a seat 30, between which an annular groove 16 or an undercut 28 are arranged.
  • the tip cone 26 of the injection valve member 14 is at a distance G3 from the inner sealing surface 20 of the nozzle or injector body 18.
  • the dimension G is the distance of the injection valve member 14 from the inner sealing surface 20 of the nozzle or injector body 18 in the area of the undercut 28 or the Annular groove 16 and the transition to the tip cone 26 identified while the measure G0, the distance between the injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18 at the edge of the seat 30 to a cylindrical projection of the injection valve member 14 has.
  • the tip cone 26 has a first sealing surface 34, while the seat cone 30, on which the seat of the injection valve member 14 is formed in the nozzle or injector body 18, comprises a second sealing surface 36.
  • FIG. 2 shows a representation of the geometry of an optimized with respect to their drift behavior with a wear protection layer injector.
  • Both the first sealing surface 34 from the tip cone 26 and the second sealing surface 36 on the seat cone 30 are provided with wear protection layers 40, 42.
  • the wear protection layers 40, 42 are usually applied continuously on the entire surface of the injection valve member 14.
  • the undercut 28 (annular groove 16) is usually co-coated.
  • Analogous to the representation of the Figure 1.1 are in the illustration according to FIG. 2 the distances G3, G0 and G entered.
  • the first sealing surface 34 and the second sealing surface 36 according to the embodiment in FIG. 2 are provided with wear protection layers 40, 42.
  • the wear protection layer 40, 42 is usually present continuously on the entire surface of the injection valve member 14, at least in the region of the seal. It may be a continuously applied layer, wherein also the undercut 28 is usually co-coated in the region of the annular groove 16.
  • the wear protection layer 40, 42 is usually present continuously on the entire surface of the injection valve member 14, at least in the region of the seal. It may be a continuously applied layer, wherein also the undercut 28 is usually co-coated in the region of the annular groove 16.
  • FIG. 2 illustrated variant is such that in progressive wear between injection valve member 14 and nozzle or injector 18, a divergent wear of the wear protection layers 40 and 42 and the inner sealing surface 20 of the nozzle or injector body 18 occurs. This means that the new sealing edges, which respectively adjust
  • FIG. 3 shows the inventively proposed seat geometry with a concave throttle gap.
  • the cone angles of the tip cone 26 and the seat 30 are reversed, such as FIG. 4 is removable.
  • the cone angle of the tip cone 26 is denoted by ⁇
  • the cone angle of the seat 30 is denoted by ⁇ .
  • the dimension G3 at the blind hole inlet 22 is substantially lower than in the FIG. 2 illustrated embodiment.
  • the dimension G at the transition between the tip cone 26 and seat 30 is considerably larger, compared with the dimension G in the embodiment according to FIG. 2 , so that at the in FIG. 3 illustrated embodiment, a concave throttle gap 70 by the sealing surface 20 and the nozzle or injector body and the lateral surface of the preferably needle-shaped injection valve member 14 sets.
  • first sealing surface 34 on the tip cone 26 as well as the second sealing surface 36 on the seat cone 30 are each coated with a first continuous wear protection layer 40 and a second continuous wear protection layer 42.
  • These wear protection layers may be made of, for example, amorphous, diamond-like carbon, or may also be applied to the body seat, for example, as silicate layers or nitriding layers.
  • first wear-resistant layer 40 or second wear-resistant layer 42 is understood to mean a wear protection layer applied continuously to tip cone 26 and seat cone 30, which also covers the transition region between tip cone 26 and seat cone 30 in the region of the undercut 28.
  • the undercut is omitted, a cylindrical projection 43 (see. FIG. 4 ) at the injection valve member 14 is maintained. Between the cylindrical projection 43 and the blind hole diameter 32 (see. FIG. 4 ) at the blind hole inlet 22, now results in a concave throttle gap 70.
  • the cone angle ⁇ and ⁇ (see. FIG. 4 ) and lengths of the cone portions 26 and 30 are selected so that the injection valve member 14 rests in the powerless state at the level of the cylindrical projection 43 and at the blind hole diameter a small gap, whose height corresponds to the G3 measure adjusts.
  • the G3 dimension is preferably dimensioned as small as possible, however, in such a way that, when the manufacturing tolerances are utilized, in each case it remains greater than zero.
  • the greatest distance between the preferably needle-shaped injection valve member 14 and the nozzle or injector body 18 is now at the level of the intersection between seat 30 and tip cone 26 a; here lies the G-measure.
  • FIG. 4 shows a different representation of the geometric relationships according to FIG. 3 .
  • FIG. 4 shows that the preferably needle-shaped injection valve member 14 has a pressure stage 44. Between the compression stage 44 and the seat 30, the cylindrical projection 43 extends.
  • the fuel injector 10 includes the injection valve member 14, on which runs below the seat 30 of the top cone 26.
  • the tip cone 26 is formed at a cone angle ⁇ , which is smaller than the cone angle ⁇ , in which the inner sealing surface 20 of the nozzle or injector body 18 extends, with respect to the vertical.
  • the cone angle ⁇ , in which the seat cone 30 is formed is chosen to be greater than the cone angle ⁇ of the inner sealing surface 20 of the nozzle or injector body 18th
  • the lengths and the cone angles ⁇ , ⁇ of tip cone 26 and seat cone 30 are selected so that the preferably needle-shaped injection valve member 14 rests in the powerless state at the level of the cylindrical projection 43 on the inner sealing surface 20 of the nozzle or injector 18. It turns at the blind hole inlet 22, taking into account the blind hole diameter 32, the dimension G3.
  • the greatest distance lies between the preferably needle-shaped injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18 at the level of the intersection between the apex angle 26 and the seat cone 30.
  • the lateral surface of the tip cone 26 is provided with the first wear protection layer 40, while the lateral surface of the seat 30 is provided with the second wear protection layer 42. Both the first wear protection layer 40 and the second wear protection layer 42 are continuously applied to the tip cone 26 and seat 30 as a layer.
  • the wear protection layer 40, 42 may be formed of amorphous, diamond-like carbon as well as a silicate or nitride layer. These surfaces define the concave gap 70 between the outer contour of the injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18.
  • the moderately worn condition is identified by reference numeral 48. 48.1 shows a wear profile on the outer contour of the injection valve member 14 in the region of the seat cone 30 and tip cone 26, while the reference numeral 48.2 marks the wear profile of the inner sealing surface 20 of the nozzle or injector body 18. From the illustration according to Figure 5.1 shows that in the moderately worn state 48, the injection valve member 14 has buried in the inner sealing surface 20 of the nozzle or injector body 20. In the inner sealing surface 20, a slope 52 has been formed and a corresponding edge of the seat 30 notch.
  • the wear profile 48.1 of the injection valve member 14 is characterized in that the first sealing surface 34 has an abrasion region 50, as well as the second sealing surface 36 on the seat 30th
  • a first annular width 60 is defined by the first bevel 52, which adjoins an intermediate annular surface 64.
  • the notch in the inner sealing surface 20 in the region of the seat 30 defines a second annular width 62.
  • the in Figure 5.2 shown advanced wear which is identified by reference numeral 54, is further advanced on the first sealing surface 34 of the apex cone 26 and on the second sealing surface 36 of the seat 30 of the needle-shaped injection valve member 14.
  • the abrasion region 50 on the first sealing surface 34 as shown in FIG Figure 5.1 has, as in Figure 5.2 shown enlarged at the first sealing surface 34 on the abrasion region 56.
  • a wear profile 54.1 on the outer contour of the injection valve member 14 is characterized by larger wear regions 56 on the first sealing surface 34 and the second sealing surface 36.
  • the forming on the inner sealing surface 20 of the nozzle or injector body 18 wear profile 54.2 characterized in that a second slope 58 above the blind hole inlet 22 is much more pronounced, whereas the intermediate ring surface 64 on the inner sealing surface 20 between the second slope 58 and by the seat 30 generated notch in the inner sealing surface 20 is substantially shorter.
  • the first ring width 60 continuously increases while the intermediate ring surface 64 continuously decreases.
  • the notch in the inner sealing surface 20 is deeper and the second ring width 62 is slightly increased.
  • the wear of the wear-resistant layers 40 and 42 no longer starts at the two mutually facing ends of the tip cone 26 and the seat 30, but at the opposite ends, with respect to the tip cone 26 at the blind hole diameter 32 and with respect to the seat 30 below of the cylindrical approach. Consequently, the two transitions between still existing and already abraded wear protection layer 40, 42 no longer run away from each other (divergent C-layer wear), but according to the invention proposed solution to each other (converging wear protection layer wear). This ensures, in particular, that the seat cone 30 and the tip cone 26 completely lose their respective wear protection layers 40 and 42 at the same time, since the two transitions described above inevitably result in the intersection between seat 30 and tip cone 26 unite. This safely eliminates the risk of a single-sided needle seat.
  • FIG. 6 shows the inventively proposed injection valve member in the closed state in a state of wear
  • the in Figure 5.2 corresponds to the worn state shown.
  • FIG. 6 shows that the preferably needle-shaped injection valve member 14 rests on the second slope 58 of the inner sealing surface 20 of the nozzle or injector body 18.
  • At the first sealing surface 34 of the injection valve member 14 is still a residue 72 of the wear protection layer 40 in the region of the blind hole inlet 22.
  • the first intermediate ring width 60 and the second intermediate ring width 62 unite at the inner sealing surface 20 of the nozzle or injector body 18 into a single annular surface.
  • Abrasion region 56 as shown in FIG Figure 5.2 on the first sealing surface 34 of the tip cone 26 lies on the second slope 58 on the inner sealing surface 20 (see also illustration according to FIG Figure 5.2 ) on.
  • the converging wear protection layer wear is in the figure sequence according to Figures 5.1 and 5.2 indicated by the arrow 76.
  • the tip cone 26 of the injection valve member 14 may be wholly or partially executed with a targeted out-of-roundness at the injection valve member 14 and the nozzle or injector 18 be (eg laser grooves in the injection valve member 14), which ensures a Entschrosselung this seating area even when the injection valve member slowly into the inner sealing surface 20 of the nozzle body and the injector body 18 incorporated.
  • the entsch throttled area must be sure before the intersection between the seat 30 ends with the top cone 26.
  • the beginning or the end of the de-throttled region ie the region of the injection valve member 14 which is formed in a targeted out-of-roundness, by a circumferential groove in the preferably needle-shaped injection valve member 14 or in the nozzle or injector 18 are marked to a uniform Flow to the de-throttled points (eg shown as laser groove).
  • the seat is designed such that the injection valve member 14 initially rests on the blind hole diameter 32, the seat cone 30 can be throttled in place of the tip cone 26 and the tip cone 26 can assume the sealing function.
  • the intersection between the seat 30 and the top cone 26 may be provided with a radius or with a defined edge break.
  • the concave seat shape can also be accomplished by any other contour of the injection valve member 14, which has a concave gap between the needle-shaped injection valve member 14 and the nozzle or injector body generated.
  • the concave gap 70 has no further local maxima in addition to the absolute maximum of its gap height.
  • the concave gap 70 may also be created by a non-linear conical contour of the inner sealing surface 20.
  • the materials for the wear protection layers 40 and 42 which are made of amorphous diamond-like carbon, other abrasion resistant materials can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung bezieht sich auf ein teilentdrosseltes Einspritzventilglied für Kraftstoffinjektoren, insbesondere für aktorgesteuerte Injektoren, die an Hochdruckspeichereinspritzsystemen eingesetzt werden.The invention relates to a teilentdrosseltes injection valve member for fuel injectors, in particular for injector-controlled injectors, which are used in high-pressure accumulator injection systems.

Stand der TechnikState of the art

Zum Einspritzen von Kraftstoff in Brennräume von selbstzündenden Brennkraftmaschinen kommen aktorgesteuerte Kraftstoffinjektoren zum Einsatz, deren Einspritzdüsen einen kegelförmig gestalteten Sitz im Düsenkörper aufweisen. Der kegelförmige Sitz öffnet sich bei einem definierten Durchmesser, der auch als Sacklochdurchmesser bezeichnet wird, in ein Sackloch, aus dem dann die Einspritzöffnungen der Düse gespeist werden. Bei alternativ eingesetzten Sitzlochdüsen befinden sich die Einspritzöffnungen dagegen nicht in dem vorstehend erwähnten Sackloch, sondern auf Höhe eines spitzen Kegels des Einspritzventilgliedes im Sitz des Injektorkörpers.For injecting fuel into combustion chambers of self-igniting internal combustion engines, actuator-controlled fuel injectors are used whose injectors have a conically shaped seat in the nozzle body. The conical seat opens at a defined diameter, which is also referred to as a blind hole diameter, in a blind hole, from which then the injection openings of the nozzle are fed. In the case of alternatively used seat hole nozzles, on the other hand, the injection openings are not located in the abovementioned blind hole but at the level of a pointed cone of the injection valve member in the seat of the injector body.

Die erstgenannte Variante mit einem kegelförmigen Sitz im Injektorkörper weist einen geometrischen Sitzdurchmesser auf (Berührlinie Einspritzventilglied/Injektorkörper im kraftlosen Zustand), an welchen sich am Einspritzventilglied am den Einspritzöffnungen abgewandten Ende ein Sitzkegel anschließt. In diesem Bereich weist das Einspritzventilglied einen kleineren Kegelwinkel als der Injektorkörper auf. In Richtung auf das den Einspritzöffnungen abgewandte Ende des Einspritzventilgliedes ist dieser Sitzkegel am Einspritzventilglied durch einen zylindrischen Ansatz mit definiertem Durchmesser begrenzt. Der Abstand, der sich im kraft- und drucklosen Zustand zwischen dem Einspritzventilglied und dem Injektorkörper an einer Kante zwischen dem Sitzkegel und dem erwähnten zylindrischen Ansatz einstellt, wird als G0-Maß bezeichnet. Unterhalb des geometrischen Sitzdurchmessers am Einspritzventilglied befindet sich ein Hinterstich mit üblicherweise bogenförmigem Querschnitt. In Richtung auf das brennraumseitige Ende des Einspritzventilgliedes folgt auf diesen Hinterstich der Spitzenkegel. In diesem Bereich weist das Einspritzventilglied einen größeren Kegelwinkel als der Injektorkörper bzw. Düsenkörper auf. Folglich wächst der Spalt zwischen dem Einspritzventilglied und dem Injektor- bzw. Düsenkörper zwischen der Unterkante des Hinterstichs und dem Sacklochdurchmesser kontinuierlich an. Der Abstand, der sich im kraft- und drucklosen Zustand zwischen dem Einspritzventilglied und dem Injektorkörper am Sacklochdurchmesser einstellt, wird als G3-Maß bezeichnet, der Abstand, der sich am Übergang zwischen dem Hinterstich und dem Spitzenkegel einstellt, wird als G-Maß bezeichnet.The first-mentioned variant with a conical seat in the injector body has a geometric seat diameter (contact line injection valve member / injector body in the powerless state), at which the injection valve member at the end facing away from the injection openings adjoins a seat cone. In this area, the injection valve member has a smaller cone angle than the injector body. Towards the end of the injection valve member facing away from the injection openings, this seat cone is delimited on the injection valve member by a cylindrical projection of defined diameter. The distance that is established in the force and pressure-free state between the injection valve member and the injector body at an edge between the seat cone and said cylindrical projection is referred to as G0-measure. Below the geometric seat diameter at the injection valve member is an undercut with usually arcuate cross-section. Towards the combustion chamber-side end of the injection valve member, the tip cone follows on this undercut. In this area, the injection valve member has a larger cone angle than the injector body or nozzle body. Consequently, the gap between the injection valve member and the injector body continuously grows between the lower edge of the undercut and the blind hole diameter. The distance, which sets in the non-pressurized state between the injection valve member and the injector body at the blind hole diameter is referred to as G3-measure, the distance which is established at the transition between the undercut and the tip cone, referred to as G-measure.

Im geschlossenen Zustand des Einspritzventilgliedes greift zwischen einem Führungsdurchmesser und dem Sitzdurchmesser des Einspritzventilgliedes der definierte Systemdruck an (Druckniveau im Hochdruckspeicherraum) und bewirkt in dieser definierten Ringfläche eine definierte auf das Einspritzventilglied wirkende Öffnungskraft. Demgegenüber bewirkt der über den Schaltzustand eines Schaltventiles veränderbare Steuerraumdruck an der durch den Führungsdurchmesser gebildeten Kreisfläche eine definierte Schließkraft auf das nadelförmig ausgebildete Einspritzventilglied. Um trotz des sehr steifen und damit schnell reagierenden Verbandes zwischen Steuerraum und Düsensitz die Kleinmengenfähigkeit des Kraftstoffinjektors zu gewährleisten, darf die Öffnungskraft nur geringfügig größer sein als die sich bei geöffnetem Schaltventil stationär einstellende Schließkraft. Um dies zu erreichen, wird der Sitzdurchmesser nur wenig kleiner gewählt als jener theoretische Sitzdurchmesser, bei dem nach dem Öffnen des Schaltventils gerade noch ein Kräftegleichgewicht zwischen Öffnungs- und Schließkraft besteht, das Einspritzventilglied demzufolge nicht mehr öffnet. Um das Öffnen des nadelförmig ausgebildeten Einspritzventilgliedes auch dann noch zu gewährleisten, wenn sich das Einspritzventilglied in seinen Sitz im Injektorkörper bzw. Düsenkörper "eingräbt", muss auch der Durchmesser des zylindrischen Ansatzes noch unterhalb der oben stehend erwähnten theoretischen Grenze liegen. Daraus ergibt sich, dass der Sitzkegel des Einspritzventilgliedes bei solchen Kraftstoffinjektoren sehr kurz baut.In the closed state of the injection valve member engages between a guide diameter and the seat diameter of the injection valve member of the defined system pressure (pressure level in the high-pressure reservoir) and causes in this defined annular surface a defined acting on the injection valve member opening force. In contrast, the variable over the switching state of a switching valve control chamber pressure at the circular surface formed by the guide diameter causes a defined closing force on the needle-shaped injection valve member. In order to ensure the small quantity capability of the fuel injector despite the very stiff and therefore fast-reacting association between the control chamber and nozzle seat, the opening force may only be slightly larger than the stationary with the switching valve open adjusting closing force. To achieve this, the seat diameter is chosen only slightly smaller than that theoretical seat diameter, in which just after the opening of the switching valve, a balance of forces between opening and closing force, the injection valve member does not open. In order to ensure the opening of the needle-shaped injection valve member even if the injection valve member "digs" into its seat in the injector body or nozzle body, the diameter of the cylindrical projection must still be below the above-mentioned theoretical limit. It follows that the seat cone of the injection valve member builds very short in such fuel injectors.

Öffnet das Einspritzventilglied, so stellt sich innerhalb des Sackloches ein Druck ein, der sich aus dem Zusammenwirken der Sitzdrosselung und der Drosselung in den Einspritzöffnungen ergibt. Insbesondere bei kleinen Hüben, bei denen die Nadelöffnungsdynamik sehr empfindlich auf Änderungen der Öffnungskraft reagiert, ist der Druck im Sackloch vergleichsweise gering und der daraus resultierende Anteil der Öffnungskraft ebenfalls.When the injection valve member opens, a pressure arises within the blind hole which results from the interaction of seat throttling and throttling in the injection openings. Particularly in the case of small strokes, in which the needle opening dynamics are very sensitive to changes in the opening force, the pressure in the blind hole is comparatively low and the resulting fraction of the opening force is likewise.

Zwischen dem zylindrischen Ansatz und dem Sacklochdurchmesser bildet sich ein Druckfeld aus, dessen Verlauf abhängig ist vom Hub des Einspritzventilgliedes und von der Feingeometrie des Spaltes zwischen dem Einspritzventilglied und dem Injektorkörper bzw. dem Düsenkörper. Dieses Druckfeld kann sich bei gleichem Hub über der Lebensdauer des Einspritzventilgliedes sehr stark ändern, da sich die Feingeometrie des Spaltes zwischen dem Einspritzventilglied um dem Körper ändert, wenn sich während des Betriebes des Kraftstoffinjektors das nadelförmig ausgebildete Einspritzventilglied sukzessive in den Düsenkörper bzw. in den Injektorkörper einarbeitet. Aufgrund des sehr kurzen Sitzkegels (Länge 150 µm) ändert sich das Druckfeld unterhalb dieses Sitzkegels bei verschleißendem Sitz des Einspritzventilgliedes nur sehr wenig. Eine erhebliche Änderung erfährt dieses Druckfeld dagegen unter dem Spitzenkegel und folglich auch im Hinterstich. Der engste Drosselquerschnitt und damit der größte Druckgradient verlagert sich mit zunehmender Verschleißtiefe immer mehr in Richtung des Sacklochdurchmessers. Dadurch nimmt mit zunehmendem Verschleiß die auf das Einspritzventilglied wirkende Öffnungskraft - bei jeweils gleichem Hubweg des Einspritzventilgliedes - erheblich zu, was zu einem sehr unerwünschten, da erheblichen Mengenzuwachs, d.h. einem Anstieg der in den Brennraum eingespritzten Kraftstoffmenge führt.Between the cylindrical projection and the blind hole diameter, a pressure field is formed whose course is dependent on the stroke of the injection valve member and the fine geometry of the gap between the injection valve member and the injector body or the nozzle body. This pressure field can change very much over the life of the injection valve member at the same stroke, since the fine geometry of the gap between the injection valve member to the body changes when the needle-shaped injection valve member during operation of the fuel injector successively in the nozzle body or in the injector body incorporated. Due to the very short seat cone (length 150 μm), the pressure field below this seat cone changes when the seat is worn Injection valve member only very little. In contrast, this pressure field undergoes a considerable change under the peak cone and consequently also in the undercut. The narrowest throttle cross section and thus the largest pressure gradient moves with increasing depth of wear more and more in the direction of the blind hole diameter. As a result, as the wear increases, the opening force acting on the injection valve member increases significantly, in each case with the same stroke of the injection valve member, which leads to a very undesirable increase in quantity, ie an increase in the amount of fuel injected into the combustion chamber.

Um diesen Effekt abzumildern, wird in DE 10 2004 013 600.9 ein Kraftstoffeinspritzventil für Brennkraftmaschinen vorgeschlagen, bei dem der Spitzenkegel des Einspritzventilgliedes zusätzlich mit längs verlaufenden Lasernuten versehen ist, so dass auch bei vollständiger Berührung zwischen dem Einspritzventilglied und dem Injektorkörper bzw. dem Düsenkörper die zusätzliche Drosselung in diesem Bereich und damit der Mengenanstieg über die Lebensdauer begrenzt bleibt. Von Nachteil ist allerdings, dass der Spitzenkegel gemäß dieser Lösung nicht mehr zur Dichtfunktion des Einspritzventilgliedes beitragen kann. Bei vollständig tragendem Düsensitz ist weit über die Hälfte der tragenden Fläche von Lasernuten durchzogen und kann demzufolge nicht zur Dichtfunktion beitragen. Dies bedeutet, dass ab einer bestimmten Verschleißtiefe eine Undichtheit auftreten kann, die üblicherweise ebenfalls mit einem Anstieg der Einspritzmenge einhergeht.To mitigate this effect, in DE 10 2004 013 600.9 proposed a fuel injection valve for internal combustion engines, in which the tip cone of the injection valve member is additionally provided with longitudinal laser grooves, so that limits even with complete contact between the injection valve member and the injector body or the nozzle body, the additional throttling in this area and thus the increase in volume over the life remains. The disadvantage, however, is that the tip cone according to this solution can no longer contribute to the sealing function of the injection valve member. With a completely supporting nozzle seat, well over half of the supporting surface is crossed by laser grooves and consequently can not contribute to the sealing function. This means that from a certain depth of wear leakage can occur, which is usually accompanied by an increase in the injection quantity.

Es hat sich gezeigt, dass die sich im Laufe der Lebensdauer des Einspritzventils einstellende Verschleißtiefe schwer vorhersagbar ist. Dies hängt nämlich von vielen außerhalb des Einspritzventils liegenden Faktoren wie z.B. dem Lastkollektiv des Fahrzeugs, dem Systemdruck innerhalb eines Hochdruckeinspritzsystems sowie z.B. der Kontamination des Kraftstoffs mit Schmutz und Wasser ab. Um den Verschleiß weiter zu verringern, wird gemäß DE 10 2004 013 600.9 vorgeschlagen, den Sitz eines Einspritzventilgliedes ohne Änderung der Geometrie mit einer Verschleißschutzschicht zu versehen. Diese verringert den Verschleiß des Gegenkörpers, in diesem Falle des Injektor- bzw. des Düsenkörpers, erheblich. Allerdings tritt ein Abrieb an der Verschleißschutzschicht selbst auf. Aufgrund der für einen Betrieb ohne Verschleißschutzschicht optimierten Geometrie mit einem GO-Maß, welches erheblich kleiner ist als das G3-Maß, wird die Verschleißschutzschicht zuerst auf dem Sitzkegel sowie am Übergang zwischen Hinterstich und Spitzenkegel abgetragen. Im Bereich der abgetragenen Verschleißschutzschicht nimmt die Verschleißgeschwindigkeit im Injektorkörper bzw. im Düsenkörper zunächst erheblich zu. Als Folge davon nimmt die Flächenpressung bei geschlossenem Einspritzventilglied unter dem nicht mehr mit der Verschleißschutzschicht beschichteten Bereich des Einspritzventilgliedes ab, während sie an dem noch beschichteten Bereich der Verschleißschutzschicht deutlich zunimmt. Durch diesen Effekt gleichen sich die Verschleißgeschwindigkeiten unter den beiden nun verschiedenen Bereichen der Verschleißschutzschicht des Einspritzventilgliedes langsam wieder einander an. Die dadurch entstehende Spaltgeometrie weist im kraftlosen Zustand einen inhomogen verlaufenden Sitzspalt zwischen Einspritzventilglied und Injektorkörper auf. Bei kleinen Drücken sitzt das Einspritzventilglied nur noch an einem ringförmigen Übergang zwischen noch vorhandener und durchgeriebener Verschleißschutzschicht auf. Da sich dieser Bereich während des Betriebes des Kraftstoffinjektors, d.h. mit zunehmender Lebensdauer dem von Lasernuten durchbrochenen Spitzenkegel nähert, kommt es zwangsläufig schon bei sehr geringen Verschleißtiefen zu Undichtheit und einer erheblichen Mengenzunahme. Die Verschleißschutzschicht reduziert zwar den Verschleißfortschritt am Düsenkörper bzw. am Injektorkörper erheblich, doch führt gerade diese Eigenschaft bei der verwendeten Sitzgeometrie zu einer erheblich erhöhten Empfindlichkeit von Dichtheit und Einspritzmenge in Abhängigkeit von der Verschleißtiefe. Das Dokument DE 10 2004 013 600.9 beschreibt den Oberbegriff des Anspruchs 1. Um diesem nachteiligen Effekt entgegenzuwirken, werden Sitzgeometrien entwickelt, mit welchen ein mit einer Verschleißschutzschicht beschichteter Sitz eines Einspritzventilgliedes bezüglich seines Driftverhaltens optimiert wird. Bei diesen Sitzgeometrien wurde der Sitzkegel verlängert und der Sitzwinkel des Einspritzventilgliedes verkleinert. Beide Maßnahmen bewirken eine Erhöhung des G0-Maßes, so dass dieses bei dieser optimierten Sitzgeometrie in derselben Größenordnung liegt wie das G3-Maß. Dadurch kann vermieden werden, dass die Verschleißschutzschicht auf dem Sitzkegel vorzeitig vollständig durchgerieben wird. Vielmehr bildet sich nun sowohl auf dem Spitzenkegel als auch auf dem Sitzkegel ein ringförmiger Übergang zwischen noch beschichtetem und bereits entschichtetem Bereich aus, so dass das Einspritzventilglied bei kleinen Systemdrücken auf beiden ringförmigen Übergängen aufsitzt. Da der obere dieser beiden Übergänge am dichtenden Sitzkegel liegt, bleibt das Einspritzventilglied im gesamten Druckbereich dicht und der mit Undichtheit einhergehende Mengenanstieg unterbleibt. Diese Funktion bleibt jedoch nur solange erhalten, wie auf beiden Dichtflächenabschnitten des Einspritzventilgliedes noch Kegelabschnitte mit erhaltener Verschleißschutzschicht vorhanden sind. Sobald einer der Dichtflächenabschnitte seine Verschleißschutzschicht komplett verloren hat, besteht nur noch ein Übergang zwischen unbeschichtetem und beschichtetem Bereich des Einspritzventilgliedes, auf welchem das Einspritzventilglied bei kleinen Drücken aufsitzt. Liegt dieser Bereich am Spitzenkegel des Einspritzventilgliedes, so tritt wieder eine Undichtheit sowie ein Mengenanstieg auf. Liegt der Übergang hingegen am Sitzkegel, so bleibt das Einspritzventilglied zwar dicht, aber es wird sich eine erhebliche Mengenabnahme einstellen. Aufgrund unvermeidlicher Fertigungstoleranzen hinsichtlich der Kegelwinkel am Einspritzventilglied und am Injektor- bzw. Düsenkörper, kann nicht sichergestellt werden, dass sich sowohl auf dem Sitzkegel als auch auf dem Spitzenkegel die dort aufgebrachte Verschleißschutzschicht zum selben Zeitpunkt aufgebraucht ist. Folglich besteht weiterhin die Gefahr von Undichtheit und Mengenanstieg oder von einer erheblichen Mengenabnahme über einen gewissen Zeitbereich hinweg.It has been found that the depth of wear that occurs over the life of the injector is difficult to predict. This depends on many factors outside the injection valve, such as the load spectrum of the vehicle, the system pressure within a high-pressure injection system and, for example, the contamination of the fuel with dirt and water. In order to further reduce the wear, it is according to DE 10 2004 013 600.9 proposed to provide the seat of an injection valve member without changing the geometry with a wear protection layer. This reduces the wear of the counter body, in this case the injector or the nozzle body considerably. However, abrasion occurs on the wear protection layer itself. Due to the geometry optimized for operation without wear protection layer with a GO dimension which is considerably smaller than the G3 dimension, the wear protection layer is first removed on the seat cone and at the transition between the undercut and the top cone. In the area of the worn wear protection layer, the wear rate in the injector body or in the nozzle body initially increases considerably. As a result of this, when the injection valve member is closed, the surface pressure decreases below the region of the injection valve member which is no longer coated with the wear protection layer, while it clearly increases at the still coated region of the wear protection layer. By this effect, the wear rates are similar under the two now different areas the wear protection layer of the injection valve member slowly back to each other. The resulting gap geometry has in the powerless state an inhomogeneous seat gap between the injection valve member and the injector body. At low pressures, the injection valve member sits only on an annular transition between still existing and worn through wear protection layer. Since this area during operation of the fuel injector, ie approaches the end of the broken fiber laser tip cone, it comes inevitably even at very low wear depths to leakage and a significant increase in quantity. Although the wear protection layer considerably reduces the progress of wear on the nozzle body or on the injector body, precisely this property leads, in the case of the seat geometry used, to a significantly increased sensitivity of tightness and injection quantity as a function of the wear depth. The document DE 10 2004 013 600.9 describes the preamble of claim 1. To counteract this adverse effect, seat geometries are developed with which a coated with a wear protection layer seat of an injection valve member is optimized with respect to its drift behavior. In these seat geometries, the seat cone has been lengthened and the seat angle of the injection valve member has been reduced. Both measures cause an increase of the G0-measure, so that this optimized seat geometry is of the same order of magnitude as the G3-measure. This can avoid that the wear protection layer on the seat is prematurely completely rubbed through. On the contrary, an annular transition between still coated and already stripped regions now forms on both the tip cone and on the seat cone, so that the injection valve member rests on both annular transitions at low system pressures. Since the upper of these two transitions lies on the sealing seat cone, the injection valve member remains tight over the entire pressure range and prevents the increase in volume associated with leakage. However, this function is retained only as long as on both sealing surface portions of the injection valve member still cone sections are obtained with preserved wear protection layer. Once one of the sealing surface sections has completely lost its wear protection layer, there is only one transition between uncoated and coated area of the injection valve member, on which the injection valve member is seated at low pressures. If this area lies on the tip cone of the injection valve member, leakage and an increase in volume again occur. On the other hand, if the transition is on the seat cone, the injection valve member will remain tight, but a considerable decrease in volume will occur. Due to unavoidable manufacturing tolerances with respect to the cone angle on the injection valve member and on the injector or nozzle body, it can not be ensured that the wear protection layer applied there is used up at the same time both on the seat cone and on the tip cone. Consequently, there is still a risk of leakage and increase in volume or from a substantial decrease over a certain period of time.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, den sich über die Lebensdauer eines Kraftstoffinjektors einstellenden Verschleiß zu optimieren und das Risiko von auftretender Undichtheiten sowie eines Mengenanstieges oder einer erheblichen Mengenabnahme über die Lebensdauer des Kraftstoffinjektors signifikant zu reduzieren.The object of the invention is to optimize the wear occurring over the service life of a fuel injector and to significantly reduce the risk of occurring leaks and an increase in volume or a significant decrease in quantity over the service life of the fuel injector.

Der erfindungsgemäß vorgeschlagenen Lösung folgend, wird der Sitzwinkel des Einspritzventilgliedes größer gewählt als der Sitzwinkel im Injektorkörper während der Spitzenkegel des Einspritzventilgliedes kleiner gewählt wird als der Sitzwinkel im Injektor- bzw. Düsenkörper. Der bisher ausgeführte Hinterstich kann entfallen, der zylindrische Ansatz bleibt hingegen erhalten. Dadurch ergibt sich zwischen dem zylindrischen Ansatz und dem Sacklochdurchmesser nunmehr ein konkav verlaufender Spalt. Die Winkel und Längen der Kegelabschnitte am Einspritzventilglied sind so gewählt, dass dieses in kraftlosem Zustand auf Höhe des zylindrischen Ansatzes aufliegt und sich am Sacklochdurchmesser ein geringer Spalt einstellt, dessen Höhe im folgenden als G3-Maß bezeichnet wird. Das G3-Maß wird vorzugsweise derart dimensioniert, dass es zwar sehr gering ist, jedoch bei Ausnutzung der Fertigungstoleranzen in jedem Falle größer 0 beträgt. Der größte Abstand zwischen dem Einspritzventilglied und dem Injektor- bzw. Düsenkörper stellt sich nunmehr auf der Höhe der Verschneidung zwischen dem Sitzkegel und dem Spitzenkegel innerhalb eines konkaven Spaltes zwischen Einspritzventilglied und Düsen-/Injektorkörper ein (G-Maß).Following the solution proposed by the invention, the seat angle of the injection valve member is selected to be greater than the seat angle in the injector body while the tip cone of the injection valve member is selected to be smaller than the seat angle in the injector or nozzle body. The previously executed undercut can be omitted, the cylindrical approach, however, remains. This results between the cylindrical projection and the blind hole diameter now a concave gap. The angles and lengths of the cone sections on the injection valve member are chosen so that this rests in a powerless state at the level of the cylindrical projection and adjusts a small gap at the blind hole diameter, whose height is referred to below as G3-measure. The G3 dimension is preferably dimensioned in such a way that, although it is very small, it is in any case greater than 0 when the manufacturing tolerances are utilized. The greatest distance between the injection valve member and the Injektor- or nozzle body is now at the height of the intersection between the seat cone and the tip cone within a concave gap between the injection valve member and the nozzle / injector body (G dimension).

Mit der vorgeschlagenen Lösung beginnt der Verschleiß der Verschleißschutzschicht nun nicht mehr an den beiden einander zugewandten Enden der Kegelabschnitte des Einspritzventilgliedes, sondern an den voneinander abgewandten Enden (Sacklochdurchmesser am Spitzenkegel und zylindrischer Ansatz am Sitzkegel). Daraus resultiert, dass die beiden Übergangsstellen zwischen noch vorhandener und bereits durchgeriebener Verschleißschutzschicht nicht mehr voneinander weg (divergierender Verschleißschutzschicht-Verschleiß) sondern sich aufeinander zu bewegen (konvergierender Verschleißschutzschicht-Verschleiß).With the proposed solution, the wear of the wear protection layer no longer begins at the two mutually facing ends of the cone sections of the injection valve member, but at the ends facing away from each other (blind hole diameter at the top cone and cylindrical projection on the seat cone). As a result, the two transition points between the existing and already worn wear protection layer no longer away from each other (divergent wear protection layer wear) but to move towards each other (converging wear protection layer wear).

Dadurch wird insbesondere sichergestellt, dass sowohl der Sitzkegel auch der Spitzenkegel ihre jeweilige Verschleißschutzschicht zum selben Zeitpunkt vollständig verlieren, da sich die beiden oben beschriebenen Übergänge zwangsläufig an der Verschneidung von Sitzkegel und Spitzenkegel miteinander vereinigen werden.This ensures in particular that both the seat cone and the tip cone completely lose their respective wear protection layer at the same time, since the two transitions described above will inevitably unite with each other at the intersection of seat cone and tip cone.

Alternativ lassen sich die Winkel und Längen der Kegelabschnitte auch so auslegen, dass der Sitz des Einspritzventilgliedes im Neuzustand zunächst nur am Sacklocheinlauf aufliegt und am zylindrischen Ansatz einen Spalt aufweist. Ebenso gut ist eine Übergangsdimensionierung derart möglich, bei der je nach Ist-Wert der Winkel innerhalb ihrer Toleranzen eine Auflage am zylindrischen Ansatz oder am Sacklochdurchmesser entsteht.Alternatively, the angles and lengths of the conical sections can also be designed so that the seat of the injection valve member initially rests only at the blind hole inlet in the new state and has a gap on the cylindrical projection. Equally well, a transition dimensioning is possible in which arises depending on the actual value of the angle within their tolerances a support on the cylindrical approach or the blind hole diameter.

Der Spitzenkegel des Einspritzventilgliedes kann ganz oder teilweise mit einer gezielten Unrundheit am Einspritzventilglied oder am Injektorkörper bzw. Düsenkörper ausgeführt werden (z.B. Lasernuten im Einspritzventilglied), was eine Entdrosselung dieses Sitzbereiches auch dann gewährleistet, wenn sich das vorzugsweise nadelförmig ausgebildete Einspritzventilglied langsam in den Injektorkörper bzw. den Düsenkörper einarbeitet. Der entdrosselte Bereich endet dabei sicher vor der Verschneidung zwischen Sitzkegel und Spitzenkegel. Gegebenenfalls kann der Beginn oder das Ende des entdrosselten Bereiches durch eine umlaufende Nut im Einspritzventilglied oder im Injektor- bzw. Düsenkörper markiert werden, um eine gleichmäßige Anströmung der entdrosselten Stellen zu erreichen.The tip cone of the injection valve member can be wholly or partially executed with a targeted out-of-roundness at the injection valve member or on the injector body or nozzle body (eg laser grooves in the injection valve member), which ensures a Entdrosselung this seating area even if the preferably needle-shaped injection valve member slowly into the Injektorkörper or ., incorporates the nozzle body. The de-throttled area ends securely before the intersection between the seat cone and the tip cone. Optionally, the beginning or the end of the de-throttled region can be marked by a circumferential groove in the injection valve member or in the injector or nozzle body in order to achieve a uniform flow of the Entschrosselten bodies.

Ist der Sitz hingegen so ausgelegt, dass das Einspritzventilglied zunächst am Sacklochdurchmesser aufsitzt, so kann anstelle des Spitzenkegels der Sitzkegel entdrosselt werden und der Spitzenkegel übernimmt die Dichtfunktion. Die Verschneidung zwischen Sitzkegel und Spitzenkegel am Einspritzventilglied kann mit einem Radius oder einem definierten Kantenbruch versehen sein.On the other hand, if the seat is designed such that the injection valve member initially rests on the blind hole diameter, then instead of the tip cone the seat cone can be throttled and the tip cone assumes the sealing function. The intersection between seat cone and tip cone on the injection valve member may be provided with a radius or a defined edge break.

Anstelle einer Verschneidung zweier Kegel, d.h. im vorliegenden Falle des Sitzkegels und des Spitzenkegels, kann die konkave Sitzform auch durch eine beliebige andere Kontur des Einspritzventilgliedes herbeigeführt werden, durch welche ein konkaver Spalt zwischen Einspritzventilglied und Injektorkörper bzw. Düsenkörper entsteht. Vorzugsweise weist der konkave Spalt neben dem Maximum seiner Spalthöhe keine weiteren lokalen Maxima auf. Der konkave Spalt kann auch durch eine nicht-linear kegelförmige Kontur des Körpersitzes erzeugt werden. Anstelle der heutzutage eingesetzten Verschleißschutzschichten, die zum Beispiel aus amorphen diamantartigem Kohlenstoff gefertigt werden, können auch andere Materialien zur Ausbildung der Verschleißschutzschicht zum Einsatz kommen, z.B. Silicatschichten auf dem Körpersitz oder Nitrierschichten im Körpersitz.Instead of intersecting two cones, i. In the present case of the seat cone and the tip cone, the concave seat shape can also be brought about by any other contour of the injection valve member, through which a concave gap between injection valve member and injector body or nozzle body is formed. Preferably, the concave gap has no further local maxima in addition to the maximum of its gap height. The concave gap can also be created by a non-linear conical contour of the body seat. Instead of the wear protection layers used today, which are made of, for example, amorphous diamond-like carbon, other materials for forming the wear protection layer may also be used, e.g. Silicate layers on the body seat or nitriding layers in the body seat.

Zeichnungdrawing

Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.With reference to the drawing, the invention will be described below in more detail.

Es zeigt:

Figur 1
einen Schnitt durch eine geschlossene Einspritzdüse,
Figur 1.1
eine überhöhte Darstellung im Maßstab 50 : 1 der geschlossenen Einspritzdüse gemäß Figur 1,
Figur 2
eine Darstellung der Geometrie einer bezüglich ihres Driftverhaltens mit einer Verschleißschutzschicht optimierten Einsptizdüse,
Figur 3
die erfindungsgemäß vorgeschlagene Sitzgeometrie mit konkav verlaufendem Drosselspalt,
Figur 4
die erfindungsgemäß vorgeschlagene Sitzgeometrie an einem Kraftstoffinjektor,
Figur 5.1
einen Schnitt durch die Sitzgeometrie gemäß Figur 3 bei mäßigem Verschleiß,
Figur 5.2
einen Schnitt durch die erfindungsgemäße Sitzgeometrie gemäß Figur 3 bei weiter fortgeschrittenem Verschleiß und
Figur 6
die erfindungsgemäß vorgeschlagene Sitzgeometrie mit konkavem Drosselspalt im Zustand gemäß Figur 5.2, d.h. bei weiter fortgeschrittenem Verschleiß und dadurch erzieltem konvergierenden Verschleißschutzschicht-Verschleiß im geschlossenen Zustand.
It shows:
FIG. 1
a section through a closed injection nozzle,
Figure 1.1
an elevated representation in the scale 50: 1 of the closed injection nozzle according to FIG. 1 .
FIG. 2
a representation of the geometry of an optimized with respect to their drift behavior with a wear protection layer Einsickizdüse,
FIG. 3
the inventively proposed seat geometry with concave throttle gap,
FIG. 4
the seat geometry proposed according to the invention on a fuel injector,
Figure 5.1
a section through the seat geometry according to FIG. 3 with moderate wear,
Figure 5.2
a section through the seat geometry according to the invention according to FIG. 3 at more advanced wear and tear
FIG. 6
the inventively proposed seat geometry with concave throttle gap in the state according to Figure 5.2 ie, more advanced wear and resulting convergent wear-resistant coating wear when closed.

Ausführungsbeispieleembodiments

Der Darstellung gemäß Figur 1 ist ein Ausschnitt eines Kraftstoffinjektors 10 zu entnehmen, der rotationssymmetrisch zu einer Symmetrieachse 12 aufgebaut ist. Ein bevorzugt nadelförmiges Einspritzventilglied 14 wirkt mit einer Innendichtfläche 20 eines Düsen- oder Injektorkörpers 18 zusammen.The representation according to FIG. 1 is a section of a fuel injector 10 can be seen, which is constructed rotationally symmetrical to a symmetry axis 12. A preferably needle-shaped injection valve member 14 cooperates with an inner sealing surface 20 of a nozzle or injector body 18.

Figur 1.1 zeigt eine mit in einer Überhöhung von 50 : 1 wiedergegebene Detailansicht der Figur 1. Mit einer Überhöhung 24 von 50 : 1 ist das Einspritzventilglied 14 dargestellt. Dieses umfasst einen Spitzenkegel 26 und einen Sitzkegel 30, zwischen denen eine Ringnut 16 oder ein Hinterstich 28 angeordnet sind. Figure 1.1 shows a reproduced in an elevation of 50: 1 detail view of FIG. 1 , With an elevation 24 of 50: 1, the injection valve member 14 is shown. This includes a tip cone 26 and a seat 30, between which an annular groove 16 or an undercut 28 are arranged.

Im Bereich eines Sacklocheinlaufes 22 befindet sich der Spitzenkegel 26 des Einspritzventilgliedes 14 in einem Abstand G3 von der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18. Mit dem Maß G ist der Abstand des Einspritzventilgliedes 14 von der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 im Bereich des Hinterstichs 28 oder der Ringnut 16 und dem Übergang zum Spitzenkegels 26 identifiziert, während das Maß G0 der Abstand zwischen dem Einspritzventilglied 14 und der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 an der Kante des Sitzkegels 30 zu einem zylindrischen Ansatz des Einspritzventilgliedes 14 aufweist.In the region of a blind hole inlet 22, the tip cone 26 of the injection valve member 14 is at a distance G3 from the inner sealing surface 20 of the nozzle or injector body 18. The dimension G is the distance of the injection valve member 14 from the inner sealing surface 20 of the nozzle or injector body 18 in the area of the undercut 28 or the Annular groove 16 and the transition to the tip cone 26 identified while the measure G0, the distance between the injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18 at the edge of the seat 30 to a cylindrical projection of the injection valve member 14 has.

Der Spitzenkegel 26 weist eine erste Dichtfläche 34 auf, während der Sitzkegel 30, an dem der Sitz des Einspritzventilgliedes 14 im Düsen- oder Injektorkörper 18 ausgebildet ist, eine zweite Dichtfläche 36 umfasst.The tip cone 26 has a first sealing surface 34, while the seat cone 30, on which the seat of the injection valve member 14 is formed in the nozzle or injector body 18, comprises a second sealing surface 36.

Figur 2 zeigt eine Darstellung des Geometrie einer bezüglich ihres Driftverhaltens mit einer Verschleißschutzschicht optimierten Einspritzdüse. Sowohl die erste Dichtfläche 34 vom Spitzenkegel 26 als auch die zweite Dichtfläche 36 am Sitzkegel 30 sind mit Verschleißschutzschichten 40, 42 versehen. Die Verschleißschutzschichten 40, 42 sind üblicherweise durchgängig auf der kompletten Oberfläche des Einspritzventilglieds 14 aufgebracht. Auch der Hinterstich 28 (Ringnut 16) wird üblicherweise mitbeschichtet. FIG. 2 shows a representation of the geometry of an optimized with respect to their drift behavior with a wear protection layer injector. Both the first sealing surface 34 from the tip cone 26 and the second sealing surface 36 on the seat cone 30 are provided with wear protection layers 40, 42. The wear protection layers 40, 42 are usually applied continuously on the entire surface of the injection valve member 14. The undercut 28 (annular groove 16) is usually co-coated.

Analog zur Darstellung der Figur 1.1 sind in der Darstellung gemäß Figur 2 die Abstände G3, G0 und G eingetragen. Die erste Dichtfläche 34 und die zweite Dichtfläche 36 gemäß des Ausführungsbeispiels in Figur 2 sind mit Verschleißschutzschichten 40, 42 versehen. Die Verschleißschutzschicht 40, 42 ist üblicherweise durchgängig auf der kompletten Oberfläche des Einspritzventilglieds 14 vorhanden, zumindest im Bereich der Abdichtung. Es kann sich um eine durchgängig aufgebrachte Schicht handeln, wobei auch der Hinterstich 28 im Bereich der Ringnut 16 üblicherweise mitbeschichtet wird. Bei der in Figur 2 dargestellten Variante handelt es sich um eine solche, bei der bei fortschreitendem Verschleiß zwischen Einspritzventilglied 14 und Düsen- oder Injektorkörper 18 ein divergierender Verschleiß der Verschleißschutzschichten 40 bzw. 42 und der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 auftritt. Dies bedeutet, dass die sich jeweils gemäß Verschleiß der Verschleißschutzschicht 40, 42 einstellenden neuen Dichtkanten allmählich voneinander wegbewegen.Analogous to the representation of the Figure 1.1 are in the illustration according to FIG. 2 the distances G3, G0 and G entered. The first sealing surface 34 and the second sealing surface 36 according to the embodiment in FIG. 2 are provided with wear protection layers 40, 42. The wear protection layer 40, 42 is usually present continuously on the entire surface of the injection valve member 14, at least in the region of the seal. It may be a continuously applied layer, wherein also the undercut 28 is usually co-coated in the region of the annular groove 16. At the in FIG. 2 illustrated variant is such that in progressive wear between injection valve member 14 and nozzle or injector 18, a divergent wear of the wear protection layers 40 and 42 and the inner sealing surface 20 of the nozzle or injector body 18 occurs. This means that the new sealing edges, which respectively adjust according to wear of the wear-resistant layer 40, 42, gradually move away from one another.

Figur 3 zeigt die erfindungsgemäß vorgeschlagene Sitzgeometrie mit einem konkav verlaufenden Drosselspalt. FIG. 3 shows the inventively proposed seat geometry with a concave throttle gap.

Gemäß der vorgeschlagenen Lösung werden die Kegelwinkel des Spitzenkegels 26 und des Sitzkegels 30 vertauscht, wie Figur 4 entnehmbar ist. Der Kegelwinkel des Spitzenkegels 26 ist mit α bezeichnet, während der Kegelwinkel des Sitzkegels 30 mit β bezeichnet ist. Aus der Darstellung gemäß Figur 3 geht hervor, dass das Maß G3 am Sacklocheinlauf 22 wesentlich geringer ist als in der in Figur 2 dargestellten Ausführungsvariante. Demgegenüber ist das Maß G am Übergang zwischen Spitzenkegel 26 und Sitzkegel 30 erheblich größer, verglichen mit dem Maß G im Ausführungsbeispiel gemäß Figur 2, so dass sich bei dem in Figur 3 dargestellten erfindungsgemäßen Ausführungsbeispiel ein konkav verlaufender Drosselspalt 70 durch die Dichtfläche 20 und des Düsen- oder Injektorkörpers und der Mantelfläche des bevorzugt nadelförmig ausgebildeten Einspritzventilglieds 14 einstellt.According to the proposed solution, the cone angles of the tip cone 26 and the seat 30 are reversed, such as FIG. 4 is removable. The cone angle of the tip cone 26 is denoted by α, while the cone angle of the seat 30 is denoted by β. From the illustration according to FIG. 3 shows that the dimension G3 at the blind hole inlet 22 is substantially lower than in the FIG. 2 illustrated embodiment. In contrast, the dimension G at the transition between the tip cone 26 and seat 30 is considerably larger, compared with the dimension G in the embodiment according to FIG. 2 , so that at the in FIG. 3 illustrated embodiment, a concave throttle gap 70 by the sealing surface 20 and the nozzle or injector body and the lateral surface of the preferably needle-shaped injection valve member 14 sets.

Die erste Dichtfläche 34 am Spitzenkegel 26 wie auch die zweite Dichtfläche 36 am Sitzkegel 30 sind jeweils mit einer ersten durchgängigen Verschleißschutzschicht 40 bzw. einer zweiten durchgängigen Verschleißschutzschicht 42 beschichtet. Diese Verschleißschutzschichten können zum Beispiel aus amorphem, diamantartigem Kohlenstoff gefertigt werden, oder auch beispielsweise als Silicatschichten oder Nitrierschichten auf dem Körpersitz aufgebracht sein. Nachfolgend wird unter erste Verschleißschutzschicht 40 bzw. zweite Verschleißschutzschicht 42 eine durchgängig auf Spitzenkegel 26 und Sitzkegel 30 aufgebrachte Verschleißschutzschicht verstanden, welche auch den Übergangsbereich zwischen Spitzenkegel 26 und Sitzkegel 30 im Bereich des Hinterstichs 28 abdeckt.The first sealing surface 34 on the tip cone 26 as well as the second sealing surface 36 on the seat cone 30 are each coated with a first continuous wear protection layer 40 and a second continuous wear protection layer 42. These wear protection layers may be made of, for example, amorphous, diamond-like carbon, or may also be applied to the body seat, for example, as silicate layers or nitriding layers. Hereinafter, first wear-resistant layer 40 or second wear-resistant layer 42 is understood to mean a wear protection layer applied continuously to tip cone 26 and seat cone 30, which also covers the transition region between tip cone 26 and seat cone 30 in the region of the undercut 28.

Der Hinterstich entfällt, ein zylindrischer Ansatz 43 (vgl. Figur 4) am Einspritzventilglied 14 bleibt erhalten. Zwischen dem zylindrischen Ansatz 43 und dem Sacklochdurchmesser 32 (vgl. Figur 4) am Sacklocheinlauf 22, ergibt sich nun ein konkaver Drosselspalt 70. Die Kegelwinkel α und β (vgl. Figur 4) und Längen der Kegelabschnitte 26 und 30 sind so gewählt, dass das Einspritzventilglied 14 im kraftlosen Zustand auf Höhe des zylindrischen Ansatzes 43 aufliegt und sich am Sacklochdurchmesser ein geringer Spalt, dessen Höhe dem G3-Maß entspricht, einstellt. Das G3-Maß wird vorzugsweise möglichst klein dimensioniert jedoch so, dass bei Ausnutzung der Fertigungstoleranzen in jedem Falle größer als 0 bleibt. Der größte Abstand zwischen dem bevorzugt nadelförmig ausgebildeten Einspritzventilglied 14 und dem Düsen- bzw. Injektorkörper 18 stellt sich nun auf Höhe der Verschneidung zwischen Sitzkegel 30 und Spitzenkegel 26 ein; hier liegt das G-Maß.The undercut is omitted, a cylindrical projection 43 (see. FIG. 4 ) at the injection valve member 14 is maintained. Between the cylindrical projection 43 and the blind hole diameter 32 (see. FIG. 4 ) at the blind hole inlet 22, now results in a concave throttle gap 70. The cone angle α and β (see. FIG. 4 ) and lengths of the cone portions 26 and 30 are selected so that the injection valve member 14 rests in the powerless state at the level of the cylindrical projection 43 and at the blind hole diameter a small gap, whose height corresponds to the G3 measure adjusts. The G3 dimension is preferably dimensioned as small as possible, however, in such a way that, when the manufacturing tolerances are utilized, in each case it remains greater than zero. The greatest distance between the preferably needle-shaped injection valve member 14 and the nozzle or injector body 18 is now at the level of the intersection between seat 30 and tip cone 26 a; here lies the G-measure.

Figur 4 zeigt eine andere Darstellung der geometrischen Verhältnisse gemäß Figur 3. FIG. 4 shows a different representation of the geometric relationships according to FIG. 3 ,

Aus Figur 4 geht hervor, dass das bevorzugt nadelförmig ausgebildete Einspritzventilglied 14 eine Druckstufe 44 aufweist. Zwischen der Druckstufe 44 und dem Sitzkegel 30 erstreckt sich der zylindrische Ansatz 43.Out FIG. 4 shows that the preferably needle-shaped injection valve member 14 has a pressure stage 44. Between the compression stage 44 and the seat 30, the cylindrical projection 43 extends.

Der Kraftstoffinjektor 10 umfasst das Einspritzventilglied 14, an dem unterhalb des Sitzkegels 30 der Spitzenkegel 26 verläuft. Der Spitzenkegel 26 ist in einem Kegelwinkel α ausgebildet, der kleiner ist als der Kegelwinkel β, in welchem die Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 verläuft, bezogen auf die Vertikale.The fuel injector 10 includes the injection valve member 14, on which runs below the seat 30 of the top cone 26. The tip cone 26 is formed at a cone angle α, which is smaller than the cone angle β, in which the inner sealing surface 20 of the nozzle or injector body 18 extends, with respect to the vertical.

Der Kegelwinkel β, in dem der Sitzkegel 30 ausgebildet ist, wird hingegen größer gewählt als der Kegelwinkel γ der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18.The cone angle β, in which the seat cone 30 is formed, however, is chosen to be greater than the cone angle γ of the inner sealing surface 20 of the nozzle or injector body 18th

Die Längen und die Kegelwinkel α, β von Spitzenkegel 26 und Sitzkegel 30 sind so gewählt, dass das bevorzugt nadelförmig ausgebildete Einspritzventilglied 14 im kraftlosen Zustand auf Höhe des zylindrischen Ansatzes 43 auf der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 aufliegt. Es stellt sich am Sacklocheinlauf 22 unter Berücksichtigung des Sacklochdurchmessers 32 das Maß G3 ein. Der größte Abstand liegt zwischen dem bevorzugt nadelförmig ausgebildeten Einspritzventilglied 14 und der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 auf Höhe der Verschneidung zwischen dem Spitzenwinkel 26 und dem Sitzkegel 30. Hier liegt das G-Maß.The lengths and the cone angles α, β of tip cone 26 and seat cone 30 are selected so that the preferably needle-shaped injection valve member 14 rests in the powerless state at the level of the cylindrical projection 43 on the inner sealing surface 20 of the nozzle or injector 18. It turns at the blind hole inlet 22, taking into account the blind hole diameter 32, the dimension G3. The greatest distance lies between the preferably needle-shaped injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18 at the level of the intersection between the apex angle 26 and the seat cone 30. Here lies the G dimension.

Die Mantelfläche des Spitzenkegels 26 ist mit der ersten Verschleißschutzschicht 40 versehen, während die Mantelfläche des Sitzkegels 30 mit der zweiten Verschleißschutzschicht 42 versehen ist. Sowohl die erste Verschleißschutzschicht 40 als auch die zweite Verschleißschutzschicht 42 werden auf dem Spitzenkegel 26 und dem Sitzkegel 30 kontinuierlich als eine Schicht aufgebracht. Die Verschleißschutzschicht 40, 42 kann sowohl aus amorphem, diamantartigem Kohlenstoff als auch als Silicat- oder Nitrierschicht ausgebildet sein. Diese Flächen begrenzen den konkaven Spalt 70 zwischen der Außenkontur des Einspritzventilgliedes 14 und der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18.The lateral surface of the tip cone 26 is provided with the first wear protection layer 40, while the lateral surface of the seat 30 is provided with the second wear protection layer 42. Both the first wear protection layer 40 and the second wear protection layer 42 are continuously applied to the tip cone 26 and seat 30 as a layer. The wear protection layer 40, 42 may be formed of amorphous, diamond-like carbon as well as a silicate or nitride layer. These surfaces define the concave gap 70 between the outer contour of the injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18.

Aus den Darstellungen gemäß der Figuren 5.1 und 5.2 gehen jeweils Schnitte in überhöhter Darstellung durch das erfindungsgemäß ausgebildete Einspritzventilglied mit der vorgeschlagenen Spitzenkegel- und Sitzkegelwinkel in unterschiedlichen Verschleißzuständen hervor.From the representations according to the Figures 5.1 and 5.2 In each case sections in excessive representation by the inventively designed injection valve member with the proposed tip cone and seat angle in different states of wear show.

Die Darstellung gemäß Figur 5.1 zeigt das erfindungsgemäß vorgeschlagene Einspritzventilglied in einem mäßig verschlissenen Zustand.The representation according to Figure 5.1 shows the inventively proposed injection valve member in a moderately worn condition.

Der mäßig verschlissene Zustand wird durch Bezugszeichen 48 identifiziert. Mit 48.1 ist ein Verschleißprofil an der Außenkontur des Einspritzventilgliedes 14 im Bereich von Sitzkegel 30 und Spitzenkegel 26 wiedergegeben, während das Bezugszeichen 48.2 das Verschleißprofil der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 markiert. Aus der Darstellung gemäß Figur 5.1 geht hervor, dass im mäßig verschlissenen Zustand 48 sich das Einspritzventilglied 14 in die Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 20 eingegraben hat. In der Innendichtfläche 20 ist eine Schräge 52 entstanden sowie eine der Kante des Sitzkegels 30 entsprechende Einkerbung.The moderately worn condition is identified by reference numeral 48. 48.1 shows a wear profile on the outer contour of the injection valve member 14 in the region of the seat cone 30 and tip cone 26, while the reference numeral 48.2 marks the wear profile of the inner sealing surface 20 of the nozzle or injector body 18. From the illustration according to Figure 5.1 shows that in the moderately worn state 48, the injection valve member 14 has buried in the inner sealing surface 20 of the nozzle or injector body 20. In the inner sealing surface 20, a slope 52 has been formed and a corresponding edge of the seat 30 notch.

Demgegenüber ist das Verschleißprofil 48.1 des Einspritzventilgliedes 14 dadurch charakterisiert, dass die erste Dichtfläche 34 einen Abriebbereich 50 aufweist, ebenso wie die zweite Dichtfläche 36 am Sitzkegel 30.In contrast, the wear profile 48.1 of the injection valve member 14 is characterized in that the first sealing surface 34 has an abrasion region 50, as well as the second sealing surface 36 on the seat 30th

In Bezug auf die Innendichtfläche 20 wird durch die erste Schräge 52 eine erste Ringbreite 60 definiert, die sich an eine Zwischenringfläche 64 anschließt. Die Einkerbung in die Innendichtfläche 20 im Bereich des Sitzkegels 30 definiert eine zweite Ringbreite 62.With respect to the inner sealing surface 20, a first annular width 60 is defined by the first bevel 52, which adjoins an intermediate annular surface 64. The notch in the inner sealing surface 20 in the region of the seat 30 defines a second annular width 62.

Der in Figur 5.2 dargestellte fortgeschrittene Verschleiß, der durch Bezugszeichen 54 identifiziert ist, ist an der ersten Dichtfläche 34 des Spitzenkegels 26 sowie an der zweiten Dichtfläche 36 des Sitzkegels 30 des nadelförmig ausgebildeten Einspritzventilgliedes 14 weiter fortgeschritten. Der Abriebbereich 50 an der ersten Dichtfläche 34 gemäß der Darstellung in Figur 5.1 hat sich, wie in Figur 5.2 dargestellt, an der ersten Dichtfläche 34 auf den Abriebbereich 56 vergrößert. Gleiches gilt in analoger Weise für die zweite Dichtfläche 36 des Sitzkegels 30. Ein Verschleißprofil 54.1 an der Außenkontur des Einspritzventilgliedes 14 ist durch größere Abriebbereiche 56 an der ersten Dichtfläche 34 und der zweiten Dichtfläche 36 charakterisiert.The in Figure 5.2 shown advanced wear, which is identified by reference numeral 54, is further advanced on the first sealing surface 34 of the apex cone 26 and on the second sealing surface 36 of the seat 30 of the needle-shaped injection valve member 14. The abrasion region 50 on the first sealing surface 34 as shown in FIG Figure 5.1 has, as in Figure 5.2 shown enlarged at the first sealing surface 34 on the abrasion region 56. The same applies analogously to the second sealing surface 36 of the seat cone 30. A wear profile 54.1 on the outer contour of the injection valve member 14 is characterized by larger wear regions 56 on the first sealing surface 34 and the second sealing surface 36.

Demgegenüber ist das sich an der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 ausbildende Verschleißprofil 54.2 dadurch gekennzeichnet, dass eine zweite Schräge 58 oberhalb des Sacklocheinlaufes 22 wesentlich ausgeprägter ist, wohingegen die Zwischenringfläche 64 an der Innendichtfläche 20 zwischen der zweiten Schräge 58 und der durch den Sitzkegel 30 erzeugten Einkerbung in der Innendichtfläche 20 wesentlich kürzer ist. Im Vergleich zur Darstellung gemäß Figur 5.1 wächst die erste Ringbreite 60 bei weiter fortschreitendem Verschleiß kontinuierlich an, während die Zwischenringfläche 64 kontinuierlich abnimmt. Im Vergleich zur Darstellung in Figur 5.1 ist die Einkerbung in der Innendichtfläche 20 tiefer und die zweite Ringbreite 62 etwas vergrößert.In contrast, the forming on the inner sealing surface 20 of the nozzle or injector body 18 wear profile 54.2 characterized in that a second slope 58 above the blind hole inlet 22 is much more pronounced, whereas the intermediate ring surface 64 on the inner sealing surface 20 between the second slope 58 and by the seat 30 generated notch in the inner sealing surface 20 is substantially shorter. Compared to the representation according to Figure 5.1 As the wear progresses, the first ring width 60 continuously increases while the intermediate ring surface 64 continuously decreases. Compared to the illustration in Figure 5.1 the notch in the inner sealing surface 20 is deeper and the second ring width 62 is slightly increased.

Der Verschleiß der Verschleißschutzschichten 40 bzw. 42 beginnt der erfindungsgemäßen Lösung folgend nun nicht mehr an den beiden aneinander zugewandten Enden des Spitzenkegels 26 und des Sitzkegels 30, sondern an den voneinander abgewandten Enden, hinsichtlich des Spitzenkegels 26 am Sacklochdurchmesser 32 und hinsichtlich des Sitzkegels 30 unterhalb des zylindrischen Ansatzes. Folglich laufen die beiden Übergänge zwischen noch vorhandener und bereits abgeriebener Verschleißschutzschicht 40, 42 nicht mehr voneinander weg (divergierender C-Schichtverschleiß), sondern nach der erfindungsgemäß vorgeschlagenen Lösung aufeinander zu (konvergierender Verschleißschutzschicht-Verschleiß). Dadurch wird insbesondere sichergestellt, dass der Sitzkegel 30 und der Spitzenkegel 26 ihre jeweiligen Verschleißschutzschichten 40 bzw. 42 zum selben Zeitpunkt vollständig verlieren, da sich die beiden oben beschriebenen Übergänge zwangsläufig an der Verschneidung zwischen Sitzkegel 30 und Spitzenkegel 26 vereinigen. Damit ist das Risiko eines einseitig tragenden Nadelsitzes sicher ausgeschlossen.The wear of the wear-resistant layers 40 and 42, according to the solution according to the invention, no longer starts at the two mutually facing ends of the tip cone 26 and the seat 30, but at the opposite ends, with respect to the tip cone 26 at the blind hole diameter 32 and with respect to the seat 30 below of the cylindrical approach. Consequently, the two transitions between still existing and already abraded wear protection layer 40, 42 no longer run away from each other (divergent C-layer wear), but according to the invention proposed solution to each other (converging wear protection layer wear). This ensures, in particular, that the seat cone 30 and the tip cone 26 completely lose their respective wear protection layers 40 and 42 at the same time, since the two transitions described above inevitably result in the intersection between seat 30 and tip cone 26 unite. This safely eliminates the risk of a single-sided needle seat.

Figur 6 zeigt das erfindungsgemäß vorgeschlagene Einspritzventilglied im geschlossenen Zustand in einem Verschleißzustand, der dem in Figur 5.2 dargestellten Verschleißzustand entspricht. FIG. 6 shows the inventively proposed injection valve member in the closed state in a state of wear, the in Figure 5.2 corresponds to the worn state shown.

Aus der Darstellung gemäß Figur 6 geht hervor, dass das bevorzugt nadelförmig ausgebildete Einspritzventilglied 14 auf der zweiten Schräge 58 der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 aufliegt. An der ersten Dichtfläche 34 des Einspritzventilgliedes 14 befindet sich noch ein Rest 72 der Verschleißschutzschicht 40 im Bereich des Sacklocheinlaufes 22. Oberhalb der Zwischenringfläche 64, die an der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 verblieben ist, befindet sich noch ein Rest 74 der zweiten Verschleißschutzschicht 42. Nach vollständigem Abtrag der Verschleißschutzschichten 40 bzw. 42 an der ersten Dichtfläche 34 und der zweiten Dichtfläche 36 vereinigen sich die erste Zwischenringbreite 60 und die zweite Zwischenringbreite 62 an der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 zu einer einzigen Ringfläche. Im in Figur 6 dargestellten Zustand ist das Einspritzventilglied 14 geschlossen und dicht. Der Abriebbereich 56 gemäß der Darstellung in Figur 5.2 an der ersten Dichtfläche 34 des Spitzenkegels 26 liegt auf der zweiten Schräge 58 an der Innendichtfläche 20 (vgl. auch Darstellung gemäß Figur 5.2) auf.From the illustration according to FIG. 6 shows that the preferably needle-shaped injection valve member 14 rests on the second slope 58 of the inner sealing surface 20 of the nozzle or injector body 18. At the first sealing surface 34 of the injection valve member 14 is still a residue 72 of the wear protection layer 40 in the region of the blind hole inlet 22. Above the intermediate ring surface 64, which has remained on the inner sealing surface 20 of the nozzle or injector body 18, there is still a remainder 74 of second wear protection layer 42. After complete removal of the wear protection layers 40 and 42 at the first sealing surface 34 and the second sealing surface 36, the first intermediate ring width 60 and the second intermediate ring width 62 unite at the inner sealing surface 20 of the nozzle or injector body 18 into a single annular surface. Im in FIG. 6 illustrated state, the injection valve member 14 is closed and sealed. Abrasion region 56 as shown in FIG Figure 5.2 on the first sealing surface 34 of the tip cone 26 lies on the second slope 58 on the inner sealing surface 20 (see also illustration according to FIG Figure 5.2 ) on.

Der konvergierende Verschleißschutzschicht-Verschleiß ist in der Figurensequenz gemäß der Figuren 5.1 und 5.2 durch den Pfeil 76 gekennzeichnet.The converging wear protection layer wear is in the figure sequence according to Figures 5.1 and 5.2 indicated by the arrow 76.

Dieser deutet den sich während des Betriebes einstellenden Verschleiß der Verschleißschutzschichten 40 bzw. 42 sowie der Innendichtfläche 20 des Düsen- bzw. Injektorkörper 18 an.This indicates the wear of the wear protection layers 40 or 42 and the inner sealing surface 20 of the nozzle or injector body 18 occurring during operation.

Abweichend von den in den Figuren 3 bis 6 dargestellten Geometrien hinsichtlich der Länge der des Spitzenkegels 26 bzw. Sitzkegels 30 sowie der Kegelwinkel α, β könnend diese auch so ausgelegt werden, dass das Einspritzventilglied 14 im Neuzustand zunächst nur am Sacklocheinlauf 22 aufliegt und am zylindrischen Ansatz, d.h. hinter dem Sitzkegel 30 einen Spalt aufweist. Ebenso lässt sich eine Übergangsdimensionierung realisieren, bei der je nach Istwert der Kegelwinkel α bzw. der Kegelwinkel β innerhalb ihrer Toleranz sich eine Auflage am zylindrischen Ansatz oberhalb des Sitzkegels 30 oder am Sacklochdurchmesser 32 einstellt.Notwithstanding the in the FIGS. 3 to 6 shown geometries with respect to the length of the top cone 26 or seat 30 and the cone angle α, β These can also be designed so that the injection valve member 14 initially rests only at the blind hole 22 in new condition and the cylindrical approach, ie behind the seat 30 a gap having. Likewise, a transition dimensioning can be realized in which, depending on the actual value, the cone angle α or the cone angle β within its tolerance adjusts itself to the cylindrical projection above the seat 30 or the blind hole diameter 32.

Der Spitzenkegel 26 des Einspritzventilgliedes 14 kann ganz oder teilweise mit einer gezielten Unrundheit am Einspritzventilglied 14 bzw. am Düsen- oder Injektorkörper 18 ausgeführt werden (z.B. Lasernuten im Einspritzventilglied 14), was eine Entdrosselung dieses Sitzbereiches auch dann gewährleistet, wenn sich das Einspritzventilglied langsam in die Innendichtfläche 20 des Düsenkörpers bzw. des Injektorkörpers 18 einarbeitet. Der entdrosselte Bereich muss dabei jedoch sicher vor der Verschneidung zwischen dem Sitzkegel 30 mit dem Spitzenkegel 26 enden. Gegebenenfalls kann der Beginn oder das Ende des entdrosselten Bereiches, d.h. der Bereich des Einspritzventilglieds 14, der in einer gezielten Unrundheit ausgebildet ist, durch eine umlaufende Nut im bevorzugt nadelförmig ausgebildeten Einspritzventilglied 14 oder im Düsen- bzw. Injektorkörper 18 markiert werden, um eine gleichmäßige Anströmung der entdrosselten Stellen (z.B. als Lasernut dargestellt) zu erreichen.The tip cone 26 of the injection valve member 14 may be wholly or partially executed with a targeted out-of-roundness at the injection valve member 14 and the nozzle or injector 18 be (eg laser grooves in the injection valve member 14), which ensures a Entschrosselung this seating area even when the injection valve member slowly into the inner sealing surface 20 of the nozzle body and the injector body 18 incorporated. However, the entsch throttled area must be sure before the intersection between the seat 30 ends with the top cone 26. Optionally, the beginning or the end of the de-throttled region, ie the region of the injection valve member 14 which is formed in a targeted out-of-roundness, by a circumferential groove in the preferably needle-shaped injection valve member 14 or in the nozzle or injector 18 are marked to a uniform Flow to the de-throttled points (eg shown as laser groove).

Ist der Sitz so ausgelegt, dass das Einspritzventilglied 14 zunächst am Sacklochdurchmesser 32 aufsitzt, so kann anstelle des Spitzenkegels 26 der Sitzkegel 30 entdrosselt werden und der Spitzenkegel 26 die Dichtfunktion übernehmen. Die Verschneidung zwischen dem Sitzkegel 30 und dem Spitzenkegel 26 kann mit einem Radius oder mit einem definierten Kantenbruch versehen sein.If the seat is designed such that the injection valve member 14 initially rests on the blind hole diameter 32, the seat cone 30 can be throttled in place of the tip cone 26 and the tip cone 26 can assume the sealing function. The intersection between the seat 30 and the top cone 26 may be provided with a radius or with a defined edge break.

Anstelle einer Verschneidung zweier Kegel, im vorliegenden Falle des Spitzenkegels 26 mit dem Sitzkegel 30, kann die konkave Sitzform auch durch eine beliebige andere Kontur des Einspritzventilgliedes 14 bewerkstelligt werden, welche einen konkaven Spalt zwischen dem nadelförmig ausgebildeten Einspritzventilglied 14 und dem Düsen- bzw. Injektorkörper erzeugt. Vorzugsweise weist der konkave Spalt 70 neben dem absoluten Maximum seiner Spalthöhe keine weiteren lokalen Maxima auf. Der konkave Spalt 70 kann auch durch eine nicht-linear kegelförmige Kontur der Innendichtfläche 20 erzeugt werden. Anstelle der Materialien für die Verschleißschutzschichten 40 bzw. 42, die aus amorphem diamantartigem Kohlenstoff gefertigt werden, können auch andere abriebfeste Materialien zum Einsatz kommen.Instead of intersecting two cones, in the present case the tip cone 26 with the seat 30, the concave seat shape can also be accomplished by any other contour of the injection valve member 14, which has a concave gap between the needle-shaped injection valve member 14 and the nozzle or injector body generated. Preferably, the concave gap 70 has no further local maxima in addition to the absolute maximum of its gap height. The concave gap 70 may also be created by a non-linear conical contour of the inner sealing surface 20. Instead of the materials for the wear protection layers 40 and 42, which are made of amorphous diamond-like carbon, other abrasion resistant materials can be used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010 Kraftstoffinjektorfuel injector tilgliedtilglied 1212 Symmetrieachseaxis of symmetry 48.248.2 Verschleißprofil InnendichtflächeWear profile inner sealing surface 1414 EinspritzventilgliedInjection valve member 1616 Ringnut (Hinterstich)Ring groove (undercut) 5050 Abriebbereichabrasion area 1818 Düsen-/InjektorkörperNozzle / injector 5252 erste Schrägefirst slope 2020 InnendichtflächeInside sealing surface 5454 Zustand bei fortgeschrittenem VerschleißCondition with advanced wear 2222 Sacklocheinlauf (50 : 1)Blind hole inlet (50: 1) 2424 Überhöhungcamber 54.154.1 Verschleißprofil EinspritzventilgliedWear profile injection valve member 2626 Spitzenkegeltip cone 2828 Hinterstichundercut 54.254.2 Verschleißprofil InnendichtkanteWear profile inner sealing edge 3030 Sitzkegelseat cone G3G3 Abstand Einspritzventilglied Düsenkörper/Inj ektorkörper bei Sacklocheinlauf 22Distance injection valve member Nozzle body / Inj ektorkörper at blind hole inlet 22 5656 Abriebbereichabrasion area 5858 zweite Schrägesecond slope 6060 erste Ringbreite im Verschleißzustand 48first ring width in the worn state 48 G0G0 Abstand Einspritzventilglied Düsenkörper/Inj ektorkörper an Kante Sitzkegel 30/zylindrischer AnsatzDistance of injection valve member Nozzle body / Inj ektorkörper on edge seat cone 30 / cylindrical approach 6262 zweite Ringbreite im Verschleißzustand 48second ring width in the worn state 48 6464 ZwischenringflächeBetween annular surface GG Abstand Einspritzventilglied Düsenkörper/Injektorkörper Hinterstich 28/Spitzenkegelübergang 26Distance injection valve member Nozzle body / injector body Undercut 28 / tip cone transition 26 6666 erste Breite Zwischenringflächefirst width intermediate ring surface 6868 zweite Breite Zwischenringflächesecond width intermediate ring surface 3232 SacklochdurchmesserBlind hole diameter 7070 konkaver Drosselspaltconcave throttle gap 3434 erste Dichtflächefirst sealing surface 7272 Rest Verschleißschutzschicht 40Rest Wear protection layer 40 3636 zweite Dichtflächesecond sealing surface 3838 Doppelsitzdouble seat 7474 Rest Verschleißschutzschicht 42Rest Wear protection layer 42 4040 erste Verschleißschutzschichtfirst wear protection layer 4242 zweite Verschleißschutzschichtsecond wear protection layer 7676 konvergierender Verschleißschutzschicht-Verschleiß αconverging wear protection layer wear α 4343 zylindrischer Ansatzcylindrical approach αα Kegelwinkel Spitzenkegel 26Cone angle tip cone 26 4444 Druckstufepressure stage ββ Kegelwinkel Sitzkegel 30Cone angle seat cone 30 4646 EinspritzöffnungInjection port γγ Kegelwinkel Innendichtfläche 20Cone angle inner sealing surface 20 4848 Zustand bei mäßigem VerschleißCondition with moderate wear 48.148.1 Verschleißprofil Einspritzven-Wear profile injection

Claims (12)

  1. Fuel injector (10) for internal combustion engines, with an injection valve member (14) on which a seat cone (30) is formed, with which the injection valve member (14) interacts by means of a longitudinal movement with a sealing surface (20) formed on an injector body (18) and, in the process, opens up or closes a fuel flow to at least one injection opening, and the seat cone (30) is provided with an anti-wear layer (42), characterized in that a peak cone (26) having a cone angle α and the seat cone (30) having a cone angle β are formed at the combustion-chamber-side end of the injection valve member (14), wherein the cone angle β exceeds a cone angle γ of the sealing surface (20), and the cone angle α of the peak cone (26) is smaller than the cone angle γ of the sealing surface (20).
  2. Fuel injector according to Claim 1, characterized in that cone surfaces of the seat cone (30) and of the peak cone (26) form a concave gap (70) with the sealing surface (20).
  3. Fuel injector according to Claim 2, characterized in that the concave gap (70) extends between a blind hole inlet (22) in the injector body (18) and a transition point of the seat cone (30) to a cylindrical extension of the injection valve member (14).
  4. Fuel injector according to Claim 3, characterized in that, in the closed state of the injection valve member (14), a maximum G of the distance between the injection valve member (14) and the injector body (18) lies on an intersecting point between the seat cone (30) and the peak cone (26).
  5. Fuel injector according to Claim 3, characterized in that, in the closed state of the injection valve member (14), a small gap, provided by a distance G3>0, arises at the blind hole inlet (22), which is formed in a blind hole diameter (32), and the injection valve member (14).
  6. Fuel injector according to Claim 4, characterized in that the intersecting point between the seat cone (30) and the peak cone (26) is provided with a radius or with a defined edge break.
  7. Fuel injector according to Claim 1, characterized in that the peak cone (26) on the injection valve member (14) or the sealing surface (20) of the injector body (18) is entirely or partially formed with a deviation from a circular form.
  8. Fuel injector according to Claim 4, characterized in that the concave gap (70) does not have, apart from the maximum of the distance G, any further local maxima of the distance between the injection valve member (14) and the injector body (18).
  9. Fuel injector according to Claim 1, characterized in that, in the new state of the injection valve member (14), the latter rests with its peak cone (26) on a blind hole inlet (22) and the peak cone (26) instead of the seat cone (30) opens up or prevents the fuel flow.
  10. Fuel injector according to Claim 7, characterized in that a region, provided with a deviation from a circular form, of the peak cone (26) ends before the intersecting point of the peak cone (26) with the seat cone (30) on the injection valve member (14), and the end of that region of the peak cone (26) which is provided with a deviation from a circular form is bounded by an encircling groove in the injection valve member (14) or in the injector body (18).
  11. Fuel injector according to Claim 1, characterized in that the seat cone (30) and the peak cone (26) are each provided with anti-wear layers (40, 42), the wear of which during operation of the injection valve member (14) takes place in a manner converging towards each other starting from the mutually averted ends of the anti-wear layers (40, 42) on the seat cone (30) and peak cone (26).
  12. Fuel injector according to Claim 11, characterized in that the wear of the first anti-wear layer (14) on the peak cone (26) begins starting from the blind hole inlet (22) and the wear of the second anti-wear layer (42) begins starting from the transition point between the seat cone (30) and a cylindrical extension of the injection valve member (14).
EP06819042.0A 2005-08-11 2006-06-13 Partially dethrottled injection valve member for fuel injectors Not-in-force EP1915527B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510037955 DE102005037955A1 (en) 2005-08-11 2005-08-11 Partially throttled injection valve member for fuel injectors
PCT/EP2006/063116 WO2007017302A1 (en) 2005-08-11 2006-06-13 Partially dethrottled injection valve member for fuel injectors

Publications (2)

Publication Number Publication Date
EP1915527A1 EP1915527A1 (en) 2008-04-30
EP1915527B1 true EP1915527B1 (en) 2018-03-14

Family

ID=36790400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819042.0A Not-in-force EP1915527B1 (en) 2005-08-11 2006-06-13 Partially dethrottled injection valve member for fuel injectors

Country Status (3)

Country Link
EP (1) EP1915527B1 (en)
DE (1) DE102005037955A1 (en)
WO (1) WO2007017302A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019220072A1 (en) 2019-12-18 2021-06-24 Robert Bosch Gmbh Injector nozzle for injecting fuel under high pressure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283154A1 (en) * 1987-03-14 1988-09-21 LUCAS INDUSTRIES public limited company Fuel injection nozzle
DE4117910A1 (en) * 1991-05-31 1992-12-03 Yaroslavskij Z Dizel Noj Appar Fuel injection nozzle for IC engine - has injector needle with turned ring groove between conical surfaces, forming throttle edge
DE19844638A1 (en) * 1998-09-29 2000-03-30 Siemens Ag Fuel injection valve for an internal combustion engine
DE10000501A1 (en) * 2000-01-08 2001-07-19 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE10133433A1 (en) * 2001-07-10 2003-02-20 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE10315820A1 (en) * 2002-11-11 2004-05-27 Robert Bosch Gmbh Fuel injection valve for motor vehicle internal combustion engine has housing with injection openings and sliding valve needle with double seating surfaces
DE102004013600A1 (en) 2004-03-19 2005-10-06 Robert Bosch Gmbh Fuel injection valve for an internal combustion engine comprises a valve needle having a valve-sealing surface partly provided with a wear-reducing coating

Also Published As

Publication number Publication date
DE102005037955A1 (en) 2007-02-15
WO2007017302A1 (en) 2007-02-15
EP1915527A1 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
DE19612738C2 (en) Accumulator injection system for internal combustion engines
DE19547423B4 (en) Fuel injection valve for internal combustion engines
DE19946827C1 (en) Valve for controlling liquids
WO2006063912A1 (en) Fuel injection valve for an internal combustion engine
EP1129287B1 (en) Injection nozzle for an internal combustion engine with annular groove in said nozzle needle
EP2470771B1 (en) Fuel injection valve
EP1045978A1 (en) Fuel injection valve for internal combustion engines
DE19634933B4 (en) Fuel injection valve for internal combustion engines
EP1623108A1 (en) Fuel injection valve for internal combustion engines
DE10100390A1 (en) Injector
EP1430218B1 (en) Valve, in particular fuel injection valve
EP1346143A1 (en) Fuel injection valve for internal combustion engines
DE10205218A1 (en) Valve for controlling a connection in a high-pressure liquid system, in particular a fuel injector for an internal combustion engine
EP1915527B1 (en) Partially dethrottled injection valve member for fuel injectors
DE102012211169A1 (en) Fuel injector for injecting fuel to chamber of combustion engine, has injection port that is hydraulically connected with high pressure space via through-hole, such that pressure chamber is fuel-supplied by lifting nozzle needle
EP2167808B1 (en) High-pressure injector for internal combustion engines having a control-rod support which increases the buckling load via highly pressurized fuel
DE102010040940A1 (en) Nozzle assembly for common-rail injector for injecting fuel into combustion chamber of internal combustion engine, has valve seat forming frustum-shaped portion and partially released by depression in die body
DE102018208361A1 (en) Method for operating a fuel injector, fuel injector
EP1412633B1 (en) Fuel injector with locking pressure compensation
EP1483499A1 (en) Installation for the pressure-modulated formation of the injection behavior
EP3999736B1 (en) Fuel injector for internal combustion engines
EP3980639B1 (en) Fuel injector, and method for operating a fuel injector
DE10048933A1 (en) Valve for controlling liquids
AT511731B1 (en) CAVITATION-OPTIMIZED THROTTLE DRILLING
WO2002090760A1 (en) Fuel injection valve for internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081104

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 979145

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015836

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180314

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180615

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015836

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20181217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 979145

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015836

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101