EP1915527B1 - Partially dethrottled injection valve member for fuel injectors - Google Patents
Partially dethrottled injection valve member for fuel injectors Download PDFInfo
- Publication number
- EP1915527B1 EP1915527B1 EP06819042.0A EP06819042A EP1915527B1 EP 1915527 B1 EP1915527 B1 EP 1915527B1 EP 06819042 A EP06819042 A EP 06819042A EP 1915527 B1 EP1915527 B1 EP 1915527B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cone
- valve member
- injection valve
- seat
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/166—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1873—Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1893—Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/90—Selection of particular materials
- F02M2200/9038—Coatings
Definitions
- the invention relates to a UNEtdrosseltes injection valve member for fuel injectors, in particular for injector-controlled injectors, which are used in high-pressure accumulator injection systems.
- actuator-controlled fuel injectors For injecting fuel into combustion chambers of self-igniting internal combustion engines, actuator-controlled fuel injectors are used whose injectors have a conically shaped seat in the nozzle body.
- the conical seat opens at a defined diameter, which is also referred to as a blind hole diameter, in a blind hole, from which then the injection openings of the nozzle are fed.
- the injection openings are not located in the abovementioned blind hole but at the level of a pointed cone of the injection valve member in the seat of the injector body.
- the first-mentioned variant with a conical seat in the injector body has a geometric seat diameter (contact line injection valve member / injector body in the powerless state), at which the injection valve member at the end facing away from the injection openings adjoins a seat cone.
- the injection valve member has a smaller cone angle than the injector body.
- this seat cone is delimited on the injection valve member by a cylindrical projection of defined diameter.
- G0-measure The distance that is established in the force and pressure-free state between the injection valve member and the injector body at an edge between the seat cone and said cylindrical projection.
- the tip cone follows on this undercut.
- the injection valve member has a larger cone angle than the injector body or nozzle body. Consequently, the gap between the injection valve member and the injector body continuously grows between the lower edge of the undercut and the blind hole diameter.
- the distance, which sets in the non-pressurized state between the injection valve member and the injector body at the blind hole diameter is referred to as G3-measure, the distance which is established at the transition between the undercut and the tip cone, referred to as G-measure.
- the variable over the switching state of a switching valve control chamber pressure at the circular surface formed by the guide diameter causes a defined closing force on the needle-shaped injection valve member.
- the opening force may only be slightly larger than the stationary with the switching valve open adjusting closing force.
- the seat diameter is chosen only slightly smaller than that theoretical seat diameter, in which just after the opening of the switching valve, a balance of forces between opening and closing force, the injection valve member does not open.
- the diameter of the cylindrical projection must still be below the above-mentioned theoretical limit. It follows that the seat cone of the injection valve member builds very short in such fuel injectors.
- a pressure field is formed whose course is dependent on the stroke of the injection valve member and the fine geometry of the gap between the injection valve member and the injector body or the nozzle body.
- This pressure field can change very much over the life of the injection valve member at the same stroke, since the fine geometry of the gap between the injection valve member to the body changes when the needle-shaped injection valve member during operation of the fuel injector successively in the nozzle body or in the injector body incorporated. Due to the very short seat cone (length 150 ⁇ m), the pressure field below this seat cone changes when the seat is worn Injection valve member only very little. In contrast, this pressure field undergoes a considerable change under the peak cone and consequently also in the undercut.
- the wear protection layer is first removed on the seat cone and at the transition between the undercut and the top cone.
- the wear rate in the injector body or in the nozzle body initially increases considerably.
- the surface pressure decreases below the region of the injection valve member which is no longer coated with the wear protection layer, while it clearly increases at the still coated region of the wear protection layer.
- the resulting gap geometry has in the powerless state an inhomogeneous seat gap between the injection valve member and the injector body.
- the injection valve member sits only on an annular transition between still existing and worn through wear protection layer. Since this area during operation of the fuel injector, ie approaches the end of the broken fiber laser tip cone, it comes inevitably even at very low wear depths to leakage and a significant increase in quantity.
- the wear protection layer considerably reduces the progress of wear on the nozzle body or on the injector body, precisely this property leads, in the case of the seat geometry used, to a significantly increased sensitivity of tightness and injection quantity as a function of the wear depth.
- the document DE 10 2004 013 600.9 describes the preamble of claim 1.
- seat geometries are developed with which a coated with a wear protection layer seat of an injection valve member is optimized with respect to its drift behavior.
- the seat cone has been lengthened and the seat angle of the injection valve member has been reduced.
- Both measures cause an increase of the G0-measure, so that this optimized seat geometry is of the same order of magnitude as the G3-measure. This can avoid that the wear protection layer on the seat is prematurely completely rubbed through.
- an annular transition between still coated and already stripped regions now forms on both the tip cone and on the seat cone, so that the injection valve member rests on both annular transitions at low system pressures.
- the injection valve member Since the upper of these two transitions lies on the sealing seat cone, the injection valve member remains tight over the entire pressure range and prevents the increase in volume associated with leakage. However, this function is retained only as long as on both sealing surface portions of the injection valve member still cone sections are obtained with preserved wear protection layer. Once one of the sealing surface sections has completely lost its wear protection layer, there is only one transition between uncoated and coated area of the injection valve member, on which the injection valve member is seated at low pressures. If this area lies on the tip cone of the injection valve member, leakage and an increase in volume again occur. On the other hand, if the transition is on the seat cone, the injection valve member will remain tight, but a considerable decrease in volume will occur.
- the object of the invention is to optimize the wear occurring over the service life of a fuel injector and to significantly reduce the risk of occurring leaks and an increase in volume or a significant decrease in quantity over the service life of the fuel injector.
- the seat angle of the injection valve member is selected to be greater than the seat angle in the injector body while the tip cone of the injection valve member is selected to be smaller than the seat angle in the injector or nozzle body.
- the previously executed undercut can be omitted, the cylindrical approach, however, remains. This results between the cylindrical projection and the blind hole diameter now a concave gap.
- the angles and lengths of the cone sections on the injection valve member are chosen so that this rests in a powerless state at the level of the cylindrical projection and adjusts a small gap at the blind hole diameter, whose height is referred to below as G3-measure.
- the G3 dimension is preferably dimensioned in such a way that, although it is very small, it is in any case greater than 0 when the manufacturing tolerances are utilized.
- the greatest distance between the injection valve member and the Injektor- or nozzle body is now at the height of the intersection between the seat cone and the tip cone within a concave gap between the injection valve member and the nozzle / injector body (G dimension).
- the wear of the wear protection layer no longer begins at the two mutually facing ends of the cone sections of the injection valve member, but at the ends facing away from each other (blind hole diameter at the top cone and cylindrical projection on the seat cone).
- the two transition points between the existing and already worn wear protection layer no longer away from each other (divergent wear protection layer wear) but to move towards each other (converging wear protection layer wear).
- angles and lengths of the conical sections can also be designed so that the seat of the injection valve member initially rests only at the blind hole inlet in the new state and has a gap on the cylindrical projection. Equally well, a transition dimensioning is possible in which arises depending on the actual value of the angle within their tolerances a support on the cylindrical approach or the blind hole diameter.
- the tip cone of the injection valve member can be wholly or partially executed with a targeted out-of-roundness at the injection valve member or on the injector body or nozzle body (eg laser grooves in the injection valve member), which ensures a Entdrosselung this seating area even if the preferably needle-shaped injection valve member slowly into the Injektor stresses or ., incorporates the nozzle body.
- the de-throttled area ends securely before the intersection between the seat cone and the tip cone.
- the beginning or the end of the de-throttled region can be marked by a circumferential groove in the injection valve member or in the injector or nozzle body in order to achieve a uniform flow of the Entschrosselten bodies.
- the seat is designed such that the injection valve member initially rests on the blind hole diameter, then instead of the tip cone the seat cone can be throttled and the tip cone assumes the sealing function.
- the intersection between seat cone and tip cone on the injection valve member may be provided with a radius or a defined edge break.
- the concave seat shape can also be brought about by any other contour of the injection valve member, through which a concave gap between injection valve member and injector body or nozzle body is formed.
- the concave gap has no further local maxima in addition to the maximum of its gap height.
- the concave gap can also be created by a non-linear conical contour of the body seat.
- the wear protection layers used today which are made of, for example, amorphous diamond-like carbon
- other materials for forming the wear protection layer may also be used, e.g. Silicate layers on the body seat or nitriding layers in the body seat.
- FIG. 1 The representation according to FIG. 1 is a section of a fuel injector 10 can be seen, which is constructed rotationally symmetrical to a symmetry axis 12.
- a preferably needle-shaped injection valve member 14 cooperates with an inner sealing surface 20 of a nozzle or injector body 18.
- Figure 1.1 shows a reproduced in an elevation of 50: 1 detail view of FIG. 1 , With an elevation 24 of 50: 1, the injection valve member 14 is shown. This includes a tip cone 26 and a seat 30, between which an annular groove 16 or an undercut 28 are arranged.
- the tip cone 26 of the injection valve member 14 is at a distance G3 from the inner sealing surface 20 of the nozzle or injector body 18.
- the dimension G is the distance of the injection valve member 14 from the inner sealing surface 20 of the nozzle or injector body 18 in the area of the undercut 28 or the Annular groove 16 and the transition to the tip cone 26 identified while the measure G0, the distance between the injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18 at the edge of the seat 30 to a cylindrical projection of the injection valve member 14 has.
- the tip cone 26 has a first sealing surface 34, while the seat cone 30, on which the seat of the injection valve member 14 is formed in the nozzle or injector body 18, comprises a second sealing surface 36.
- FIG. 2 shows a representation of the geometry of an optimized with respect to their drift behavior with a wear protection layer injector.
- Both the first sealing surface 34 from the tip cone 26 and the second sealing surface 36 on the seat cone 30 are provided with wear protection layers 40, 42.
- the wear protection layers 40, 42 are usually applied continuously on the entire surface of the injection valve member 14.
- the undercut 28 (annular groove 16) is usually co-coated.
- Analogous to the representation of the Figure 1.1 are in the illustration according to FIG. 2 the distances G3, G0 and G entered.
- the first sealing surface 34 and the second sealing surface 36 according to the embodiment in FIG. 2 are provided with wear protection layers 40, 42.
- the wear protection layer 40, 42 is usually present continuously on the entire surface of the injection valve member 14, at least in the region of the seal. It may be a continuously applied layer, wherein also the undercut 28 is usually co-coated in the region of the annular groove 16.
- the wear protection layer 40, 42 is usually present continuously on the entire surface of the injection valve member 14, at least in the region of the seal. It may be a continuously applied layer, wherein also the undercut 28 is usually co-coated in the region of the annular groove 16.
- FIG. 2 illustrated variant is such that in progressive wear between injection valve member 14 and nozzle or injector 18, a divergent wear of the wear protection layers 40 and 42 and the inner sealing surface 20 of the nozzle or injector body 18 occurs. This means that the new sealing edges, which respectively adjust
- FIG. 3 shows the inventively proposed seat geometry with a concave throttle gap.
- the cone angles of the tip cone 26 and the seat 30 are reversed, such as FIG. 4 is removable.
- the cone angle of the tip cone 26 is denoted by ⁇
- the cone angle of the seat 30 is denoted by ⁇ .
- the dimension G3 at the blind hole inlet 22 is substantially lower than in the FIG. 2 illustrated embodiment.
- the dimension G at the transition between the tip cone 26 and seat 30 is considerably larger, compared with the dimension G in the embodiment according to FIG. 2 , so that at the in FIG. 3 illustrated embodiment, a concave throttle gap 70 by the sealing surface 20 and the nozzle or injector body and the lateral surface of the preferably needle-shaped injection valve member 14 sets.
- first sealing surface 34 on the tip cone 26 as well as the second sealing surface 36 on the seat cone 30 are each coated with a first continuous wear protection layer 40 and a second continuous wear protection layer 42.
- These wear protection layers may be made of, for example, amorphous, diamond-like carbon, or may also be applied to the body seat, for example, as silicate layers or nitriding layers.
- first wear-resistant layer 40 or second wear-resistant layer 42 is understood to mean a wear protection layer applied continuously to tip cone 26 and seat cone 30, which also covers the transition region between tip cone 26 and seat cone 30 in the region of the undercut 28.
- the undercut is omitted, a cylindrical projection 43 (see. FIG. 4 ) at the injection valve member 14 is maintained. Between the cylindrical projection 43 and the blind hole diameter 32 (see. FIG. 4 ) at the blind hole inlet 22, now results in a concave throttle gap 70.
- the cone angle ⁇ and ⁇ (see. FIG. 4 ) and lengths of the cone portions 26 and 30 are selected so that the injection valve member 14 rests in the powerless state at the level of the cylindrical projection 43 and at the blind hole diameter a small gap, whose height corresponds to the G3 measure adjusts.
- the G3 dimension is preferably dimensioned as small as possible, however, in such a way that, when the manufacturing tolerances are utilized, in each case it remains greater than zero.
- the greatest distance between the preferably needle-shaped injection valve member 14 and the nozzle or injector body 18 is now at the level of the intersection between seat 30 and tip cone 26 a; here lies the G-measure.
- FIG. 4 shows a different representation of the geometric relationships according to FIG. 3 .
- FIG. 4 shows that the preferably needle-shaped injection valve member 14 has a pressure stage 44. Between the compression stage 44 and the seat 30, the cylindrical projection 43 extends.
- the fuel injector 10 includes the injection valve member 14, on which runs below the seat 30 of the top cone 26.
- the tip cone 26 is formed at a cone angle ⁇ , which is smaller than the cone angle ⁇ , in which the inner sealing surface 20 of the nozzle or injector body 18 extends, with respect to the vertical.
- the cone angle ⁇ , in which the seat cone 30 is formed is chosen to be greater than the cone angle ⁇ of the inner sealing surface 20 of the nozzle or injector body 18th
- the lengths and the cone angles ⁇ , ⁇ of tip cone 26 and seat cone 30 are selected so that the preferably needle-shaped injection valve member 14 rests in the powerless state at the level of the cylindrical projection 43 on the inner sealing surface 20 of the nozzle or injector 18. It turns at the blind hole inlet 22, taking into account the blind hole diameter 32, the dimension G3.
- the greatest distance lies between the preferably needle-shaped injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18 at the level of the intersection between the apex angle 26 and the seat cone 30.
- the lateral surface of the tip cone 26 is provided with the first wear protection layer 40, while the lateral surface of the seat 30 is provided with the second wear protection layer 42. Both the first wear protection layer 40 and the second wear protection layer 42 are continuously applied to the tip cone 26 and seat 30 as a layer.
- the wear protection layer 40, 42 may be formed of amorphous, diamond-like carbon as well as a silicate or nitride layer. These surfaces define the concave gap 70 between the outer contour of the injection valve member 14 and the inner sealing surface 20 of the nozzle or injector body 18.
- the moderately worn condition is identified by reference numeral 48. 48.1 shows a wear profile on the outer contour of the injection valve member 14 in the region of the seat cone 30 and tip cone 26, while the reference numeral 48.2 marks the wear profile of the inner sealing surface 20 of the nozzle or injector body 18. From the illustration according to Figure 5.1 shows that in the moderately worn state 48, the injection valve member 14 has buried in the inner sealing surface 20 of the nozzle or injector body 20. In the inner sealing surface 20, a slope 52 has been formed and a corresponding edge of the seat 30 notch.
- the wear profile 48.1 of the injection valve member 14 is characterized in that the first sealing surface 34 has an abrasion region 50, as well as the second sealing surface 36 on the seat 30th
- a first annular width 60 is defined by the first bevel 52, which adjoins an intermediate annular surface 64.
- the notch in the inner sealing surface 20 in the region of the seat 30 defines a second annular width 62.
- the in Figure 5.2 shown advanced wear which is identified by reference numeral 54, is further advanced on the first sealing surface 34 of the apex cone 26 and on the second sealing surface 36 of the seat 30 of the needle-shaped injection valve member 14.
- the abrasion region 50 on the first sealing surface 34 as shown in FIG Figure 5.1 has, as in Figure 5.2 shown enlarged at the first sealing surface 34 on the abrasion region 56.
- a wear profile 54.1 on the outer contour of the injection valve member 14 is characterized by larger wear regions 56 on the first sealing surface 34 and the second sealing surface 36.
- the forming on the inner sealing surface 20 of the nozzle or injector body 18 wear profile 54.2 characterized in that a second slope 58 above the blind hole inlet 22 is much more pronounced, whereas the intermediate ring surface 64 on the inner sealing surface 20 between the second slope 58 and by the seat 30 generated notch in the inner sealing surface 20 is substantially shorter.
- the first ring width 60 continuously increases while the intermediate ring surface 64 continuously decreases.
- the notch in the inner sealing surface 20 is deeper and the second ring width 62 is slightly increased.
- the wear of the wear-resistant layers 40 and 42 no longer starts at the two mutually facing ends of the tip cone 26 and the seat 30, but at the opposite ends, with respect to the tip cone 26 at the blind hole diameter 32 and with respect to the seat 30 below of the cylindrical approach. Consequently, the two transitions between still existing and already abraded wear protection layer 40, 42 no longer run away from each other (divergent C-layer wear), but according to the invention proposed solution to each other (converging wear protection layer wear). This ensures, in particular, that the seat cone 30 and the tip cone 26 completely lose their respective wear protection layers 40 and 42 at the same time, since the two transitions described above inevitably result in the intersection between seat 30 and tip cone 26 unite. This safely eliminates the risk of a single-sided needle seat.
- FIG. 6 shows the inventively proposed injection valve member in the closed state in a state of wear
- the in Figure 5.2 corresponds to the worn state shown.
- FIG. 6 shows that the preferably needle-shaped injection valve member 14 rests on the second slope 58 of the inner sealing surface 20 of the nozzle or injector body 18.
- At the first sealing surface 34 of the injection valve member 14 is still a residue 72 of the wear protection layer 40 in the region of the blind hole inlet 22.
- the first intermediate ring width 60 and the second intermediate ring width 62 unite at the inner sealing surface 20 of the nozzle or injector body 18 into a single annular surface.
- Abrasion region 56 as shown in FIG Figure 5.2 on the first sealing surface 34 of the tip cone 26 lies on the second slope 58 on the inner sealing surface 20 (see also illustration according to FIG Figure 5.2 ) on.
- the converging wear protection layer wear is in the figure sequence according to Figures 5.1 and 5.2 indicated by the arrow 76.
- the tip cone 26 of the injection valve member 14 may be wholly or partially executed with a targeted out-of-roundness at the injection valve member 14 and the nozzle or injector 18 be (eg laser grooves in the injection valve member 14), which ensures a Entschrosselung this seating area even when the injection valve member slowly into the inner sealing surface 20 of the nozzle body and the injector body 18 incorporated.
- the entsch throttled area must be sure before the intersection between the seat 30 ends with the top cone 26.
- the beginning or the end of the de-throttled region ie the region of the injection valve member 14 which is formed in a targeted out-of-roundness, by a circumferential groove in the preferably needle-shaped injection valve member 14 or in the nozzle or injector 18 are marked to a uniform Flow to the de-throttled points (eg shown as laser groove).
- the seat is designed such that the injection valve member 14 initially rests on the blind hole diameter 32, the seat cone 30 can be throttled in place of the tip cone 26 and the tip cone 26 can assume the sealing function.
- the intersection between the seat 30 and the top cone 26 may be provided with a radius or with a defined edge break.
- the concave seat shape can also be accomplished by any other contour of the injection valve member 14, which has a concave gap between the needle-shaped injection valve member 14 and the nozzle or injector body generated.
- the concave gap 70 has no further local maxima in addition to the absolute maximum of its gap height.
- the concave gap 70 may also be created by a non-linear conical contour of the inner sealing surface 20.
- the materials for the wear protection layers 40 and 42 which are made of amorphous diamond-like carbon, other abrasion resistant materials can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Description
Die Erfindung bezieht sich auf ein teilentdrosseltes Einspritzventilglied für Kraftstoffinjektoren, insbesondere für aktorgesteuerte Injektoren, die an Hochdruckspeichereinspritzsystemen eingesetzt werden.The invention relates to a teilentdrosseltes injection valve member for fuel injectors, in particular for injector-controlled injectors, which are used in high-pressure accumulator injection systems.
Zum Einspritzen von Kraftstoff in Brennräume von selbstzündenden Brennkraftmaschinen kommen aktorgesteuerte Kraftstoffinjektoren zum Einsatz, deren Einspritzdüsen einen kegelförmig gestalteten Sitz im Düsenkörper aufweisen. Der kegelförmige Sitz öffnet sich bei einem definierten Durchmesser, der auch als Sacklochdurchmesser bezeichnet wird, in ein Sackloch, aus dem dann die Einspritzöffnungen der Düse gespeist werden. Bei alternativ eingesetzten Sitzlochdüsen befinden sich die Einspritzöffnungen dagegen nicht in dem vorstehend erwähnten Sackloch, sondern auf Höhe eines spitzen Kegels des Einspritzventilgliedes im Sitz des Injektorkörpers.For injecting fuel into combustion chambers of self-igniting internal combustion engines, actuator-controlled fuel injectors are used whose injectors have a conically shaped seat in the nozzle body. The conical seat opens at a defined diameter, which is also referred to as a blind hole diameter, in a blind hole, from which then the injection openings of the nozzle are fed. In the case of alternatively used seat hole nozzles, on the other hand, the injection openings are not located in the abovementioned blind hole but at the level of a pointed cone of the injection valve member in the seat of the injector body.
Die erstgenannte Variante mit einem kegelförmigen Sitz im Injektorkörper weist einen geometrischen Sitzdurchmesser auf (Berührlinie Einspritzventilglied/Injektorkörper im kraftlosen Zustand), an welchen sich am Einspritzventilglied am den Einspritzöffnungen abgewandten Ende ein Sitzkegel anschließt. In diesem Bereich weist das Einspritzventilglied einen kleineren Kegelwinkel als der Injektorkörper auf. In Richtung auf das den Einspritzöffnungen abgewandte Ende des Einspritzventilgliedes ist dieser Sitzkegel am Einspritzventilglied durch einen zylindrischen Ansatz mit definiertem Durchmesser begrenzt. Der Abstand, der sich im kraft- und drucklosen Zustand zwischen dem Einspritzventilglied und dem Injektorkörper an einer Kante zwischen dem Sitzkegel und dem erwähnten zylindrischen Ansatz einstellt, wird als G0-Maß bezeichnet. Unterhalb des geometrischen Sitzdurchmessers am Einspritzventilglied befindet sich ein Hinterstich mit üblicherweise bogenförmigem Querschnitt. In Richtung auf das brennraumseitige Ende des Einspritzventilgliedes folgt auf diesen Hinterstich der Spitzenkegel. In diesem Bereich weist das Einspritzventilglied einen größeren Kegelwinkel als der Injektorkörper bzw. Düsenkörper auf. Folglich wächst der Spalt zwischen dem Einspritzventilglied und dem Injektor- bzw. Düsenkörper zwischen der Unterkante des Hinterstichs und dem Sacklochdurchmesser kontinuierlich an. Der Abstand, der sich im kraft- und drucklosen Zustand zwischen dem Einspritzventilglied und dem Injektorkörper am Sacklochdurchmesser einstellt, wird als G3-Maß bezeichnet, der Abstand, der sich am Übergang zwischen dem Hinterstich und dem Spitzenkegel einstellt, wird als G-Maß bezeichnet.The first-mentioned variant with a conical seat in the injector body has a geometric seat diameter (contact line injection valve member / injector body in the powerless state), at which the injection valve member at the end facing away from the injection openings adjoins a seat cone. In this area, the injection valve member has a smaller cone angle than the injector body. Towards the end of the injection valve member facing away from the injection openings, this seat cone is delimited on the injection valve member by a cylindrical projection of defined diameter. The distance that is established in the force and pressure-free state between the injection valve member and the injector body at an edge between the seat cone and said cylindrical projection is referred to as G0-measure. Below the geometric seat diameter at the injection valve member is an undercut with usually arcuate cross-section. Towards the combustion chamber-side end of the injection valve member, the tip cone follows on this undercut. In this area, the injection valve member has a larger cone angle than the injector body or nozzle body. Consequently, the gap between the injection valve member and the injector body continuously grows between the lower edge of the undercut and the blind hole diameter. The distance, which sets in the non-pressurized state between the injection valve member and the injector body at the blind hole diameter is referred to as G3-measure, the distance which is established at the transition between the undercut and the tip cone, referred to as G-measure.
Im geschlossenen Zustand des Einspritzventilgliedes greift zwischen einem Führungsdurchmesser und dem Sitzdurchmesser des Einspritzventilgliedes der definierte Systemdruck an (Druckniveau im Hochdruckspeicherraum) und bewirkt in dieser definierten Ringfläche eine definierte auf das Einspritzventilglied wirkende Öffnungskraft. Demgegenüber bewirkt der über den Schaltzustand eines Schaltventiles veränderbare Steuerraumdruck an der durch den Führungsdurchmesser gebildeten Kreisfläche eine definierte Schließkraft auf das nadelförmig ausgebildete Einspritzventilglied. Um trotz des sehr steifen und damit schnell reagierenden Verbandes zwischen Steuerraum und Düsensitz die Kleinmengenfähigkeit des Kraftstoffinjektors zu gewährleisten, darf die Öffnungskraft nur geringfügig größer sein als die sich bei geöffnetem Schaltventil stationär einstellende Schließkraft. Um dies zu erreichen, wird der Sitzdurchmesser nur wenig kleiner gewählt als jener theoretische Sitzdurchmesser, bei dem nach dem Öffnen des Schaltventils gerade noch ein Kräftegleichgewicht zwischen Öffnungs- und Schließkraft besteht, das Einspritzventilglied demzufolge nicht mehr öffnet. Um das Öffnen des nadelförmig ausgebildeten Einspritzventilgliedes auch dann noch zu gewährleisten, wenn sich das Einspritzventilglied in seinen Sitz im Injektorkörper bzw. Düsenkörper "eingräbt", muss auch der Durchmesser des zylindrischen Ansatzes noch unterhalb der oben stehend erwähnten theoretischen Grenze liegen. Daraus ergibt sich, dass der Sitzkegel des Einspritzventilgliedes bei solchen Kraftstoffinjektoren sehr kurz baut.In the closed state of the injection valve member engages between a guide diameter and the seat diameter of the injection valve member of the defined system pressure (pressure level in the high-pressure reservoir) and causes in this defined annular surface a defined acting on the injection valve member opening force. In contrast, the variable over the switching state of a switching valve control chamber pressure at the circular surface formed by the guide diameter causes a defined closing force on the needle-shaped injection valve member. In order to ensure the small quantity capability of the fuel injector despite the very stiff and therefore fast-reacting association between the control chamber and nozzle seat, the opening force may only be slightly larger than the stationary with the switching valve open adjusting closing force. To achieve this, the seat diameter is chosen only slightly smaller than that theoretical seat diameter, in which just after the opening of the switching valve, a balance of forces between opening and closing force, the injection valve member does not open. In order to ensure the opening of the needle-shaped injection valve member even if the injection valve member "digs" into its seat in the injector body or nozzle body, the diameter of the cylindrical projection must still be below the above-mentioned theoretical limit. It follows that the seat cone of the injection valve member builds very short in such fuel injectors.
Öffnet das Einspritzventilglied, so stellt sich innerhalb des Sackloches ein Druck ein, der sich aus dem Zusammenwirken der Sitzdrosselung und der Drosselung in den Einspritzöffnungen ergibt. Insbesondere bei kleinen Hüben, bei denen die Nadelöffnungsdynamik sehr empfindlich auf Änderungen der Öffnungskraft reagiert, ist der Druck im Sackloch vergleichsweise gering und der daraus resultierende Anteil der Öffnungskraft ebenfalls.When the injection valve member opens, a pressure arises within the blind hole which results from the interaction of seat throttling and throttling in the injection openings. Particularly in the case of small strokes, in which the needle opening dynamics are very sensitive to changes in the opening force, the pressure in the blind hole is comparatively low and the resulting fraction of the opening force is likewise.
Zwischen dem zylindrischen Ansatz und dem Sacklochdurchmesser bildet sich ein Druckfeld aus, dessen Verlauf abhängig ist vom Hub des Einspritzventilgliedes und von der Feingeometrie des Spaltes zwischen dem Einspritzventilglied und dem Injektorkörper bzw. dem Düsenkörper. Dieses Druckfeld kann sich bei gleichem Hub über der Lebensdauer des Einspritzventilgliedes sehr stark ändern, da sich die Feingeometrie des Spaltes zwischen dem Einspritzventilglied um dem Körper ändert, wenn sich während des Betriebes des Kraftstoffinjektors das nadelförmig ausgebildete Einspritzventilglied sukzessive in den Düsenkörper bzw. in den Injektorkörper einarbeitet. Aufgrund des sehr kurzen Sitzkegels (Länge 150 µm) ändert sich das Druckfeld unterhalb dieses Sitzkegels bei verschleißendem Sitz des Einspritzventilgliedes nur sehr wenig. Eine erhebliche Änderung erfährt dieses Druckfeld dagegen unter dem Spitzenkegel und folglich auch im Hinterstich. Der engste Drosselquerschnitt und damit der größte Druckgradient verlagert sich mit zunehmender Verschleißtiefe immer mehr in Richtung des Sacklochdurchmessers. Dadurch nimmt mit zunehmendem Verschleiß die auf das Einspritzventilglied wirkende Öffnungskraft - bei jeweils gleichem Hubweg des Einspritzventilgliedes - erheblich zu, was zu einem sehr unerwünschten, da erheblichen Mengenzuwachs, d.h. einem Anstieg der in den Brennraum eingespritzten Kraftstoffmenge führt.Between the cylindrical projection and the blind hole diameter, a pressure field is formed whose course is dependent on the stroke of the injection valve member and the fine geometry of the gap between the injection valve member and the injector body or the nozzle body. This pressure field can change very much over the life of the injection valve member at the same stroke, since the fine geometry of the gap between the injection valve member to the body changes when the needle-shaped injection valve member during operation of the fuel injector successively in the nozzle body or in the injector body incorporated. Due to the very short seat cone (length 150 μm), the pressure field below this seat cone changes when the seat is worn Injection valve member only very little. In contrast, this pressure field undergoes a considerable change under the peak cone and consequently also in the undercut. The narrowest throttle cross section and thus the largest pressure gradient moves with increasing depth of wear more and more in the direction of the blind hole diameter. As a result, as the wear increases, the opening force acting on the injection valve member increases significantly, in each case with the same stroke of the injection valve member, which leads to a very undesirable increase in quantity, ie an increase in the amount of fuel injected into the combustion chamber.
Um diesen Effekt abzumildern, wird in
Es hat sich gezeigt, dass die sich im Laufe der Lebensdauer des Einspritzventils einstellende Verschleißtiefe schwer vorhersagbar ist. Dies hängt nämlich von vielen außerhalb des Einspritzventils liegenden Faktoren wie z.B. dem Lastkollektiv des Fahrzeugs, dem Systemdruck innerhalb eines Hochdruckeinspritzsystems sowie z.B. der Kontamination des Kraftstoffs mit Schmutz und Wasser ab. Um den Verschleiß weiter zu verringern, wird gemäß
Der Erfindung liegt die Aufgabe zugrunde, den sich über die Lebensdauer eines Kraftstoffinjektors einstellenden Verschleiß zu optimieren und das Risiko von auftretender Undichtheiten sowie eines Mengenanstieges oder einer erheblichen Mengenabnahme über die Lebensdauer des Kraftstoffinjektors signifikant zu reduzieren.The object of the invention is to optimize the wear occurring over the service life of a fuel injector and to significantly reduce the risk of occurring leaks and an increase in volume or a significant decrease in quantity over the service life of the fuel injector.
Der erfindungsgemäß vorgeschlagenen Lösung folgend, wird der Sitzwinkel des Einspritzventilgliedes größer gewählt als der Sitzwinkel im Injektorkörper während der Spitzenkegel des Einspritzventilgliedes kleiner gewählt wird als der Sitzwinkel im Injektor- bzw. Düsenkörper. Der bisher ausgeführte Hinterstich kann entfallen, der zylindrische Ansatz bleibt hingegen erhalten. Dadurch ergibt sich zwischen dem zylindrischen Ansatz und dem Sacklochdurchmesser nunmehr ein konkav verlaufender Spalt. Die Winkel und Längen der Kegelabschnitte am Einspritzventilglied sind so gewählt, dass dieses in kraftlosem Zustand auf Höhe des zylindrischen Ansatzes aufliegt und sich am Sacklochdurchmesser ein geringer Spalt einstellt, dessen Höhe im folgenden als G3-Maß bezeichnet wird. Das G3-Maß wird vorzugsweise derart dimensioniert, dass es zwar sehr gering ist, jedoch bei Ausnutzung der Fertigungstoleranzen in jedem Falle größer 0 beträgt. Der größte Abstand zwischen dem Einspritzventilglied und dem Injektor- bzw. Düsenkörper stellt sich nunmehr auf der Höhe der Verschneidung zwischen dem Sitzkegel und dem Spitzenkegel innerhalb eines konkaven Spaltes zwischen Einspritzventilglied und Düsen-/Injektorkörper ein (G-Maß).Following the solution proposed by the invention, the seat angle of the injection valve member is selected to be greater than the seat angle in the injector body while the tip cone of the injection valve member is selected to be smaller than the seat angle in the injector or nozzle body. The previously executed undercut can be omitted, the cylindrical approach, however, remains. This results between the cylindrical projection and the blind hole diameter now a concave gap. The angles and lengths of the cone sections on the injection valve member are chosen so that this rests in a powerless state at the level of the cylindrical projection and adjusts a small gap at the blind hole diameter, whose height is referred to below as G3-measure. The G3 dimension is preferably dimensioned in such a way that, although it is very small, it is in any case greater than 0 when the manufacturing tolerances are utilized. The greatest distance between the injection valve member and the Injektor- or nozzle body is now at the height of the intersection between the seat cone and the tip cone within a concave gap between the injection valve member and the nozzle / injector body (G dimension).
Mit der vorgeschlagenen Lösung beginnt der Verschleiß der Verschleißschutzschicht nun nicht mehr an den beiden einander zugewandten Enden der Kegelabschnitte des Einspritzventilgliedes, sondern an den voneinander abgewandten Enden (Sacklochdurchmesser am Spitzenkegel und zylindrischer Ansatz am Sitzkegel). Daraus resultiert, dass die beiden Übergangsstellen zwischen noch vorhandener und bereits durchgeriebener Verschleißschutzschicht nicht mehr voneinander weg (divergierender Verschleißschutzschicht-Verschleiß) sondern sich aufeinander zu bewegen (konvergierender Verschleißschutzschicht-Verschleiß).With the proposed solution, the wear of the wear protection layer no longer begins at the two mutually facing ends of the cone sections of the injection valve member, but at the ends facing away from each other (blind hole diameter at the top cone and cylindrical projection on the seat cone). As a result, the two transition points between the existing and already worn wear protection layer no longer away from each other (divergent wear protection layer wear) but to move towards each other (converging wear protection layer wear).
Dadurch wird insbesondere sichergestellt, dass sowohl der Sitzkegel auch der Spitzenkegel ihre jeweilige Verschleißschutzschicht zum selben Zeitpunkt vollständig verlieren, da sich die beiden oben beschriebenen Übergänge zwangsläufig an der Verschneidung von Sitzkegel und Spitzenkegel miteinander vereinigen werden.This ensures in particular that both the seat cone and the tip cone completely lose their respective wear protection layer at the same time, since the two transitions described above will inevitably unite with each other at the intersection of seat cone and tip cone.
Alternativ lassen sich die Winkel und Längen der Kegelabschnitte auch so auslegen, dass der Sitz des Einspritzventilgliedes im Neuzustand zunächst nur am Sacklocheinlauf aufliegt und am zylindrischen Ansatz einen Spalt aufweist. Ebenso gut ist eine Übergangsdimensionierung derart möglich, bei der je nach Ist-Wert der Winkel innerhalb ihrer Toleranzen eine Auflage am zylindrischen Ansatz oder am Sacklochdurchmesser entsteht.Alternatively, the angles and lengths of the conical sections can also be designed so that the seat of the injection valve member initially rests only at the blind hole inlet in the new state and has a gap on the cylindrical projection. Equally well, a transition dimensioning is possible in which arises depending on the actual value of the angle within their tolerances a support on the cylindrical approach or the blind hole diameter.
Der Spitzenkegel des Einspritzventilgliedes kann ganz oder teilweise mit einer gezielten Unrundheit am Einspritzventilglied oder am Injektorkörper bzw. Düsenkörper ausgeführt werden (z.B. Lasernuten im Einspritzventilglied), was eine Entdrosselung dieses Sitzbereiches auch dann gewährleistet, wenn sich das vorzugsweise nadelförmig ausgebildete Einspritzventilglied langsam in den Injektorkörper bzw. den Düsenkörper einarbeitet. Der entdrosselte Bereich endet dabei sicher vor der Verschneidung zwischen Sitzkegel und Spitzenkegel. Gegebenenfalls kann der Beginn oder das Ende des entdrosselten Bereiches durch eine umlaufende Nut im Einspritzventilglied oder im Injektor- bzw. Düsenkörper markiert werden, um eine gleichmäßige Anströmung der entdrosselten Stellen zu erreichen.The tip cone of the injection valve member can be wholly or partially executed with a targeted out-of-roundness at the injection valve member or on the injector body or nozzle body (eg laser grooves in the injection valve member), which ensures a Entdrosselung this seating area even if the preferably needle-shaped injection valve member slowly into the Injektorkörper or ., incorporates the nozzle body. The de-throttled area ends securely before the intersection between the seat cone and the tip cone. Optionally, the beginning or the end of the de-throttled region can be marked by a circumferential groove in the injection valve member or in the injector or nozzle body in order to achieve a uniform flow of the Entschrosselten bodies.
Ist der Sitz hingegen so ausgelegt, dass das Einspritzventilglied zunächst am Sacklochdurchmesser aufsitzt, so kann anstelle des Spitzenkegels der Sitzkegel entdrosselt werden und der Spitzenkegel übernimmt die Dichtfunktion. Die Verschneidung zwischen Sitzkegel und Spitzenkegel am Einspritzventilglied kann mit einem Radius oder einem definierten Kantenbruch versehen sein.On the other hand, if the seat is designed such that the injection valve member initially rests on the blind hole diameter, then instead of the tip cone the seat cone can be throttled and the tip cone assumes the sealing function. The intersection between seat cone and tip cone on the injection valve member may be provided with a radius or a defined edge break.
Anstelle einer Verschneidung zweier Kegel, d.h. im vorliegenden Falle des Sitzkegels und des Spitzenkegels, kann die konkave Sitzform auch durch eine beliebige andere Kontur des Einspritzventilgliedes herbeigeführt werden, durch welche ein konkaver Spalt zwischen Einspritzventilglied und Injektorkörper bzw. Düsenkörper entsteht. Vorzugsweise weist der konkave Spalt neben dem Maximum seiner Spalthöhe keine weiteren lokalen Maxima auf. Der konkave Spalt kann auch durch eine nicht-linear kegelförmige Kontur des Körpersitzes erzeugt werden. Anstelle der heutzutage eingesetzten Verschleißschutzschichten, die zum Beispiel aus amorphen diamantartigem Kohlenstoff gefertigt werden, können auch andere Materialien zur Ausbildung der Verschleißschutzschicht zum Einsatz kommen, z.B. Silicatschichten auf dem Körpersitz oder Nitrierschichten im Körpersitz.Instead of intersecting two cones, i. In the present case of the seat cone and the tip cone, the concave seat shape can also be brought about by any other contour of the injection valve member, through which a concave gap between injection valve member and injector body or nozzle body is formed. Preferably, the concave gap has no further local maxima in addition to the maximum of its gap height. The concave gap can also be created by a non-linear conical contour of the body seat. Instead of the wear protection layers used today, which are made of, for example, amorphous diamond-like carbon, other materials for forming the wear protection layer may also be used, e.g. Silicate layers on the body seat or nitriding layers in the body seat.
Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.With reference to the drawing, the invention will be described below in more detail.
Es zeigt:
Figur 1- einen Schnitt durch eine geschlossene Einspritzdüse,
- Figur 1.1
- eine überhöhte Darstellung im Maßstab 50 : 1 der geschlossenen Einspritzdüse gemäß
Figur 1 , - Figur 2
- eine Darstellung der Geometrie einer bezüglich ihres Driftverhaltens mit einer Verschleißschutzschicht optimierten Einsptizdüse,
- Figur 3
- die erfindungsgemäß vorgeschlagene Sitzgeometrie mit konkav verlaufendem Drosselspalt,
- Figur 4
- die erfindungsgemäß vorgeschlagene Sitzgeometrie an einem Kraftstoffinjektor,
- Figur 5.1
- einen Schnitt durch die Sitzgeometrie gemäß
Figur 3 bei mäßigem Verschleiß, - Figur 5.2
- einen Schnitt durch die erfindungsgemäße Sitzgeometrie gemäß
Figur 3 bei weiter fortgeschrittenem Verschleiß und - Figur 6
- die erfindungsgemäß vorgeschlagene Sitzgeometrie mit konkavem Drosselspalt im Zustand gemäß
Figur 5.2 , d.h. bei weiter fortgeschrittenem Verschleiß und dadurch erzieltem konvergierenden Verschleißschutzschicht-Verschleiß im geschlossenen Zustand.
- FIG. 1
- a section through a closed injection nozzle,
- Figure 1.1
- an elevated representation in the scale 50: 1 of the closed injection nozzle according to
FIG. 1 . - FIG. 2
- a representation of the geometry of an optimized with respect to their drift behavior with a wear protection layer Einsickizdüse,
- FIG. 3
- the inventively proposed seat geometry with concave throttle gap,
- FIG. 4
- the seat geometry proposed according to the invention on a fuel injector,
- Figure 5.1
- a section through the seat geometry according to
FIG. 3 with moderate wear, - Figure 5.2
- a section through the seat geometry according to the invention according to
FIG. 3 at more advanced wear and tear - FIG. 6
- the inventively proposed seat geometry with concave throttle gap in the state according to
Figure 5.2 ie, more advanced wear and resulting convergent wear-resistant coating wear when closed.
Der Darstellung gemäß
Im Bereich eines Sacklocheinlaufes 22 befindet sich der Spitzenkegel 26 des Einspritzventilgliedes 14 in einem Abstand G3 von der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18. Mit dem Maß G ist der Abstand des Einspritzventilgliedes 14 von der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 im Bereich des Hinterstichs 28 oder der Ringnut 16 und dem Übergang zum Spitzenkegels 26 identifiziert, während das Maß G0 der Abstand zwischen dem Einspritzventilglied 14 und der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 an der Kante des Sitzkegels 30 zu einem zylindrischen Ansatz des Einspritzventilgliedes 14 aufweist.In the region of a
Der Spitzenkegel 26 weist eine erste Dichtfläche 34 auf, während der Sitzkegel 30, an dem der Sitz des Einspritzventilgliedes 14 im Düsen- oder Injektorkörper 18 ausgebildet ist, eine zweite Dichtfläche 36 umfasst.The
Analog zur Darstellung der
Gemäß der vorgeschlagenen Lösung werden die Kegelwinkel des Spitzenkegels 26 und des Sitzkegels 30 vertauscht, wie
Die erste Dichtfläche 34 am Spitzenkegel 26 wie auch die zweite Dichtfläche 36 am Sitzkegel 30 sind jeweils mit einer ersten durchgängigen Verschleißschutzschicht 40 bzw. einer zweiten durchgängigen Verschleißschutzschicht 42 beschichtet. Diese Verschleißschutzschichten können zum Beispiel aus amorphem, diamantartigem Kohlenstoff gefertigt werden, oder auch beispielsweise als Silicatschichten oder Nitrierschichten auf dem Körpersitz aufgebracht sein. Nachfolgend wird unter erste Verschleißschutzschicht 40 bzw. zweite Verschleißschutzschicht 42 eine durchgängig auf Spitzenkegel 26 und Sitzkegel 30 aufgebrachte Verschleißschutzschicht verstanden, welche auch den Übergangsbereich zwischen Spitzenkegel 26 und Sitzkegel 30 im Bereich des Hinterstichs 28 abdeckt.The
Der Hinterstich entfällt, ein zylindrischer Ansatz 43 (vgl.
Aus
Der Kraftstoffinjektor 10 umfasst das Einspritzventilglied 14, an dem unterhalb des Sitzkegels 30 der Spitzenkegel 26 verläuft. Der Spitzenkegel 26 ist in einem Kegelwinkel α ausgebildet, der kleiner ist als der Kegelwinkel β, in welchem die Innendichtfläche 20 des Düsen- oder Injektorkörpers 18 verläuft, bezogen auf die Vertikale.The
Der Kegelwinkel β, in dem der Sitzkegel 30 ausgebildet ist, wird hingegen größer gewählt als der Kegelwinkel γ der Innendichtfläche 20 des Düsen- oder Injektorkörpers 18.The cone angle β, in which the
Die Längen und die Kegelwinkel α, β von Spitzenkegel 26 und Sitzkegel 30 sind so gewählt, dass das bevorzugt nadelförmig ausgebildete Einspritzventilglied 14 im kraftlosen Zustand auf Höhe des zylindrischen Ansatzes 43 auf der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 aufliegt. Es stellt sich am Sacklocheinlauf 22 unter Berücksichtigung des Sacklochdurchmessers 32 das Maß G3 ein. Der größte Abstand liegt zwischen dem bevorzugt nadelförmig ausgebildeten Einspritzventilglied 14 und der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 auf Höhe der Verschneidung zwischen dem Spitzenwinkel 26 und dem Sitzkegel 30. Hier liegt das G-Maß.The lengths and the cone angles α, β of
Die Mantelfläche des Spitzenkegels 26 ist mit der ersten Verschleißschutzschicht 40 versehen, während die Mantelfläche des Sitzkegels 30 mit der zweiten Verschleißschutzschicht 42 versehen ist. Sowohl die erste Verschleißschutzschicht 40 als auch die zweite Verschleißschutzschicht 42 werden auf dem Spitzenkegel 26 und dem Sitzkegel 30 kontinuierlich als eine Schicht aufgebracht. Die Verschleißschutzschicht 40, 42 kann sowohl aus amorphem, diamantartigem Kohlenstoff als auch als Silicat- oder Nitrierschicht ausgebildet sein. Diese Flächen begrenzen den konkaven Spalt 70 zwischen der Außenkontur des Einspritzventilgliedes 14 und der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18.The lateral surface of the
Aus den Darstellungen gemäß der
Die Darstellung gemäß
Der mäßig verschlissene Zustand wird durch Bezugszeichen 48 identifiziert. Mit 48.1 ist ein Verschleißprofil an der Außenkontur des Einspritzventilgliedes 14 im Bereich von Sitzkegel 30 und Spitzenkegel 26 wiedergegeben, während das Bezugszeichen 48.2 das Verschleißprofil der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 markiert. Aus der Darstellung gemäß
Demgegenüber ist das Verschleißprofil 48.1 des Einspritzventilgliedes 14 dadurch charakterisiert, dass die erste Dichtfläche 34 einen Abriebbereich 50 aufweist, ebenso wie die zweite Dichtfläche 36 am Sitzkegel 30.In contrast, the wear profile 48.1 of the
In Bezug auf die Innendichtfläche 20 wird durch die erste Schräge 52 eine erste Ringbreite 60 definiert, die sich an eine Zwischenringfläche 64 anschließt. Die Einkerbung in die Innendichtfläche 20 im Bereich des Sitzkegels 30 definiert eine zweite Ringbreite 62.With respect to the
Der in
Demgegenüber ist das sich an der Innendichtfläche 20 des Düsen- bzw. Injektorkörpers 18 ausbildende Verschleißprofil 54.2 dadurch gekennzeichnet, dass eine zweite Schräge 58 oberhalb des Sacklocheinlaufes 22 wesentlich ausgeprägter ist, wohingegen die Zwischenringfläche 64 an der Innendichtfläche 20 zwischen der zweiten Schräge 58 und der durch den Sitzkegel 30 erzeugten Einkerbung in der Innendichtfläche 20 wesentlich kürzer ist. Im Vergleich zur Darstellung gemäß
Der Verschleiß der Verschleißschutzschichten 40 bzw. 42 beginnt der erfindungsgemäßen Lösung folgend nun nicht mehr an den beiden aneinander zugewandten Enden des Spitzenkegels 26 und des Sitzkegels 30, sondern an den voneinander abgewandten Enden, hinsichtlich des Spitzenkegels 26 am Sacklochdurchmesser 32 und hinsichtlich des Sitzkegels 30 unterhalb des zylindrischen Ansatzes. Folglich laufen die beiden Übergänge zwischen noch vorhandener und bereits abgeriebener Verschleißschutzschicht 40, 42 nicht mehr voneinander weg (divergierender C-Schichtverschleiß), sondern nach der erfindungsgemäß vorgeschlagenen Lösung aufeinander zu (konvergierender Verschleißschutzschicht-Verschleiß). Dadurch wird insbesondere sichergestellt, dass der Sitzkegel 30 und der Spitzenkegel 26 ihre jeweiligen Verschleißschutzschichten 40 bzw. 42 zum selben Zeitpunkt vollständig verlieren, da sich die beiden oben beschriebenen Übergänge zwangsläufig an der Verschneidung zwischen Sitzkegel 30 und Spitzenkegel 26 vereinigen. Damit ist das Risiko eines einseitig tragenden Nadelsitzes sicher ausgeschlossen.The wear of the wear-
Aus der Darstellung gemäß
Der konvergierende Verschleißschutzschicht-Verschleiß ist in der Figurensequenz gemäß der
Dieser deutet den sich während des Betriebes einstellenden Verschleiß der Verschleißschutzschichten 40 bzw. 42 sowie der Innendichtfläche 20 des Düsen- bzw. Injektorkörper 18 an.This indicates the wear of the
Abweichend von den in den
Der Spitzenkegel 26 des Einspritzventilgliedes 14 kann ganz oder teilweise mit einer gezielten Unrundheit am Einspritzventilglied 14 bzw. am Düsen- oder Injektorkörper 18 ausgeführt werden (z.B. Lasernuten im Einspritzventilglied 14), was eine Entdrosselung dieses Sitzbereiches auch dann gewährleistet, wenn sich das Einspritzventilglied langsam in die Innendichtfläche 20 des Düsenkörpers bzw. des Injektorkörpers 18 einarbeitet. Der entdrosselte Bereich muss dabei jedoch sicher vor der Verschneidung zwischen dem Sitzkegel 30 mit dem Spitzenkegel 26 enden. Gegebenenfalls kann der Beginn oder das Ende des entdrosselten Bereiches, d.h. der Bereich des Einspritzventilglieds 14, der in einer gezielten Unrundheit ausgebildet ist, durch eine umlaufende Nut im bevorzugt nadelförmig ausgebildeten Einspritzventilglied 14 oder im Düsen- bzw. Injektorkörper 18 markiert werden, um eine gleichmäßige Anströmung der entdrosselten Stellen (z.B. als Lasernut dargestellt) zu erreichen.The
Ist der Sitz so ausgelegt, dass das Einspritzventilglied 14 zunächst am Sacklochdurchmesser 32 aufsitzt, so kann anstelle des Spitzenkegels 26 der Sitzkegel 30 entdrosselt werden und der Spitzenkegel 26 die Dichtfunktion übernehmen. Die Verschneidung zwischen dem Sitzkegel 30 und dem Spitzenkegel 26 kann mit einem Radius oder mit einem definierten Kantenbruch versehen sein.If the seat is designed such that the
Anstelle einer Verschneidung zweier Kegel, im vorliegenden Falle des Spitzenkegels 26 mit dem Sitzkegel 30, kann die konkave Sitzform auch durch eine beliebige andere Kontur des Einspritzventilgliedes 14 bewerkstelligt werden, welche einen konkaven Spalt zwischen dem nadelförmig ausgebildeten Einspritzventilglied 14 und dem Düsen- bzw. Injektorkörper erzeugt. Vorzugsweise weist der konkave Spalt 70 neben dem absoluten Maximum seiner Spalthöhe keine weiteren lokalen Maxima auf. Der konkave Spalt 70 kann auch durch eine nicht-linear kegelförmige Kontur der Innendichtfläche 20 erzeugt werden. Anstelle der Materialien für die Verschleißschutzschichten 40 bzw. 42, die aus amorphem diamantartigem Kohlenstoff gefertigt werden, können auch andere abriebfeste Materialien zum Einsatz kommen.Instead of intersecting two cones, in the present case the
Claims (12)
- Fuel injector (10) for internal combustion engines, with an injection valve member (14) on which a seat cone (30) is formed, with which the injection valve member (14) interacts by means of a longitudinal movement with a sealing surface (20) formed on an injector body (18) and, in the process, opens up or closes a fuel flow to at least one injection opening, and the seat cone (30) is provided with an anti-wear layer (42), characterized in that a peak cone (26) having a cone angle α and the seat cone (30) having a cone angle β are formed at the combustion-chamber-side end of the injection valve member (14), wherein the cone angle β exceeds a cone angle γ of the sealing surface (20), and the cone angle α of the peak cone (26) is smaller than the cone angle γ of the sealing surface (20).
- Fuel injector according to Claim 1, characterized in that cone surfaces of the seat cone (30) and of the peak cone (26) form a concave gap (70) with the sealing surface (20).
- Fuel injector according to Claim 2, characterized in that the concave gap (70) extends between a blind hole inlet (22) in the injector body (18) and a transition point of the seat cone (30) to a cylindrical extension of the injection valve member (14).
- Fuel injector according to Claim 3, characterized in that, in the closed state of the injection valve member (14), a maximum G of the distance between the injection valve member (14) and the injector body (18) lies on an intersecting point between the seat cone (30) and the peak cone (26).
- Fuel injector according to Claim 3, characterized in that, in the closed state of the injection valve member (14), a small gap, provided by a distance G3>0, arises at the blind hole inlet (22), which is formed in a blind hole diameter (32), and the injection valve member (14).
- Fuel injector according to Claim 4, characterized in that the intersecting point between the seat cone (30) and the peak cone (26) is provided with a radius or with a defined edge break.
- Fuel injector according to Claim 1, characterized in that the peak cone (26) on the injection valve member (14) or the sealing surface (20) of the injector body (18) is entirely or partially formed with a deviation from a circular form.
- Fuel injector according to Claim 4, characterized in that the concave gap (70) does not have, apart from the maximum of the distance G, any further local maxima of the distance between the injection valve member (14) and the injector body (18).
- Fuel injector according to Claim 1, characterized in that, in the new state of the injection valve member (14), the latter rests with its peak cone (26) on a blind hole inlet (22) and the peak cone (26) instead of the seat cone (30) opens up or prevents the fuel flow.
- Fuel injector according to Claim 7, characterized in that a region, provided with a deviation from a circular form, of the peak cone (26) ends before the intersecting point of the peak cone (26) with the seat cone (30) on the injection valve member (14), and the end of that region of the peak cone (26) which is provided with a deviation from a circular form is bounded by an encircling groove in the injection valve member (14) or in the injector body (18).
- Fuel injector according to Claim 1, characterized in that the seat cone (30) and the peak cone (26) are each provided with anti-wear layers (40, 42), the wear of which during operation of the injection valve member (14) takes place in a manner converging towards each other starting from the mutually averted ends of the anti-wear layers (40, 42) on the seat cone (30) and peak cone (26).
- Fuel injector according to Claim 11, characterized in that the wear of the first anti-wear layer (14) on the peak cone (26) begins starting from the blind hole inlet (22) and the wear of the second anti-wear layer (42) begins starting from the transition point between the seat cone (30) and a cylindrical extension of the injection valve member (14).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510037955 DE102005037955A1 (en) | 2005-08-11 | 2005-08-11 | Partially throttled injection valve member for fuel injectors |
PCT/EP2006/063116 WO2007017302A1 (en) | 2005-08-11 | 2006-06-13 | Partially dethrottled injection valve member for fuel injectors |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1915527A1 EP1915527A1 (en) | 2008-04-30 |
EP1915527B1 true EP1915527B1 (en) | 2018-03-14 |
Family
ID=36790400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06819042.0A Not-in-force EP1915527B1 (en) | 2005-08-11 | 2006-06-13 | Partially dethrottled injection valve member for fuel injectors |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1915527B1 (en) |
DE (1) | DE102005037955A1 (en) |
WO (1) | WO2007017302A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019220072A1 (en) | 2019-12-18 | 2021-06-24 | Robert Bosch Gmbh | Injector nozzle for injecting fuel under high pressure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0283154A1 (en) * | 1987-03-14 | 1988-09-21 | LUCAS INDUSTRIES public limited company | Fuel injection nozzle |
DE4117910A1 (en) * | 1991-05-31 | 1992-12-03 | Yaroslavskij Z Dizel Noj Appar | Fuel injection nozzle for IC engine - has injector needle with turned ring groove between conical surfaces, forming throttle edge |
DE19844638A1 (en) * | 1998-09-29 | 2000-03-30 | Siemens Ag | Fuel injection valve for an internal combustion engine |
DE10000501A1 (en) * | 2000-01-08 | 2001-07-19 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
DE10133433A1 (en) * | 2001-07-10 | 2003-02-20 | Bosch Gmbh Robert | Fuel injection valve for internal combustion engines |
DE10315820A1 (en) * | 2002-11-11 | 2004-05-27 | Robert Bosch Gmbh | Fuel injection valve for motor vehicle internal combustion engine has housing with injection openings and sliding valve needle with double seating surfaces |
DE102004013600A1 (en) | 2004-03-19 | 2005-10-06 | Robert Bosch Gmbh | Fuel injection valve for an internal combustion engine comprises a valve needle having a valve-sealing surface partly provided with a wear-reducing coating |
-
2005
- 2005-08-11 DE DE200510037955 patent/DE102005037955A1/en not_active Withdrawn
-
2006
- 2006-06-13 EP EP06819042.0A patent/EP1915527B1/en not_active Not-in-force
- 2006-06-13 WO PCT/EP2006/063116 patent/WO2007017302A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE102005037955A1 (en) | 2007-02-15 |
WO2007017302A1 (en) | 2007-02-15 |
EP1915527A1 (en) | 2008-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19612738C2 (en) | Accumulator injection system for internal combustion engines | |
DE19547423B4 (en) | Fuel injection valve for internal combustion engines | |
DE19946827C1 (en) | Valve for controlling liquids | |
WO2006063912A1 (en) | Fuel injection valve for an internal combustion engine | |
EP1129287B1 (en) | Injection nozzle for an internal combustion engine with annular groove in said nozzle needle | |
EP2470771B1 (en) | Fuel injection valve | |
EP1045978A1 (en) | Fuel injection valve for internal combustion engines | |
DE19634933B4 (en) | Fuel injection valve for internal combustion engines | |
EP1623108A1 (en) | Fuel injection valve for internal combustion engines | |
DE10100390A1 (en) | Injector | |
EP1430218B1 (en) | Valve, in particular fuel injection valve | |
EP1346143A1 (en) | Fuel injection valve for internal combustion engines | |
DE10205218A1 (en) | Valve for controlling a connection in a high-pressure liquid system, in particular a fuel injector for an internal combustion engine | |
EP1915527B1 (en) | Partially dethrottled injection valve member for fuel injectors | |
DE102012211169A1 (en) | Fuel injector for injecting fuel to chamber of combustion engine, has injection port that is hydraulically connected with high pressure space via through-hole, such that pressure chamber is fuel-supplied by lifting nozzle needle | |
EP2167808B1 (en) | High-pressure injector for internal combustion engines having a control-rod support which increases the buckling load via highly pressurized fuel | |
DE102010040940A1 (en) | Nozzle assembly for common-rail injector for injecting fuel into combustion chamber of internal combustion engine, has valve seat forming frustum-shaped portion and partially released by depression in die body | |
DE102018208361A1 (en) | Method for operating a fuel injector, fuel injector | |
EP1412633B1 (en) | Fuel injector with locking pressure compensation | |
EP1483499A1 (en) | Installation for the pressure-modulated formation of the injection behavior | |
EP3999736B1 (en) | Fuel injector for internal combustion engines | |
EP3980639B1 (en) | Fuel injector, and method for operating a fuel injector | |
DE10048933A1 (en) | Valve for controlling liquids | |
AT511731B1 (en) | CAVITATION-OPTIMIZED THROTTLE DRILLING | |
WO2002090760A1 (en) | Fuel injection valve for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080311 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20081104 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20171215 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 979145 Country of ref document: AT Kind code of ref document: T Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006015836 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180615 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006015836 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180716 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20181217 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180630 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180613 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 979145 Country of ref document: AT Kind code of ref document: T Effective date: 20180613 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190822 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180714 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006015836 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210101 |