EP1915487B1 - Prestressed planar load-bearing structure made of fiber concrete and textile reinforced concrete - Google Patents

Prestressed planar load-bearing structure made of fiber concrete and textile reinforced concrete Download PDF

Info

Publication number
EP1915487B1
EP1915487B1 EP06760824A EP06760824A EP1915487B1 EP 1915487 B1 EP1915487 B1 EP 1915487B1 EP 06760824 A EP06760824 A EP 06760824A EP 06760824 A EP06760824 A EP 06760824A EP 1915487 B1 EP1915487 B1 EP 1915487B1
Authority
EP
European Patent Office
Prior art keywords
plane load
bearing element
elements
bearing
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06760824A
Other languages
German (de)
French (fr)
Other versions
EP1915487A1 (en
Inventor
Johann Kollegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1915487A1 publication Critical patent/EP1915487A1/en
Application granted granted Critical
Publication of EP1915487B1 publication Critical patent/EP1915487B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • E04B1/06Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material the elements being prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H15/00Tents or canopies, in general
    • E04H15/02Tents combined or specially associated with other devices
    • E04H15/10Heating, lighting or ventilating
    • E04H15/12Heating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/327Arched structures; Vaulted structures; Folded structures comprised of a number of panels or blocs connected together forming a self-supporting structure
    • E04B2001/3276Panel connection details
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/35Extraordinary methods of construction, e.g. lift-slab, jack-block
    • E04B2001/3583Extraordinary methods of construction, e.g. lift-slab, jack-block using permanent tensioning means, e.g. cables or rods, to assemble or rigidify structures (not pre- or poststressing concrete), e.g. by tying them around the structure

Definitions

  • the invention relates to thin-walled structural elements made of fiber concrete or textile-reinforced concrete according to the preamble of claim 1.
  • a surface support element is made DE 27 57 432 A known.
  • Washers, plates and shells are surface structures, with loads of discs exclusively and of shells primarily abolishing via membrane stress states. By definition, plates are loaded normally to the plate mid-plane and the stress is removed via bending stress states.
  • Such thin-walled surface structures can be used as facade panels, noise barriers or shell structures, for example for the construction of exhibition stands.
  • the tensile strength of concrete is only about 5% to 10% of the compressive strength.
  • the insertion of reinforcing steel reinforcement into thin-walled concrete elements does not make sense, because with a total thickness of e.g. 4 cm a minimum concrete cover of 2.5 cm to 3 cm for the reinforcement can not be executed and thus no corrosion protection is guaranteed.
  • Thin-walled precast concrete elements are therefore provided with non-metallic fiber reinforcements or textile reinforcements to increase the tensile strength.
  • Suitable materials for the production of textile reinforcements and fiber reinforcements are, for example, alkali-resistant glass fibers or carbon fibers.
  • Prefabricated structural elements made of fiber-reinforced concrete and textile-reinforced concrete available on the market are fastened to substructures as small-sized elements with dimensions of, for example, 1.25 m by 3.6 m. Larger-sized applications are not possible because of the limited bending and Buchtragauer the fiber-reinforced or textile-reinforced elements and in the absence of a suitable joining technique.
  • the invention is based on the object to provide a surface structural element made of fiber concrete or textile-reinforced concrete, which has a higher bending and tensile strength than the known embodiments and which has a suitable connection option for creating thin-walled surface structures of at least two individual surface structural elements.
  • a surface-structural element with the features of claim 1.
  • the production of surface structures succeeds as viable structures of thin-walled, prefabricated surface structural elements, which are substantially larger than the known embodiments.
  • the largest span of doubly curved shell structures made of surface structural elements according to the invention will be between 20 m and 30 m.
  • Simply curved shell structures and planar structures will have smaller maximum spans, which must be determined in the individual case for the given geometry and the actions to be applied.
  • the construction of relatively large, simply curved or planar structures will be possible if the wind action to be applied is low, which would be the case, for example, when constructing a trade fair stand in a closed hall.
  • Preload is used in civil engineering to create a compressive stress state in the prestressed concrete structure. This state of compressive stress must first be reduced by tensions as a result of external stresses before tensile stresses occur and finally cracking occurs.
  • the tensile and flexural strength of an uncracked, reinforced concrete structure is much higher in the non-cracked state than after cracking. The higher stiffnesses in the non-cracked state cause that non-cracked structures have much smaller deformations than structure, which have cracks.
  • bias voltage in the utilized according to the invention surface structural elements to build with the help of the bias thin-walled tensile structures that remain undisturbed under the external effects and thus have a high tensile and bending stiffness and as a result, small deformations.
  • the high rigidity of the non-cracked structure and the avoidance of large deformations is of great importance for the support safety.
  • FIG Fig. 1 A view of a surface structure element 10 according to the invention is shown in FIG Fig. 1 shown.
  • the illustrated rectangular embodiment is planar and biased in one direction with tendons 20 .
  • the edge 30 of the tensile structure element 10 consists of straight sections which are normal to the plate center plane.
  • the tendon 20 consists of a tension member 22, a cladding tube 24 and an anchor 28th
  • Suitable materials for the tension member 22 are, for example, fiber composites of carbon, aramid or glass fibers in conjunction with a matrix of epoxy resin and stainless steels.
  • fiber composite materials there are suitable anchoring systems (described, for example, in US Pat DE 100 10 564 ). Wires, strands and rods made of stainless steel can be anchored to the systems known from prestressed concrete construction, with sleeve anchorages for strands and wires and nuts for threaded rods being particularly suitable for the small cross-sectional dimensions present here.
  • the tensile strengths of the fiber composites are currently between 2000 MPa and 5000 MPa, stainless steels are available with tensile strengths up to 1800 MPa.
  • a cavity 26 is shown, which is formed in the concrete of the surface structure element 10 by the insertion of the cladding tube 24 before or during the concreting process.
  • a tension member 22 is introduced before or after concreting.
  • the tension member 22 is biased against the hardened concrete, usually with hydraulic presses. Will the remaining Cavity 26 then pressed with a cement mortar or an epoxy resin, there is a pre-stress with subsequent bond.
  • the compressive prestressing of the concrete would rise to twice the value (9.7 MPa).
  • the tension on the anchor 28 is assumed dimensions of the anchor plate of 13 mm by 30 mm 12570 N by 390 mm 2 equal to 32.2 MPa, which is easily absorbed by a textile-reinforced and / or fiber-reinforced concrete.
  • Uniaxial compressive strengths of textile-reinforced and / or fiber-reinforced concrete are between 40 and 160 MPa for 28-day-old test specimens.
  • FIG Fig. 3 A view of a second embodiment of the surface structure element 10 according to the invention is shown in FIG Fig. 3 shown.
  • the surface support element 10 has straight edges 30 and has the shape of a hyperbolic paraboloid 62.
  • the surface support element 10 is prestressed with two tendons 20 , which are arranged approximately orthogonal to one another.
  • Fig. 3 and in the associated section in the Fig. 4 is a state after the hardening of the concrete and before the insertion of the tension members 22 shown.
  • cavities 26 are created for the later connection of a plurality of such surface-area supporting elements 10 by means of prestressing.
  • a flat tensile structure 50 which according to the invention consists of a plurality of surface structural elements 10 , which by means of tendons 20 with each other are connected in Fig. 5 and in detail in Fig. 6 and Fig. 7 shown. Rectangular, planar surface-structural elements 10 with tendons 20, which are arranged orthogonal to each other, are joined together by means of prestressing to form a planar surface structure 50 .
  • the flat surface structure 50 could be used as a facade panel or noise barrier.
  • the tendons 22 extend in cladding tubes 24 and are anchored at the edge 30 of the flat surface structure 50 with suitable anchorages 28 .
  • the edge 30 of the planar surface structure 50 has according to Fig. 6 a thickening 32 for better absorption of the anchors 28 of the tendons 20 .
  • a strip of soft material 34 for example of epoxy resin or extruded polystyrene, which leads due to a low modulus of elasticity and / or due to its pronounced creep to a reduction of the edge pressures, the tensioning of the tendons 20, the at the edges 30 of the surface structure elements 10 due to inaccuracies in the production of the surface structure elements 10 occurring stress peaks decrease.
  • the Fig. 8 Figure 3 shows a spatially-curved surface structure 60 in the form of a hyperbolic paraboloid 62 with straight edges 30. Two of the four edges 30 are non-slidably supported.
  • the hyperbolic paraboloid 62 which could be used as an event hall or as a roof of an exhibition area, is composed of individual area-structural elements 10 , which likewise have the shape of hyperbolic paraboloid 62 and are already in the FIG. 3 and FIG. 4 have been described.
  • the individual surface structure elements 10 are connected to a two-dimensionally curved surface structure 60, which corresponds in its carrying behavior of a monolithic structure.
  • the Fig. 9 shows a spatially curved surface structure 60 in the form of a hyperboloid 64.
  • the hyperboloid 64 is non-displaceably supported.
  • the individual surface structure elements 10 or flocks 11, 12, 13 of surface structure elements 10 are frictionally with tendons 20 connected with each other.
  • Tensioning members 20 are located in the surface structure elements 10 and are used to connect the individual surface structure elements 10 together.
  • the individual surface support elements 10 can be shaped exactly according to the shape of the hyperboloid 64 to be built or only approximate this shape.
  • angles 36 are formed along the edges 30 between the edge 30 and the center plane of the surface structural element 10 which are different from 90 °.
  • the detail in Fig. 10 shows such a situation in which two tensile structure elements 10 meet along an edge 30 at angles 36 which are greater than a right angle.
  • a method for the construction of two-dimensionally curved surface structures 60 of surface-tensioning elements 10 is in the Figs. 11, 12 and 13 shown. According to Fig. 11 For example, a first group 11 of surface supporting elements 10 is fixed on a suitable support along an edge 30 .
  • Fig. 12 is a second family 12 of tensile structure elements 10 with tendons 20 with the first share 11 positively connected.
  • Fig. 12 and Fig. 13 only one clamping member 20 shown.
  • a third group 13 of surface structure elements 10 with tendons 20 with the first blade 11 and the second share 1 2 is connected.
  • the tendons 20 are either to be coupled or a part of the laid in the second step clamping members 20 is to be relaxed and replaced by longer tendons 20 .
  • the provision of cavities 26 for all later to be added tensile structure elements 10 in the first installed flocks 11 and 12 according to the procedure in the cantilever method in bridge construction would also be possible.
  • the tendons 20 were anchored to the edges 30 of the surface structure elements 10 .
  • Other possibilities such as the anchoring of tendons 20 to pilasters or the coupling of tendons 20, which are proven techniques of prestressed concrete, can be used mutatis mutandis to bias the surface structure member 10 of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Steroid Compounds (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

Disclosed are thin-walled planar load-bearing structural elements which are made of fiber concrete and textile reinforced concrete and are joined together by prestressing the same so as to obtain disks, plates, and shells, thus making it possible to produce thin-walled structures that behave like monolithic structures when subjected to stress. The planar load-bearing structural elements can be planar or three-dimensionally curved. Prestressing with subsequent bonding and prestressing without bonding are used as prestressing processes.

Description

Die Erfindung betrifft dünnwandige Flächentragwerkelemente aus Faserbeton oder textilbewehrtem Beton gemäß dem Oberbegriff des Anspruchs 1. Ein solches Flächentragwerkselement ist aus DE 27 57 432 A bekannt. Scheiben, Platten und Schalen sind Flächentragwerke, wobei Lasten von Scheiben ausschließlich und von Schalen vorwiegend über Membranspannungszustände abtragen. Definitionsgemäß werden Platten normal zur Plattenmittelebene belastet und die Belastung wird über Biegespannungszustände abgetragen.The invention relates to thin-walled structural elements made of fiber concrete or textile-reinforced concrete according to the preamble of claim 1. Such a surface support element is made DE 27 57 432 A known. Washers, plates and shells are surface structures, with loads of discs exclusively and of shells primarily abolishing via membrane stress states. By definition, plates are loaded normally to the plate mid-plane and the stress is removed via bending stress states.

Derartige dünnwandige Flächentragwerke können Verwendung finden als Fassadenplatten, Lärmschutzwände oder Schalenkonstruktionen beispielsweise zum Bau von Messeständen.Such thin-walled surface structures can be used as facade panels, noise barriers or shell structures, for example for the construction of exhibition stands.

Die Zugfestigkeit von Beton beträgt nur etwa 5% bis 10% der Druckfestigkeit. Das Einlegen einer Betonstahlbewehrung in dünnwandige Betonelemente ist nicht sinnvoll, weil bei einer Gesamtdicke von z.B. 4 cm eine Mindestbetondeckung von 2,5 cm bis 3 cm für die Bewehrung nicht ausführbar und damit kein Korrosionsschutz gewährleistet ist. Dünnwandige Betonfertigelemente werden deshalb mit nichtmetallischen Faserbewehrungen oder textilen Bewehrungen versehen, um die Zugfestigkeit zu steigern. Geeignete Werkstoffe für die Herstellung von textilen Bewehrungen und Faserbewehrungen sind beispielsweise alkaliresistente Glasfasern oder Kohlenstofffasern.The tensile strength of concrete is only about 5% to 10% of the compressive strength. The insertion of reinforcing steel reinforcement into thin-walled concrete elements does not make sense, because with a total thickness of e.g. 4 cm a minimum concrete cover of 2.5 cm to 3 cm for the reinforcement can not be executed and thus no corrosion protection is guaranteed. Thin-walled precast concrete elements are therefore provided with non-metallic fiber reinforcements or textile reinforcements to increase the tensile strength. Suitable materials for the production of textile reinforcements and fiber reinforcements are, for example, alkali-resistant glass fibers or carbon fibers.

Am Markt erhältliche, vorgefertigte Flächentragwerkelemente aus Faserbeton und textilbewehrtem Beton werden als kleinformatige Elemente mit Abmessungen von beispielsweise 1,25 m mal 3,6 m auf Unterkonstruktionen befestigt. Größerformatige Anwendungen sind wegen der begrenzten Biege- und Zugtragfähigkeit der faserbewehrten oder textilbewehrten Elemente und in Ermangelung einer geeigneten Fügetechnik nicht möglich.Prefabricated structural elements made of fiber-reinforced concrete and textile-reinforced concrete available on the market are fastened to substructures as small-sized elements with dimensions of, for example, 1.25 m by 3.6 m. Larger-sized applications are not possible because of the limited bending and Zugtragfähigkeit the fiber-reinforced or textile-reinforced elements and in the absence of a suitable joining technique.

Zur Verbesserung der Biege- und Zugtragfähigkeit ist vorgeschlagen worden, die textile Bewehrung vor dem Einbringen des Betons vorzuspannen (siehe z.B. Markus Krüger: Vorgespannter textilbewehrter Beton, Dissertation, Universität Stuttgart, 2004 ). Diese so genannte Vorspannung mit sofortigem Verbund ermöglicht das Aufbringen einer kleinen Druckvorspannung des Betons von z.B. nur 1,5 MPa in der o.g. Dissertation, weil die Verankerung der textilen Bewehrung zum Aufbringen der Vorspannung problematisch ist.To improve the bending and tensile load capacity has been proposed to bias the textile reinforcement before the introduction of the concrete (see, eg Markus Krüger: Prestressed Textile Reinforced Concrete, Dissertation, University of Stuttgart, 2004 ). This so-called preload with instant composite allows that Applying a small compressive prestressing of the concrete of, for example, only 1.5 MPa in the above-mentioned dissertation, because the anchoring of the textile reinforcement for applying the bias voltage is problematic.

Der Erfindung liegt die Aufgabe zu Grunde, ein Flächentragwerkelement aus Faserbeton oder textilbewehrtem Beton zu schaffen, das ein höheres Biege- und Zugvermögen als die bekannten Ausführungsformen aufweist und das eine geeignete Verbindungsmöglichkeit zur Schaffung von dünnwandigen Flächentragwerken aus mindestens zwei einzelnen Flächentragwerkelementen aufweist.The invention is based on the object to provide a surface structural element made of fiber concrete or textile-reinforced concrete, which has a higher bending and tensile strength than the known embodiments and which has a suitable connection option for creating thin-walled surface structures of at least two individual surface structural elements.

Diese Aufgabe wird durch ein Flächentragwerkelement mit den Merkmalen des Anspruchs 1 gelöst. Damit gelingt die Herstellung von Flächentragwerken als tragfähige Strukturen aus dünnwandigen, vorgefertigten Flächentragwerkelementen, die wesentlich größer sind als die bekannten Ausführungsformen. Die größte Spannweite von zweifach gekrümmten Schalenstrukturen aus erfindungsgemäßen Flächentragwerkelementen wird zwischen 20 m und 30 m liegen. Einfach gekrümmte Schalenstrukturen und ebene Strukturen werden kleinere Maximalspannweiten aufweisen, die im Einzelfall für die vorliegende Geometrie und die anzusetzenden Einwirkungen zu bestimmen sind. Der Bau von relativ großen einfach gekrümmten oder ebenen Strukturen wird möglich sein, wenn die anzusetzende Windeinwirkung gering ist, was beispielsweise bei der Errichtung eines Messestandes in einer geschlossenen Halle der Fall wäre.This object is achieved by a surface-structural element with the features of claim 1. Thus, the production of surface structures succeeds as viable structures of thin-walled, prefabricated surface structural elements, which are substantially larger than the known embodiments. The largest span of doubly curved shell structures made of surface structural elements according to the invention will be between 20 m and 30 m. Simply curved shell structures and planar structures will have smaller maximum spans, which must be determined in the individual case for the given geometry and the actions to be applied. The construction of relatively large, simply curved or planar structures will be possible if the wind action to be applied is low, which would be the case, for example, when constructing a trade fair stand in a closed hall.

Vorspannung wird im Ingenieurbau eingesetzt, um in der vorgespannten Betonstruktur einen Druckspannungszustand zu erzeugen. Dieser Druckspannungszustand muss durch Spannungen in Folge äußerer Belastungen erst abgebaut werden, bevor Zugspannungen entstehen und damit schließlich Rissbildung eintritt. Die Dehn- und Biegesteifigkeit eines ungerissenen, bewehrten Betontragwerks ist wesentlich höher im ungerissenen Zustand als nach der Rissbildung. Die höheren Steifigkeiten im ungerissenen Zustand bewirken, dass ungerissene Tragwerke viel kleinere Verformungen aufweisen als Tragwerk, die Risse aufweisen. Diese bekannten Vorteile der Vorspannung werden bei dem erfindungsgemäßen Flächentragwerkelemente ausgenützt, um mit Hilfe der Vorspannung dünnwandige Flächentragwerke zu bauen, die unter den äußeren Einwirkungen ungerissen bleiben und damit eine hohe Dehn- und Biegesteifigkeit und als Folge davon kleine Verformungen aufweisen. Gerade für dünnwandige Strukturen, deren Last-Verformungsverhalten nichtlinear ist und die bei geringen Materialspannungen in Folge von Stabilitätsproblemen versagen können, ist die hohe Steifigkeit der ungerissenen Struktur und das Vermeiden von großen Verformungen von hoher Bedeutung für die Tragsicherheit.Preload is used in civil engineering to create a compressive stress state in the prestressed concrete structure. This state of compressive stress must first be reduced by tensions as a result of external stresses before tensile stresses occur and finally cracking occurs. The tensile and flexural strength of an uncracked, reinforced concrete structure is much higher in the non-cracked state than after cracking. The higher stiffnesses in the non-cracked state cause that non-cracked structures have much smaller deformations than structure, which have cracks. These known advantages of the bias voltage are in the utilized according to the invention surface structural elements to build with the help of the bias thin-walled tensile structures that remain undisturbed under the external effects and thus have a high tensile and bending stiffness and as a result, small deformations. Especially for thin-walled structures whose load-deformation behavior is nonlinear and which can fail at low material stresses as a result of stability problems, the high rigidity of the non-cracked structure and the avoidance of large deformations is of great importance for the support safety.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen definiert.Advantageous developments of the invention are defined in the subclaims.

Die Erfindung wird an Hand des in der Zeichnung dargestellten Ausführungsbeispiels beschrieben und erläutert.The invention will be described and explained with reference to the embodiment shown in the drawing.

Es zeigt

Fig. 1
eine Ansicht eines ebenen Flächentragwerkelements, das in einer Richtung vorgespannt ist
Fig. 2
einen Schnitt längs der Linie II-II in Fig. 1
Fig. 3
eine Ansicht eines von geraden Rändern begrenzten Flächentrag- werkelements mit der Form eines hyperbolischen Paraboloids
Fig. 4
einen Schnitt längs der Linie IV-IV in Fig. 3
Fig. 5
ein ebenes Flächentragwerk, das aus mehreren einzelnen Flächentragwerk- elementen besteht, die mittels Vorspannung miteinander verbunden sind.
Fig. 6
einen Schnitt längs der Linie VI-VI in Fig. 5
Fig. 7
einen Schnitt längs der Linie VII-VII in Fig. 5
Fig. 8
ein zweifach räumlich gekrümmtes Flächentragwerk mit der Form eines hyperbolischen Paraboloids, das aus mehreren einzelnen Flächentragwerk- elementen besteht, die mittels Vorspannung miteinander verbunden sind
Fig. 9
ein zweifach räumlich gekrümmtes Flächentragwerk mit der Form eines Hyperboloids, das aus mehreren einzelnen Flächentragwerkelementen besteht, die mittels Vorspannung miteinander verbunden sind
Fig. 10
einen Schnitt längs der Linie X-X in Fig. 9
Fig. 11
die auf einer geeigneten Unterkonstruktion angeordneten Flächentragwerke für den untersten Ring des Hyperboloids
Fig. 12
die Flächentragwerkelemente des ersten und zweiten Rings des Hyperboloid
Fig. 13
die Flächentragwerkelemente der ersten drei Ringe des Hyperboloid
It shows
Fig. 1
a view of a planar sheet-metal structural element, which is biased in one direction
Fig. 2
a section along the line II-II in Fig. 1
Fig. 3
a view of a limited area of straight edges Flächenungs- basement with the shape of a hyperbolic paraboloid
Fig. 4
a section along the line IV-IV in Fig. 3
Fig. 5
a flat tensile structure, which consists of several individual Zächentragwerk- elements which are interconnected by means of bias.
Fig. 6
a section along the line VI-VI in Fig. 5
Fig. 7
a section along the line VII-VII in Fig. 5
Fig. 8
a two-dimensionally curved tensile structure with the shape of a hyperbolic paraboloid, which consists of several individual elements that are connected by prestressing
Fig. 9
a two-dimensionally curved surface structure with the shape of a hyperboloid, which consists of a plurality of individual surface structure elements which are interconnected by means of prestressing
Fig. 10
a section along the line XX in Fig. 9
Fig. 11
the arranged on a suitable substructure surface structures for the bottom ring of hyperboloid
Fig. 12
the tensile elements of the first and second ring of the hyperboloid
Fig. 13
the plane structural elements of the first three rings of the hyperboloid

Im Folgenden wird zunächst auf die Fig. 1 und 2 Bezug genommen.The following is first on the Fig. 1 and 2 Referenced.

Eine Ansicht eines erfindungsgemäßen Flächentragwerkelements 10 ist in Fig. 1 dargestellt. Die dargestellte rechteckige Ausführungsform ist eben und in eine Richtung mit Spanngliedern 20 vorgespannt. Der Rand 30 des Flächentragwerkelements 10 besteht aus geraden Abschnitten, die normal zur Plattenmittelebene verlaufen.A view of a surface structure element 10 according to the invention is shown in FIG Fig. 1 shown. The illustrated rectangular embodiment is planar and biased in one direction with tendons 20 . The edge 30 of the tensile structure element 10 consists of straight sections which are normal to the plate center plane.

Ein Detail mit einem Schnitt durch das Flächentragwerkelement 10 und das Spannglied 20 zeigt die Fig. 2 . Das Spannglied 20 besteht aus einem Zugglied 22, einem Hüllrohr 24 und einer Verankerung 28. A detail with a section through the surface structure element 10 and the tendon 20 shows the Fig. 2 , The tendon 20 consists of a tension member 22, a cladding tube 24 and an anchor 28th

Geeignete Werkstoffe für das Zugglied 22 sind beispielsweise Faserverbundwerkstoffe aus Kohlenstoff-, Aramid- oder Glasfasern in Verbindung mit einer Matrix aus Epoxidharz und nicht rostende Stähle. Für Faserverbundwerkstoffe existieren geeignete Verankerungssysteme (beschrieben z.B. in der DE 100 10 564 ). Drähte, Litzen und Stäbe aus nicht rostendem Stahl können mit den aus dem Spannbetonbau bekannten Systemen verankert werden, wobei für die hier vorliegenden kleinen Querschnittsabmessungen insbesondere Hülsenverankerungen für Litzen und Drähte sowie Muttern für Gewindestäbe geeignet sind. Die Zugfestigkeiten der Faserverbundwerkstoffe liegen derzeit zwischen 2000 MPa und 5000 MPa, Stähle in nicht rostender Qualität sind mit Zugfestigkeiten bis 1800 MPa erhältlich.Suitable materials for the tension member 22 are, for example, fiber composites of carbon, aramid or glass fibers in conjunction with a matrix of epoxy resin and stainless steels. For fiber composite materials, there are suitable anchoring systems (described, for example, in US Pat DE 100 10 564 ). Wires, strands and rods made of stainless steel can be anchored to the systems known from prestressed concrete construction, with sleeve anchorages for strands and wires and nuts for threaded rods being particularly suitable for the small cross-sectional dimensions present here. The tensile strengths of the fiber composites are currently between 2000 MPa and 5000 MPa, stainless steels are available with tensile strengths up to 1800 MPa.

In Fig. 2 ist ein Hohlraum 26 dargestellt, der im Beton des Flächentragwerkelements 10 durch das Einlegen des Hüllrohrs 24 vor oder während des Betoniervorganges geformt wird. In diesem Hohlraum 26 wird vor oder nach dem Betonieren ein Zugglied 22 eingeführt. Dadurch wird der Hohlraum 26 verkleinert. Nach dem Erhärten des Betons wird das Zugglied 22 gegen den erhärteten Beton, üblicherweise mit hydraulischen Pressen, vorgespannt. Wird der verbleibende Hohlraum 26 anschließend mit einem Zementmörtel oder einem Epoxidharz verpresst, liegt eine Vorspannung mit nachträglichem Verbund vor.In Fig. 2 a cavity 26 is shown, which is formed in the concrete of the surface structure element 10 by the insertion of the cladding tube 24 before or during the concreting process. In this cavity 26 , a tension member 22 is introduced before or after concreting. As a result, the cavity 26 is reduced. After hardening of the concrete, the tension member 22 is biased against the hardened concrete, usually with hydraulic presses. Will the remaining Cavity 26 then pressed with a cement mortar or an epoxy resin, there is a pre-stress with subsequent bond.

Spannglieder ohne Verbund können nachträglich wieder entspannt und entfernt werden. Damit ist die Herstellung von demontierbaren Tragwerken möglich.Tendons without composite can be subsequently relaxed and removed again. Thus, the production of demountable structures is possible.

Nimmt man an, dass das Flächentragwerkelement 10 in Fig. 1 eine Dicke von 13 mm aufweist, die runden Zugglieder 22 einen Durchmesser von 4 mm und einen Abstand von 200 mm aufweisen und mit 1000 MPa vorgespannt sind, so entsteht in einem mittleren Bereich des Flächeritragwerkelements 10, der nicht durch Spannungsspitzen an der Verankerung beeinflusst ist, eine Spannung von Spannkraft (Fläche mal Spannung = 12,6 mm2 mal 1000 Mpa = 12570 N) durch Fläche (200 mm mal 13 mm = 2600 mm2) gleich 4,8 MPa. Bei einer Halbierung des gegenseitigen Abstandes der Spannglieder 20 von 200 mm auf 100 mm würde die Druckvorspannung des Betons auf den doppelten Wert (9,7 MPa) ansteigen.Assuming that the surface structure element 10 in Fig. 1 has a thickness of 13 mm, the round tension members 22 have a diameter of 4 mm and a distance of 200 mm and are prestressed with 1000 MPa, so arises in a central region of the roof truss member 10 which is not affected by stress peaks at the anchorage, a tension of tension force (area times tension = 12.6 mm 2 times 1000 Mpa = 12570 N) by area (200 mm by 13 mm = 2600 mm 2 ) equal to 4.8 MPa. By halving the mutual distance of the tendons 20 from 200 mm to 100 mm, the compressive prestressing of the concrete would rise to twice the value (9.7 MPa).

Die Spannung an der Verankerung 28 beträgt bei angenommenen Abmessungen der Ankerplatte von 13 mm mal 30 mm 12570 N durch 390 mm2 gleich 32,2 MPa, was von einem textilbewehrten und/oder faserbewehrten Beton problemlos aufnehmbar ist. Einaxiale Druckfestigkeiten von textilbewehrtem und/oder faserbewehrtem Beton liegen für 28 Tage alte Probekörper zwischen 40 und 160 MPa.The tension on the anchor 28 is assumed dimensions of the anchor plate of 13 mm by 30 mm 12570 N by 390 mm 2 equal to 32.2 MPa, which is easily absorbed by a textile-reinforced and / or fiber-reinforced concrete. Uniaxial compressive strengths of textile-reinforced and / or fiber-reinforced concrete are between 40 and 160 MPa for 28-day-old test specimens.

Eine Ansicht einer zweiten Ausführungsform des erfindungsgemäßen Flächentragwerkelements 10 ist in Fig. 3 dargestellt. Das Flächentragwerkelement 10 weist gerade Ränder 30 auf und hat die Form eines hyperbolischen Paraboloids 62. Das Flächentragwerkelement 10 wird mit zwei Spanngliedern 20 vorgespannt, die annähernd orthogonal zueinander angeordnet sind. In der Fig. 3 und im zugehörigen Schnitt in der Fig. 4 ist ein Zustand nach dem Erhärten des Betons und vor dem Einführen der Zugglieder 22 dargestellt. Durch die Hüllrohre 24 werden Hohlräume 26 zum späteren Verbinden von mehreren derartigen Flächentragwerkelementen 10 mittels Vorspannung geschaffen.A view of a second embodiment of the surface structure element 10 according to the invention is shown in FIG Fig. 3 shown. The surface support element 10 has straight edges 30 and has the shape of a hyperbolic paraboloid 62. The surface support element 10 is prestressed with two tendons 20 , which are arranged approximately orthogonal to one another. In the Fig. 3 and in the associated section in the Fig. 4 is a state after the hardening of the concrete and before the insertion of the tension members 22 shown. By means of the cladding tubes 24 , cavities 26 are created for the later connection of a plurality of such surface-area supporting elements 10 by means of prestressing.

Ein ebenes Flächentragwerk 50, das erfindungsgemäß aus mehreren Flächentragwerkelementen 10 besteht, die mittels Spanngliedern 20 miteinander verbunden sind, ist in Fig. 5 und in Detailausschnitten in Fig. 6 und Fig. 7 dargestellt. Rechteckige, ebene Flächentragwerkelemente 10 mit Spanngliedern 20, die orthogonal zueinander angeordnet sind, werden mittels Vorspannung zu einem ebenen Flächentragwerk 50 zusammengefügt. Der Übersichtlichkeit halber sind in Fig. 5 nur einige der Spannglieder 20 eingezeichnet. Das ebene Flächentragwerk 50 könnte als Fassadenplatte oder als Lärmschutzwand eingesetzt werden. Die Spannglieder 22 verlaufen in Hüllrohren 24 und sind am Rand 30 des ebenen Flächentragwerks 50 mit geeigneten Verankerungen 28 verankert.A flat tensile structure 50, which according to the invention consists of a plurality of surface structural elements 10 , which by means of tendons 20 with each other are connected in Fig. 5 and in detail in Fig. 6 and Fig. 7 shown. Rectangular, planar surface-structural elements 10 with tendons 20, which are arranged orthogonal to each other, are joined together by means of prestressing to form a planar surface structure 50 . For the sake of clarity, in Fig. 5 only some of the tendons 20 located . The flat surface structure 50 could be used as a facade panel or noise barrier. The tendons 22 extend in cladding tubes 24 and are anchored at the edge 30 of the flat surface structure 50 with suitable anchorages 28 .

Der Rand 30 des ebenen Flächentragwerks 50 weist gemäß Fig. 6 eine Verdickung 32 zur besseren Aufnahme der Verankerungen 28 der Spannglieder 20 auf. Zwischen den einzelnen Flächentragwerkelementen 10 ist ein Streifen aus weichem Material 34, beispielsweise aus Epoxidharz oder extrudiertem Polystrol, das auf Grund eines geringen Elastizitätsmoduls und/oder auf Grund seiner ausgeprägten Kriecheigenschaften zu einer Reduzierung der Kantenpressungen führt, die beim Anspannen der Spannglieder 20, die die an den Rändern 30 der Flächentragwerkelemente 10 in Folge von Ungenauigkeiten bei der Herstellung der Flächentragwerkelemente 10 auftretenden Spannungsspitzen abbauen.The edge 30 of the planar surface structure 50 has according to Fig. 6 a thickening 32 for better absorption of the anchors 28 of the tendons 20 . Between the individual surface structural elements 10 is a strip of soft material 34, for example of epoxy resin or extruded polystyrene, which leads due to a low modulus of elasticity and / or due to its pronounced creep to a reduction of the edge pressures, the tensioning of the tendons 20, the at the edges 30 of the surface structure elements 10 due to inaccuracies in the production of the surface structure elements 10 occurring stress peaks decrease.

Die Fig. 8 zeigt ein räumlich gekrümmtes Flächentragwerk 60 in der Form eines hyperbolischen Paraboloids 62 mit geraden Rändern 30. Zwei der vier Ränder 30 sind unverschieblich gestützt. Das hyperbolische Paraboloid 62, das als Veranstaltungshalle oder als Überdachung einer Ausstellungsfläche verwendet werden könnte, ist aus einzelnen Flächentragwerkelementen 10 zusammengesetzt, die ebenfalls die Form von hyperbolischen Paraboloiden 62 aufweisen und bereits in der Fig. 3 und Fig. 4 beschrieben wurden. Durch das Anspannen der Spannglieder 20 werden die einzelnen Flächentragwerkelemente 10 zu einem zweifach räumlich gekrümmten Flächentragwerk 60, das in seinem Tragverhalten einer monolithischen Struktur entspricht, verbunden.The Fig. 8 Figure 3 shows a spatially-curved surface structure 60 in the form of a hyperbolic paraboloid 62 with straight edges 30. Two of the four edges 30 are non-slidably supported. The hyperbolic paraboloid 62, which could be used as an event hall or as a roof of an exhibition area, is composed of individual area-structural elements 10 , which likewise have the shape of hyperbolic paraboloid 62 and are already in the FIG. 3 and FIG. 4 have been described. By tensing the tendons 20 , the individual surface structure elements 10 are connected to a two-dimensionally curved surface structure 60, which corresponds in its carrying behavior of a monolithic structure.

Die Fig. 9 zeigt ein räumlich gekrümmtes Flächentragwerk 60 in der .Form eines Hyperboloids 64. Entlang des Randes 30 ist das Hyperboloid 64 unverschieblich gestützt. Die einzelnen Flächentragwerkelemente 10 bzw. Scharen 11, 12, 13 von Flächentragwerkelementen 10 werden mit Spanngliedern 20 kraftschlüssig miteinander verbunden. Die der Übersichtlichkeit halber in Fig. 9 nicht dargestellten Spannglieder 20 befinden sich erfindungsgemäß in den Flächentragwerkelementen 10 und werden benützt, um die einzelnen Flächentragwerkelemente 10 miteinander zu verbinden. Die einzelnen Flächentragwerkelemente 10 können exakt nach der Form des zu bauenden Hyperboloids 64 geformt sein oder diese Form nur annähern. Werden zum Beispiel ebene Flächentragwerkelemente 10 zum Bau des Hyperboloids 64 verwendet, so entstehen entlang der Ränder 30 Winkel 36 zwischen Rand 30 und der Mittelebene des Flächentragwerkelements 10 die von 90° verschieden sind. Das Detail in Fig. 10 zeigt eine derartige Situation bei der zwei Flächentragwerkelemente 10 entlang eines Randes 30 unter Winkeln 36 aufeinander treffen, die größer sind als ein rechter Winkel.The Fig. 9 shows a spatially curved surface structure 60 in the form of a hyperboloid 64. Along the edge 30 , the hyperboloid 64 is non-displaceably supported. The individual surface structure elements 10 or flocks 11, 12, 13 of surface structure elements 10 are frictionally with tendons 20 connected with each other. The sake of clarity in Fig. 9 Tensioning members 20 , not shown, according to the invention are located in the surface structure elements 10 and are used to connect the individual surface structure elements 10 together. The individual surface support elements 10 can be shaped exactly according to the shape of the hyperboloid 64 to be built or only approximate this shape. If, for example, plane surface structural elements 10 are used to construct the hyperboloid 64 , angles 36 are formed along the edges 30 between the edge 30 and the center plane of the surface structural element 10 which are different from 90 °. The detail in Fig. 10 shows such a situation in which two tensile structure elements 10 meet along an edge 30 at angles 36 which are greater than a right angle.

Ein Verfahren zum Bau von zweifach räumlich gekrümmten Flächentragwerken 60 aus Flächentragwerkelementen 10 ist in den Figs. 11, 12 und 13 dargestellt. Gemäß Fig. 11 wird eine erste Schar 11 von Flächentragwerkelementen 10 auf einer geeigneten Unterstützung entlang eines Randes 30 fixiert.A method for the construction of two-dimensionally curved surface structures 60 of surface-tensioning elements 10 is in the Figs. 11, 12 and 13 shown. According to Fig. 11 For example, a first group 11 of surface supporting elements 10 is fixed on a suitable support along an edge 30 .

Gemäß Fig. 12 wird eine zweite Schar 12 von Flächentragwerkelementen 10 mit Spanngliedern 20 mit der ersten Schar 11 kraftschlüssig verbunden. Der Übersichtlichkeit halber ist in Fig.12 und Fig. 13 nur jeweils ein Spannglied 20 dargestellt.According to Fig. 12 is a second family 12 of tensile structure elements 10 with tendons 20 with the first share 11 positively connected. For the sake of clarity, is in Fig. 12 and Fig. 13 only one clamping member 20 shown.

Gemäß Fig. 13 wird anschließend eine dritte Schar 13 von Flächentragwerkelementen 10 mit Spanngliedern 20 mit der ersten Schar 11 und der zweiten Schar 12 verbunden. Bei diesem Vorgang sind die Spannglieder 20 entweder zu koppeln oder ein Teil der im zweiten Verfahrensschritt verlegten Spannglieder 20 ist zu entspannen und durch längere Spannglieder 20 zu ersetzen. Das Vorhalten von Hohlräumen 26 für alle später anzufügenden Flächentragwerkelemente 10 in den zuerst verlegten Scharen 11 und 12 gemäß dem Vorgehen bei dem Freivorbauverfahren im Brückenbau wäre auch möglich.According to Fig. 13 Subsequently, a third group 13 of surface structure elements 10 with tendons 20 with the first blade 11 and the second share 1 2 is connected. In this process, the tendons 20 are either to be coupled or a part of the laid in the second step clamping members 20 is to be relaxed and replaced by longer tendons 20 . The provision of cavities 26 for all later to be added tensile structure elements 10 in the first installed flocks 11 and 12 according to the procedure in the cantilever method in bridge construction would also be possible.

Durch das Anfügen von weiteren Flächentragwerkelementen 10, was in der Zeichnung nicht mehr dargestellt ist, wird schließlich die Schale in der Form eines Hyperboloids 64 fertig gestellt.By attaching further surface support elements 10, which is not shown in the drawing, finally, the shell in the form of a hyperboloid 64 is completed.

Günstig bei diesem Verfahren ist, dass die Verwendung eines Lehrgerüsts nicht erforderlich ist, weil das Gewicht der angefügten Flächentragwerkelemente 10 vorwiegend über Membranspannungen in dem vorgespannten räumlich gekrümmten Flächentragwerk 60, das durch die bereits verlegten Flächentragwerkelemente 10 gebildet wird, abgetragen wird.Is low when this method is that the use of a falsework is not necessary, because the weight of the appended Tensile structure elements 10 is predominantly removed via membrane tensions in the biased spatially curved surface structure 60, which is formed by the already installed surface structure elements 10th

In den Beispielen wurde die Herstellung eines ebenen Flächentragwerks 50, eines hyperbolischen Paraboloids 62 und eines Hyperboloids 64 beschrieben Die erfindungsgemäßen Flächentragwerkelemente 10 jedoch können auch für andere hier nicht gezeigte Schalentragwerke beliebiger Form verwendet werden.In the examples, the preparation of a flat tensile structure 50, a hyperbolic paraboloid 62 and a hyperboloid 64 has been described. The surface support elements 10 according to the invention, however, can also be used for other shell formwork of any shape, not shown here.

In den gezeigten Beispielen wurden die Spannglieder 20 an den Rändern 30 der Flächentragwerkelemente 10 verankert. Weitere Möglichkeiten wie z.B. das Verankern von Spanngliedern 20 an Lisenen oder das Koppeln von Spanngliedern 20, die bewährte Techniken des Spannbetonbaus sind, können zu Vorspannung des erfindungsgemäßen Flächentragwerkelements 10 sinngemäß eingesetzt werden.In the examples shown, the tendons 20 were anchored to the edges 30 of the surface structure elements 10 . Other possibilities, such as the anchoring of tendons 20 to pilasters or the coupling of tendons 20, which are proven techniques of prestressed concrete, can be used mutatis mutandis to bias the surface structure member 10 of the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
FlächentragwerkelementTensile structure element
1111
erste Schar von Flächentragwerkelementenfirst set of surface structural elements
1212
zweite Schar von Flächentragwerkelementensecond group of surface structural elements
1313
dritte Schar von Flächentragwerkelemententhird group of surface structural elements
2020
Spanngliedtendon
2222
Zuggliedtension member
2424
Hüllrohrcladding tube
2626
Hohlraumcavity
2828
Verankerunganchoring
3030
Randedge
3232
Verdickungthickening
3434
Streifen aus weichem MaterialStrip of soft material
3636
Winkel zwischen dem Rand und der Mittelebene des FlächentragwerkelementsAngle between the edge and the median plane of the surface structure element
5050
ebenes Flächentragwerkflat tensile structure
6060
räumlich gekrümmtes Flächentragwerkspatially curved surface structure
6262
hyperbolisches Paraboloidhyperbolic paraboloid
6464
Hyperboloidhyperboloid

Claims (16)

  1. A plane load-bearing element (10) as a prefabricated element made of fibre concrete or textile-reinforced concrete, wherein the plane load-bearing element (10) has a thickness of between 8 mm and 36 mm and is prestressed with prestressing elements (20) without bond or with prestressing elements (20) with post-tensioning, characterized in that the respective prestressing elements (20) comprise a jacket tube (24) with an inserted tension member (22) and the bond can be produced by grouting the hollow space (26) remaining between the jacket tube (24) and the tension member (22).
  2. A plane load-bearing element according to claim 1, characterized in that the plane load-bearing element (10) preferably has a thickness of between 10 mm and 22 mm.
  3. A plane load-bearing element according to claim 1 or 2, characterized in that the tension members (22) for prestressing the plane load-bearing element (10) are made of a composite fibre material.
  4. A plane load-bearing element according to claim 1 or 2, characterized in that the tension members (22) are made of stainless high-grade steel.
  5. A plane load-bearing element according to claims 1 to 4, characterized in that the plane load-bearing element (10) has no curvature.
  6. A plane load-bearing element according to claims 1 to 4, characterized in that the plane load-bearing element (10) has a single curvature.
  7. A plane load-bearing element according to claims 1 to 4, characterized in that the plane load-bearing element (10) has a double curvature.
  8. A plane load-bearing element according to claims 1 to 7, characterized in that, on at least one edge (30), the plane load-bearing element (10) has an enlargement (32) for receiving the anchors (28) of the prestressing elements (20).
  9. A plane load-bearing element according to claims 1 to 8, characterized in that at least one edge (30) of the plane load-bearing element (10) has an angle from the centre plane of the plane load-bearing element (10) which is different from 90°.
  10. A plane load-bearing element according to claims 1 to 9, characterized in that the jacket tubes (24) for receiving the prestressing elements (22) are inserted already during the manufacture of the plane load-bearing elements (10).
  11. A plane load-bearing element according to claims 1 to 10, characterized in that suitable anchors (28) for anchoring the tension members (24) are inserted on at least one edge (30) of the plane load-bearing element (10).
  12. A plane load-bearing element according to claims 1 to 11, characterized in that prestressing elements (22) are laid in the plane load-bearing element (10) which are arranged approximately parallel to each other.
  13. A plane load-bearing element according to claims 1 to 11, characterized in that prestressing elements (22) are laid in the plane load-bearing element (10) which are arranged approximately orthogonal to each other.
  14. A plane load-bearing element according to claims 1 to 13, characterized in that at least two plane load-bearing elements (10) are positively linked with prestressing elements (22).
  15. A plane load-bearing element according to claims 1 to 14, characterized in that strips of a soft material or a material capable of creep (34) are arranged between the edges of the plane load-bearing elements (10).
  16. A process for manufacturing a double-curved shell (60) with plane load-bearing elements (10) according to claims 1 to 15, characterized in that
    a) jacket tubes (24) are laid in a straight or curved fashion in plane load-bearing elements (10) close to the centre plane so that hollow spaces (26) of approximately circular cross-sections are present in the plane load-bearing elements (10) and that each hollow space (26) comprises a beginning located at an edge (30) of the plane load-bearing element (10) and an end located at another edge (30),
    b) the second plane load-bearing element (10) is connected to the first plane load-bearing element (10) by means of at least one prestressed tension member (22) which is guided in a hollow space (26) and anchored to an edge (30) of the first plane load-bearing element (10) and an edge (30) of the second plane load-bearing element (10),
    c) further plane load-bearing elements (10) are attached which, in each case, are interconnected with at least one prestressed tension member (22) arranged in the hollow spaces (26) of at least two plane load-bearing elements (10) and anchored to the edges (30),
    d) that the double-curved shell (60) formed by the assembly of the plane load-bearing elements (10) is able to carry the weight of a further plane load-bearing element (10) to be attached primarily via membrane tensions in the double-curved shell (60).
EP06760824A 2005-08-16 2006-08-09 Prestressed planar load-bearing structure made of fiber concrete and textile reinforced concrete Not-in-force EP1915487B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005038541A DE102005038541A1 (en) 2005-08-16 2005-08-16 Prestressed tensile structures made of fiber concrete and textile-reinforced concrete
PCT/AT2006/000337 WO2007019593A1 (en) 2005-08-16 2006-08-09 Prestressed planar load-bearing structure made of fiber concrete and textile reinforced concrete

Publications (2)

Publication Number Publication Date
EP1915487A1 EP1915487A1 (en) 2008-04-30
EP1915487B1 true EP1915487B1 (en) 2010-06-02

Family

ID=37075738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06760824A Not-in-force EP1915487B1 (en) 2005-08-16 2006-08-09 Prestressed planar load-bearing structure made of fiber concrete and textile reinforced concrete

Country Status (4)

Country Link
EP (1) EP1915487B1 (en)
AT (1) ATE470028T1 (en)
DE (2) DE102005038541A1 (en)
WO (1) WO2007019593A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUD20080074A1 (en) * 2008-04-04 2009-10-05 Riccardo Valente PRECOMPRESSED CONCRETE ELEMENT, SUITABLE FOR REALIZING BOTH EXTERNAL WALKING SURFACES, BETWEEN WALLS, AND ITS PRODUCTION PROCEDURE
WO2009130680A1 (en) * 2008-04-23 2009-10-29 Bateman Projects Limited A conveyor belt support
AT506902B1 (en) * 2008-05-19 2011-03-15 Univ Wien Tech METHOD FOR PRODUCING A BOWL
CN103132651A (en) * 2013-01-15 2013-06-05 盐城工学院 Textile reinforced concrete (TRC) tube restraining reinforced concrete column
CZ307206B6 (en) * 2016-09-23 2018-03-21 České vysoké učení technické v Praze, Fakulta stavební, Katedra konstrukcí pozemních staveb A facade panel of high-performance concrete and a method of its production
DK3418465T3 (en) 2017-06-23 2022-05-30 Solidian Gmbh PROCEDURE FOR MANUFACTURE OF A TEXTILE-ARMED BUILDING MATERIAL COMPONENT AND USE OF A CLAMPING DEVICE THEREOF
MX2022011467A (en) * 2020-03-24 2022-10-31 Bekaert Sa Nv Post-tensioned concrete slab with fibres.
CN114753655B (en) * 2022-05-13 2023-01-03 河海大学 Bidirectional simultaneous tensioning multi-layer prestressed fiber cloth reinforcing device and reinforcing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL116240B1 (en) * 1976-12-22 1981-05-30 Wojewodzka Spoldzielnia Mieszk Prestressed laminar material
DE3337268B4 (en) * 1983-10-13 2005-02-17 Matériaux de Construction International Tension belt made of a hydraulically setting compound
FR2572110B1 (en) * 1984-10-18 1989-11-24 Eternit Financiere PROFILED LOW THICKNESS COVER PLATE
DE19512627A1 (en) * 1995-04-05 1996-10-10 Krueger & Schuette Kerapid Panel or plate used in building
DE10010564C1 (en) * 2000-03-03 2001-07-05 Johann Kollegger Anchoring for pretensioned or loaded tractive component of fiber compound material transmits component tractive forcce to anchor bush via anchor body of hardened cast material

Also Published As

Publication number Publication date
WO2007019593A1 (en) 2007-02-22
EP1915487A1 (en) 2008-04-30
ATE470028T1 (en) 2010-06-15
DE502006007115D1 (en) 2010-07-15
DE102005038541A1 (en) 2007-03-01

Similar Documents

Publication Publication Date Title
EP1915487B1 (en) Prestressed planar load-bearing structure made of fiber concrete and textile reinforced concrete
EP2914790B1 (en) Method for producing a tower construction from reinforced concrete
AT519189B1 (en) Foundation for a windmill
EP3191657B1 (en) Lost formwork in high strength or ultra high strength concrete
Tarque et al. Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls
EP1248889B1 (en) Slab reinforcement and its method of manufacturing
EP2824249A1 (en) Thermally insulating component
EP0621381A1 (en) Prestressed reinforcement element
DE202005019077U1 (en) Reinforcement element for structures made of reinforced concrete, prestressed concrete or the like.
EP1482101A1 (en) Wall element, method for the production of wall elements and connecting means for a wall element
DE102016124226A1 (en) Lattice girder for concrete structures
DE102004026871A1 (en) Composite beam, has steel beam arranged in Z-axis of composite beam, steel concrete beam covering steel beam, and head dowel pin that connects steel concrete beam and steel beam to one another
AT158230B (en) Beams made of pressure-resistant material for absorbing tensile forces, in particular for supporting ceilings.
CN106760191B (en) A kind of prestressed large-span concrete beam of segmentation application
AT520519B1 (en) Support ceiling node for a reinforced concrete floor and two concrete columns in the storey
DE908786C (en) Pre-stressed structural element, suitable as reinforcement
AT520529B1 (en) Support ceiling node for a reinforced concrete floor and two concrete columns in the storey
EP3728756B1 (en) Column-ceiling node for a reinforced concrete ceiling and two concrete columns in storey construction
DE975466C (en) Prestressed component and process for its manufacture
DE822556C (en) Process for the production of girder bridges from reinforced concrete
CH281357A (en) Process for the production of wide-span bridge structures made of reinforced concrete.
CH235247A (en) Process for the production of a prestressed reinforced concrete component.
DE102019213580A1 (en) Method for producing a composite component and composite component
DE1459969A1 (en) Reinforced ceiling slab which, as a prefabricated component of a floor slab, also serves as a formwork sheet
DE2115846A1 (en) Support elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007115

Country of ref document: DE

Date of ref document: 20100715

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100903

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

BERE Be: lapsed

Owner name: KOLLEGGER, JOHANN

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101002

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

26N No opposition filed

Effective date: 20110303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007115

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101203

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100602

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 470028

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100913