EP1913238A2 - Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle - Google Patents

Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle

Info

Publication number
EP1913238A2
EP1913238A2 EP06792578A EP06792578A EP1913238A2 EP 1913238 A2 EP1913238 A2 EP 1913238A2 EP 06792578 A EP06792578 A EP 06792578A EP 06792578 A EP06792578 A EP 06792578A EP 1913238 A2 EP1913238 A2 EP 1913238A2
Authority
EP
European Patent Office
Prior art keywords
air
nitrogen
gas
gas turbine
air separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06792578A
Other languages
German (de)
French (fr)
Inventor
Werner GÜNSTER
Erik Wolf
Gerhard Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06792578A priority Critical patent/EP1913238A2/en
Publication of EP1913238A2 publication Critical patent/EP1913238A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
    • F25J2260/44Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery using nitrogen for cooling purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the invention relates to a method for increasing the efficiency of a combined gas and steam power plant or
  • turbine power plant with integrated fuel gasification comprising a gas turbine compressor and a
  • Air separation plant having a predetermined operating pressure.
  • the so-called IGCC power plants in “IGCC” is an abbreviation for "Integrated Gasification Combined Cycle"
  • the combined cycle power plant has an integrated fuel gasification, by means of which a liquid or solid Fuel - such as hard coal - is converted in a gasifier into a synthesis gas, which is then burned in a gas turbine. Before the combustion is carried out usually a purification of the synthesis gas. Overall, in this way pollutants are separated before combustion or not even arise.
  • IGCC power plants have air separation plants in which the Ambient air is generated by fractional distillation in addition to the required oxygen, especially nitrogen.
  • the synthesis gas must be cooled before further treatment. This creates a steam that contributes to power generation in the steam turbine of the IGCC power plant.
  • filters After the gas has cooled down, filters initially retain ash particles, and carbon dioxide can then be removed if necessary.
  • Other pollutants such as sulfur compounds or heavy metals are also bound by chemical and physical processes. This realizes the necessary fuel purity for the operation of the gas turbines and low emissions of the IGCC power plant.
  • the synthesis gas is in front of the combustion chamber of the gas turbine with nitrogen from the air separation plant and / or with
  • the steam streams from the raw gas and exhaust gas cooling are combined and fed together to the steam turbine. After expansion in the steam turbine, the steam is condensed via a condenser and the condensate is fed back into the water or steam cycle via the feed water tank.
  • the gas and steam turbines (of a combined cycle power plant or an IGCC power plant) are coupled to a generator in which the rotational work of the turbines is converted into electrical energy.
  • GUD power plants or IGCC power plants are constantly being further developed. This is among other things the goal pursued, the efficiency or the performance of these power plants to increase steadily.
  • the invention has for its object to provide a method for increasing the efficiency of a combined cycle power plant in the form of an IGCC power plant, with which the efficiency compared to known methods can be significantly increased again.
  • This object is achieved with the aforementioned method for increasing the efficiency of a combined gas and steam power plant with integrated fuel gasification (IGCC power plant), which has a gas turbine compressor and an air separation plant with a predetermined operating pressure, in the compressed air from the Gas turbine compressor is taken at a pressure level which is adapted to the operating pressure of the air separation plant in which the extracted air is then fed to the air separation plant, in which the air is decomposed into its individual components, in particular oxygen and nitrogen, the nitrogen produced in the air separation plant the air separation plant is removed, and at least a portion of the withdrawn amount of nitrogen is used as the cooling medium.
  • IGCC power plant integrated fuel gasification
  • compressed air in the gas turbine compressor which has a pressure level which is adapted to the operating pressure of the air separation plant, fed to the air separation plant.
  • This already compressed air does not need to be compressed as the rest of the air to adapt to the operating pressure of the air separation plant, which is conveyed via a compressor from the environment in the air separation plant or compressed in the air separation plant.
  • part or even all of the air to be supplied to the air separation plant can be removed from the gas turbine compressor. The power and efficiency loss associated with the air separation is thus significantly reduced.
  • nitrogen is produced from the air by fractional distillation in addition to the oxygen required for the gasification of the fuels.
  • the nitrogen produced in the air separation plant which has a low temperature due to the fractional distillation (cryogenic air separation) carried out in the air separation plant, according to the invention removed from the air separation plant, wherein at least a portion of the withdrawn amount of nitrogen is used as a cooling medium at the IGCC power plant to increase its efficiency.
  • a cooling medium is finally provided by means of the method according to the invention, which can be produced without significant losses for the efficiency of the IGCC power plant.
  • This so provided according to the invention cooling medium can be used to realize cooling processes that track an increase in the efficiency or the performance of the IGCC power plant.
  • the inventive method is particularly advantageous when a comparatively low operating pressure of the air separation plant and consequently also a low nitrogen discharge pressure is present, in which an energy conversion by expansion of the nitrogen is not useful.
  • the aforementioned object is inventively further with a method for increasing the efficiency of a combined gas and steam power plant with integrated
  • Fuel gasification comprising a gas turbine compressor and an air separation plant having a predetermined operating pressure is achieved in the compressed air the gas turbine compressor is taken at a pressure level which is adapted to the operating pressure of the air separation plant, the extracted air is then fed to the air separation plant, in which the air is decomposed into its individual components, in particular oxygen and nitrogen, the nitrogen produced in the air separation plant Air separation plant is removed, and at least a portion of the withdrawn amount of nitrogen is heated and after heating in another turbine of the combined gas and steam power plant with integrated
  • Fuel gasification is relaxed to increase its efficiency.
  • the resulting in the relaxation and recoverable rotation work improves the efficiency of the system.
  • this method is particularly advantageous when the operating pressure of the air separation plant and thus the nitrogen discharge pressure have a mean pressure level. Then one is
  • the nitrogen can be used as a cooling medium according to the method described above.
  • thermal energy of the extracted compressed air is transferred via a heat exchanger to the part of the amount of nitrogen produced.
  • the part of the amount of nitrogen produced as a coolant is introduced into the gas turbine compressor to compressed air in the gas turbine compressor by mixing with the part of the amount of nitrogen produced to cool.
  • the cooling of the compressed air in the gas turbine compressor according to the invention can thus significantly increase the efficiency of the IGCC power plant.
  • the part of the withdrawn amount of nitrogen used as coolant is mixed with air sucked in by the gas turbine compressor in order to cool the intake air.
  • the air to be compressed in the gas turbine compressor can already be cooled before compression by means of the cold nitrogen.
  • heat energy of the sucked-in air can be transferred via a heat exchanger to the part of the withdrawn amount of nitrogen used as coolant in a practical further development of the method according to the invention for cooling the intake air.
  • the part of the withdrawn amount of nitrogen used as a coolant can alternatively be used as an additional cooling medium for a condenser of a steam turbine of the combined gas and steam power plant with integrated fuel gasification, whereby the expansion back pressure after the last steam turbine stage is further reduced and thus a performance gain and a Improvement of the steam turbine efficiency can be achieved.
  • Fig. 1 is a schematic representation of a combined
  • Fig. 2 is a schematic representation of the IGCC power plant of Figure 1, which illustrates the cooling of compressed air by means of nitrogen from an air separation plant, and
  • FIG. 3 is a schematic illustration of the IGCC power plant of FIG. 1 illustrating the increase in efficiency of the IGCC power plant by expansion of nitrogen from an air separation plant.
  • the IGCC power plant 10 shown schematically in FIG. 1 consists inter alia of a gas turbine 12 and a gas turbine compressor 14 upstream of the gas turbine 12.
  • Fuel such as hard coal, is gasified in a gasification unit 16 to produce a synthesis gas.
  • the oxygen required for the gasification is produced in an air separation plant 18 in which oxygen is produced from air by fractional distillation.
  • the air is usually taken from the environment and with
  • Gas turbine compressor and / or additional compressor introduced via a compressor 20 in the air separation unit 18 and compressed to the pressures required for the fractional distillation.
  • the synthesis gas produced in the gasification unit 16 is cooled before further treatment in a synthesis gas cooling unit 22 and then a gas cleaning unit 24th fed.
  • filters (not shown) first retain ash particles, and then, if required, carbon dioxide can also be withdrawn.
  • Other pollutants such as sulfur compounds or heavy metals are also bound by chemical and physical processes. Overall, the required for the operation of the gas turbine 12 fuel purity can be realized so.
  • the purified synthesis gas is then burned in a combustion chamber 26 and the resulting from the combustion with air
  • Working gas flows into the gas turbine 12, to which a generator (not shown) is coupled. After the working gas is expanded in the gas turbine 12, it is supplied to a heat recovery steam generator 28 to use the heat contained in the working gas for steam generation.
  • a generator not shown
  • Heat recovery steam generator 28 is integrated into a steam cycle 32, via which, inter alia, the steam generated during the cooling of the synthesis gas in the synthesis gas cooling unit 22 is supplied to the waste heat steam generator 28.
  • the steam generated by the cooling of the synthesis gas and the working gas is expanded in a steam turbine 34, which is coupled to a generator (not shown) for the provision of electrical energy.
  • the vapor is condensed via a condenser 36 and the condensate is fed via a feedwater pump 38 back into the heat recovery steam generator 28 and thus into the steam circuit 32.
  • the already compressed air needs to adapt to the operating pressure of the air separation plant 18 so not like the rest of the air via the compressor 20 from the environment in the Air separation plant is sucked and compressed in the air separation plant 18, to be compressed with concomitant reduction in efficiency or performance. It can be removed from the gas turbine compressor 14, a part or even the entire air to be supplied to the air separation unit 18 air.
  • the nitrogen produced in the air separation plant 18, which has a low temperature due to the fractional distillation carried out in the air separation plant 18, according to the invention removed from the air separation plant 18 and fed through a nitrogen compressor 42 the synthesis gas stream to suppress the formation of nitrogen oxides largely ,
  • a portion of the cold nitrogen to be supplied to the gas purification unit 24 or gas conditioning is branched between the air separation plant 18 and the gas purification unit 24 to be used as the cooling medium, with the aim of increasing the efficiency of the IGCC power plant by suitable cooling.
  • this can take place inter alia as shown schematically in FIG.
  • the amount of nitrogen provided as the cooling medium is either introduced directly into the gas turbine compressor 14 in order to cool compressed air in the gas turbine compressor 14 by mixing with the branched nitrogen.
  • the air to be compressed in the gas turbine compressor 14 may also be cooled by a heat exchanger (not shown) with which the air to be compressed is cooled against the branched-off cold nitrogen.
  • the branched nitrogen may also be mixed with the intake air to cool the intake air.
  • the air to be compressed in the gas turbine compressor 14 can be cooled already before compression by means of the cold branched nitrogen.
  • the intake air can be cooled by a heat exchanger (not shown) with which the intake air is cooled against the branched-off cold nitrogen.
  • Another possibility for increasing the efficiency of the IGCC power plant according to the invention is to use the branched cold nitrogen as an additional cooling medium for the condenser 36 of the steam turbine 34 in order to achieve a significant increase in the efficiency or performance of the capacitor 36.
  • FIG. 3 shows a schematic representation of the IGCC power plant 10, which illustrates the increase in efficiency of the IGCC power plant 10 by expansion of nitrogen from an air separation plant 18.
  • the branched cold nitrogen is passed through the heat exchanger 40, where it is heated against warm compressed air of the gas turbine compressor 14. After heating, the branched nitrogen is expanded in a separate expander 44 to drive a generator 46 coupled to the expander 44.
  • This process for increasing the efficiency can be used effectively when the operating pressure of the air separation plant 18 and thus the nitrogen discharge pressure have a mean pressure level. Then an energy conversion by expansion of the nitrogen in an expander 44 makes sense. After expansion, the nitrogen can be used as a cooling medium according to the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The invention relates to a method for increasing the efficiency of a combined gas/steam power station (10) with integrated gasification combined cycle. Said power station comprises a gas turbine compressor (14) and an air-separation unit (18) having a defined working pressure. Compressed air is removed from the gas turbine compressor (14) at a pressure level that is adapted to the working pressure of the air-separation unit (18). The removed air is then supplied to the air-separation unit (18) where the air is broken down into its individual constituents, especially oxygen and nitrogen. The nitrogen produced in the air-separation unit (18) is removed from the air-separation unit and at least a part of the removed nitrogen quantity is used as a coolant in the gas/steam power station in order to improve its efficiency.

Description

Beschreibungdescription
Verfahren zur Steigerung des Wirkungsgrads eines kombinierten Gas- und Dampfkraftwerks mit integrierter BrennstoffvergasungMethod for increasing the efficiency of a combined gas and steam power plant with integrated fuel gasification
Hintergrund der ErfindungBackground of the invention
Die Erfindung betrifft ein Verfahren zur Steigerung des Wirkungsgrads eines kombinierten Gas- und Dampfkraftwerks bzw.The invention relates to a method for increasing the efficiency of a combined gas and steam power plant or
-turbinenkraftwerks mit integrierter Brennstoffvergasung , das einen Gasturbinen-Verdichter und eineturbine power plant with integrated fuel gasification, comprising a gas turbine compressor and a
Luftzerlegungsanlage mit einem vorgegebenen Betriebsdruck aufweist .Air separation plant having a predetermined operating pressure.
Im vergangenen Jahrzehnt wurde weltweit eine Vielzahl von Kraftwerken errichtet, denen ein kombinierter Gas- und Dampfturbinenprozess zugrunde liegt und mit denen der Schadstoffausstoß deutlich herabgesetzt werden kann. Diese Kraftwerke werden im Fachjargon als GUD-Kraftwerke bezeichnet .In the past decade, a large number of power plants have been built worldwide, based on a combined gas and steam turbine process and with which the emission of pollutants can be significantly reduced. These power plants are referred to in the jargon as combined cycle power plants.
Bei einer Unterform der GUD-Kraftwerke, den sogenannten IGCC- Kraftwerken (bei „IGCC" handelt es sich um eine Abkürzung für „Integrated Gasification Combined Cycle") , weist das GUD- Kraftwerk zusätzlich eine integrierte Brennstoffvergasung auf, mittels derer ein flüssiger oder fester Brennstoff - etwa Steinkohle - in einem Vergaser in ein Synthesegas umgewandelt wird, das anschließend in einer Gasturbine verbrannt wird. Vor der Verbrennung erfolgt in der Regel eine Reinigung des Synthesegases. Insgesamt betrachtet werden auf diese Weise Schadstoffe schon vor der Verbrennung abgetrennt oder entstehen erst gar nicht.In a sub-form of the combined cycle power plants, the so-called IGCC power plants (in "IGCC" is an abbreviation for "Integrated Gasification Combined Cycle"), the combined cycle power plant has an integrated fuel gasification, by means of which a liquid or solid Fuel - such as hard coal - is converted in a gasifier into a synthesis gas, which is then burned in a gas turbine. Before the combustion is carried out usually a purification of the synthesis gas. Overall, in this way pollutants are separated before combustion or not even arise.
Für die Vergasung der Brennstoffe zu Synthesegas istFor the gasification of the fuels to synthesis gas is
Sauerstoff erforderlich. Zur Erzeugung des Sauerstoffs weisen IGCC-Kraftwerke Luftzerlegungsanlagen auf, in denen aus der Umgebungsluft durch fraktionierte Destillation neben dem benötigten Sauerstoff vor allem Stickstoff erzeugt wird. Das Synthesegas muss vor der weiteren Behandlung abgekühlt werden. Hierbei entsteht ein Dampf, der in der Dampfturbine des IGCC-Kraftwerks zur Stromerzeugung beiträgt. Nach der Abkühlung des Gases halten Filter zunächst Aschepartikel zurück, anschließend kann bei Bedarf auch Kohlendioxid entzogen werden. Andere Schadstoffe, wie Schwefelverbindungen oder Schwermetalle werden ebenfalls durch chemische und physikalische Verfahren gebunden. Dadurch werden die nötige Brennstoff-Reinheit für den Betrieb der Gasturbinen und geringe Emissionen des IGCC-Kraftwerks realisiert.Oxygen required. To generate the oxygen, IGCC power plants have air separation plants in which the Ambient air is generated by fractional distillation in addition to the required oxygen, especially nitrogen. The synthesis gas must be cooled before further treatment. This creates a steam that contributes to power generation in the steam turbine of the IGCC power plant. After the gas has cooled down, filters initially retain ash particles, and carbon dioxide can then be removed if necessary. Other pollutants such as sulfur compounds or heavy metals are also bound by chemical and physical processes. This realizes the necessary fuel purity for the operation of the gas turbines and low emissions of the IGCC power plant.
Das Synthesegas wird vor der Brennkammer der Gasturbine mit Stickstoff aus der Luftzerlegungsanlage und/oder mitThe synthesis gas is in front of the combustion chamber of the gas turbine with nitrogen from the air separation plant and / or with
Wasserdampf vermischt, um die Stickstoffoxidbildung zu unterdrücken. Das dann aus der Verbrennung mit Luft entstehende Arbeitsgas wird in den Turbinenstufen der Gasturbine expandiert .Water vapor mixed to suppress the formation of nitrogen oxides. The then resulting from the combustion with air working gas is expanded in the turbine stages of the gas turbine.
Nach Entspannung des Arbeitsgases in der Gasturbine und anschließender Abwärmenutzung in einem Dampferzeuger wird das Abgas an die Atmosphäre abgegeben.After relaxation of the working gas in the gas turbine and subsequent use of waste heat in a steam generator, the exhaust gas is released to the atmosphere.
Die Dampfströme aus der Rohgas- und Abgaskühlung werden kombiniert und gemeinsam der Dampfturbine zugeleitet. Nach der Entspannung in der Dampfturbine wird der Dampf über einen Kondensator kondensiert und das Kondensat über den Speisewasserbehälter zurück in den Wasser- bzw. den Dampfkreislauf geführt.The steam streams from the raw gas and exhaust gas cooling are combined and fed together to the steam turbine. After expansion in the steam turbine, the steam is condensed via a condenser and the condensate is fed back into the water or steam cycle via the feed water tank.
Die Gas- und die Dampfturbine (eines GUD-Kraftwerks bzw. eines IGCC-Kraftwerks) sind mit einem Generator gekoppelt, in dem die Rotationsarbeit der Turbinen in elektrische Energie gewandelt wird.The gas and steam turbines (of a combined cycle power plant or an IGCC power plant) are coupled to a generator in which the rotational work of the turbines is converted into electrical energy.
GUD-Kraftwerke bzw. IGCC-Kraftwerke werden stetig weiterentwickelt. Hierbei wird unter anderem das Ziel verfolgt, den Wirkungsgrad bzw. die Leistung dieser Kraftwerke stetig zu steigern.GUD power plants or IGCC power plants are constantly being further developed. This is among other things the goal pursued, the efficiency or the performance of these power plants to increase steadily.
Zugrundeliegende AufgabeUnderlying task
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Steigerung des Wirkungsgrads eines GUD-Kraftwerks in Form eines IGCC-Kraftwerks anzugeben, mit dem sich der Wirkungsgrad gegenüber bekannten Verfahren nochmals deutlich steigern lässt.The invention has for its object to provide a method for increasing the efficiency of a combined cycle power plant in the form of an IGCC power plant, with which the efficiency compared to known methods can be significantly increased again.
Erfindungsgemäße LösungInventive solution
Diese Aufgabe ist erfindungsgemäß mit dem eingangs genannten Verfahren zur Steigerung des Wirkungsgrads eines kombinierten Gas- und Dampfkraftwerks mit integrierter Brennstoffvergasung (IGCC-Kraftwerk) , das einen Gasturbinen-Verdichter und eine Luftzerlegungsanlage mit einem vorgegebenen Betriebsdruck aufweist, gelöst, bei dem verdichtete Luft aus dem Gasturbinenverdichter auf einem Druckniveau entnommen wird, welches dem Betriebsdruck der Luftzerlegungsanlage angepasst ist, bei dem die entnommene Luft anschließend der Luftzerlegungsanlage zugeführt wird, in welcher die Luft in ihre einzelnen Bestandteile, insbesondere in Sauerstoff und Stickstoff zerlegt wird, der in der Luftzerlegungsanlage erzeugte Stickstoff aus der Luftzerlegungsanlage entnommen wird, und zumindest ein Teil der entnommenen Stickstoffmenge als Kühlmedium verwendet wird. Die damit eingesparte Kühlluft führt zu einer Wirkungsgradsteigerung.This object is achieved with the aforementioned method for increasing the efficiency of a combined gas and steam power plant with integrated fuel gasification (IGCC power plant), which has a gas turbine compressor and an air separation plant with a predetermined operating pressure, in the compressed air from the Gas turbine compressor is taken at a pressure level which is adapted to the operating pressure of the air separation plant in which the extracted air is then fed to the air separation plant, in which the air is decomposed into its individual components, in particular oxygen and nitrogen, the nitrogen produced in the air separation plant the air separation plant is removed, and at least a portion of the withdrawn amount of nitrogen is used as the cooling medium. The thus saved cooling air leads to an increase in efficiency.
Erfindungsgemäß wird im Gasturbinen-Verdichter verdichtete Luft, die ein Druckniveau aufweist, das dem Betriebsdruck der Luftzerlegungsanlage angepasst ist, der Luftzerlegungsanlage zugeführt. Diese bereits verdichtete Luft braucht zur Anpassung an den Betriebsdruck der Luftzerlegungsanlage also nicht wie die übrige Luft verdichtet zu werden, die über einen Kompressor aus der Umgebung in die Luftzerlegungsanlage gefördert bzw. in der Luftzerlegungsanlage verdichtet wird. Erfindungsgemäß kann hierbei ein Teil oder gar die gesamte der Luftzerlegungsanlage zuzuführende Luft aus dem Gasturbinen-Verdichter entnommen werden. Der mit der Luftzerlegung einhergehende Leistungs- und Wirkungsgradverlust wird somit deutlich reduziert.According to the invention compressed air in the gas turbine compressor, which has a pressure level which is adapted to the operating pressure of the air separation plant, fed to the air separation plant. This already compressed air does not need to be compressed as the rest of the air to adapt to the operating pressure of the air separation plant, which is conveyed via a compressor from the environment in the air separation plant or compressed in the air separation plant. According to the invention, part or even all of the air to be supplied to the air separation plant can be removed from the gas turbine compressor. The power and efficiency loss associated with the air separation is thus significantly reduced.
In der Luftzerlegungsanlage wird aus der Luft durch fraktionierte Destillation neben dem für die Vergasung der Brennstoffe benötigte Sauerstoff vor allem Stickstoff erzeugt. Der in der Luftzerlegungsanlage erzeugte Stickstoff, der bedingt durch die in der Luftzerlegungsanlage vorgenommene fraktionierte Destillation (Kryogene Luftzerlegung) eine niedrige Temperatur aufweist, wird erfindungsgemäß aus der Luftzerlegungsanlage entnommen, wobei zumindest ein Teil der entnommenen Stickstoffmenge als Kühlmedium am IGCC-Kraftwerk verwendet wird, um dessen Wirkungsgrad zu steigern.In the air separation plant, nitrogen is produced from the air by fractional distillation in addition to the oxygen required for the gasification of the fuels. The nitrogen produced in the air separation plant, which has a low temperature due to the fractional distillation (cryogenic air separation) carried out in the air separation plant, according to the invention removed from the air separation plant, wherein at least a portion of the withdrawn amount of nitrogen is used as a cooling medium at the IGCC power plant to increase its efficiency.
Insgesamt betrachtet wird mittels des erfindungsgemäßen Verfahrens letztlich ein Kühlmedium bereitgestellt, das ohne nennenswerte Einbussen für den Wirkungsgrad des IGCC- Kraftwerks erzeugt werden kann. Dieses so erfindungsgemäß bereitgestellte Kühlmedium kann zur Realisierung von Kühlvorgängen verwendet werden, die eine Erhöhung des Wirkungsgrads bzw. der Leistung des IGCC-Kraftwerks verfolgen. Das erfindungsgemäße Verfahren ist insbesondere dann von Vorteil, wenn ein vergleichsweise geringer Betriebsdruck der Luftzerlegungsanlage und folglich auch ein geringer Stickstoff-Abgabedruck vorliegt, bei dem eine Energieumsetzung durch Expansion des Stickstoffs nicht sinnvoll ist.Overall, a cooling medium is finally provided by means of the method according to the invention, which can be produced without significant losses for the efficiency of the IGCC power plant. This so provided according to the invention cooling medium can be used to realize cooling processes that track an increase in the efficiency or the performance of the IGCC power plant. The inventive method is particularly advantageous when a comparatively low operating pressure of the air separation plant and consequently also a low nitrogen discharge pressure is present, in which an energy conversion by expansion of the nitrogen is not useful.
Die eingangs genannte Aufgabe ist erfindungsgemäß ferner mit einem Verfahren zur Steigerung des Wirkungsgrads eines kombinierten Gas- und Dampfkraftwerks mit integrierterThe aforementioned object is inventively further with a method for increasing the efficiency of a combined gas and steam power plant with integrated
Brennstoffvergasung, das einen Gasturbinen-Verdichter und eine Luftzerlegungsanlage mit einem vorgegebenen Betriebsdruck aufweist, gelöst, bei dem verdichtete Luft aus dem Gasturbinenverdichter auf einem Druckniveau entnommen wird, welches dem Betriebsdruck der Luftzerlegungsanlage angepasst ist, die entnommene Luft anschließend der Luftzerlegungsanlage zugeführt wird, in welcher die Luft in ihre einzelnen Bestandteile, insbesondere in Sauerstoff und Stickstoff zerlegt wird, der in der Luftzerlegungsanlage erzeugte Stickstoff aus der Luftzerlegungsanlage entnommen wird, und zumindest ein Teil der entnommenen Stickstoffmenge erwärmt wird und nach Erwärmung in einer weiteren Turbine des kombinierten Gas- und Dampfkraftwerks mit integrierterFuel gasification comprising a gas turbine compressor and an air separation plant having a predetermined operating pressure is achieved in the compressed air the gas turbine compressor is taken at a pressure level which is adapted to the operating pressure of the air separation plant, the extracted air is then fed to the air separation plant, in which the air is decomposed into its individual components, in particular oxygen and nitrogen, the nitrogen produced in the air separation plant Air separation plant is removed, and at least a portion of the withdrawn amount of nitrogen is heated and after heating in another turbine of the combined gas and steam power plant with integrated
Brennstoffvergasung entspannt wird, um dessen Wirkungsgrad zu steigern. Hierbei verbessert die bei der Entspannung anfallende und verwertbare Rotationsarbeit den Wirkungsgrad der Anlage.Fuel gasification is relaxed to increase its efficiency. Here, the resulting in the relaxation and recoverable rotation work improves the efficiency of the system.
Im Unterschied zu dem oben beschriebenen ersten erfindungsgemäßen Verfahren ist dieses Verfahren insbesondere dann vorteilhaft, wenn der Betriebsdruck der Luftzerlegungsanlage und damit der Stickstoff-Abgabedruck ein mittleres Druckniveau aufweisen. Dann ist eineIn contrast to the first inventive method described above, this method is particularly advantageous when the operating pressure of the air separation plant and thus the nitrogen discharge pressure have a mean pressure level. Then one is
Energieumsetzung durch Expansion des Stickstoffs in einer weiteren Turbine, vorzugsweise in Form eines Expanders sinnvoll. Nach Entspannung kann der Stickstoff gemäß dem oben beschriebenen Verfahren als Kühlmedium verwendet werden.Energy conversion by expansion of the nitrogen in another turbine, preferably in the form of an expander useful. After expansion, the nitrogen can be used as a cooling medium according to the method described above.
Vorzugsweise wird hierbei zur Erwärmung des Teils der entnommenen Stickstoffmenge Wärmeenergie der entnommenen verdichteten Luft über einen Wärmeübertrager auf den Teil der erzeugten Stickstoffmenge übertragen.Preferably, in order to heat the part of the withdrawn amount of nitrogen, thermal energy of the extracted compressed air is transferred via a heat exchanger to the part of the amount of nitrogen produced.
Vorteilhafte Weiterbildungen der ErfindungAdvantageous developments of the invention
Bei einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens wird der als Kühlmittel verwendete Teil der erzeugten Stickstoffmenge in den Gasturbinen-Verdichter eingebracht, um im Gasturbinen-Verdichter verdichtete Luft durch Vermischung mit dem Teil der erzeugten Stickstoffmenge zu kühlen. Durch die so erfindungsgemäß vorgenommene Kühlung der im Gasturbinen-Verdichter verdichteten Luft kann der Wirkungsgrad des IGCC-Kraftwerks deutlich gesteigert werden.In an advantageous embodiment of the method according to the invention, the part of the amount of nitrogen produced as a coolant is introduced into the gas turbine compressor to compressed air in the gas turbine compressor by mixing with the part of the amount of nitrogen produced to cool. The cooling of the compressed air in the gas turbine compressor according to the invention can thus significantly increase the efficiency of the IGCC power plant.
Bei einer praktischen Weiterbildung des erfindungsgemäßen Verfahrens wird zur Kühlung von im Gasturbinen-Verdichter verdichteter Luft Wärmeenergie der verdichteten Luft über einen Wärmeübertrager auf den als Kühlmedium verwendeten Teil der erzeugten Stickstoffmenge übertragen. So wird erfindungsgemäß im Unterschied zur obigen vorteilhaftenIn a practical development of the method according to the invention, heat energy of the compressed air is transferred via a heat exchanger to the part of the amount of nitrogen produced as cooling medium for cooling air compressed in the gas turbine compressor. Thus, according to the invention in contrast to the above advantageous
Weiterbildung über eine indirekte Wärmeübertragung mittels eines Wärmeübertragers eine Kühlung der im Gasturbinen- Verdichter verdichteten Luft ermöglicht, die eine deutliche Steigerung des Wirkungsgrads zur Folge hat.Training on an indirect heat transfer by means of a heat exchanger allows cooling of compressed air in the gas turbine compressor, which has a significant increase in the efficiency result.
Bei einer weiteren vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens wird der als Kühlmittel verwendete Teil der entnommenen Stickstoffmenge mit vom Gasturbinen-Verdichter angesaugter Luft vermischt, um die angesaugte Luft zu kühlen. So kann erfindungsgemäß die im Gasturbinen-Verdichter zu verdichtende Luft bereits vor Verdichtung mittels des kalten Stickstoffs gekühlt werden. Alternativ zur direkten Vermischung kann bei einer praktischen Weiterbildung des erfindungsgemäßen Verfahrens zur Kühlung der angesaugten Luft Wärmeenergie der angesaugten Luft über einen Wärmeübertrager auf den als Kühlmittel verwendeten Teil der entnommenen Stickstoffmenge übertragen werden .In a further advantageous development of the method according to the invention, the part of the withdrawn amount of nitrogen used as coolant is mixed with air sucked in by the gas turbine compressor in order to cool the intake air. Thus, according to the invention, the air to be compressed in the gas turbine compressor can already be cooled before compression by means of the cold nitrogen. As an alternative to direct mixing, heat energy of the sucked-in air can be transferred via a heat exchanger to the part of the withdrawn amount of nitrogen used as coolant in a practical further development of the method according to the invention for cooling the intake air.
Bei einer weiteren praktischen Weiterbildung des erfindungsgemäßen Verfahrens kann der als Kühlmittel verwendete Teil der entnommenen Stickstoffmenge alternativ auch als zusätzliches Kühlmedium für einen Kondensator einer Dampfturbine des kombinierten Gas- und Dampfkraftwerks mit integrierter Brennstoffvergasung verwendet werden, wodurch der Expansionsgegendruck nach der letzten Dampfturbinenstufe weiter reduziert wird und damit ein Leistungsgewinn und eine Verbesserung des Dampfturbinenwirkungsgrads erzielt werden kann .In a further practical development of the method according to the invention, the part of the withdrawn amount of nitrogen used as a coolant can alternatively be used as an additional cooling medium for a condenser of a steam turbine of the combined gas and steam power plant with integrated fuel gasification, whereby the expansion back pressure after the last steam turbine stage is further reduced and thus a performance gain and a Improvement of the steam turbine efficiency can be achieved.
Nachfolgend wird das erfindungsgemäße Verfahren anhand schematischer Darstellungen des Aufbaus eines IGCC-Kraftwerks näher erläutert. Es zeigt:The method according to the invention is explained in more detail below with reference to schematic illustrations of the structure of an IGCC power plant. It shows:
Fig. 1 eine schematische Darstellung eines kombiniertenFig. 1 is a schematic representation of a combined
Gas- und Dampfkraftwerks mit integrierter Brennstoffvergasung (IGCC-Kraftwerk) ,Gas and steam power plant with integrated fuel gasification (IGCC power plant),
Fig. 2 eine schematische Darstellung des IGCC-Kraftwerks aus Fig. 1, welche die Kühlung von verdichteter Luft mittels Stickstoff aus einer Luftzerlegungsanlage veranschaulicht, undFig. 2 is a schematic representation of the IGCC power plant of Figure 1, which illustrates the cooling of compressed air by means of nitrogen from an air separation plant, and
Fig. 3 eine schematische Darstellung des IGCC-Kraftwerks aus Fig. 1, welche die Steigerung des Wirkungsgrads des IGCC-Kraftwerks durch Expansion von Stickstoff aus einer Luftzerlegungsanlage veranschaulicht.FIG. 3 is a schematic illustration of the IGCC power plant of FIG. 1 illustrating the increase in efficiency of the IGCC power plant by expansion of nitrogen from an air separation plant.
Das in Fig. 1 schematisch dargestellte IGCC-Kraftwerk 10 besteht unter anderem aus einer Gasturbine 12 und einem der Gasturbine 12 vorgeschaltetem Gasturbinen-Verdichter 14. Brennstoff, wie beispielsweise Steinkohle, wird in einer Vergasungseinheit 16 zur Erzeugung eines Synthesegases vergast. Der für die Vergasung erforderliche Sauerstoff wird in einer Luftzerlegungsanlage 18 erzeugt, in der aus Luft durch fraktionierte Destillation Sauerstoff hergestellt wird. Die Luft wird in der Regel der Umgebung entnommen und mitThe IGCC power plant 10 shown schematically in FIG. 1 consists inter alia of a gas turbine 12 and a gas turbine compressor 14 upstream of the gas turbine 12. Fuel, such as hard coal, is gasified in a gasification unit 16 to produce a synthesis gas. The oxygen required for the gasification is produced in an air separation plant 18 in which oxygen is produced from air by fractional distillation. The air is usually taken from the environment and with
Gasturbinenverdichter und/oder -Zusatzverdichter über einen Kompressor 20 in die Luftzerlegungsanlage 18 eingebracht und auf die für die fraktionierte Destillation erforderlichen Drücke komprimiert .Gas turbine compressor and / or additional compressor introduced via a compressor 20 in the air separation unit 18 and compressed to the pressures required for the fractional distillation.
Das in der Vergasungseinheit 16 erzeugte Synthesegas wird vor der weiteren Behandlung in einer Synthesegas-Kühleinheit 22 abgekühlt und anschließend einer Gasreinigungs-Einheit 24 zugeführt. In der Gasreinigungs-Einheit 24 halten Filter (nicht dargestellt) zunächst Aschepartikel zurück, anschließend kann bei Bedarf auch Kohlendioxid entzogen werden. Andere Schadstoffe wie Schwefelverbindungen oder Schwermetalle werden ebenfalls durch chemische und physikalische Verfahren gebunden. Insgesamt betrachtet kann so die für den Betrieb der Gasturbine 12 erforderliche Brennstoff-Reinheit realisiert werden. Das gereinigte Synthesegas wird anschließend in einer Brennkammer 26 verbrannt und das aus der Verbrennung mit Luft entstehendeThe synthesis gas produced in the gasification unit 16 is cooled before further treatment in a synthesis gas cooling unit 22 and then a gas cleaning unit 24th fed. In the gas cleaning unit 24, filters (not shown) first retain ash particles, and then, if required, carbon dioxide can also be withdrawn. Other pollutants such as sulfur compounds or heavy metals are also bound by chemical and physical processes. Overall, the required for the operation of the gas turbine 12 fuel purity can be realized so. The purified synthesis gas is then burned in a combustion chamber 26 and the resulting from the combustion with air
Arbeitsgas strömt in die Gasturbine 12, an die ein Generator (nicht dargestellt) gekoppelt ist. Nachdem das Arbeitsgas in der Gasturbine 12 expandiert ist wird es einem Abhitzedampferzeuger 28 zugeführt, um die im dem Arbeitsgas enthaltene Wärme zur Dampferzeugung zu nutzen. DerWorking gas flows into the gas turbine 12, to which a generator (not shown) is coupled. After the working gas is expanded in the gas turbine 12, it is supplied to a heat recovery steam generator 28 to use the heat contained in the working gas for steam generation. Of the
Abhitzedampferzeuger 28 ist in einen Dampfkreislauf 32 eingebunden, über den unter anderem der bei der Abkühlung des Synthesegases in der Synthesegas-Kühleinheit 22 erzeugte Dampf dem Abhitzedampferzeuger 28 zugeführt wird. Der durch die Abkühlung des Synthesegases und des Arbeitsgases erzeugte Dampf wird in einer Dampfturbine 34 entspannt, die zur Bereitstellung von elektrischer Energie an einem Generator (nicht dargestellt) gekoppelt ist. Nach der Expansion in der Dampfturbine 34 wird der Dampf über einen Kondensator 36 kondensiert und das Kondensat über eine Speisewasserpumpe 38 zurück in den Abhitzedampferzeuger 28 und damit in den Dampfkreislauf 32 geführt.Heat recovery steam generator 28 is integrated into a steam cycle 32, via which, inter alia, the steam generated during the cooling of the synthesis gas in the synthesis gas cooling unit 22 is supplied to the waste heat steam generator 28. The steam generated by the cooling of the synthesis gas and the working gas is expanded in a steam turbine 34, which is coupled to a generator (not shown) for the provision of electrical energy. After expansion in the steam turbine 34, the vapor is condensed via a condenser 36 and the condensate is fed via a feedwater pump 38 back into the heat recovery steam generator 28 and thus into the steam circuit 32.
Erfindungsgemäß ist es vorgesehen, bereits im Gasturbinen- Verdichter 14 verdichtete Luft, die ein Druckniveau aufweist, das dem Betriebsdruck der Luftzerlegungsanlage 18 angepasst ist, insbesondere diesem Betriebsdruck wertmäßig entspricht, der Luftzerlegungsanlage 18 zuzuführen, wobei die verdichtete Luft vor Eintritt in die Luftzerlegungsanlage 18 vorzugsweise über einem Wärmeübertrager 40 vorgekühlt wird. Die bereits verdichtete Luft braucht zur Anpassung an den Betriebsdruck der Luftzerlegungsanlage 18 also nicht wie die übrige Luft, die über den Kompressor 20 aus der Umgebung in die Luftzerlegungsanlage gesaugt und in der Luftzerlegungsanlage 18 verdichtet wird, mit einhergehender Senkung des Wirkungsgrads bzw. der Leistung verdichtet zu werden. Es kann ein Teil oder gar die gesamte der Luftzerlegungsanlage 18 zuzuführende Luft aus dem Gasturbinen-Verdichter 14 entnommen werden. Der in der Luftzerlegungsanlage 18 erzeugte Stickstoff, der bedingt durch die in der Luftzerlegungsanlage 18 vorgenommene fraktionierte Destillation eine niedrige Temperatur aufweist, wird erfindungsgemäß aus der Luftzerlegungsanlage 18 entnommen und über einen Stickstoff- Kompressor 42 dem Synthesegasstrom zugeführt, um die Bildung von Stickoxiden weitgehend zu unterdrücken.According to the invention, compressed air already compressed in the gas turbine compressor 14, which has a pressure level which is adapted to the operating pressure of the air separation plant 18, in particular corresponds to this operating pressure, to the air separation plant 18, the compressed air preferably before entering the air separation plant 18 is pre-cooled over a heat exchanger 40. The already compressed air needs to adapt to the operating pressure of the air separation plant 18 so not like the rest of the air via the compressor 20 from the environment in the Air separation plant is sucked and compressed in the air separation plant 18, to be compressed with concomitant reduction in efficiency or performance. It can be removed from the gas turbine compressor 14, a part or even the entire air to be supplied to the air separation unit 18 air. The nitrogen produced in the air separation plant 18, which has a low temperature due to the fractional distillation carried out in the air separation plant 18, according to the invention removed from the air separation plant 18 and fed through a nitrogen compressor 42 the synthesis gas stream to suppress the formation of nitrogen oxides largely ,
Erfindungsgemäß wird ein Teil des der Gasreinigungs-Einheit 24 bzw. Gaskonditionierung zuzuführenden kalten Stickstoffs zwischen der Luftzerlegungsanlage 18 und Gasreinigungs- Einheit 24 abgezweigt, um als Kühlmedium verwendet zu werden, mit dem Ziel durch geeignete Kühlung den Wirkungsgrad des IGCC-Kraftwerks zu steigern. Erfindungsgemäß kann dies unter anderem wie in Fig. 2 schematisch dargestellt erfolgen. Die als Kühlmedium vorgesehene Stickstoffmenge wird hierzu entweder direkt in den Gasturbinen-Verdichter 14 eingebracht, um im Gasturbinen-Verdichter 14 verdichtete Luft durch Vermischung mit dem abgezweigten Stickstoff zu kühlen.According to the invention, a portion of the cold nitrogen to be supplied to the gas purification unit 24 or gas conditioning is branched between the air separation plant 18 and the gas purification unit 24 to be used as the cooling medium, with the aim of increasing the efficiency of the IGCC power plant by suitable cooling. According to the invention, this can take place inter alia as shown schematically in FIG. For this purpose, the amount of nitrogen provided as the cooling medium is either introduced directly into the gas turbine compressor 14 in order to cool compressed air in the gas turbine compressor 14 by mixing with the branched nitrogen.
Alternativ kann die im Gasturbinen-Verdichter 14 zu verdichtende Luft auch über einen Wärmetauscher (nicht dargestellt) gekühlt werden, mit dem die zu verdichtende Luft gegen den abgezweigten kalten Stickstoff gekühlt wird. Wie ebenfalls in Fig. 2 schematisch dargestellt kann der abgezweigte Stickstoff auch mit der Ansaugluft vermischt werden, um die angesaugte Luft zu kühlen. So kann erfindungsgemäß die im Gasturbinen-Verdichter 14 zu verdichtende Luft bereits vor Verdichtung mittels des kalten abgezweigten Stickstoffs gekühlt werden. Alternativ kann auch hier die Ansaugluft über einen Wärmetauscher (nicht dargestellt) gekühlt werden, mit dem die Ansaugluft gegen den abgezweigten kalten Stickstoff gekühlt wird. Eine weitere Möglichkeit zur Steigerung des Wirkungsgrads des IGCC-Kraftwerks besteht erfindungsgemäß darin den abgezweigten kalten Stickstoff als zusätzliches Kühlmedium für den Kondensator 36 der Dampfturbine 34 zu verwenden, um auch über den Kondensator 36 eine deutliche Steigerung des Wirkungsgrads bzw. der Leistung zu erzielen.Alternatively, the air to be compressed in the gas turbine compressor 14 may also be cooled by a heat exchanger (not shown) with which the air to be compressed is cooled against the branched-off cold nitrogen. As also shown schematically in Fig. 2, the branched nitrogen may also be mixed with the intake air to cool the intake air. Thus, according to the invention, the air to be compressed in the gas turbine compressor 14 can be cooled already before compression by means of the cold branched nitrogen. Alternatively, here too, the intake air can be cooled by a heat exchanger (not shown) with which the intake air is cooled against the branched-off cold nitrogen. Another possibility for increasing the efficiency of the IGCC power plant according to the invention is to use the branched cold nitrogen as an additional cooling medium for the condenser 36 of the steam turbine 34 in order to achieve a significant increase in the efficiency or performance of the capacitor 36.
Die Fig. 3 zeigt eine schematische Darstellung des IGCC- Kraftwerks 10, welche die Steigerung des Wirkungsgrads des IGCC-Kraftwerks 10 durch Expansion von Stickstoff aus einer Luftzerlegungsanlage 18 veranschaulicht.FIG. 3 shows a schematic representation of the IGCC power plant 10, which illustrates the increase in efficiency of the IGCC power plant 10 by expansion of nitrogen from an air separation plant 18.
Wie in Fig. 3 dargestellt, wird der abgezweigte kalte Stickstoff durch den Wärmeübertrager 40 geleitet, wo er gegen warme verdichtete Luft des Gasturbinen-Verdichters 14 erwärmt wird. Nach Erwärmung wird der abgezweigte Stickstoff in einem separaten Expander 44 expandiert, um einen an den Expander 44 gekoppelten Generator 46 anzutreiben. Dieses Verfahren zur Steigerung des Wirkungsgrads ist dann wirksam einsetzbar, wenn der Betriebsdruck der Luftzerlegungsanlage 18 und damit der Stickstoff-Abgabedruck ein mittleres Druckniveau aufweisen. Dann ist eine Energieumsetzung durch Expansion des Stickstoffs in einem Expander 44 sinnvoll. Nach Entspannung kann der Stickstoff gemäß dem obigen Verfahren als Kühlmedium verwendet werden. As shown in Fig. 3, the branched cold nitrogen is passed through the heat exchanger 40, where it is heated against warm compressed air of the gas turbine compressor 14. After heating, the branched nitrogen is expanded in a separate expander 44 to drive a generator 46 coupled to the expander 44. This process for increasing the efficiency can be used effectively when the operating pressure of the air separation plant 18 and thus the nitrogen discharge pressure have a mean pressure level. Then an energy conversion by expansion of the nitrogen in an expander 44 makes sense. After expansion, the nitrogen can be used as a cooling medium according to the above method.

Claims

Patentansprüche claims
1. Verfahren zur Steigerung des Wirkungsgrads eines kombinierten Gas- und Dampfkraftwerks (10) mit integrierter Brennstoffvergasung, das einen Gasturbinen-Verdichter (14) und eine Luftzerlegungsanlage (18) mit einem vorgegebenen Betriebsdruck aufweist, bei dem verdichtete Luft aus dem Gasturbinen-Verdichter (14) auf einem Druckniveau entnommen wird, welches dem Betriebsdruck der Luftzerlegungsanlage (18) angepasst ist, die entnommene Luft anschließend derA method for increasing the efficiency of a combined gas and steam power plant (10) with integrated fuel gasification, comprising a gas turbine compressor (14) and an air separation plant (18) with a predetermined operating pressure, wherein compressed air from the gas turbine compressor ( 14) is taken at a pressure level which is adapted to the operating pressure of the air separation plant (18), the extracted air then the
Luftzerlegungsanlage (18) zugeführt wird, in welcher die Luft in ihre einzelnen Bestandteile, insbesondere in Sauerstoff und Stickstoff zerlegt wird, der in der Luftzerlegungsanlage (18) erzeugte Stickstoff aus der Luftzerlegungsanlage (18) entnommen wird, und zumindest ein Teil der entnommenenAir separation plant (18) is supplied, in which the air is decomposed into its individual components, in particular oxygen and nitrogen, in the air separation plant (18) generated nitrogen from the air separation plant (18) is removed, and at least a portion of the withdrawn
Stickstoffmenge als Kühlmedium am Gas- und Dampfkraftwerk verwendet wird, um dessen Wirkungsgrad zu steigern.Amount of nitrogen is used as a cooling medium at the gas and steam power plant to increase its efficiency.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Teil der entnommenen Stickstoffmenge in den Gasturbinen- Verdichter (14) derart eingebracht wird, dass die im Gasturbinen-Verdichter (14) verdichtete Luft durch Vermischung mit dem Teil der entnommenen Stickstoffmenge gekühlt wird.2. The method according to claim 1, characterized in that the portion of the withdrawn amount of nitrogen in the gas turbine compressor (14) is introduced such that in the gas turbine compressor (14) compressed air is cooled by mixing with the portion of the withdrawn amount of nitrogen.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Kühlung von im Gasturbinen-Verdichter (14) zu verdichtende Luft Wärmeenergie der verdichteten Luft über einen Wärmeübertrager auf den Teil der entnommenen Stickstoffmenge übertragen wird.3. The method according to claim 1, characterized in that for cooling in the gas turbine compressor (14) to be compressed air heat energy of the compressed air is transmitted via a heat exchanger to the portion of the withdrawn amount of nitrogen.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Teil der entnommenen Stickstoffmenge mit vom Gasturbinen- Verdichter (1) angesaugter Luft vermischt wird, um die angesaugte Luft zu kühlen.4. The method according to claim 1, characterized in that the part of the withdrawn amount of nitrogen with the gas turbine compressor (1) sucked air is mixed to cool the intake air.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Kühlung von Luft, die vom Gasturbinen-Verdichter (14) angesaugt wird, Wärmeenergie der angesaugten Luft über einen Wärmeübertrager auf den Teil der entnommenen Stickstoffmenge übertragen wird.5. The method according to claim 1, characterized in that for cooling of air from the gas turbine compressor (14) is sucked, heat energy of the sucked air is transmitted via a heat exchanger to the part of the withdrawn amount of nitrogen.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Teil der entnommenen Stickstoffmenge als zusätzliches Kühlmedium für einen Kondensator (36) einer Dampfturbine (34) des kombinierten Gas- und Dampfkraftwerks (10) mit integrierter Brennstoffvergasung verwendet wird.6. The method according to claim 1, characterized in that the portion of the withdrawn amount of nitrogen is used as an additional cooling medium for a condenser (36) of a steam turbine (34) of the combined gas and steam power plant (10) with integrated fuel gasification.
7. Verfahren zur Steigerung des Wirkungsgrads eines kombinierten Gas- und Dampfkraftwerks (10) mit integrierter Brennstoffvergasung, das einen Gasturbinen-Verdichter (14) und eine Luftzerlegungsanlage (18) mit einem vorgegebenen Betriebsdruck aufweist, bei dem verdichtete Luft aus dem7. A method for increasing the efficiency of a combined gas and steam power plant (10) with integrated fuel gasification, which has a gas turbine compressor (14) and an air separation plant (18) with a predetermined operating pressure, wherein the compressed air from the
Gasturbinen-Verdichter (14) auf einem Druckniveau entnommen wird, welches dem Betriebsdruck der Luftzerlegungsanlage (18) angepasst ist, die entnommene Luft anschließend der Luftzerlegungsanlage (18) zugeführt wird, in welcher die Luft in ihre einzelnen Bestandteile, insbesondere in Sauerstoff und Stickstoff zerlegt wird, der in der Luftzerlegungsanlage (18) erzeugte Stickstoff aus der Luftzerlegungsanlage (18) entnommen wird, und zumindest ein Teil der entnommenen Stickstoffmenge erwärmt wird und nach Erwärmung in einer weiteren Turbine (44) des kombinierten Gas- undGas turbine compressor (14) is taken at a pressure level which is adapted to the operating pressure of the air separation plant (18), the extracted air is then fed to the air separation plant (18), in which the air decomposes into its individual components, in particular oxygen and nitrogen Is, in the air separation plant (18) generated nitrogen from the air separation plant (18) is removed, and at least a portion of the withdrawn amount of nitrogen is heated and after heating in another turbine (44) of the combined gas and
Dampfkraftwerks (10) mit integrierter Brennstoffvergasung entspannt wird, um dessen Wirkungsgrad zu steigern.Steam power plant (10) with integrated fuel gasification is relaxed to increase its efficiency.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass zur Erwärmung des Teils der entnommenen Stickstoffmenge8. The method according to claim 7, characterized in that for heating the part of the withdrawn amount of nitrogen
Wärmeenergie der entnommenen verdichteten Luft über einen Wärmeübertrager (40) auf den Teil der entnommenen Stickstoffmenge übertragen wird. Heat energy of the extracted compressed air via a heat exchanger (40) is transferred to the portion of the withdrawn amount of nitrogen.
EP06792578A 2005-08-05 2006-07-26 Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle Withdrawn EP1913238A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06792578A EP1913238A2 (en) 2005-08-05 2006-07-26 Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05017062 2005-08-05
PCT/EP2006/064693 WO2007017387A2 (en) 2005-08-05 2006-07-26 Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle
EP06792578A EP1913238A2 (en) 2005-08-05 2006-07-26 Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle

Publications (1)

Publication Number Publication Date
EP1913238A2 true EP1913238A2 (en) 2008-04-23

Family

ID=37727668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06792578A Withdrawn EP1913238A2 (en) 2005-08-05 2006-07-26 Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle

Country Status (5)

Country Link
US (1) US8020388B2 (en)
EP (1) EP1913238A2 (en)
CN (1) CN101287893B (en)
IL (1) IL189153A0 (en)
WO (1) WO2007017387A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020397B2 (en) * 2008-10-30 2011-09-20 General Electric Company Reduction of diluent nitrogen compressor power using vapor absorption chiller
US8069672B2 (en) * 2008-12-22 2011-12-06 General Electric Company Method and systems for operating a combined cycle power plant
US20100186367A1 (en) * 2009-01-27 2010-07-29 General Electric Company Gas turbine with introduction of nitrogen
EP2256317A1 (en) * 2009-05-29 2010-12-01 Shell Internationale Research Maatschappij B.V. A process for generating power
US8529679B2 (en) 2009-11-05 2013-09-10 General Electric Company System and method for improving performance of an IGCC power plant
US8186169B2 (en) * 2010-10-22 2012-05-29 General Electric Company Nitrogen cooled gas turbine with combustor nitrogen injection and partial nitrogen recycling
AT12844U1 (en) * 2011-12-28 2012-12-15 Ge Jenbacher Gmbh & Co Ohg Method for operating a stationary power plant with at least one internal combustion engine
US9003796B2 (en) * 2012-06-05 2015-04-14 General Electric Company Heat recovery using organic rankine cycle
US20140020426A1 (en) * 2012-07-17 2014-01-23 General Electric Company System and method for using a chilled fluid to cool an electromechanical machine
US20140130509A1 (en) * 2012-11-13 2014-05-15 Raymond Francis Drnevich Combined gasification and power generation
RU2524317C1 (en) * 2013-03-27 2014-07-27 Геннадий Павлович Барчан Conversion of power with recovery of energy carries in cyclic process of heat engine
CN105673098A (en) * 2016-03-02 2016-06-15 青岛捷能高新技术有限责任公司 Lateral exhaust eccentric steam condensation system and method
EP3333123B1 (en) * 2016-12-09 2019-11-27 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Method and plant for the production of synthesis gas
CN109252842B (en) * 2018-10-29 2024-04-12 邓晓亮 Mixed gas triple power generation system produced by underground supercritical coal gasification
CN109441574B (en) * 2018-11-02 2021-07-23 中国石油大学(华东) Integrated coal gasification combined power generation process with near-zero carbon emission for peak regulation
CN109441573B (en) * 2018-11-02 2021-07-23 中国石油大学(华东) Zero-carbon-emission natural gas combined power generation process for peak regulation
CN109812335B (en) * 2019-01-15 2021-11-16 中国石油大学(华东) Zero-carbon-emission integrated coal gasification-steam combined cycle power generation process
CN109578098A (en) * 2019-01-15 2019-04-05 中国石油大学(华东) The Natural Gas Co-generation electrification technique of zero carbon emission
CN109609199B (en) * 2019-01-15 2020-07-21 中国石油大学(华东) Coal gasification combined heat and power technology with zero carbon emission
CN109611171A (en) * 2019-01-15 2019-04-12 中国石油大学(华东) Integral coal gasification-supercritical CO of zero carbon emission2Combined cycle generating process

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503193A1 (en) * 1975-01-27 1976-07-29 Linde Ag PROCESS FOR PRODUCING A HEATING GAS BY PRESSURE GASIFICATION OF CARBON FUELS
US4907405A (en) * 1989-01-24 1990-03-13 Union Carbide Corporation Process to cool gas
GB9111157D0 (en) * 1991-05-23 1991-07-17 Boc Group Plc Fluid production method and apparatus
US5459994A (en) * 1993-05-28 1995-10-24 Praxair Technology, Inc. Gas turbine-air separation plant combination
US5406786A (en) 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
JPH0814062A (en) * 1994-06-28 1996-01-16 Mitsubishi Heavy Ind Ltd Composite generating plant
JPH08211891A (en) 1995-02-06 1996-08-20 Oki Electric Ind Co Ltd Learning method for hidden markov model
JPH08218891A (en) * 1995-02-09 1996-08-27 Hitachi Ltd Gasification generator plant
US6141950A (en) * 1997-12-23 2000-11-07 Air Products And Chemicals, Inc. Integrated air separation and combustion turbine process with steam generation by indirect heat exchange with nitrogen
JP3973772B2 (en) 1998-08-28 2007-09-12 株式会社東芝 Coal gasification combined cycle power plant
US6588212B1 (en) * 2001-09-05 2003-07-08 Texaco Inc. Combustion turbine fuel inlet temperature management for maximum power outlet
US7284362B2 (en) * 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US7584599B2 (en) * 2005-08-10 2009-09-08 Alstom Technology Ltd. Method for operating a gas turbine as well as a gas turbine for implementing the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007017387A3 *

Also Published As

Publication number Publication date
CN101287893B (en) 2012-06-13
WO2007017387A3 (en) 2008-07-03
US20100146929A1 (en) 2010-06-17
WO2007017387A2 (en) 2007-02-15
IL189153A0 (en) 2009-08-03
CN101287893A (en) 2008-10-15
US8020388B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
EP1913238A2 (en) Method for increasing the efficiency of a combined gas/steam power station with integrated gasification combined cycle
DE60036327T2 (en) Process for air separation with an internal combustion engine for the production of air gases and electrical energy
DE102007053192B4 (en) Power plants with gas turbines for the production of electric energy and processes for the reduction of CO2 emissions
DE60019019T2 (en) Method and device for air separation with gas turbines
EP0211335B1 (en) Combined cycle power station
EP0150340B1 (en) Method of operating a combined gas/steam turbine power plant
EP0076529B1 (en) Nox reduction for gas turbines by water injection into the combustion chamber
EP1484102B1 (en) Method and apparatus to generate power in a gas turbine powerplant
DE102004039164A1 (en) Method for generating energy in a gas turbine comprehensive power generation plant and power generation plant for performing the method
DE102009025914A1 (en) Turbine system with exhaust gas recirculation and reheat
DE3618745A1 (en) SYSTEM FOR ENERGY CONVERSION
DE2243996A1 (en) DEVICE AND METHOD FOR MULTI-STAGE GAS COMPRESSION
CH701299A2 (en) System for cooling and dehumidification of the gas turbine inlet air.
WO2014000882A2 (en) Process and apparatus for generating electric energy
DE102011056910A1 (en) System and method for utilizing the heat of a gas turbine intercooler in a bottoming steam process
EP2473254A1 (en) Method and device for treating a carbon dioxide-containing gas flow, wherein the energy of the vent gas (work and cold due to expansion) is used
EP0462458B1 (en) Method to increase the compressor pressure ratio of a gas turbine plant
WO2015154863A1 (en) Method and installation for storing and recovering energy
DE3907217A1 (en) METHOD FOR OPERATING A COMBINED GAS TURBINE / STEAM TURBINE PROCESS
DE102007060550A1 (en) System and process for low emission combustion
DE60034529T2 (en) FUEL GAS EXTENSION TURBINE FOR AN OXYGEN FUEL CARBURETTOR AND ASSOCIATED METHOD
DE10055202A1 (en) Electrical generation steam cycle with increased efficiency, branches off working fluid and condenses it for cooling during expansion process
EP1482131A1 (en) Indirectly heated process for generating electric power in a cycle and device for the implementation thereof
DE212022000336U1 (en) Energy generation system for a non-traditional source of a combustible fluid
DE10331988A1 (en) Process for separating residual gases/working fluid in a combined cycle water-steam process comprises cooling an expanded exhaust gas from a high-pressure turbine stage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

R17D Deferred search report published (corrected)

Effective date: 20080703

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203