EP1911934B1 - Blade of a turbomachine - Google Patents

Blade of a turbomachine Download PDF

Info

Publication number
EP1911934B1
EP1911934B1 EP07118256A EP07118256A EP1911934B1 EP 1911934 B1 EP1911934 B1 EP 1911934B1 EP 07118256 A EP07118256 A EP 07118256A EP 07118256 A EP07118256 A EP 07118256A EP 1911934 B1 EP1911934 B1 EP 1911934B1
Authority
EP
European Patent Office
Prior art keywords
blade
pressure
face
turbomachine
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07118256A
Other languages
German (de)
French (fr)
Other versions
EP1911934A1 (en
Inventor
Thomas Potier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1911934A1 publication Critical patent/EP1911934A1/en
Application granted granted Critical
Publication of EP1911934B1 publication Critical patent/EP1911934B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated
    • F05D2250/611Structure; Surface texture corrugated undulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a mobile turbine engine blade. It is intended for any type of turbomachine: turbojet, turboprop, gas turbine land ...
  • the invention relates to a blade without a heel.
  • a dawn is said without a heel when it does not have a platform at its upper end.
  • the Figures 1 to 3 represent a mobile blade without heel, of known type, mounted on the rotor disc of a turbine (or a compressor) turbojet.
  • This known blade 8 comprises a fixing foot 10 surmounted by a blade 12, this blade having an end face 14 and side faces of the lower surface 16 and the upper surface 18, the fixing foot 10 and the said face of the blade.
  • end 14 being respectively located at the lower and upper ends of the blade, opposite in the main direction A of the blade, the blade 12 having on its upper edge of a lower surface, a projecting edge 20 defined between a portion 24 of its face 14 and an upper portion 22 of its intrados face 16, these portions 22, 24 forming between them an average edge angle B.
  • This average edge angle is calculated by averaging the edge angles measured at different points of the edge, between the parts 22, 24, each angle being measured in a plane perpendicular to the tangent to the edge at the point considered. On the figure 2 for the sake of simplification, it was considered that the edge angle between the parts 22 and 24, measured in the plane of the figure 2 , was equal to the average edge angle B.
  • the turbojet engine comprises a rotor disk 26 with a rotation axis R, the blades 8 are distributed circumferentially around the disk 26 and extend radially outwardly from this disk.
  • the main direction A of each blade 8 corresponds to a direction radial with respect to the axis R.
  • the blades 8 are surrounded externally by a housing ring 28, an interstice I (see figure 2 ) remaining between the end face 14 of the blade and this ring 28.
  • F1 and F2 are the respective components of the flux F in a plane perpendicular to the main direction A, such as the section plane III-III of the figure 3 , and in a plane parallel to the main direction A, as the section plane II-II of the figure 2 .
  • the invention aims to further promote the detachment of the flux at the edge.
  • the subject of the invention is a turbomachine mobile blade, without heel, comprising a fixing foot surmounted by a blade, this blade having an end face and lateral faces of the lower and upper surfaces.
  • the fixing foot and said end face being respectively located at the lower and upper ends of the blade, opposite along the main axis of the blade, the blade having on its upper edge of a lower surface, a defined projecting edge between a portion of its end face and an upper portion of its underside face, these portions forming between them an average edge angle strictly less than 90 °, so as to promote delamination, at the edge , of the flow of fluid passing through the turbomachine, characterized in that the upper part of the intrados face is corrugated and follows, in any plane section perpendicular to the main direction of the blade, a contour line fo rmée by a succession of curves alternately concave and convex.
  • a curve is considered concave when its curved portion is oriented towards the upper surface of the blade. Conversely, a curve is considered convex when its curved portion is oriented opposite the extrados face of the blade.
  • said intrados face has curved zones defined by the stacking of said convex curves along the main direction of the blade, and recessed zones defined by the stacking of said concave curves along the main direction of the blade.
  • said contour line has an alternation of weakly and strongly inclined segments with respect to the components of the fluid flow in said section plane (under normal operating conditions of the turbomachine), and said upper part of the intrados wall. dawn has weakly and strongly inclined zones with respect to the flow, these zones being defined by the stacking of said weakly and strongly inclined segments, along the main direction of the blade.
  • the said slightly inclined zones guide the flow towards the strongly inclined zones. In this way, the flow passes mainly by the strongly inclined zones, before crossing said edge.
  • the edge angle to be crossed ie the stop angle "seen” from the flow
  • the edge angle to be crossed is lower than if said upper part was smooth (ie without ripples).
  • the delamination is all the more important as the edge angle to be crossed by the flow is small, better delamination is obtained with said corrugated upper part than with a smooth part. This reduces the losses of flow in the interstice I.
  • said slightly inclined segments are oriented according to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 0 °.
  • the flow does not pass through the slightly inclined zones before crossing said ridge (it does not "see” them) and passes almost exclusively through the highly inclined zones.
  • said strongly inclined segments are oriented transversely with respect to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 90 °. It is according to this orientation that the edge angle to be crossed by the flow is the lowest and therefore that the separation of the flow in the gap is the most important. In other words, the delamination is most important when the steeply inclined areas face the components of the fluid flow in said section plane.
  • the blade 108 differs from the blade 8 with respect to the upper portion 122 of its intrados wall 116.
  • the blade 108 comprises a fixing foot 110 surmounted by a blade 112, this blade having an end face 114 and side faces of the lower surface 116 and the upper surface 118.
  • the attachment foot 110 and the face of the blade end 114 are respectively located at the lower and upper ends of the blade 108, opposite in the main direction A of the blade.
  • the blade 112 has on its upper edge of a lower surface a protruding edge 120 defined between a portion 124 of the end face 114 and an upper portion 122 of the intrados face 116.
  • the portions 122 and 124 form an angle between them. of average edge B strictly less than 90 °.
  • the upper part 122 of the intrados face is corrugated so that it follows, in any plane section perpendicular to the main direction A of the blade and, in particular, in the section plane VI-VI, a contour line 130 formed by a succession of alternately concave curves 129 and convex 131.
  • this contour line 130 has an alternation of weakly 130a and strongly 130b segments inclined relative to the F1 components of the stream F in the plane of section considered, here the plane VI-VI.
  • Slightly inclined segments 130b are rather oriented along the F1 components of the flow in the section plane VI-VI, whereas the strongly inclined segments 130a are oriented transversely with respect to the F1 components of the flow in this plane. In this way, the stream F passes almost exclusively along the steep segments 130a before crossing the gap I. As the strongly inclined segments 130a face the flow F (more precisely the F1 components of this flow), the separation of the flux F at the edge 120 is improved, compared with the separation obtained in the example of the Figures 1 to 3 .
  • the blade 108 comprises at its upper end an open cavity 132 defined by a bottom wall 134, a lower edge 136 and an extrados edge 138.
  • Said protruding edge 120 is formed on the underside flange 136 between the end face of this flange (which corresponds to said end face portion 124) and the underside face of this rim (which belongs to said upper portion 122 of the intrados face 116).
  • the blade comprises an internal cooling passage 142 and at least one cooling channel 140 communicating with this cooling passage 142.
  • the channel 140 opens on said end-face portion 124, at the level of the curved undulating zones of the upper part 122 of the intrados face, that is to say at the level of the convex curves 131 of the contour line 130 (see figure 6 ). It is indeed in these curved areas that there is the most material and it is therefore easier to achieve (for example by drilling) the channel 140.
  • Dawn 208 of the figure 7 differs from that of Figures 4 to 6 as regards the corrugated upper portion 222 of the intrados face 216. This upper portion 222 starts far enough from the leading edge of the blade.
  • zone J This takes into account that only a small portion of the flow passes through gap I in zone J near the leading edge of the blade. Indeed, with reference to the figure 7 it is roughly estimated that 20% of the flow passes through gap I at zone J and thus the remaining 80% of flow passes through gap I at zone K. Therefore, the presence of corrugations according to the invention (ie the succession of alternately concave curves 229 and convex curves 231 along the contour line 230) is particularly useful in zone K. Approximately, Zone J covers a quarter of the dovetail face, starting from the leading edge, while Zone K covers the remaining three quarters.
  • the example of figure 8 differs from the example of Figures 4 to 6 in that the blade 308 does not have an open cavity at its upper end and, consequently, has no underside or extrados rim.
  • Dawn 408 of the figure 9 differs from the example of Figures 4 to 6 in that its intrados flange 436 is set back from the rest of the intrados face.
  • the upper part 422 of the intrados face 416 corresponds to the intrados face of the intrados flange 436.
  • the upper portion 122, 222, 322 of the intrados face 116, 216, 316 protruded from the rest of the intrados face of the blade
  • the upper portion 422 of the intrados face 416 is set back relative to the remainder of the underside face of the blade.
  • the upper portion 422 forms with the portion 424 of the end face of the blade, an average edge angle B strictly less than 90 °.
  • the intrados flange 436 throughout its width is corrugated and inclined towards the intrados (thus, even the extrados wall 423 of the flange 436 is corrugated).
  • the intrados flange 436 may be corrugated along its entire length, that is from the leading edge to the trailing edge of the blade, or only over part of its length.
  • the dawn example of the figure 9 comprises an internal cooling passage 440 and cooling channels 442 communicating with this passage.
  • the cooling channels 440 do not open on the part 424 of the end face of the blade, but at the base of the intrados flange 436, at the hollow corrugation zones of this rim, c that is, at the concave curves 429 of the contour line 430. Indeed, it is easier to realize the cooling channels 440 there.
  • the cooling air supplied by the channels 440 rises along the upper portion 422 of the intrados wall (and thus allows the wall to cool) before reaching the gap I.
  • Dawn 508 of the figure 11 differs from the dawn of Figures 9 and 10 in that the extrados rim 538 of this blade is corrugated and inclined towards the lower surface, in the manner of the lower flange 536.
  • another projecting edge 550 is defined between the end face 554 and the face These portions form between them an angle of average edge G strictly less than 90 ° so as to promote the separation of the flow F of fluid passing through the turbomachine at the edge 550.
  • the intrados face 556 of the extrados rim 538 is corrugated and follows, in any sectional plane perpendicular to the main axis A of the blade, a contour line formed by a succession of alternately concave and convex curves, so that this contour line has an alternation of weakly and strongly inclined segments with respect to the F1 components of the flux F in this section plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

L'invention concerne une aube mobile de turbomachine. Elle se destine à tout type de turbomachine : turboréacteur, turbopropulseur, turbine à gaz terrestre...The invention relates to a mobile turbine engine blade. It is intended for any type of turbomachine: turbojet, turboprop, gas turbine land ...

Plus particulièrement, l'invention concerne une aube mobile sans talon. Une aube est dite sans talon lorsqu'elle ne porte pas de plateforme à son extrémité supérieure.More particularly, the invention relates to a blade without a heel. A dawn is said without a heel when it does not have a platform at its upper end.

Des examples connus d'aubes mobiles sans talon sont décrits dans les documents US 2002/0182074 A1 , US 2004/0096328 A1 , EP 1650404 A2 et US 2004/0179940 A1 .Known examples of blades without heel are described in the documents US 2002/0182074 A1 , US 2004/0096328 A1 , EP 1650404 A2 and US 2004/0179940 A1 .

Les figures 1 à 3 représentent une aube mobile sans talon, de type connu, montée sur le disque de rotor d'une turbine (ou d'un compresseur) de turboréacteur.The Figures 1 to 3 represent a mobile blade without heel, of known type, mounted on the rotor disc of a turbine (or a compressor) turbojet.

Cette aube 8 connue comprend un pied de fixation 10 surmonté d'une pale 12, cette pale présentant une face d'extrémité 14 et des faces latérales d'intrados 16 et d'extrados 18, le pied de fixation 10 et ladite face d'extrémité 14 étant respectivement situés aux extrémités inférieure et supérieure de l'aube, opposées suivant la direction principale A de l'aube, la pale 12 présentant sur son bord supérieur d'intrados, une arête saillante 20 définie entre une partie 24 de sa face d'extrémité 14 et une partie supérieure 22 de sa face d'intrados 16, ces parties 22, 24 formant entre elles un angle d'arête moyen B. Cet angle d'arête moyen est calculé en faisant la moyenne des angles d'arête mesurés en différents points de l'arête, entre les parties 22, 24, chaque angle étant mesuré dans un plan perpendiculaire à la tangente à l'arête au point considéré. Sur la figure 2, par soucis de simplification, on a considéré que l'angle d'arête entre les parties 22 et 24, mesuré dans le plan de la figure 2, était égal à l'angle d'arête moyen B.This known blade 8 comprises a fixing foot 10 surmounted by a blade 12, this blade having an end face 14 and side faces of the lower surface 16 and the upper surface 18, the fixing foot 10 and the said face of the blade. end 14 being respectively located at the lower and upper ends of the blade, opposite in the main direction A of the blade, the blade 12 having on its upper edge of a lower surface, a projecting edge 20 defined between a portion 24 of its face 14 and an upper portion 22 of its intrados face 16, these portions 22, 24 forming between them an average edge angle B. This average edge angle is calculated by averaging the edge angles measured at different points of the edge, between the parts 22, 24, each angle being measured in a plane perpendicular to the tangent to the edge at the point considered. On the figure 2 for the sake of simplification, it was considered that the edge angle between the parts 22 and 24, measured in the plane of the figure 2 , was equal to the average edge angle B.

Le turboréacteur comprend un disque de rotor 26 d'axe de rotation R, les aubes 8 sont réparties circonférentiellement autour du disque 26 et s'étendent radialement vers l'extérieur de ce disque. La direction principale A de chaque aube 8 correspond à une direction radiale par rapport à l'axe R. Les aubes 8 sont entourées extérieurement par un anneau de carter 28, un interstice I (voir figure 2) subsistant entre la face d'extrémité 14 de l'aube et cet anneau 28.The turbojet engine comprises a rotor disk 26 with a rotation axis R, the blades 8 are distributed circumferentially around the disk 26 and extend radially outwardly from this disk. The main direction A of each blade 8 corresponds to a direction radial with respect to the axis R. The blades 8 are surrounded externally by a housing ring 28, an interstice I (see figure 2 ) remaining between the end face 14 of the blade and this ring 28.

L'amont et l'aval sont définis dans la présente demande par rapport au sens d'écoulement du flux F d'air traversant le turboréacteur. On appelle F1 et F2 les composantes respectives du flux F dans un plan perpendiculaire à la direction principale A, comme le plan de section III-III de la figure 3, et dans un plan parallèle à la direction principale A, comme le plan de section II-II de la figure 2.Upstream and downstream are defined in the present application with respect to the flow direction of the air flow F flowing through the turbojet engine. F1 and F2 are the respective components of the flux F in a plane perpendicular to the main direction A, such as the section plane III-III of the figure 3 , and in a plane parallel to the main direction A, as the section plane II-II of the figure 2 .

En aval de l'arête saillante 20 il se crée une zone de turbulences C dans le flux F (voir figure 2). Le flux F pour traverser l'interstice I doit donc contourner l'arête 20 et la zone de turbulence C. Pour qualifier ce phénomène, on parle de décollement du flux F au niveau de l'arête.Downstream of the projecting edge 20 a zone of turbulence C is created in the stream F (see FIG. figure 2 ). The flow F to cross the gap I must bypass the edge 20 and the turbulence zone C. To qualify this phenomenon, it is called detachment of the flux F at the edge.

On cherche généralement à favoriser le plus possible le décollement du flux F dans l'interstice I car plus ce décollement est important plus la section de passage effective du flux F dans l'interstice I est réduite et, donc, plus la proportion du flux F traversant l'interstice est réduite. Or, le flux F traversant l'interstice I ne participe pas au rendement du turboréacteur. En favorisant le décollement on améliore donc le rendement du turboréacteur et, par voie de conséquence, on diminue la consommation en carburant de ce dernier.It is generally sought to promote as much as possible the detachment of the flux F in the gap I because the more this separation is important, the greater the effective cross section of the flow F in the gap I is reduced and therefore the proportion of the flow F crossing the gap is reduced. However, the flow F crossing the gap I does not participate in the performance of the turbojet engine. By favoring the separation, the efficiency of the turbojet engine is improved and, consequently, the fuel consumption of the latter is reduced.

Pour favoriser le décollement, il est connu de choisir l'angle d'arête moyen B strictement inférieur à 90°, comme représenté sur les figures 1 à 3 ou dans des exemples d'aubes connus et décrits dans FR 05 04811 et US 6,672,829 .To promote delamination, it is known to choose the average edge angle B strictly less than 90 °, as shown in FIGS. Figures 1 to 3 or in examples of vanes known and described in FR 05 04811 and US 6,672,829 .

L'invention a pour but de favoriser encore plus le décollement du flux au niveau de l'arête.The invention aims to further promote the detachment of the flux at the edge.

Pour atteindre ce but, l'invention a pour objet une aube mobile de turbomachine, sans talon, comprenant un pied de fixation surmonté d'une pale, cette pale présentant une face d'extrémité et des faces latérales d'intrados et d'extrados, le pied de fixation et ladite face d'extrémité étant respectivement situés aux extrémités inférieure et supérieure de l'aube, opposées suivant l'axe principal de l'aube, la pale présentant sur son bord supérieur d'intrados, une arête saillante définie entre une partie de sa face d'extrémité et une partie supérieure de sa face d'intrados, ces parties formant entre elles un angle d'arête moyen strictement inférieur à 90°, de manière à favoriser le décollement, au niveau de l'arête, du flux de fluide traversant la turbomachine, caractérisée en ce que la partie supérieure de la face d'intrados est ondulée et suit, dans un quelconque plan de section perpendiculaire à la direction principale de l'aube, une ligne de contour formée par une succession de courbes alternativement concaves et convexes.To achieve this object, the subject of the invention is a turbomachine mobile blade, without heel, comprising a fixing foot surmounted by a blade, this blade having an end face and lateral faces of the lower and upper surfaces. , the fixing foot and said end face being respectively located at the lower and upper ends of the blade, opposite along the main axis of the blade, the blade having on its upper edge of a lower surface, a defined projecting edge between a portion of its end face and an upper portion of its underside face, these portions forming between them an average edge angle strictly less than 90 °, so as to promote delamination, at the edge , of the flow of fluid passing through the turbomachine, characterized in that the upper part of the intrados face is corrugated and follows, in any plane section perpendicular to the main direction of the blade, a contour line fo rmée by a succession of curves alternately concave and convex.

Dans la présente demande, une courbe est considérée comme concave lorsque sa partie bombée est orientée vers la face d'extrados de l'aube. Inversement, une courbe est considérée comme convexe lorsque sa partie bombée est orientée à l'opposé de la face d'extrados de l'aube.In the present application, a curve is considered concave when its curved portion is oriented towards the upper surface of the blade. Conversely, a curve is considered convex when its curved portion is oriented opposite the extrados face of the blade.

Ainsi, ladite face d'intrados présente des zones bombées définies par l'empilement desdites courbes convexes suivant la direction principale de l'aube, et des zones en creux définies par l'empilement desdites courbes concaves suivant la direction principale de l'aube.Thus, said intrados face has curved zones defined by the stacking of said convex curves along the main direction of the blade, and recessed zones defined by the stacking of said concave curves along the main direction of the blade.

Ainsi, ladite ligne de contour présente une alternance de segments faiblement et fortement inclinés par rapport aux composantes du flux de fluide dans ledit plan de section (dans des conditions de fonctionnement normales de la turbomachine), et ladite partie supérieure de la paroi d'intrados de l'aube présente des zones faiblement et fortement inclinées par rapport au flux, ces zones étant définies par l'empilement desdits segments faiblement et fortement inclinés, suivant la direction principale de l'aube.Thus, said contour line has an alternation of weakly and strongly inclined segments with respect to the components of the fluid flow in said section plane (under normal operating conditions of the turbomachine), and said upper part of the intrados wall. dawn has weakly and strongly inclined zones with respect to the flow, these zones being defined by the stacking of said weakly and strongly inclined segments, along the main direction of the blade.

Lesdites zones faiblement inclinées guident le flux vers les zones fortement inclinées. De cette manière, le flux passe majoritairement par les zones fortement inclinées, avant de franchir ladite arête. Or, pour le flux passant par les zones fortement inclinées, l'angle d'arête à franchir (i.e. l'angle d'arrête "vu" depuis le flux) est plus faible que si ladite partie supérieure était lisse (i.e. sans ondulations). Comme le décollement est d'autant plus important que l'angle d'arête à franchir par le flux est faible, on obtient un meilleur décollement avec ladite partie supérieure ondulée qu'avec une partie lisse. On diminue ainsi les pertes de flux dans l'interstice I.The said slightly inclined zones guide the flow towards the strongly inclined zones. In this way, the flow passes mainly by the strongly inclined zones, before crossing said edge. However, for the flow passing through the steeply inclined zones, the edge angle to be crossed (ie the stop angle "seen" from the flow) is lower than if said upper part was smooth (ie without ripples). . As the delamination is all the more important as the edge angle to be crossed by the flow is small, better delamination is obtained with said corrugated upper part than with a smooth part. This reduces the losses of flow in the interstice I.

Avantageusement, lesdits segments faiblement inclinés sont orientés suivant les composantes du flux dans le plan de section (dans des conditions de fonctionnement normales de la turbomachine), de sorte qu'ils forment avec ces composantes un angle voisin de 0°. De cette manière, le flux ne passe pas par les zones faiblement inclinées avant de franchir ladite arête (il ne les "voit" pas) et passe quasi-exclusivement par les zones fortement inclinées.Advantageously, said slightly inclined segments are oriented according to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 0 °. In this way, the flow does not pass through the slightly inclined zones before crossing said ridge (it does not "see" them) and passes almost exclusively through the highly inclined zones.

Avantageusement, lesdits segments fortement inclinés sont orientés transversalement par rapport aux composantes du flux dans le plan de section (dans des conditions de fonctionnement normales de la turbomachine), de sorte qu'ils forment avec ces composantes un angle voisin de 90°. C'est selon cette orientation que l'angle d'arête à franchir par le flux est le plus faible et donc que le décollement du flux dans l'interstice est le plus important. En d'autres termes, le décollement est le plus important lorsque les zones fortement inclinées font face aux composantes du flux de fluide dans ledit plan de section.Advantageously, said strongly inclined segments are oriented transversely with respect to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 90 °. It is according to this orientation that the edge angle to be crossed by the flow is the lowest and therefore that the separation of the flow in the gap is the most important. In other words, the delamination is most important when the steeply inclined areas face the components of the fluid flow in said section plane.

L'invention et ses avantages seront mieux compris à la lecture de la description détaillée qui suit. Cette description fait référence aux figures annexées sur lesquelles :

  • la figure 1 est une vue en perspective d'une partie d'un turboréacteur équipé d'une aube de type connu;
  • la figure 2 représente l'aube de la figure 1 en section suivant le plan II-II, plan perpendiculaire à la tangente à l'arête de l'aube, passant par le point D;
  • la figure 3 représente l'aube de la figure 1 en section suivant le plan III-III, plan perpendiculaire à la direction principale A de l'aube, coupant la partie supérieure de la face d'intrados de l'aube, et passant par le point D;
  • la figure 4 est une vue en perspective d'une partie d'un turboréacteur équipé d'un premier exemple d'aube selon l'invention;
  • la figure 5 représente l'aube de la figure 4 en section suivant le plan V-V, plan perpendiculaire à la tangente à l'arête de l'aube, passant par le point D;
  • la figure 6 représente l'aube de la figure 4 en section suivant le plan VI-VI, plan perpendiculaire à la direction principale A de l'aube, coupant la partie supérieure ondulée de la face d'intrados de l'aube et passant par le point D;
  • la figure 7 est une section analogue à celle de la figure 6, représentant un deuxième exemple d'aube selon l'invention;
  • la figure 8 est une section analogue à celle de la figure 5, représentant un troisième exemple d'aube selon l'invention;
  • la figure 9 est une section analogue à celle de la figure 5, représentant en section suivant le plan IX-IX un quatrième exemple d'aube selon l'invention;
  • la figure 10 est une section analogue à celle de la figure 6, et représente en section suivant le plan X-X, l'exemple d'aube de la figure 9; et
  • la figure 11 est une section analogue à celle de la figure 5, représentant un cinquième exemple d'aube selon l'invention.
The invention and its advantages will be better understood on reading the detailed description which follows. This description refers to the appended figures in which:
  • the figure 1 is a perspective view of a portion of a turbojet engine equipped with a blade of known type;
  • the figure 2 represents the dawn of the figure 1 in section along the plane II-II, plane perpendicular to the tangent at the edge of the blade, passing through the point D;
  • the figure 3 represents the dawn of the figure 1 in section along the plane III-III, plane perpendicular to the principal direction A of the dawn, intersecting the upper part of the intrados face of the blade, and passing through the point D;
  • the figure 4 is a perspective view of a portion of a turbojet engine equipped with a first example of blade according to the invention;
  • the figure 5 represents the dawn of the figure 4 in section along the plane VV, plane perpendicular to the tangent at the edge of the blade, passing through the point D;
  • the figure 6 represents the dawn of the figure 4 in section along the plane VI-VI, plane perpendicular to the principal direction A of the dawn, intersecting the undulating upper part of the intrados face of the blade and passing through the point D;
  • the figure 7 is a section similar to that of the figure 6 , representing a second example of blade according to the invention;
  • the figure 8 is a section similar to that of the figure 5 , representing a third example of blade according to the invention;
  • the figure 9 is a section similar to that of the figure 5 , representing in section according to plan IX-IX a fourth example of blade according to the invention;
  • the figure 10 is a section similar to that of the figure 6 , and represents in section according to the XX plane, the dawn example of the figure 9 ; and
  • the figure 11 is a section similar to that of the figure 5 , representing a fifth example of blade according to the invention.

Les figures 1 à 3 ont été décrites plus haut.The Figures 1 to 3 have been described above.

En référence aux figures 4 à 6, on va décrire un premier exemple d'aube 108 selon l'invention. Les éléments analogues entre cette aube 108 et celle des figures 1 à 3 sont repérés par les mêmes références numériques augmentées de 100.With reference to Figures 4 to 6 a first example of blade 108 according to the invention will be described. Similar elements between this dawn 108 and that of Figures 1 to 3 are identified by the same numerical references increased by 100.

L'aube 108 diffère de l'aube 8 en ce qui concerne la partie supérieure 122 de sa paroi d'intrados 116.The blade 108 differs from the blade 8 with respect to the upper portion 122 of its intrados wall 116.

L'aube 108 comprend un pied de fixation 110 surmonté d'une pale 112, cette pale présentant une face d'extrémité 114 et des faces latérales d'intrados 116 et d'extrados 118. Le pied de fixation 110 et la face d'extrémité 114 sont respectivement situés aux extrémités inférieure et supérieure de l'aube 108, opposées suivant la direction principale A de l'aube. La pale 112 présente sur son bord supérieur d'intrados une arête saillante 120 définie entre une partie 124 de la face d'extrémité 114 et une partie supérieure 122 de la face d'intrados 116. Les parties 122 et 124 forment entre elles un angle d'arête moyen B strictement inférieur à 90°.The blade 108 comprises a fixing foot 110 surmounted by a blade 112, this blade having an end face 114 and side faces of the lower surface 116 and the upper surface 118. The attachment foot 110 and the face of the blade end 114 are respectively located at the lower and upper ends of the blade 108, opposite in the main direction A of the blade. The blade 112 has on its upper edge of a lower surface a protruding edge 120 defined between a portion 124 of the end face 114 and an upper portion 122 of the intrados face 116. The portions 122 and 124 form an angle between them. of average edge B strictly less than 90 °.

Conformément à l'invention, la partie supérieure 122 de la face d'intrados est ondulée de sorte qu'elle suit, dans un quelconque plan de section perpendiculaire à la direction principale A de l'aube et, notamment, dans le plan de section VI-VI, une ligne de contour 130 formée par une par une succession de courbes alternativement concaves 129 et convexes 131. Ainsi, cette ligne de contour 130 présente une alternance de segments faiblement 130a et fortement 130b inclinées par rapport aux composantes F1 du flux F dans le plan de section considéré, ici le plan VI-VI.According to the invention, the upper part 122 of the intrados face is corrugated so that it follows, in any plane section perpendicular to the main direction A of the blade and, in particular, in the section plane VI-VI, a contour line 130 formed by a succession of alternately concave curves 129 and convex 131. Thus, this contour line 130 has an alternation of weakly 130a and strongly 130b segments inclined relative to the F1 components of the stream F in the plane of section considered, here the plane VI-VI.

Les segments faiblement inclinés 130b sont plutôt orientés suivant les composantes F1 du flux dans le plan de section VI-VI, tandis que les segments fortement inclinés 130a sont plutôt orientés transversalement par rapport aux composantes F1 du flux dans ce plan. De cette manière, le flux F passe quasi exclusivement le long des segments fortement inclinés 130a avant de traverser l'interstice I. Comme les segments fortement inclinés 130a font face au flux F (plus précisément aux composantes F1 de ce flux), le décollement du flux F au niveau de l'arête 120 est amélioré, en comparaison avec le décollement obtenu dans l'exemple des figures 1 à 3.Slightly inclined segments 130b are rather oriented along the F1 components of the flow in the section plane VI-VI, whereas the strongly inclined segments 130a are oriented transversely with respect to the F1 components of the flow in this plane. In this way, the stream F passes almost exclusively along the steep segments 130a before crossing the gap I. As the strongly inclined segments 130a face the flow F (more precisely the F1 components of this flow), the separation of the flux F at the edge 120 is improved, compared with the separation obtained in the example of the Figures 1 to 3 .

Dans l'exemple des figures 4 à 6, l'aube 108 comprend à son extrémité supérieure une cavité ouverte 132 délimitée par une paroi de fond 134, un rebord d'intrados 136 et un rebord d'extrados 138. Ladite arête saillante 120 est formée sur le rebord d'intrados 136 entre la face d'extrémité de ce rebord (qui correspond à ladite partie 124 de face d'extrémité 114) et la face d'intrados de ce rebord (qui appartient à ladite partie supérieure 122 de la face d'intrados 116).In the example of Figures 4 to 6 , the blade 108 comprises at its upper end an open cavity 132 defined by a bottom wall 134, a lower edge 136 and an extrados edge 138. Said protruding edge 120 is formed on the underside flange 136 between the end face of this flange (which corresponds to said end face portion 124) and the underside face of this rim (which belongs to said upper portion 122 of the intrados face 116).

On notera également que, selon cet exemple, l'aube comprend un passage de refroidissement interne 142 et au moins un canal de refroidissement 140 communiquant avec ce passage de refroidissement 142.It will also be noted that, according to this example, the blade comprises an internal cooling passage 142 and at least one cooling channel 140 communicating with this cooling passage 142.

Avantageusement, le canal 140 débouche sur ladite partie 124 de face d'extrémité, au niveau des zones d'ondulation bombées de la partie supérieure 122 de la face d'intrados, c'est-à-dire au niveau des courbes convexes 131 de la ligne de contour 130 (voir figure 6). C'est en effet dans ces zones bombées qu'il y a le plus de matière et qu'il est donc plus facile de réaliser (par exemple par perçage) le canal 140.Advantageously, the channel 140 opens on said end-face portion 124, at the level of the curved undulating zones of the upper part 122 of the intrados face, that is to say at the level of the convex curves 131 of the contour line 130 (see figure 6 ). It is indeed in these curved areas that there is the most material and it is therefore easier to achieve (for example by drilling) the channel 140.

En référence à la figure 7, on va maintenant décrire un deuxième exemple d'aube 208 selon l'invention. Les éléments analogues entre cette aube 208 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 100.With reference to the figure 7 a second example of blade 208 according to the invention will now be described. Similar elements between this dawn 208 and that of Figures 4 to 6 are identified by the same numerical references increased by 100.

L'aube 208 de la figure 7 diffère de celle des figures 4 à 6 en ce qui concerne la partie supérieure ondulée 222 de la face d'intrados 216. Cette partie supérieure 222 débute assez loin du bord d'attaque de l'aube.Dawn 208 of the figure 7 differs from that of Figures 4 to 6 as regards the corrugated upper portion 222 of the intrados face 216. This upper portion 222 starts far enough from the leading edge of the blade.

Ceci tient compte du fait que seule une petite partie du flux traverse l'interstice I dans la zone J proche du bord d'attaque de l'aube. En effet, en référence à la figure 7, on estime grossièrement que 20 % du flux traverse l'interstice I au niveau de la zone J et donc que les 80 % restants du flux traversent l'interstice I au niveau de la zone K. Par conséquent, la présence d'ondulations selon l'invention (i.e. la succession de courbes alternativement concaves 229 et convexes 231 suivant la ligne de contour 230), se révèle surtout utile dans la zone K. Approximativement, la zone J couvre un quart de la face d'intrados de l'aube, en partant du bord d'attaque, tandis que la zone K couvre les trois quarts restants.This takes into account that only a small portion of the flow passes through gap I in zone J near the leading edge of the blade. Indeed, with reference to the figure 7 it is roughly estimated that 20% of the flow passes through gap I at zone J and thus the remaining 80% of flow passes through gap I at zone K. Therefore, the presence of corrugations according to the invention (ie the succession of alternately concave curves 229 and convex curves 231 along the contour line 230) is particularly useful in zone K. Approximately, Zone J covers a quarter of the dovetail face, starting from the leading edge, while Zone K covers the remaining three quarters.

En référence à la figure 8, nous allons maintenant décrire un troisième exemple d'aube 308 selon l'invention. Les éléments analogues entre cette aube 308 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 200.With reference to the figure 8 , we will now describe a third example of blade 308 according to the invention. The analogous elements between this dawn 308 and that of Figures 4 to 6 are identified by the same numerical references increased by 200.

L'exemple de la figure 8 diffère de l'exemple des figures 4 à 6 en ce que l'aube 308 ne présente pas une cavité ouverte à son extrémité supérieure et, par conséquent, ne présente ni rebord d'intrados, ni rebord d'extrados.The example of figure 8 differs from the example of Figures 4 to 6 in that the blade 308 does not have an open cavity at its upper end and, consequently, has no underside or extrados rim.

En référence à la figure 9, nous allons décrire un quatrième exemple d'aube 408 selon l'invention. Les éléments analogues entre cette aube 408 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 300.With reference to the figure 9 , we will describe a fourth example of blade 408 according to the invention. The analogous elements between this dawn 408 and that of Figures 4 to 6 are identified by the same numerical references increased by 300.

L'aube 408 de la figure 9 diffère de l'exemple des figures 4 à 6 en ce que son rebord d'intrados 436 est en retrait par rapport au reste de la face d'intrados. La partie supérieure 422 de la face d'intrados 416 correspond à la face d'intrados du rebord d'intrados 436.Dawn 408 of the figure 9 differs from the example of Figures 4 to 6 in that its intrados flange 436 is set back from the rest of the intrados face. The upper part 422 of the intrados face 416 corresponds to the intrados face of the intrados flange 436.

Ainsi, alors que dans les trois premiers exemples, la partie supérieure 122, 222, 322 de la face d'intrados 116, 216, 316 était en saillie par rapport au reste de la face d'intrados de l'aube, dans ce quatrième exemple, la partie supérieure 422 de la face d'intrados 416 est en retrait par rapport au reste de la face d'intrados de l'aube.Thus, while in the first three examples, the upper portion 122, 222, 322 of the intrados face 116, 216, 316 protruded from the rest of the intrados face of the blade, in this fourth for example, the upper portion 422 of the intrados face 416 is set back relative to the remainder of the underside face of the blade.

La partie supérieure 422 forme avec la partie 424 de la face d'extrémité de l'aube, un angle d'arête moyen B strictement inférieur à 90°.The upper portion 422 forms with the portion 424 of the end face of the blade, an average edge angle B strictly less than 90 °.

Par ailleurs, on notera que dans ce quatrième exemple, le rebord d'intrados 436 dans toute sa largeur, est ondulé et incliné vers l'intrados (ainsi, même la paroi d'extrados 423 du rebord 436 est ondulée). Le rebord d'intrados 436 peut être ondulé sur toute sa longueur, c'est-à-dire depuis le bord d'attaque jusqu'au bord de fuite de l'aube, ou seulement sur une partie de sa longueur.Furthermore, it will be noted that in this fourth example, the intrados flange 436 throughout its width, is corrugated and inclined towards the intrados (thus, even the extrados wall 423 of the flange 436 is corrugated). The intrados flange 436 may be corrugated along its entire length, that is from the leading edge to the trailing edge of the blade, or only over part of its length.

A l'image de l'exemple de la figure 5, l'exemple d'aube de la figure 9 comprend un passage de refroidissement interne 440 et des canaux de refroidissement 442 communiquant avec ce passage. En revanche, les canaux de refroidissement 440 ne débouchent pas sur la partie 424 de la face d'extrémité de l'aube, mais à la base du rebord d'intrados 436, au niveau des zones d'ondulation en creux de ce rebord, c'est-à-dire au niveau des courbes concaves 429 de la ligne de contour 430. En effet, il est plus facile de réaliser les canaux de refroidissement 440 à cet endroit. En outre, l'air de refroidissement amené par les canaux 440 remonte le long de la partie supérieure 422 de paroi d'intrados (et permet ainsi de refroidir cette paroi) avant de gagner l'interstice I.Like the example of the figure 5 , the dawn example of the figure 9 comprises an internal cooling passage 440 and cooling channels 442 communicating with this passage. In on the other hand, the cooling channels 440 do not open on the part 424 of the end face of the blade, but at the base of the intrados flange 436, at the hollow corrugation zones of this rim, c that is, at the concave curves 429 of the contour line 430. Indeed, it is easier to realize the cooling channels 440 there. In addition, the cooling air supplied by the channels 440 rises along the upper portion 422 of the intrados wall (and thus allows the wall to cool) before reaching the gap I.

En référence à la figure 11, on va décrire un cinquième exemple d'aube 508 selon l'invention. Les éléments analogues entre ce cette aube 508 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 400.With reference to the figure 11 a fifth example of blade 508 according to the invention will be described. The analogous elements between this dawn 508 and that of Figures 4 to 6 are identified by the same numerical references increased by 400.

L'aube 508 de la figure 11 diffère de l'aube des figures 9 et 10 en ce que le rebord d'extrados 538 de cette aube est ondulé et incliné vers l'intrados, à la manière du rebord d'intrados 536. Ainsi, une autre arête saillante 550 est définie entre la face d'extrémité 554 et la face d'intrados 556 du rebord d'extrados 538. Ces parties forment entre elles un angle d'arête moyen G strictement inférieur à 90° de manière à favoriser le décollement du flux F de fluide traversant la turbomachine au niveau de l'arête 550. La face d'intrados 556 du rebord d'extrados 538 est ondulée et suit, dans un quelconque plan de section perpendiculaire à l'axe principal A de l'aube, une ligne de contour formée par une succession de courbes alternativement concaves et convexes, de sorte que cette ligne de contour présente une alternance de segments faiblement et fortement inclinés par rapport aux composantes F1 du flux F dans ce plan de section.Dawn 508 of the figure 11 differs from the dawn of Figures 9 and 10 in that the extrados rim 538 of this blade is corrugated and inclined towards the lower surface, in the manner of the lower flange 536. Thus, another projecting edge 550 is defined between the end face 554 and the face These portions form between them an angle of average edge G strictly less than 90 ° so as to promote the separation of the flow F of fluid passing through the turbomachine at the edge 550. The intrados face 556 of the extrados rim 538 is corrugated and follows, in any sectional plane perpendicular to the main axis A of the blade, a contour line formed by a succession of alternately concave and convex curves, so that this contour line has an alternation of weakly and strongly inclined segments with respect to the F1 components of the flux F in this section plane.

Dans les exemples précités, on a décrit une aube appartenant à un rotor de turbine de turboréacteur. Néanmoins, il est clair que l'invention peut s'appliquer à d'autres types de turbomachines, les pertes de rendement liées au passage du flux F dans l'interstice I se retrouvant dans d'autres types de turbomachines.In the above examples, a blade belonging to a turbojet turbine rotor has been described. Nevertheless, it is clear that the invention can be applied to other types of turbomachines, the yield losses related to the passage of the flow F in the gap I found in other types of turbomachines.

Claims (9)

  1. A turbomachine moving blade without a top platform, the blade comprising a fastener root (110) surmounted by an airfoil (112), the airfoil presenting an end face (114) and pressure-side and suction-side faces (116 and 118), the fastener root and said end face being situated respectively at bottom and top ends of the blade that are spaced apart along the main axis (A) of the blade, the airfoil presenting a projecting edge (120) at the top edge of its pressure side, the projecting edge being defined between a portion (124) of the end face and a top portion (122) of the pressure-side face, these portions forming between each other a mean edge angle (B) that is strictly less than 90° so as to encourage the stream (F) of fluid passing through the turbomachine to separate at said edge, the blade being characterized in that the top portion (122) of the pressure-side face is corrugated and, in any section plane perpendicular to the main axis of the blade, follows an outline (130) formed by an alternating succession of concave curves (129) and convex curves (131).
  2. A turbomachine blade according to claim 1, in which said top portion (122) of the pressure-side face projects relative to the remainder of the pressure-side face of the blade.
  3. A turbomachine blade according to claim 1 or claim 2, having at its top end an open cavity (132) defined by an end wall (134), a pressure-side rim (136), and a suction-side rim (138), and in which said projecting edge (120) is formed on the pressure-side rim between the end face and the corrugated pressure-side face of the pressure-side rim.
  4. A turbomachine blade according to any one of claims 1 to 3, including an internal cooling passage (142) and at least one cooling channel (140) communicating with the internal cooling passage, the channel opening out in said portion (124) of the end face in register with the bulging zones in the corrugation of the top portion (122) of the pressure-side face.
  5. A turbomachine blade according to claim 3, in which the pressure-side rim (436) is corrugated and inclined towards the pressure side.
  6. A turbomachine blade according to claim 5, including an internal cooling passage (442) and at least one cooling channel (440) communicating with the internal cooling passage, said channel opening out at the base of the pressure-side rim (436), in register with the set back zones of the corrugation of said rim.
  7. A turbomachine blade according to claim 3, in which another projecting edge (550) is defined between the end face and the pressure-side face of the suction-side rim (538), these portions forming between them a mean edge angle (G) that is strictly less than 90° so as to encourage the stream (F) of fluid passing through the turbomachine to separate at said other edge, and in which the pressure-side face of the suction-side rim (538) is corrugated and, in any section plane perpendicular to the main axis of the blade, follows an outline formed by an alternating succession of concave curves and convex curves.
  8. A turbine including a blade according to any preceding claim.
  9. A turbomachine including a turbine according to claim 8.
EP07118256A 2006-10-13 2007-10-11 Blade of a turbomachine Active EP1911934B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0654257A FR2907157A1 (en) 2006-10-13 2006-10-13 MOBILE AUB OF TURBOMACHINE

Publications (2)

Publication Number Publication Date
EP1911934A1 EP1911934A1 (en) 2008-04-16
EP1911934B1 true EP1911934B1 (en) 2009-07-22

Family

ID=38066650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07118256A Active EP1911934B1 (en) 2006-10-13 2007-10-11 Blade of a turbomachine

Country Status (7)

Country Link
US (1) US7972115B2 (en)
EP (1) EP1911934B1 (en)
JP (1) JP4889123B2 (en)
CA (1) CA2606072C (en)
DE (1) DE602007001652D1 (en)
FR (1) FR2907157A1 (en)
RU (1) RU2457335C2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0813556D0 (en) * 2008-07-24 2008-09-03 Rolls Royce Plc A blade for a rotor
US8777567B2 (en) 2010-09-22 2014-07-15 Honeywell International Inc. Turbine blades, turbine assemblies, and methods of manufacturing turbine blades
GB201100957D0 (en) * 2011-01-20 2011-03-02 Rolls Royce Plc Rotor blade
US9322280B2 (en) * 2011-08-12 2016-04-26 United Technologies Corporation Method of measuring turbine blade tip erosion
FR2982903B1 (en) * 2011-11-17 2014-02-21 Snecma GAS TURBINE BLADE WITH INTRADOS SHIFTING OF HEAD SECTIONS AND COOLING CHANNELS
CN102678189A (en) * 2011-12-13 2012-09-19 河南科技大学 Turbine cooling blade with blade tip leakage prevention structure
US9091177B2 (en) * 2012-03-14 2015-07-28 United Technologies Corporation Shark-bite tip shelf cooling configuration
US9188012B2 (en) 2012-05-24 2015-11-17 General Electric Company Cooling structures in the tips of turbine rotor blades
EP2666968B1 (en) * 2012-05-24 2021-08-18 General Electric Company Turbine rotor blade
US9470096B2 (en) * 2012-07-26 2016-10-18 General Electric Company Turbine bucket with notched squealer tip
RU2529273C1 (en) * 2013-09-11 2014-09-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Moving blade of gas-turbine engine turbine
US9856739B2 (en) * 2013-09-18 2018-01-02 Honeywell International Inc. Turbine blades with tip portions having converging cooling holes
US9879544B2 (en) 2013-10-16 2018-01-30 Honeywell International Inc. Turbine rotor blades with improved tip portion cooling holes
US9816389B2 (en) 2013-10-16 2017-11-14 Honeywell International Inc. Turbine rotor blades with tip portion parapet wall cavities
US9670784B2 (en) 2013-10-23 2017-06-06 General Electric Company Turbine bucket base having serpentine cooling passage with leading edge cooling
US9638041B2 (en) 2013-10-23 2017-05-02 General Electric Company Turbine bucket having non-axisymmetric base contour
US9528379B2 (en) 2013-10-23 2016-12-27 General Electric Company Turbine bucket having serpentine core
US20150110617A1 (en) * 2013-10-23 2015-04-23 General Electric Company Turbine airfoil including tip fillet
US9797258B2 (en) 2013-10-23 2017-10-24 General Electric Company Turbine bucket including cooling passage with turn
US9551226B2 (en) 2013-10-23 2017-01-24 General Electric Company Turbine bucket with endwall contour and airfoil profile
FR3043715B1 (en) * 2015-11-16 2020-11-06 Snecma TURBINE VANE INCLUDING A BLADE WITH A TUB WITH A CURVED INTRADOS IN THE PALE TOP REGION
US20170145827A1 (en) * 2015-11-23 2017-05-25 United Technologies Corporation Turbine blade with airfoil tip vortex control
US10677066B2 (en) 2015-11-23 2020-06-09 United Technologies Corporation Turbine blade with airfoil tip vortex control
US10253637B2 (en) * 2015-12-11 2019-04-09 General Electric Company Method and system for improving turbine blade performance
EP3216983A1 (en) 2016-03-08 2017-09-13 Siemens Aktiengesellschaft Rotor blade for a gas turbine with cooled rubbing edge
US10443399B2 (en) * 2016-07-22 2019-10-15 General Electric Company Turbine vane with coupon having corrugated surface(s)
US10436037B2 (en) * 2016-07-22 2019-10-08 General Electric Company Blade with parallel corrugated surfaces on inner and outer surfaces
US10450868B2 (en) * 2016-07-22 2019-10-22 General Electric Company Turbine rotor blade with coupon having corrugated surface(s)
US10465525B2 (en) * 2016-07-22 2019-11-05 General Electric Company Blade with internal rib having corrugated surface(s)
US10465520B2 (en) 2016-07-22 2019-11-05 General Electric Company Blade with corrugated outer surface(s)
EP3361056A1 (en) 2017-02-10 2018-08-15 Siemens Aktiengesellschaft Guide blade for a flow engine
WO2019035800A1 (en) * 2017-08-14 2019-02-21 Siemens Aktiengesellschaft Turbine blades
EP3669054B1 (en) * 2017-08-14 2022-02-09 Siemens Energy Global GmbH & Co. KG Turbine blade and corresponding method of servicing
US10787932B2 (en) 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system
BE1026579B1 (en) * 2018-08-31 2020-03-30 Safran Aero Boosters Sa PROTUBERANCE VANE FOR TURBOMACHINE COMPRESSOR
US11773726B2 (en) * 2019-10-16 2023-10-03 Rtx Corporation Angled tip rods
US11066935B1 (en) * 2020-03-20 2021-07-20 General Electric Company Rotor blade airfoil
US11913353B2 (en) * 2021-08-06 2024-02-27 Rtx Corporation Airfoil tip arrangement for gas turbine engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU411214A1 (en) * 1968-05-12 1974-01-15
SU412388A1 (en) * 1972-03-07 1974-01-25
US4274806A (en) * 1979-06-18 1981-06-23 General Electric Company Staircase blade tip
US4830315A (en) * 1986-04-30 1989-05-16 United Technologies Corporation Airfoil-shaped body
US5282721A (en) * 1991-09-30 1994-02-01 United Technologies Corporation Passive clearance system for turbine blades
US5403158A (en) * 1993-12-23 1995-04-04 United Technologies Corporation Aerodynamic tip sealing for rotor blades
US6494678B1 (en) * 2001-05-31 2002-12-17 General Electric Company Film cooled blade tip
US6672829B1 (en) * 2002-07-16 2004-01-06 General Electric Company Turbine blade having angled squealer tip
US6994514B2 (en) * 2002-11-20 2006-02-07 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
US6971851B2 (en) * 2003-03-12 2005-12-06 Florida Turbine Technologies, Inc. Multi-metered film cooled blade tip
EP1591624A1 (en) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Compressor blade and compressor.
US7270514B2 (en) * 2004-10-21 2007-09-18 General Electric Company Turbine blade tip squealer and rebuild method
FR2885645A1 (en) * 2005-05-13 2006-11-17 Snecma Moteurs Sa Hollow rotor blade for high pressure turbine, has pressure side wall presenting projecting end portion with tip that lies in outside face of end wall such that cooling channels open out into pressure side wall in front of cavity
US7290986B2 (en) * 2005-09-09 2007-11-06 General Electric Company Turbine airfoil with curved squealer tip
US7607893B2 (en) * 2006-08-21 2009-10-27 General Electric Company Counter tip baffle airfoil

Also Published As

Publication number Publication date
RU2007138000A (en) 2009-04-20
US7972115B2 (en) 2011-07-05
DE602007001652D1 (en) 2009-09-03
JP2008095695A (en) 2008-04-24
EP1911934A1 (en) 2008-04-16
CA2606072A1 (en) 2008-04-13
FR2907157A1 (en) 2008-04-18
RU2457335C2 (en) 2012-07-27
US20080175716A1 (en) 2008-07-24
JP4889123B2 (en) 2012-03-07
CA2606072C (en) 2015-03-31

Similar Documents

Publication Publication Date Title
EP1911934B1 (en) Blade of a turbomachine
EP1726783B1 (en) Hollow rotor blade for the turbine of a gas turbine engine, provided with a tip cup
EP2673472B1 (en) Blade-platform assembly for subsonic flow
EP2260179B1 (en) Blade with non-axisymmetric platform
EP2252770B1 (en) Blade with non-axisymmetric platform
EP2780551B1 (en) Gas turbine blade with tip sections angled towards the pressure surface and with cooling channels
EP1748153B1 (en) Turbomachine blade and turbomachine comprising such a blade
EP2673473B1 (en) Blade-platform assembly for supersonic flow
CA2966688C (en) Turbine blade having an end cap
EP3475532B1 (en) Part and method for producing a part having reduced drag by non-constant riblets
EP1630350B1 (en) Rotor blade of a compressor or a gas turbine
FR2891003A1 (en) High pressure gas turbine rotor blade for use in e.g. turbojet engine, has outlet opening of channel, by which fresh air is emitted, situated on bevel, where opening is sufficiently formed near end side of concave edge
EP1630351B1 (en) Blade for a compressor or a gas turbine
EP3677752B1 (en) Improved seal assembly for an inter-blade platform
CA2955738C (en) Turbomachine turbine blade squealer tip
WO2024033065A1 (en) Variable vane of an aircraft turbine engine stator, and aircraft turbine engine
WO2023021258A1 (en) Stator part of a turbomachine comprising an airfoil and a fin defining between them a decreasing surface from upstream to downstream in the gas flow direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20071011

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: BLADE OF A TURBOMACHINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602007001652

Country of ref document: DE

Date of ref document: 20090903

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 17