EP1911934A1 - Mobile blade of a turbomachine - Google Patents

Mobile blade of a turbomachine Download PDF

Info

Publication number
EP1911934A1
EP1911934A1 EP07118256A EP07118256A EP1911934A1 EP 1911934 A1 EP1911934 A1 EP 1911934A1 EP 07118256 A EP07118256 A EP 07118256A EP 07118256 A EP07118256 A EP 07118256A EP 1911934 A1 EP1911934 A1 EP 1911934A1
Authority
EP
European Patent Office
Prior art keywords
blade
face
edge
turbomachine
underside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07118256A
Other languages
German (de)
French (fr)
Other versions
EP1911934B1 (en
Inventor
Thomas Potier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1911934A1 publication Critical patent/EP1911934A1/en
Application granted granted Critical
Publication of EP1911934B1 publication Critical patent/EP1911934B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/184Two-dimensional patterned sinusoidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/61Structure; Surface texture corrugated
    • F05D2250/611Structure; Surface texture corrugated undulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a mobile turbine engine blade. It is intended for any type of turbomachine: turbojet, turboprop, gas turbine land ...
  • the invention relates to a blade without a heel.
  • a dawn is said without a heel when it does not have a platform at its upper end.
  • Figures 1 to 3 show a blade without a bead, known type, mounted on the rotor disc of a turbine (or a compressor) turbojet.
  • This known blade 8 comprises a fixing foot 10 surmounted by a blade 12, this blade having an end face 14 and side faces of the lower surface 16 and the upper surface 18, the fixing foot 10 and the said face of the blade.
  • end 14 being respectively located at the lower and upper ends of the blade, opposite in the main direction A of the blade, the blade 12 having on its upper edge of a lower surface, a projecting edge 20 defined between a portion 24 of its face 14 and an upper portion 22 of its intrados face 16, these portions 22, 24 forming between them an average edge angle B.
  • This average edge angle is calculated by averaging the edge angles measured at different points of the edge, between the parts 22, 24, each angle being measured in a plane perpendicular to the tangent to the edge at the point considered. In FIG. 2, for the sake of simplification, it was considered that the edge angle between the parts 22 and 24, measured in the plane of FIG. 2, was equal to the average edge angle B.
  • the turbojet engine comprises a rotor disk 26 with a rotation axis R, the blades 8 are distributed circumferentially around the disk 26 and extend radially outwardly from this disk.
  • the main direction A of each blade 8 corresponds to a direction radial with respect to the axis R.
  • the blades 8 are surrounded externally by a housing ring 28, a gap I (see FIG. 2) remaining between the end face 14 of dawn and this ring 28.
  • F1 and F2 are the respective components of the flux F in a plane perpendicular to the main direction A, such as the section plane III-III of Figure 3, and in a plane parallel to the main direction A, as the section plane II-II of Figure 2.
  • a zone of turbulence C is created in the flow F (see FIG. 2).
  • the flow F to cross the gap I must bypass the edge 20 and the turbulence zone C. To qualify this phenomenon, it is called detachment of the flux F at the edge.
  • the invention aims to further promote the detachment of the flux at the edge.
  • the subject of the invention is a turbomachine mobile blade, without heel, comprising a fixing foot surmounted by a blade, this blade having an end face and lateral faces of the lower and upper surfaces.
  • the fixing foot and said end face being respectively located at the lower and upper ends of the blade, opposite along the main axis of the blade, the blade having on its upper edge of a lower surface, a defined projecting edge between a portion of its end face and an upper portion of its underside face, these portions forming between them an average edge angle strictly less than 90 °, so as to promote delamination, at the edge , of the flow of fluid passing through the turbomachine, characterized in that the upper part of the intrados face is corrugated and follows, in any plane section perpendicular to the main direction of the blade, a contour line fo rmée by a succession of curves alternately concave and convex.
  • a curve is considered concave when its curved portion is oriented towards the upper surface of the blade. Conversely, a curve is considered convex when its curved portion is oriented opposite the extrados face of the blade.
  • said intrados face has curved zones defined by the stacking of said convex curves along the main direction of the blade, and recessed zones defined by the stacking of said concave curves along the main direction of the blade.
  • said contour line has an alternation of weakly and strongly inclined segments with respect to the components of the fluid flow in said section plane (under normal operating conditions of the turbomachine), and said upper part of the intrados wall. dawn has weakly and strongly inclined zones with respect to the flow, these zones being defined by the stacking of said weakly and strongly inclined segments, along the main direction of the blade.
  • the said slightly inclined zones guide the flow towards the strongly inclined zones. In this way, the flow passes mainly by the strongly inclined zones, before crossing said edge.
  • the edge angle to be crossed ie the stop angle "seen” from the flow
  • the edge angle to be crossed is lower than if said upper part was smooth (ie without ripples).
  • the delamination is all the more important as the edge angle to be crossed by the flow is small, better delamination is obtained with said corrugated upper part than with a smooth part. This reduces the losses of flow in the interstice I.
  • said slightly inclined segments are oriented according to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 0 °.
  • the flow does not pass through the slightly inclined zones before crossing said ridge (it does not "see” them) and passes almost exclusively through the highly inclined zones.
  • said strongly inclined segments are oriented transversely with respect to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 90 °. It is according to this orientation that the edge angle to be crossed by the flow is the lowest and therefore that the separation of the flow in the gap is the most important. In other words, the delamination is most important when the steeply inclined areas face the components of the fluid flow in said section plane.
  • FIGS. 4 to 6 a first example of blade 108 according to the invention will be described. Similar elements between this blade 108 and that of Figures 1 to 3 are identified by the same numerical references increased by 100.
  • the blade 108 differs from the blade 8 with respect to the upper portion 122 of its intrados wall 116.
  • the blade 108 comprises a fixing foot 110 surmounted by a blade 112, this blade having an end face 114 and side faces of the lower surface 116 and the upper surface 118.
  • the attachment foot 110 and the face of the blade end 114 are respectively located at the lower and upper ends of the blade 108, opposite in the main direction A of the blade.
  • the blade 112 has on its upper edge of a lower surface a protruding edge 120 defined between a portion 124 of the end face 114 and an upper portion 122 of the intrados face 116.
  • the portions 122 and 124 form an angle between them. of average edge B strictly less than 90 °.
  • the upper part 122 of the intrados face is corrugated so that it follows, in any plane section perpendicular to the main direction A of the blade and, in particular, in the section plane VI-VI, a contour line 130 formed by a succession of alternately concave curves 129 and convex 131.
  • this contour line 130 has an alternation of weakly 130a and strongly 130b segments inclined relative to the F1 components of the stream F in the plane of section considered, here the plane VI-VI.
  • Slightly inclined segments 130b are rather oriented along the F1 components of the flow in the section plane VI-VI, whereas the strongly inclined segments 130a are oriented transversely with respect to the F1 components of the flow in this plane. In this way, the stream F passes almost exclusively along the steep segments 130a before crossing the gap I. As the strongly inclined segments 130a face the flow F (more precisely the F1 components of this flow), the separation of the flux F at the edge 120 is improved, compared with the separation obtained in the example of FIGS. 3.
  • the blade 108 comprises at its upper end an open cavity 132 delimited by a bottom wall 134, a lower edge 136 and an extrados edge 138.
  • Said projecting edge 120 is formed on the underside flange 136 between the end face of this flange (which corresponds to said end face portion 114) and the underside face of this flange (which belongs to said upper portion 122 of the face of intrados 116).
  • the blade comprises an internal cooling passage 142 and at least one cooling channel 140 communicating with this cooling passage 142.
  • the channel 140 opens on said end-face portion 124, at the level of the curved undulating zones of the upper part 122 of the intrados face, that is to say at the level of the convex curves 131 of the contour line 130 (see Figure 6). It is indeed in these curved areas that there is the most material and it is therefore easier to achieve (for example by drilling) the channel 140.
  • FIG. 7 a second example of blade 208 according to the invention will now be described.
  • the analogous elements between this blade 208 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 100.
  • the blade 208 of FIG. 7 differs from that of FIGS. 4 to 6 with respect to the corrugated upper portion 222 of the intrados face 216. This upper portion 222 starts sufficiently far from the leading edge of the blade.
  • Zone J covers a quarter of the dovetail face, starting from the leading edge, while Zone K covers the remaining three quarters.
  • FIGS. 4 to 6 we will now describe a third example of blade 308 according to the invention.
  • the analogous elements between this blade 308 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 200.
  • FIG. 8 differs from the example of FIGS. 4 to 6 in that the blade 308 does not have an open cavity at its upper end and, consequently, has no flange of intrados or flange. upper surface.
  • FIG. 9 we will describe a fourth example of blade 408 according to the invention.
  • the analogous elements between this blade 408 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 300.
  • the blade 408 of FIG. 9 differs from the example of FIGS. 4 to 6 in that its intrados flange 436 is set back relative to the remainder of the intrados face.
  • the upper part 422 of the intrados face 416 corresponds to the intrados face of the intrados flange 436.
  • the upper portion 122, 222, 322 of the intrados face 116, 216, 316 protruded from the rest of the intrados face of the blade
  • the upper portion 422 of the intrados face 416 is set back relative to the remainder of the underside face of the blade.
  • the upper portion 422 forms with the portion 424 of the end face of the blade, an average edge angle B strictly less than 90 °.
  • the intrados flange 436 throughout its width is corrugated and inclined towards the intrados (thus, even the extrados wall 423 of the flange 436 is corrugated).
  • the intrados flange 436 may be corrugated along its entire length, that is from the leading edge to the trailing edge of the blade, or only over part of its length.
  • the blade example of FIG. 9 comprises an internal cooling passage 440 and cooling channels 442 communicating with this passage.
  • the cooling channels 440 do not open on the part 424 of the end face of the blade, but at the base of the intrados flange 436, at the hollow corrugation zones of this rim, c that is, at the concave curves 429 of the contour line 430. Indeed, it is easier to realize the cooling channels 440 there.
  • the cooling air supplied by the channels 440 rises along the upper portion 422 of the intrados wall (and thus allows the wall to cool) before reaching the gap I.
  • FIG. 11 a fifth example of blade 508 according to the invention will be described.
  • the analogous elements between this blade 508 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 400.
  • the blade 508 of FIG. 11 differs from the blade of FIGS. 9 and 10 in that the extrados rim 538 of this blade is corrugated and inclined towards the underside, in the manner of the intrados flange 536.
  • another projecting edge 550 is defined between the end face 554 and the lower surface face 556 of the extrados rim 538.
  • the intrados face 556 of the extrados rim 538 is corrugated and follows, in any plane section perpendicular to the main axis A of the dawn, a contour line formed by a succession of alternately concave and convex curves, so that this contour line has an alternation of weakly and strongly inclined segments with respect to the F1 components of the flux F in this section plane.

Abstract

The blade has a mounting foot (110) surmounted on a vane (112) that includes an end surface (114), lower side surface (116) and upper side surface. The vane has a projecting edge on its upper edge, defined between a part (124) of the end surface and an upper part (122) of the surface (116). The parts (124, 122) form average edge angle lower than 90 degree so as to separate flux of fluid traversing a turbo machine, at the level of edge. The part (122) is corrugated and follows a boundary line formed by a succession of alternative concave and convex curves.

Description

L'invention concerne une aube mobile de turbomachine. Elle se destine à tout type de turbomachine : turboréacteur, turbopropulseur, turbine à gaz terrestre...The invention relates to a mobile turbine engine blade. It is intended for any type of turbomachine: turbojet, turboprop, gas turbine land ...

Plus particulièrement, l'invention concerne une aube mobile sans talon. Une aube est dite sans talon lorsqu'elle ne porte pas de plateforme à son extrémité supérieure.More particularly, the invention relates to a blade without a heel. A dawn is said without a heel when it does not have a platform at its upper end.

Les figures 1 à 3 représentent une aube mobile sans talon, de type connu, montée sur le disque de rotor d'une turbine (ou d'un compresseur) de turboréacteur.Figures 1 to 3 show a blade without a bead, known type, mounted on the rotor disc of a turbine (or a compressor) turbojet.

Cette aube 8 connue comprend un pied de fixation 10 surmonté d'une pale 12, cette pale présentant une face d'extrémité 14 et des faces latérales d'intrados 16 et d'extrados 18, le pied de fixation 10 et ladite face d'extrémité 14 étant respectivement situés aux extrémités inférieure et supérieure de l'aube, opposées suivant la direction principale A de l'aube, la pale 12 présentant sur son bord supérieur d'intrados, une arête saillante 20 définie entre une partie 24 de sa face d'extrémité 14 et une partie supérieure 22 de sa face d'intrados 16, ces parties 22, 24 formant entre elles un angle d'arête moyen B. Cet angle d'arête moyen est calculé en faisant la moyenne des angles d'arête mesurés en différents points de l'arête, entre les parties 22, 24, chaque angle étant mesuré dans un plan perpendiculaire à la tangente à l'arête au point considéré. Sur la figure 2, par soucis de simplification, on a considéré que l'angle d'arête entre les parties 22 et 24, mesuré dans le plan de la figure 2, était égal à l'angle d'arête moyen B.This known blade 8 comprises a fixing foot 10 surmounted by a blade 12, this blade having an end face 14 and side faces of the lower surface 16 and the upper surface 18, the fixing foot 10 and the said face of the blade. end 14 being respectively located at the lower and upper ends of the blade, opposite in the main direction A of the blade, the blade 12 having on its upper edge of a lower surface, a projecting edge 20 defined between a portion 24 of its face 14 and an upper portion 22 of its intrados face 16, these portions 22, 24 forming between them an average edge angle B. This average edge angle is calculated by averaging the edge angles measured at different points of the edge, between the parts 22, 24, each angle being measured in a plane perpendicular to the tangent to the edge at the point considered. In FIG. 2, for the sake of simplification, it was considered that the edge angle between the parts 22 and 24, measured in the plane of FIG. 2, was equal to the average edge angle B.

Le turboréacteur comprend un disque de rotor 26 d'axe de rotation R, les aubes 8 sont réparties circonférentiellement autour du disque 26 et s'étendent radialement vers l'extérieur de ce disque. La direction principale A de chaque aube 8 correspond à une direction radiale par rapport à l'axe R. Les aubes 8 sont entourées extérieurement par un anneau de carter 28, un interstice I (voir figure 2) subsistant entre la face d'extrémité 14 de l'aube et cet anneau 28.The turbojet engine comprises a rotor disk 26 with a rotation axis R, the blades 8 are distributed circumferentially around the disk 26 and extend radially outwardly from this disk. The main direction A of each blade 8 corresponds to a direction radial with respect to the axis R. The blades 8 are surrounded externally by a housing ring 28, a gap I (see FIG. 2) remaining between the end face 14 of dawn and this ring 28.

L'amont et l'aval sont définis dans la présente demande par rapport au sens d'écoulement du flux F d'air traversant le turboréacteur. On appelle F1 et F2 les composantes respectives du flux F dans un plan perpendiculaire à la direction principale A, comme le plan de section III-III de la figure 3, et dans un plan parallèle à la direction principale A, comme le plan de section II-II de la figure 2.Upstream and downstream are defined in the present application with respect to the flow direction of the air flow F flowing through the turbojet engine. F1 and F2 are the respective components of the flux F in a plane perpendicular to the main direction A, such as the section plane III-III of Figure 3, and in a plane parallel to the main direction A, as the section plane II-II of Figure 2.

En aval de l'arête saillante 20 il se crée une zone de turbulences C dans le flux F (voir figure 2). Le flux F pour traverser l'interstice I doit donc contourner l'arête 20 et la zone de turbulence C. Pour qualifier ce phénomène, on parle de décollement du flux F au niveau de l'arête.Downstream of the projecting edge 20, a zone of turbulence C is created in the flow F (see FIG. 2). The flow F to cross the gap I must bypass the edge 20 and the turbulence zone C. To qualify this phenomenon, it is called detachment of the flux F at the edge.

On cherche généralement à favoriser le plus possible le décollement du flux F dans l'interstice I car plus ce décollement est important plus la section de passage effective du flux F dans l'interstice I est réduite et, donc, plus la proportion du flux F traversant l'interstice est réduite. Or, le flux F traversant l'interstice I ne participe pas au rendement du turboréacteur. En favorisant le décollement on améliore donc le rendement du turboréacteur et, par voie de conséquence, on diminue la consommation en carburant de ce dernier.It is generally sought to promote as much as possible the detachment of the flux F in the gap I because the more this separation is important, the greater the effective cross section of the flow F in the gap I is reduced and therefore the proportion of the flow F crossing the gap is reduced. However, the flow F crossing the gap I does not participate in the performance of the turbojet engine. By favoring the separation, the efficiency of the turbojet engine is improved and, consequently, the fuel consumption of the latter is reduced.

Pour favoriser le décollement, il est connu de choisir l'angle d'arête moyen B strictement inférieur à 90°, comme représenté sur les figures 1 à 3 ou dans des exemples d'aubes connus et décrits dans FR 05 04811 et US 6,672,829 .To promote delamination, it is known to choose the average edge angle B strictly less than 90 °, as shown in FIGS. 1 to 3 or in examples of vanes known and described in FIG. FR 05 04811 and US 6,672,829 .

L'invention a pour but de favoriser encore plus le décollement du flux au niveau de l'arête.The invention aims to further promote the detachment of the flux at the edge.

Pour atteindre ce but, l'invention a pour objet une aube mobile de turbomachine, sans talon, comprenant un pied de fixation surmonté d'une pale, cette pale présentant une face d'extrémité et des faces latérales d'intrados et d'extrados, le pied de fixation et ladite face d'extrémité étant respectivement situés aux extrémités inférieure et supérieure de l'aube, opposées suivant l'axe principal de l'aube, la pale présentant sur son bord supérieur d'intrados, une arête saillante définie entre une partie de sa face d'extrémité et une partie supérieure de sa face d'intrados, ces parties formant entre elles un angle d'arête moyen strictement inférieur à 90°, de manière à favoriser le décollement, au niveau de l'arête, du flux de fluide traversant la turbomachine, caractérisée en ce que la partie supérieure de la face d'intrados est ondulée et suit, dans un quelconque plan de section perpendiculaire à la direction principale de l'aube, une ligne de contour formée par une succession de courbes alternativement concaves et convexes.To achieve this object, the subject of the invention is a turbomachine mobile blade, without heel, comprising a fixing foot surmounted by a blade, this blade having an end face and lateral faces of the lower and upper surfaces. , the fixing foot and said end face being respectively located at the lower and upper ends of the blade, opposite along the main axis of the blade, the blade having on its upper edge of a lower surface, a defined projecting edge between a portion of its end face and an upper portion of its underside face, these portions forming between them an average edge angle strictly less than 90 °, so as to promote delamination, at the edge , of the flow of fluid passing through the turbomachine, characterized in that the upper part of the intrados face is corrugated and follows, in any plane section perpendicular to the main direction of the blade, a contour line fo rmée by a succession of curves alternately concave and convex.

Dans la présente demande, une courbe est considérée comme concave lorsque sa partie bombée est orientée vers la face d'extrados de l'aube. Inversement, une courbe est considérée comme convexe lorsque sa partie bombée est orientée à l'opposé de la face d'extrados de l'aube.In the present application, a curve is considered concave when its curved portion is oriented towards the upper surface of the blade. Conversely, a curve is considered convex when its curved portion is oriented opposite the extrados face of the blade.

Ainsi, ladite face d'intrados présente des zones bombées définies par l'empilement desdites courbes convexes suivant la direction principale de l'aube, et des zones en creux définies par l'empilement desdites courbes concaves suivant la direction principale de l'aube.Thus, said intrados face has curved zones defined by the stacking of said convex curves along the main direction of the blade, and recessed zones defined by the stacking of said concave curves along the main direction of the blade.

Ainsi, ladite ligne de contour présente une alternance de segments faiblement et fortement inclinés par rapport aux composantes du flux de fluide dans ledit plan de section (dans des conditions de fonctionnement normales de la turbomachine), et ladite partie supérieure de la paroi d'intrados de l'aube présente des zones faiblement et fortement inclinées par rapport au flux, ces zones étant définies par l'empilement desdits segments faiblement et fortement inclinés, suivant la direction principale de l'aube.Thus, said contour line has an alternation of weakly and strongly inclined segments with respect to the components of the fluid flow in said section plane (under normal operating conditions of the turbomachine), and said upper part of the intrados wall. dawn has weakly and strongly inclined zones with respect to the flow, these zones being defined by the stacking of said weakly and strongly inclined segments, along the main direction of the blade.

Lesdites zones faiblement inclinées guident le flux vers les zones fortement inclinées. De cette manière, le flux passe majoritairement par les zones fortement inclinées, avant de franchir ladite arête. Or, pour le flux passant par les zones fortement inclinées, l'angle d'arête à franchir (i.e. l'angle d'arrête "vu" depuis le flux) est plus faible que si ladite partie supérieure était lisse (i.e. sans ondulations). Comme le décollement est d'autant plus important que l'angle d'arête à franchir par le flux est faible, on obtient un meilleur décollement avec ladite partie supérieure ondulée qu'avec une partie lisse. On diminue ainsi les pertes de flux dans l'interstice I.The said slightly inclined zones guide the flow towards the strongly inclined zones. In this way, the flow passes mainly by the strongly inclined zones, before crossing said edge. However, for the flow passing through the steeply inclined zones, the edge angle to be crossed (ie the stop angle "seen" from the flow) is lower than if said upper part was smooth (ie without ripples). . As the delamination is all the more important as the edge angle to be crossed by the flow is small, better delamination is obtained with said corrugated upper part than with a smooth part. This reduces the losses of flow in the interstice I.

Avantageusement, lesdits segments faiblement inclinés sont orientés suivant les composantes du flux dans le plan de section (dans des conditions de fonctionnement normales de la turbomachine), de sorte qu'ils forment avec ces composantes un angle voisin de 0°. De cette manière, le flux ne passe pas par les zones faiblement inclinées avant de franchir ladite arête (il ne les "voit" pas) et passe quasi-exclusivement par les zones fortement inclinées.Advantageously, said slightly inclined segments are oriented according to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 0 °. In this way, the flow does not pass through the slightly inclined zones before crossing said ridge (it does not "see" them) and passes almost exclusively through the highly inclined zones.

Avantageusement, lesdits segments fortement inclinés sont orientés transversalement par rapport aux composantes du flux dans le plan de section (dans des conditions de fonctionnement normales de la turbomachine), de sorte qu'ils forment avec ces composantes un angle voisin de 90°. C'est selon cette orientation que l'angle d'arête à franchir par le flux est le plus faible et donc que le décollement du flux dans l'interstice est le plus important. En d'autres termes, le décollement est le plus important lorsque les zones fortement inclinées font face aux composantes du flux de fluide dans ledit plan de section.Advantageously, said strongly inclined segments are oriented transversely with respect to the components of the flow in the section plane (under normal operating conditions of the turbomachine), so that they form with these components an angle close to 90 °. It is according to this orientation that the edge angle to be crossed by the flow is the lowest and therefore that the separation of the flow in the gap is the most important. In other words, the delamination is most important when the steeply inclined areas face the components of the fluid flow in said section plane.

L'invention et ses avantages seront mieux compris à la lecture de la description détaillée qui suit. Cette description fait référence aux figures annexées sur lesquelles :

  • la figure 1 est une vue en perspective d'une partie d'un turboréacteur équipé d'une aube de type connu;
  • la figure 2 représente l'aube de la figure 1 en section suivant le plan II-II, plan perpendiculaire à la tangente à l'arête de l'aube, passant par le point D;
  • la figure 3 représente l'aube de la figure 1 en section suivant le plan III-III, plan perpendiculaire à la direction principale A de l'aube, coupant la partie supérieure de la face d'intrados de l'aube, et passant par le point D;
  • la figure 4 est une vue en perspective d'une partie d'un turboréacteur équipé d'un premier exemple d'aube selon l'invention;
  • la figure 5 représente l'aube de la figure 4 en section suivant le plan V-V, plan perpendiculaire à la tangente à l'arête de l'aube, passant par le point D;
  • la figure 6 représente l'aube de la figure 4 en section suivant le plan VI-VI, plan perpendiculaire à la direction principale A de l'aube, coupant la partie supérieure ondulée de la face d'intrados de l'aube et passant par le point D;
  • la figure 7 est une section analogue à celle de la figure 6, représentant un deuxième exemple d'aube selon l'invention;
  • la figure 8 est une section analogue à celle de la figure 5, représentant un troisième exemple d'aube selon l'invention;
  • la figure 9 est une section analogue à celle de la figure 5, représentant en section suivant le plan IX-IX un quatrième exemple d'aube selon l'invention;
  • la figure 10 est une section analogue à celle de la figure 6, et représente en section suivant le plan X-X, l'exemple d'aube de la figure 9; et
  • la figure 11 est une section analogue à celle de la figure 5, représentant un cinquième exemple d'aube selon l'invention.
The invention and its advantages will be better understood on reading the detailed description which follows. This description refers to the appended figures in which:
  • Figure 1 is a perspective view of a portion of a turbojet equipped with a blade of known type;
  • Figure 2 shows the blade of Figure 1 in section along the plane II-II plane perpendicular to the tangent to the edge of the blade, passing through the point D;
  • FIG. 3 represents the blade of FIG. 1 in section along plane III-III, plane perpendicular to the principal direction A of the blade, intersecting the upper part of the intrados face of the blade, and passing through point D;
  • FIG. 4 is a perspective view of a portion of a turbojet engine equipped with a first example of a blade according to the invention;
  • Figure 5 shows the blade of Figure 4 in section along the plane VV plane perpendicular to the tangent to the edge of the blade, passing through the point D;
  • FIG. 6 represents the blade of FIG. 4 in section along the plane VI-VI, plane perpendicular to the principal direction A of the blade, intersecting the undulating upper part of the intrados face of the blade and passing through point D;
  • Figure 7 is a section similar to that of Figure 6, showing a second example of blade according to the invention;
  • Figure 8 is a section similar to that of Figure 5, showing a third example of blade according to the invention;
  • Figure 9 is a section similar to that of Figure 5, showing in section along the IX-IX plane a fourth example of blade according to the invention;
  • Figure 10 is a section similar to that of Figure 6, and shows in section along the plane XX, the blade example of Figure 9; and
  • Figure 11 is a section similar to that of Figure 5, showing a fifth example of blade according to the invention.

Les figures 1 à 3 ont été décrites plus haut.Figures 1 to 3 have been described above.

En référence aux figures 4 à 6, on va décrire un premier exemple d'aube 108 selon l'invention. Les éléments analogues entre cette aube 108 et celle des figures 1 à 3 sont repérés par les mêmes références numériques augmentées de 100.With reference to FIGS. 4 to 6, a first example of blade 108 according to the invention will be described. Similar elements between this blade 108 and that of Figures 1 to 3 are identified by the same numerical references increased by 100.

L'aube 108 diffère de l'aube 8 en ce qui concerne la partie supérieure 122 de sa paroi d'intrados 116.The blade 108 differs from the blade 8 with respect to the upper portion 122 of its intrados wall 116.

L'aube 108 comprend un pied de fixation 110 surmonté d'une pale 112, cette pale présentant une face d'extrémité 114 et des faces latérales d'intrados 116 et d'extrados 118. Le pied de fixation 110 et la face d'extrémité 114 sont respectivement situés aux extrémités inférieure et supérieure de l'aube 108, opposées suivant la direction principale A de l'aube. La pale 112 présente sur son bord supérieur d'intrados une arête saillante 120 définie entre une partie 124 de la face d'extrémité 114 et une partie supérieure 122 de la face d'intrados 116. Les parties 122 et 124 forment entre elles un angle d'arête moyen B strictement inférieur à 90°.The blade 108 comprises a fixing foot 110 surmounted by a blade 112, this blade having an end face 114 and side faces of the lower surface 116 and the upper surface 118. The attachment foot 110 and the face of the blade end 114 are respectively located at the lower and upper ends of the blade 108, opposite in the main direction A of the blade. The blade 112 has on its upper edge of a lower surface a protruding edge 120 defined between a portion 124 of the end face 114 and an upper portion 122 of the intrados face 116. The portions 122 and 124 form an angle between them. of average edge B strictly less than 90 °.

Conformément à l'invention, la partie supérieure 122 de la face d'intrados est ondulée de sorte qu'elle suit, dans un quelconque plan de section perpendiculaire à la direction principale A de l'aube et, notamment, dans le plan de section VI-VI, une ligne de contour 130 formée par une par une succession de courbes alternativement concaves 129 et convexes 131. Ainsi, cette ligne de contour 130 présente une alternance de segments faiblement 130a et fortement 130b inclinées par rapport aux composantes F1 du flux F dans le plan de section considéré, ici le plan VI-VI.According to the invention, the upper part 122 of the intrados face is corrugated so that it follows, in any plane section perpendicular to the main direction A of the blade and, in particular, in the section plane VI-VI, a contour line 130 formed by a succession of alternately concave curves 129 and convex 131. Thus, this contour line 130 has an alternation of weakly 130a and strongly 130b segments inclined relative to the F1 components of the stream F in the plane of section considered, here the plane VI-VI.

Les segments faiblement inclinés 130b sont plutôt orientés suivant les composantes F1 du flux dans le plan de section VI-VI, tandis que les segments fortement inclinés 130a sont plutôt orientés transversalement par rapport aux composantes F1 du flux dans ce plan. De cette manière, le flux F passe quasi exclusivement le long des segments fortement inclinés 130a avant de traverser l'interstice I. Comme les segments fortement inclinés 130a font face au flux F (plus précisément aux composantes F1 de ce flux), le décollement du flux F au niveau de l'arête 120 est amélioré, en comparaison avec le décollement obtenu dans l'exemple des figures 1 à 3.Slightly inclined segments 130b are rather oriented along the F1 components of the flow in the section plane VI-VI, whereas the strongly inclined segments 130a are oriented transversely with respect to the F1 components of the flow in this plane. In this way, the stream F passes almost exclusively along the steep segments 130a before crossing the gap I. As the strongly inclined segments 130a face the flow F (more precisely the F1 components of this flow), the separation of the flux F at the edge 120 is improved, compared with the separation obtained in the example of FIGS. 3.

Dans l'exemple des figures 4 à 6, l'aube 108 comprend à son extrémité supérieure une cavité ouverte 132 délimitée par une paroi de fond 134, un rebord d'intrados 136 et un rebord d'extrados 138. Ladite arête saillante 120 est formée sur le rebord d'intrados 136 entre la face d'extrémité de ce rebord (qui correspond à ladite partie 124 de face d'extrémité 114) et la face d'intrados de ce rebord (qui appartient à ladite partie supérieure 122 de la face d'intrados 116).In the example of FIGS. 4 to 6, the blade 108 comprises at its upper end an open cavity 132 delimited by a bottom wall 134, a lower edge 136 and an extrados edge 138. Said projecting edge 120 is formed on the underside flange 136 between the end face of this flange (which corresponds to said end face portion 114) and the underside face of this flange (which belongs to said upper portion 122 of the face of intrados 116).

On notera également que, selon cet exemple, l'aube comprend un passage de refroidissement interne 142 et au moins un canal de refroidissement 140 communiquant avec ce passage de refroidissement 142.It will also be noted that, according to this example, the blade comprises an internal cooling passage 142 and at least one cooling channel 140 communicating with this cooling passage 142.

Avantageusement, le canal 140 débouche sur ladite partie 124 de face d'extrémité, au niveau des zones d'ondulation bombées de la partie supérieure 122 de la face d'intrados, c'est-à-dire au niveau des courbes convexes 131 de la ligne de contour 130 (voir figure 6). C'est en effet dans ces zones bombées qu'il y a le plus de matière et qu'il est donc plus facile de réaliser (par exemple par perçage) le canal 140.Advantageously, the channel 140 opens on said end-face portion 124, at the level of the curved undulating zones of the upper part 122 of the intrados face, that is to say at the level of the convex curves 131 of the contour line 130 (see Figure 6). It is indeed in these curved areas that there is the most material and it is therefore easier to achieve (for example by drilling) the channel 140.

En référence à la figure 7, on va maintenant décrire un deuxième exemple d'aube 208 selon l'invention. Les éléments analogues entre cette aube 208 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 100.With reference to FIG. 7, a second example of blade 208 according to the invention will now be described. The analogous elements between this blade 208 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 100.

L'aube 208 de la figure 7 diffère de celle des figures 4 à 6 en ce qui concerne la partie supérieure ondulée 222 de la face d'intrados 216. Cette partie supérieure 222 débute assez loin du bord d'attaque de l'aube.The blade 208 of FIG. 7 differs from that of FIGS. 4 to 6 with respect to the corrugated upper portion 222 of the intrados face 216. This upper portion 222 starts sufficiently far from the leading edge of the blade.

Ceci tient compte du fait que seule une petite partie du flux traverse l'interstice I dans la zone J proche du bord d'attaque de l'aube. En effet, en référence à la figure 7, on estime grossièrement que 20 % du flux traverse l'interstice I au niveau de la zone J et donc que les 80 % restants du flux traversent l'interstice I au niveau de la zone K. Par conséquent, la présence d'ondulations selon l'invention (i.e. la succession de courbes alternativement concaves 229 et convexes 231 suivant la ligne de contour 230), se révèle surtout utile dans la zone K. Approximativement, la zone J couvre un quart de la face d'intrados de l'aube, en partant du bord d'attaque, tandis que la zone K couvre les trois quarts restants.This takes into account that only a small portion of the flow passes through gap I in zone J near the leading edge of the blade. With reference to FIG. 7, it is roughly estimated that 20% of the flow passes through gap I at zone J and therefore the remaining 80% of the flow passes through gap I at zone K. Consequently, the presence of corrugations according to the invention (ie the succession of alternately concave curves 229 and convex curves 231 along the contour line 230) is particularly useful in zone K. Approximately, Zone J covers a quarter of the dovetail face, starting from the leading edge, while Zone K covers the remaining three quarters.

En référence à la figure 8, nous allons maintenant décrire un troisième exemple d'aube 308 selon l'invention. Les éléments analogues entre cette aube 308 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 200.Referring to Figure 8, we will now describe a third example of blade 308 according to the invention. The analogous elements between this blade 308 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 200.

L'exemple de la figure 8 diffère de l'exemple des figures 4 à 6 en ce que l'aube 308 ne présente pas une cavité ouverte à son extrémité supérieure et, par conséquent, ne présente ni rebord d'intrados, ni rebord d'extrados.The example of FIG. 8 differs from the example of FIGS. 4 to 6 in that the blade 308 does not have an open cavity at its upper end and, consequently, has no flange of intrados or flange. upper surface.

En référence à la figure 9, nous allons décrire un quatrième exemple d'aube 408 selon l'invention. Les éléments analogues entre cette aube 408 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 300.With reference to FIG. 9, we will describe a fourth example of blade 408 according to the invention. The analogous elements between this blade 408 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 300.

L'aube 408 de la figure 9 diffère de l'exemple des figures 4 à 6 en ce que son rebord d'intrados 436 est en retrait par rapport au reste de la face d'intrados. La partie supérieure 422 de la face d'intrados 416 correspond à la face d'intrados du rebord d'intrados 436.The blade 408 of FIG. 9 differs from the example of FIGS. 4 to 6 in that its intrados flange 436 is set back relative to the remainder of the intrados face. The upper part 422 of the intrados face 416 corresponds to the intrados face of the intrados flange 436.

Ainsi, alors que dans les trois premiers exemples, la partie supérieure 122, 222, 322 de la face d'intrados 116, 216, 316 était en saillie par rapport au reste de la face d'intrados de l'aube, dans ce quatrième exemple, la partie supérieure 422 de la face d'intrados 416 est en retrait par rapport au reste de la face d'intrados de l'aube.Thus, while in the first three examples, the upper portion 122, 222, 322 of the intrados face 116, 216, 316 protruded from the rest of the intrados face of the blade, in this fourth for example, the upper portion 422 of the intrados face 416 is set back relative to the remainder of the underside face of the blade.

La partie supérieure 422 forme avec la partie 424 de la face d'extrémité de l'aube, un angle d'arête moyen B strictement inférieur à 90°.The upper portion 422 forms with the portion 424 of the end face of the blade, an average edge angle B strictly less than 90 °.

Par ailleurs, on notera que dans ce quatrième exemple, le rebord d'intrados 436 dans toute sa largeur, est ondulé et incliné vers l'intrados (ainsi, même la paroi d'extrados 423 du rebord 436 est ondulée). Le rebord d'intrados 436 peut être ondulé sur toute sa longueur, c'est-à-dire depuis le bord d'attaque jusqu'au bord de fuite de l'aube, ou seulement sur une partie de sa longueur.Furthermore, it will be noted that in this fourth example, the intrados flange 436 throughout its width, is corrugated and inclined towards the intrados (thus, even the extrados wall 423 of the flange 436 is corrugated). The intrados flange 436 may be corrugated along its entire length, that is from the leading edge to the trailing edge of the blade, or only over part of its length.

A l'image de l'exemple de la figure 5, l'exemple d'aube de la figure 9 comprend un passage de refroidissement interne 440 et des canaux de refroidissement 442 communiquant avec ce passage. En revanche, les canaux de refroidissement 440 ne débouchent pas sur la partie 424 de la face d'extrémité de l'aube, mais à la base du rebord d'intrados 436, au niveau des zones d'ondulation en creux de ce rebord, c'est-à-dire au niveau des courbes concaves 429 de la ligne de contour 430. En effet, il est plus facile de réaliser les canaux de refroidissement 440 à cet endroit. En outre, l'air de refroidissement amené par les canaux 440 remonte le long de la partie supérieure 422 de paroi d'intrados (et permet ainsi de refroidir cette paroi) avant de gagner l'interstice I.As in the example of FIG. 5, the blade example of FIG. 9 comprises an internal cooling passage 440 and cooling channels 442 communicating with this passage. In on the other hand, the cooling channels 440 do not open on the part 424 of the end face of the blade, but at the base of the intrados flange 436, at the hollow corrugation zones of this rim, c that is, at the concave curves 429 of the contour line 430. Indeed, it is easier to realize the cooling channels 440 there. In addition, the cooling air supplied by the channels 440 rises along the upper portion 422 of the intrados wall (and thus allows the wall to cool) before reaching the gap I.

En référence à la figure 11, on va décrire un cinquième exemple d'aube 508 selon l'invention. Les éléments analogues entre ce cette aube 508 et celle des figures 4 à 6 sont repérés par les mêmes références numériques augmentées de 400.With reference to FIG. 11, a fifth example of blade 508 according to the invention will be described. The analogous elements between this blade 508 and that of FIGS. 4 to 6 are identified by the same numerical references increased by 400.

L'aube 508 de la figure 11 diffère de l'aube des figures 9 et 10 en ce que le rebord d'extrados 538 de cette aube est ondulé et incliné vers l'intrados, à la manière du rebord d'intrados 536. Ainsi, une autre arête saillante 550 est définie entre la face d'extrémité 554 et la face d'intrados 556 du rebord d'extrados 538. Ces parties forment entre elles un angle d'arête moyen G strictement inférieur à 90° de manière à favoriser le décollement du flux F de fluide traversant la turbomachine au niveau de l'arête 550. La face d'intrados 556 du rebord d'extrados 538 est ondulée et suit, dans un quelconque plan de section perpendiculaire à l'axe principal A de l'aube, une ligne de contour formée par une succession de courbes alternativement concaves et convexes, de sorte que cette ligne de contour présente une alternance de segments faiblement et fortement inclinés par rapport aux composantes F1 du flux F dans ce plan de section.The blade 508 of FIG. 11 differs from the blade of FIGS. 9 and 10 in that the extrados rim 538 of this blade is corrugated and inclined towards the underside, in the manner of the intrados flange 536. Thus , another projecting edge 550 is defined between the end face 554 and the lower surface face 556 of the extrados rim 538. These parts form between them an average edge angle G strictly less than 90 ° so as to favor the detachment of the flow F of fluid passing through the turbomachine at the edge 550. The intrados face 556 of the extrados rim 538 is corrugated and follows, in any plane section perpendicular to the main axis A of the dawn, a contour line formed by a succession of alternately concave and convex curves, so that this contour line has an alternation of weakly and strongly inclined segments with respect to the F1 components of the flux F in this section plane.

Dans les exemples précités, on a décrit une aube appartenant à un rotor de turbine de turboréacteur. Néanmoins, il est clair que l'invention peut s'appliquer à d'autres types de turbomachines, les pertes de rendement liées au passage du flux F dans l'interstice I se retrouvant dans d'autres types de turbomachines.In the above examples, a blade belonging to a turbojet turbine rotor has been described. Nevertheless, it is clear that the invention can be applied to other types of turbomachines, the yield losses related to the passage of the flow F in the gap I found in other types of turbomachines.

Claims (9)

Aube mobile de turbomachine, sans talon, comprenant un pied de fixation (110) surmonté d'une pale (112), cette pale présentant une face d'extrémité (114) et des faces latérales d'intrados (116) et d'extrados (118), le pied de fixation et ladite face d'extrémité étant respectivement situés aux extrémités inférieure et supérieure de l'aube, opposées suivant l'axe principal (A) de l'aube, la pale présentant sur son bord supérieur d'intrados, une arête saillante (120) définie entre une partie (124) de sa face d'extrémité et une partie supérieure (122) de sa face d'intrados, ces parties formant entre elles un angle d'arête moyen (B) strictement inférieur à 90° de manière à favoriser le décollement, au niveau de l'arête, du flux (F) de fluide traversant la turbomachine, caractérisée en ce que la partie supérieure (122) de la face d'intrados est ondulée et suit, dans un quelconque plan de section perpendiculaire à l'axe principal de l'aube, une ligne de contour (130) formée par une succession de courbes alternativement concaves (129) et convexes (131).Mobile turbomachine blade, without heel, comprising a fixing foot (110) surmounted by a blade (112), this blade having an end face (114) and lateral surfaces of the lower surface (116) and the upper surface (118), the fixing foot and said end face being respectively located at the lower and upper ends of the blade, opposite the main axis (A) of the blade, the blade having on its upper edge of an underside, a protruding ridge (120) defined between a portion (124) of its end face and an upper portion (122) of its underside face, these portions forming between them an average edge angle (B) strictly less than 90 ° so as to promote the separation, at the edge, of the flow (F) of fluid passing through the turbomachine, characterized in that the upper part (122) of the intrados face is corrugated and follows, in any plane of section perpendicular to the main axis of the dawn, a line of conto ur (130) formed by a succession of alternately concave (129) and convex (131) curves. Aube de turbomachine selon la revendication 1, dans laquelle ladite partie supérieure (122) de la face d'intrados est en saillie par rapport au reste de la face d'intrados de l'aube.A turbomachine blade according to claim 1, wherein said upper portion (122) of the underside face projects from the remainder of the underside face of the blade. Aube de turbomachine selon la revendication 1 ou 2, comprenant à son extrémité supérieure une cavité ouverte (132) délimitée par une paroi de fond (134), un rebord d'intrados (136) et un rebord d'extrados (138) et dans laquelle ladite arête saillante (120) est formée sur le rebord d'intrados, entre la face d'extrémité et la face d'intrados ondulée du rebord d'intrados.Turbomachine blade according to claim 1 or 2, comprising at its upper end an open cavity (132) delimited by a bottom wall (134), a lower edge (136) and an extrados edge (138) and in wherein said protruding ridge (120) is formed on the underside flange between the end face and the corrugated intrados face of the intrados flange. Aube de turbomachine selon l'une quelconque des revendications 1 à 3, comprenant un passage de refroidissement interne (142) et au moins un canal de refroidissement (140) communiquant avec le passage de refroidissement interne, ce canal débouchant sur ladite partie (124) de face d'extrémité, au niveau des zones d'ondulation bombées de la partie supérieure (122) de la face d'intrados.A turbomachine blade according to any one of claims 1 to 3, comprising an internal cooling passage (142) and at least one cooling channel (140) communicating with the internal cooling passage, said channel opening on said portion (124) of end face, at the curved undulating areas of the upper portion (122) of the intrados face. Aube de turbomachine selon la revendication 3, dans laquelle le rebord d'intrados (436) est ondulé et incliné vers l'intrados.A turbomachine blade according to claim 3, wherein the underside flange (436) is corrugated and inclined towards the underside. Aube de turbomachine selon la revendication 5, comprenant un passage de refroidissement interne (442) et au moins un canal de refroidissement (440) communiquant avec le passage de refroidissement interne, ce canal débouchant à la base du rebord d'intrados (436), au niveau des zones d'ondulation en creux de ce rebord.A turbomachine blade according to claim 5, comprising an internal cooling passage (442) and at least one cooling channel (440) communicating with the internal cooling passage, which channel opens at the base of the intrados flange (436), at the corrugation zones in the hollow of this rim. Aube de turbomachine selon la revendication 3, dans laquelle une autre arête saillante (550) est définie entre la face d'extrémité et la face d'intrados du rebord d'extrados (538), ces parties formant entre elles un angle d'arête moyen (G) strictement inférieur à 90° de manière à favoriser le décollement du flux (F) de fluide traversant la turbomachine au niveau de cette autre arête, et dans laquelle la face d'intrados du rebord d'extrados (538) est ondulée et suit, dans un quelconque plan de section perpendiculaire à l'axe principal de l'aube, une ligne de contour formée par une succession de courbes alternativement concaves et convexes.A turbomachine blade according to claim 3, wherein another projecting edge (550) is defined between the end face and the underside face of the extrados flange (538), these portions forming between them an edge angle. medium (G) strictly less than 90 ° so as to favor the separation of the flow (F) of fluid passing through the turbomachine at this other edge, and in which the underside face of the extrados rim (538) is corrugated and following, in any section plane perpendicular to the main axis of the blade, a contour line formed by a succession of alternately concave and convex curves. Turbine comprenant une aube selon l'une quelconque des revendications précédentes.A turbine comprising a blade according to any one of the preceding claims. Turbomachine comprenant une turbine selon la revendication 8.Turbomachine comprising a turbine according to claim 8.
EP07118256A 2006-10-13 2007-10-11 Blade of a turbomachine Active EP1911934B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0654257A FR2907157A1 (en) 2006-10-13 2006-10-13 MOBILE AUB OF TURBOMACHINE

Publications (2)

Publication Number Publication Date
EP1911934A1 true EP1911934A1 (en) 2008-04-16
EP1911934B1 EP1911934B1 (en) 2009-07-22

Family

ID=38066650

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07118256A Active EP1911934B1 (en) 2006-10-13 2007-10-11 Blade of a turbomachine

Country Status (7)

Country Link
US (1) US7972115B2 (en)
EP (1) EP1911934B1 (en)
JP (1) JP4889123B2 (en)
CA (1) CA2606072C (en)
DE (1) DE602007001652D1 (en)
FR (1) FR2907157A1 (en)
RU (1) RU2457335C2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678189A (en) * 2011-12-13 2012-09-19 河南科技大学 Turbine cooling blade with blade tip leakage prevention structure
EP2666968A1 (en) * 2012-05-24 2013-11-27 General Electric Company Turbine rotor blade
EP2666967A1 (en) * 2012-05-24 2013-11-27 General Electric Company Turbine rotor blade
WO2013180797A2 (en) 2012-03-14 2013-12-05 United Technologies Corporation Shark-bite tip shelf cooling configuration
WO2017085387A1 (en) * 2015-11-16 2017-05-26 Safran Aircraft Engines Turbine engine turbine vane, and related turbine and turbine engine
EP3216983A1 (en) * 2016-03-08 2017-09-13 Siemens Aktiengesellschaft Rotor blade for a gas turbine with cooled rubbing edge
WO2019035800A1 (en) * 2017-08-14 2019-02-21 Siemens Aktiengesellschaft Turbine blades
EP3882436A1 (en) * 2020-03-20 2021-09-22 General Electric Company Rotor blade for a turbomachine and corresponding turbomachine
EP4130429A3 (en) * 2021-08-06 2023-04-12 Raytheon Technologies Corporation Airfoil tip arrangement for gas turbine engine

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0813556D0 (en) * 2008-07-24 2008-09-03 Rolls Royce Plc A blade for a rotor
US8777567B2 (en) 2010-09-22 2014-07-15 Honeywell International Inc. Turbine blades, turbine assemblies, and methods of manufacturing turbine blades
GB201100957D0 (en) * 2011-01-20 2011-03-02 Rolls Royce Plc Rotor blade
US9322280B2 (en) * 2011-08-12 2016-04-26 United Technologies Corporation Method of measuring turbine blade tip erosion
FR2982903B1 (en) * 2011-11-17 2014-02-21 Snecma GAS TURBINE BLADE WITH INTRADOS SHIFTING OF HEAD SECTIONS AND COOLING CHANNELS
US9470096B2 (en) * 2012-07-26 2016-10-18 General Electric Company Turbine bucket with notched squealer tip
RU2529273C1 (en) * 2013-09-11 2014-09-27 Открытое акционерное общество "Уфимское моторостроительное производственное объединение" ОАО "УМПО" Moving blade of gas-turbine engine turbine
US9856739B2 (en) * 2013-09-18 2018-01-02 Honeywell International Inc. Turbine blades with tip portions having converging cooling holes
US9816389B2 (en) 2013-10-16 2017-11-14 Honeywell International Inc. Turbine rotor blades with tip portion parapet wall cavities
US9879544B2 (en) 2013-10-16 2018-01-30 Honeywell International Inc. Turbine rotor blades with improved tip portion cooling holes
US9528379B2 (en) 2013-10-23 2016-12-27 General Electric Company Turbine bucket having serpentine core
US9551226B2 (en) 2013-10-23 2017-01-24 General Electric Company Turbine bucket with endwall contour and airfoil profile
US9670784B2 (en) 2013-10-23 2017-06-06 General Electric Company Turbine bucket base having serpentine cooling passage with leading edge cooling
US20150110617A1 (en) * 2013-10-23 2015-04-23 General Electric Company Turbine airfoil including tip fillet
US9797258B2 (en) 2013-10-23 2017-10-24 General Electric Company Turbine bucket including cooling passage with turn
US9638041B2 (en) 2013-10-23 2017-05-02 General Electric Company Turbine bucket having non-axisymmetric base contour
US10677066B2 (en) 2015-11-23 2020-06-09 United Technologies Corporation Turbine blade with airfoil tip vortex control
US20170145827A1 (en) * 2015-11-23 2017-05-25 United Technologies Corporation Turbine blade with airfoil tip vortex control
US10253637B2 (en) * 2015-12-11 2019-04-09 General Electric Company Method and system for improving turbine blade performance
US10465520B2 (en) 2016-07-22 2019-11-05 General Electric Company Blade with corrugated outer surface(s)
US10436037B2 (en) * 2016-07-22 2019-10-08 General Electric Company Blade with parallel corrugated surfaces on inner and outer surfaces
US10443399B2 (en) * 2016-07-22 2019-10-15 General Electric Company Turbine vane with coupon having corrugated surface(s)
US10465525B2 (en) * 2016-07-22 2019-11-05 General Electric Company Blade with internal rib having corrugated surface(s)
US10450868B2 (en) * 2016-07-22 2019-10-22 General Electric Company Turbine rotor blade with coupon having corrugated surface(s)
EP3361056A1 (en) 2017-02-10 2018-08-15 Siemens Aktiengesellschaft Guide blade for a flow engine
JP7012825B2 (en) * 2017-08-14 2022-01-28 シーメンス アクティエンゲゼルシャフト Turbine blades and corresponding delivery methods
US10787932B2 (en) 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system
BE1026579B1 (en) * 2018-08-31 2020-03-30 Safran Aero Boosters Sa PROTUBERANCE VANE FOR TURBOMACHINE COMPRESSOR
US11773726B2 (en) * 2019-10-16 2023-10-03 Rtx Corporation Angled tip rods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2052644A (en) * 1979-06-18 1981-01-28 Gen Electric Staircase blade tip
US5403158A (en) * 1993-12-23 1995-04-04 United Technologies Corporation Aerodynamic tip sealing for rotor blades
US20020182074A1 (en) * 2001-05-31 2002-12-05 Bunker Ronald Scott Film cooled blade tip
US20040013515A1 (en) * 2002-07-16 2004-01-22 Cherry David Glenn Turbine blade having angled squealer tip
US20040096328A1 (en) * 2002-11-20 2004-05-20 Mitsubishi Heavy Industries Ltd. Turbine blade and gas turbine
US20040179940A1 (en) * 2003-03-12 2004-09-16 Florida Turbine Technologies, Inc. Multi-metered film cooled blade tip
EP1650404A2 (en) * 2004-10-21 2006-04-26 General Electric Company Rebuild method of a turbine blade tip squealer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU411214A1 (en) * 1968-05-12 1974-01-15
SU412388A1 (en) * 1972-03-07 1974-01-25
US4830315A (en) * 1986-04-30 1989-05-16 United Technologies Corporation Airfoil-shaped body
US5282721A (en) * 1991-09-30 1994-02-01 United Technologies Corporation Passive clearance system for turbine blades
EP1591624A1 (en) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Compressor blade and compressor.
FR2885645A1 (en) * 2005-05-13 2006-11-17 Snecma Moteurs Sa Hollow rotor blade for high pressure turbine, has pressure side wall presenting projecting end portion with tip that lies in outside face of end wall such that cooling channels open out into pressure side wall in front of cavity
US7290986B2 (en) * 2005-09-09 2007-11-06 General Electric Company Turbine airfoil with curved squealer tip
US7607893B2 (en) * 2006-08-21 2009-10-27 General Electric Company Counter tip baffle airfoil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2052644A (en) * 1979-06-18 1981-01-28 Gen Electric Staircase blade tip
US5403158A (en) * 1993-12-23 1995-04-04 United Technologies Corporation Aerodynamic tip sealing for rotor blades
US20020182074A1 (en) * 2001-05-31 2002-12-05 Bunker Ronald Scott Film cooled blade tip
US20040013515A1 (en) * 2002-07-16 2004-01-22 Cherry David Glenn Turbine blade having angled squealer tip
US20040096328A1 (en) * 2002-11-20 2004-05-20 Mitsubishi Heavy Industries Ltd. Turbine blade and gas turbine
US20040179940A1 (en) * 2003-03-12 2004-09-16 Florida Turbine Technologies, Inc. Multi-metered film cooled blade tip
EP1650404A2 (en) * 2004-10-21 2006-04-26 General Electric Company Rebuild method of a turbine blade tip squealer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678189A (en) * 2011-12-13 2012-09-19 河南科技大学 Turbine cooling blade with blade tip leakage prevention structure
WO2013180797A2 (en) 2012-03-14 2013-12-05 United Technologies Corporation Shark-bite tip shelf cooling configuration
EP2825733A4 (en) * 2012-03-14 2015-11-11 United Technologies Corp Shark-bite tip shelf cooling configuration
EP2666968A1 (en) * 2012-05-24 2013-11-27 General Electric Company Turbine rotor blade
EP2666967A1 (en) * 2012-05-24 2013-11-27 General Electric Company Turbine rotor blade
US9188012B2 (en) 2012-05-24 2015-11-17 General Electric Company Cooling structures in the tips of turbine rotor blades
GB2560124A (en) * 2015-11-16 2018-08-29 Safran Aircraft Engines Turbine engine turbine vane, and related turbine and turbine engine
WO2017085387A1 (en) * 2015-11-16 2017-05-26 Safran Aircraft Engines Turbine engine turbine vane, and related turbine and turbine engine
US10753215B2 (en) 2015-11-16 2020-08-25 Safran Aircraft Engines Turbine vane comprising a blade with a tub including a curved pressure side in a blade apex region
GB2560124B (en) * 2015-11-16 2022-04-13 Safran Aircraft Engines Turbine vane comprising a blade with a tub including a curved pressure side in a blade apex region
EP3216983A1 (en) * 2016-03-08 2017-09-13 Siemens Aktiengesellschaft Rotor blade for a gas turbine with cooled rubbing edge
US11136892B2 (en) 2016-03-08 2021-10-05 Siemens Energy Global GmbH & Co. KG Rotor blade for a gas turbine with a cooled sweep edge
WO2019035800A1 (en) * 2017-08-14 2019-02-21 Siemens Aktiengesellschaft Turbine blades
EP3882436A1 (en) * 2020-03-20 2021-09-22 General Electric Company Rotor blade for a turbomachine and corresponding turbomachine
EP4130429A3 (en) * 2021-08-06 2023-04-12 Raytheon Technologies Corporation Airfoil tip arrangement for gas turbine engine
US11913353B2 (en) 2021-08-06 2024-02-27 Rtx Corporation Airfoil tip arrangement for gas turbine engine

Also Published As

Publication number Publication date
EP1911934B1 (en) 2009-07-22
JP4889123B2 (en) 2012-03-07
CA2606072A1 (en) 2008-04-13
RU2007138000A (en) 2009-04-20
JP2008095695A (en) 2008-04-24
CA2606072C (en) 2015-03-31
US7972115B2 (en) 2011-07-05
US20080175716A1 (en) 2008-07-24
DE602007001652D1 (en) 2009-09-03
RU2457335C2 (en) 2012-07-27
FR2907157A1 (en) 2008-04-18

Similar Documents

Publication Publication Date Title
EP1911934B1 (en) Blade of a turbomachine
EP1726783B1 (en) Hollow rotor blade for the turbine of a gas turbine engine, provided with a tip cup
EP2673472B1 (en) Blade-platform assembly for subsonic flow
EP2780551B1 (en) Gas turbine blade with tip sections angled towards the pressure surface and with cooling channels
EP2260179B1 (en) Blade with non-axisymmetric platform
EP2252770B1 (en) Blade with non-axisymmetric platform
EP1748153B1 (en) Turbomachine blade and turbomachine comprising such a blade
EP1630350B1 (en) Rotor blade of a compressor or a gas turbine
FR2891003A1 (en) High pressure gas turbine rotor blade for use in e.g. turbojet engine, has outlet opening of channel, by which fresh air is emitted, situated on bevel, where opening is sufficiently formed near end side of concave edge
EP3475532B1 (en) Part and method for producing a part having reduced drag by non-constant riblets
EP1630351B1 (en) Blade for a compressor or a gas turbine
EP3677752A1 (en) Improved seal assembly for an inter-blade platform
CA2955738C (en) Turbomachine turbine blade squealer tip
FR3107919A1 (en) Turbomachine hollow vane and inter-vane platform equipped with projections that disrupt cooling flow
FR2939852A1 (en) Stator blade stage for compressor of turboshaft engine e.g. turbopropeller engine, has intermediate blades with axial length or radial height less than that of rectifier blades and extend radially between rectifier blades
CA2878827A1 (en) Turbomachine vane having an airfoil designed to provide improved aerodynamic and mechanical properties.
WO2020021192A1 (en) Turbine blade
WO2024033065A1 (en) Variable vane of an aircraft turbine engine stator, and aircraft turbine engine
WO2023021258A1 (en) Stator part of a turbomachine comprising an airfoil and a fin defining between them a decreasing surface from upstream to downstream in the gas flow direction
FR3127018A1 (en) Moving blade for a turbomachine turbine, having a design improving the sealing of the inter-blade cavities

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20071011

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: BLADE OF A TURBOMACHINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602007001652

Country of ref document: DE

Date of ref document: 20090903

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 17