EP1909892A2 - Appareil et procede de couplage d'electrodes implantees au tissu nerveux - Google Patents
Appareil et procede de couplage d'electrodes implantees au tissu nerveuxInfo
- Publication number
- EP1909892A2 EP1909892A2 EP06780038A EP06780038A EP1909892A2 EP 1909892 A2 EP1909892 A2 EP 1909892A2 EP 06780038 A EP06780038 A EP 06780038A EP 06780038 A EP06780038 A EP 06780038A EP 1909892 A2 EP1909892 A2 EP 1909892A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- pillar
- cell
- electrodes
- electrode
- biological
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 29
- 238000010168 coupling process Methods 0.000 title claims abstract description 29
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 26
- 210000004027 cell Anatomy 0.000 claims abstract description 40
- 210000001519 tissue Anatomy 0.000 claims abstract description 30
- 230000000638 stimulation Effects 0.000 claims abstract description 20
- 210000000170 cell membrane Anatomy 0.000 claims description 34
- 229920002306 Glycocalyx Polymers 0.000 claims description 19
- 210000004517 glycocalyx Anatomy 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 19
- 230000036982 action potential Effects 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 210000003061 neural cell Anatomy 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 3
- 210000003093 intracellular space Anatomy 0.000 claims description 3
- 238000004049 embossing Methods 0.000 claims description 2
- 238000001746 injection moulding Methods 0.000 claims description 2
- 210000003050 axon Anatomy 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 230000001537 neural effect Effects 0.000 abstract description 10
- 230000004936 stimulating effect Effects 0.000 abstract description 8
- 210000005013 brain tissue Anatomy 0.000 abstract 1
- 210000004126 nerve fiber Anatomy 0.000 abstract 1
- 210000002569 neuron Anatomy 0.000 description 21
- 230000000694 effects Effects 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 7
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 108091006146 Channels Proteins 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 108090000862 Ion Channels Proteins 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003387 muscular Effects 0.000 description 2
- 210000000944 nerve tissue Anatomy 0.000 description 2
- 210000000653 nervous system Anatomy 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000001525 retina Anatomy 0.000 description 2
- 208000017194 Affective disease Diseases 0.000 description 1
- 206010001541 Akinesia Diseases 0.000 description 1
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- 206010006100 Bradykinesia Diseases 0.000 description 1
- 206010008754 Choreoathetosis Diseases 0.000 description 1
- 208000025967 Dissociative Identity disease Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 208000014094 Dystonic disease Diseases 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 206010020651 Hyperkinesia Diseases 0.000 description 1
- 208000000269 Hyperkinesis Diseases 0.000 description 1
- 208000006083 Hypokinesia Diseases 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000027089 Parkinsonian disease Diseases 0.000 description 1
- 206010034010 Parkinsonism Diseases 0.000 description 1
- 206010034912 Phobia Diseases 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000296 active ion transport Effects 0.000 description 1
- 208000038016 acute inflammation Diseases 0.000 description 1
- 230000006022 acute inflammation Effects 0.000 description 1
- 230000010398 acute inflammatory response Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007177 brain activity Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000002999 depolarising effect Effects 0.000 description 1
- 208000010118 dystonia Diseases 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 210000000337 motor cortex Anatomy 0.000 description 1
- 208000027881 multiple personality disease Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000008904 neural response Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 208000019899 phobic disease Diseases 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000009329 sexual behaviour Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000004092 somatosensory cortex Anatomy 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 231100000736 substance abuse Toxicity 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6804—Garments; Clothes
- A61B5/6805—Vests
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0531—Brain cortex electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0534—Electrodes for deep brain stimulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0543—Retinal electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
Definitions
- the present disclosure relates generally to topographic structures extending from an implanted device for the electrical stimulation and/or detection of biological tissue.
- the present disclosure relates to nanometer scale topographic structures extending from electrodes of an implantable medical device to improve neuron-electrode coupling.
- Electrodes are chronically implanted into the human body for stimulating nervous and muscular tissue.
- such chronically implanted electrodes are used in pacemakers, for deep brain stimulation in Parkinson disease and for the functional electrical stimulations of muscles in paralysed persons.
- Similar chronically implanted electrodes can also record neural or muscular activity (e.g., for control of prostheses and closed loop systems for deep brain stimulation (DBS)) by recording action potentials or field potentials.
- DBS deep brain stimulation
- the immune system reacts by forming an encapsulating tissue layer around the foreign body (e.g., implanted electrode).
- the encapsulating tissue layer prevents direct contact between the electrode and surrounding nerve tissue.
- the lack of direct contact is especially relevant for recording electrodes, since the signals from the nerve cells are very weak and the encapsulation layer can lead to a failure of contact between the electrode and nerve tissue after some weeks to months. Stimulating electrodes are not affected as much, because the stimulus amplitude can be increased to compensate for the decrease in coupling efficiency.
- Figure 1 illustrates an equivalent circuit for a non- invasive extracellular coupling to a capacitive electrode represented by a capacitance C E (point-contact model).
- the neuron in Figure 1 is represented by a Hodgkin-Huxley membrane circuit model.
- the cell membrane separates the interior of the cell from the extracellular liquid and acts as a capacitor.
- Passive and voltage-gated ion-channels are incorporated into the cell membrane allowing the passage of (specific) ions. They are represented as resistors with constant (passive channels) and variable (active channels) conductance. Because of active ion transport through the cell membrane (e.g., ion pump), the ion concentration inside the cell is different from that in the extracellular liquid.
- the Nernst potential generated by the difference in ion concentration is represented by a battery for every type of ion (e.g., Na, K, and leak are relevant in the Hodgkin-Huxley model). Stimulating the neuron (depolarizing stimulus above firing threshold) leads to a transient opening of voltage-gated ion-channels (governed by the channel dynamics) and a short (1 to several milliseconds) increase in membrane potential (about 10OmV) called action potential.
- type of ion e.g., Na, K, and leak are relevant in the Hodgkin-Huxley model.
- Stimulating the neuron leads to a transient opening of voltage-gated ion-channels (governed by the channel dynamics) and a short (1 to several milliseconds) increase in membrane potential (about 10OmV) called action potential.
- the capacitance C E is replaced by a parallel circuit of capacitance and resistance.
- V M is the intracellular voltage and gj is the area specific conductance of a cleft between the cell and electrode surface.
- Vj is the voltage in the cleft (junction) between the electrode and cell and is connected to the grounded bath by gj.
- the neuron is represented by parallel circuits of resistances in series with corresponding voltage sources and a capacitance according to the Hodgkin-Huxley Model. The neuron is represented with two of these circuits, one for the adherent and one for the free membrane.
- the electrode For recording extracellular activity, the electrode measures Vj, which results from a voltage drop created by the ionic currents (released from the neuron during firing of an action potential) along the conductance g j . This voltage drop increases with decreasing gj meaning a larger signal at the electrode.
- voltage pulses are applied to the capacitor C E (or constant currents for metal electrodes) that modulate Vj. Again, the coupling efficiency is increased with smaller values of gj, since gj is the reciprocal resistance, 1/Rj.
- coupling efficiency for both stimulating and recording can be increased either by decreasing d (e.g., decreasing the width of the cleft) or increasing the specific electrolyte resistance pj.
- d e.g., decreasing the width of the cleft
- pj specific electrolyte resistance
- the present disclosure provides an apparatus for increasing electrical coupling between an electrode and a target biological cell of biological tissue.
- the apparatus includes a support structure; an array of electrodes arranged in or on the support structure; and a plurality of pillar structures extending from corresponding electrodes.
- the pillars are dimensioned in nanometer scale to overcome a glycocalix cushion separating the cell from the terminal end of the pillar, thus increasing electrical coupling between the electrodes and the targeted biological cell.
- the present disclosure also provides a method for increasing electrical coupling between an electrode and a target biological cell of biological tissue.
- the method includes: arranging an array of electrodes in or on a support structure; and dimensioning a plurality of pillar structures in nanometer scale to extend from corresponding electrodes.
- the nanometer scale pillar structures overcome a glycocalix cushion separating the cell from a terminal end defining each pillar, thus increasing electrical coupling between the electrodes and the targeted biological cell.
- FIGURE 1 is a schematic circuit view of a point-contact model describing the electrical coupling of a neural cell to a capacitive electrode in close proximity, the neuron being represented by the Hodgkin-Huxley model;
- FIGURE 2 is a cross sectional view of a prior art implanted electrode device in tissue
- FIGURE 3 is an enlarged view of the circle of FIG. 2 illustrating a gap between a cell membrane of a neuron of the tissue and the implanted electrode device;
- FIGURE 4 is a cross sectional view of an implanted electrode device illustrating pillars extending from individual electrodes disposed on a substrate of the implanted electrode device and in electrical contact with the cell membrane in accordance with an exemplary embodiment of the present disclosure
- FIGURE 5 is a cross sectional view of an implanted electrode device illustrating pillars extending from electrodes disposed on a substrate of the implanted electrode device and extending through the cell membrane in accordance with an alternative exemplary embodiment of the present disclosure
- FIGURE 6 is a cross sectional view of a dense array of nm pillar structures defining a top layer of the imbedded substrate and a glycocalix cushion extending from a neuron illustrating a gap and prevention of contact with the cell membrane as a result of the dense array
- FIGURE 7 is a cross sectional of view of a less dense array of larger pillar structures compared to FIG. 6 illustrating prevention of contact with the cell membrane having a glycocalix cushion extending therefrom;
- FIGURE 8 is a cross sectional view of a combination of ⁇ m topographic structures defining a top layer of the electrode substrate and a glycocalix cushion extending from a neuron illustrating a plurality of nm pillar structures extending from corresponding electrodes either in abutting contact or penetrating the cell membrane of the neuron in accordance with an exemplary embodiment of the present disclosure;
- FIGURE 9 is an enlarged view of the circle indicated in FIG. 8; and FIGURE 10 is a top plan view of the embedded substrate of FIGS. 8 and 9 illustrating an array of ⁇ m topographic structures having an irregular distribution of electrodes in accordance with an exemplary embodiment of the present disclosure.
- the apparatus and method of the present disclosure advantageously increases the neuron-electrode coupling efficiency by locally reducing the cleft between a nerve cell and electrode surface.
- the cleft between the nerve cell and electrode surface is reduced with pillar like structures protruding from the electrode surface to permit and facilitate neural tissue interfacing, e.g., in implantable neurostimulation medical devices.
- the present disclosure can be extended to any application where electrical coupling to single or multiple cells is desired for either sensing or stimulation thereof. More specifically, the present disclosure suggests using pillars having a very small surface area (e.g., small diameter pillars) to avoid glycocalix molecules from attaching at a terminal end or top that would prevent direct contact between the pillar and cell membrane.
- the present disclosure suggests using pillars having a small overall density (e.g. less than 10 pillars beneath the contact area of a neuron with the electrode). Otherwise, the glycocalix can form a cushion on top of the pillars due to entropic effects obstructing the action of the pillars.
- the apparatus of the present disclosure requires less electronics, smaller and less costly electronics and relies on mainstream IC manufacturing techniques, making it cost- effective.
- FIG. 1 an electrode device 10 is illustrated implanted in biological tissue 12.
- Figure 3 is an enlarged view of circle 14 in Figure 2.
- Figure 3 depicts a neural cell or neuron 20 of tissue 12 having long glycoprotein chains (glycocalix) 22 protruding from a cell membrane 24 acting as a cushion surrounding the cell 20 forming a cleft 26 between the cell 20 and an electrode surface 28 of device 10.
- the implant device 10 is shown inserted into tissue 12 without an encapsulation layer, while neuron 20 is separated from the implant surface by the glycocalix cushion defined by the plurality of chains of glycoproteins 22 forming cleft 26.
- Both Figures 2 and 3 illustrate device 10 as an implanted planar substrate 16 having electrodes (not shown) for electrical coupling with cell membrane 24.
- the gap or cleft 26 formed by glycocalix 22 prevents actual contact therebetween resulting in a small amplitude for any signal generated or received by the e lectrodes of device 10.
- Electrode 30 includes a single nanometer scale pillar structure 36 having one end mechanically and electrically coupled to electrode 30, while an opposite terminal end is electrically coupled to cell membrane 24 via abutting engagement therewith.
- Electrode 32 includes a plurality of nanometer scale pillar structures 36 each having one end mechanically and electrically coupled to electrode 32, while an opposite terminal end is electrically coupled to cell membrane 24 via abutting engagement therewith.
- Each of the nanometer scale pillar structures 36 are long enough to close a gap created by glycocalix 22 between the cell membrane 24 and electrode surface 28 to improve neuron-electrode coupling therebetween.
- a diameter of each pillar structure is less than about 50nm, wherein the lower limit is defined by the mechanical stability of the structure 36.
- a height of each of the pillar structures 36 as illustrated in Figure 4 is between about 50 nm to about 100 nm wherein the pillar structures 36 are in abutting contact with the cell membrane 24.
- Figure 5 illustrates substrate 16 having a pair of electrodes 30 embedded therewith.
- Each electrode 30 includes a single nanometer scale pillar structure 36 having one end mechanically and electrically coupled to electrode 30, while an opposite terminal end penetrates neuron 20.
- Figure 5 illustrates a second configuration in which the exposed terminal ends of each pillar structure 36 penetrate the cell membrane and extend into the intracellular space defining the cell 20.
- a height of each of the pillar structures of Figure 5 is between about 100 nm and about 300 nm.
- structures 36 of Figure 5 provide invasive contact with cell 20
- structures 36 of Figure 4 provide non- invasive contact with cell 20.
- the cell membrane 24 of cell 20 of Figure 5 may not rupture and adhere well to the surface of structure 36 if it does not move providing a very stable configuration.
- the aspect ratios for both configurations of pillar structures is greater than 2.
- the length or height to diameter ratio is greater than 2.
- the pillar structures 36 may be fabricated of a metal or other conducting material.
- the pillar structures include a conductive core covered with a dielectric, similar to capacitive electrodes.
- the pillar structures 36 may be connected to the electrodes either individually or in small groups (e.g., 2-3 pillars). In any case, there should be few (e.g., less than 10) pillar structures per electrode to maintain an overall small density and to prevent glycocalix from forming a cushion 40 on a dense array of pillar structures 36 (as shown in Figure 6).
- the electrodes 30, 32 may be embodied as metal pads, as illustrated in Figures 4 and 5 or transistors, such that the pillar structures themselves are the electrodes, or a major part of the electrode.
- the pillar structures 36 are rigid to allow penetration of the cell membrane 24, whereas a pillar structure 36 formed of a flexible polymer or single polymer chains used as pillars, for example, would not facilitate such penetration of the cell membrane.
- the structures 36 of the present disclosure may be deposited at well-defined locations and at defined 'concentrations', allowing single pillar structures 36 to be connected to electronic circuits.
- the pillar structures may be formed either as metal/conducting structures or conductive structures with a dielectric surface for capacitive coupling (the latter preventing faradic currents across the electrode-electrolyte interface).
- the high aspect ratio pillar structures described by the present disclosure can be processed onto planar substrates 16 by standard processing techniques, including masking and anisotropic etching, for example, which can then be followed by further isotropic etches to further thin down the structures 36.
- the pillar structures can also be fabricated by selective growth techniques (e.g., similar to the growth of nanowires).
- Figure 6 illustrates a plurality of pillar structures 36 each having a suitable aspect ratio, but arranged in an array that is too dense.
- glycocalix 22 forms a cushion 40 between cell membrane 24 and surface 28 of substrate 16 preventing contact with the cell membrane.
- cushion 40 prohibits effective coupling therebetween resulting in a low signal to noise ratio for any signals between electrodes operably connected to the pillar structures 36 and cell membrane 24.
- Figure 7 illustrates a pair of pillar structures 36 each having a low aspect ratio or structures having a much too large of a diameter.
- glycocalix 22 forms a cushion 40 between cell membrane 24 and surface 28 of substrate 16 preventing contact with the cell membrane, as in the dense array of Figure 6.
- cushion 40 prohibits effective coupling therebetween resulting in a low signal to noise ratio for any signals between electrodes operably connected to the pillar structures 36 and cell membrane 24.
- Figures 8-10 illustrate a non-planar substrate 116 having an array of ⁇ m square posts 150 extending from a surface 128 defining substrate 116.
- substrate 116 with posts 150 extending therefrom define a three dimensional (3-D) topographic structure surface having electrodes 130 disposed in an irregular pattern as best seen with reference to Figure 10.
- Figures 8-10 illustrate electrodes 130 located at the top of posts 150 and intermediate adjacent posts 150 on surface 128 of substrate 116.
- pillar structures 136 can be disposed at a top of square posts 150 and/or at surface 128 for electrical coupling with cell membrane 24.
- Figure 9 is an enlarged view of circle 152 in Figure 8. As illustrated in Figure 9, one of the pillar structures 136 penetrates the cell membrane 24 and extends into the intracellular portion of cell 20, while the remaining structure 136 abuts the cell membrane without penetrating therethrough.
- posts 150 are described as square posts, the present disclosure is not limited thereto, as other geometries are contemplated, including circular and elliptical columns, for example. Further, a regular distribution of electrodes 130 is also contemplated and is not limited to the irregular distribution illustrated. In principle, the electrodes 130 may also be arranged at the vertical walls defining the topographic posts 150 extending from surface 128.
- the 3-D topographic structured surface can be processed into planar substrates by standard processing techniques (e.g., masking and etch). Alternatively, the 3-D topographic structured surface could also be made by embossing or injection moulding of suitable polymers.
- the primary focus of the present disclosure is not suppressing the formation of an encapsulating tissue layer, but to directly contact the cell by overcoming the glycocalix cushion separating the cells from the electrodes surfaces using conductive structures of extremely small density and having a high aspect ratio.
- this is only possible if there is no encapsulating tissue layer.
- topographic morphologies such as that shown in Figures 8-10 can affect cell morphology and growth, which could also reduce or completely prevent formation of an encapsulating tissue layer that usually forms around implanted electrodes.
- the ⁇ m-scale 3D patterning of electrode surfaces such as that disclosed in Figures 8-10 might be suitable to suppress the growth of scar tissue and glia cells and to promote the growth of neural cells.
- topographic structures described in the present disclosure can be applied to all implantable medical electrodes especially for devices where high spatial resolution and low power consumption is desirable such as retina implants, deep brain stimulation (DBS) electrodes, electrodes for recording (e.g., motorcortex and control of prostheses) and stimulating brain activity (e.g., somatosensory cortex or deliver sensory input from a camera).
- DBS deep brain stimulation
- electrodes for recording e.g., motorcortex and control of prostheses
- stimulating brain activity e.g., somatosensory cortex or deliver sensory input from a camera.
- a neural modulation system for use in treating disease which provides stimulus intensity which may be varied.
- the stimulation may be at least one of activating, inhibitory, and a combination of activating and inhibitory and the disease is at least one of neurologic and psychiatric.
- the neurologic disease may include Parkinson's disease, Huntington's disease, Parkinsonism, rigidity, hemiballism, choreoathetosis, dystonia, akinesia, bradykinesia, hyperkinesia, other movement disorder, epilepsy, or the seizure disorder.
- the psychiatric disease may include, for example, depression, bipolar disorder, other affective disorder, anxiety, phobia, schizophrenia, multiple personality disorder.
- the psychiatric disorder may also include substance abuse, attention deficit hyperactivity disorder, impaired control of aggression, or impaired control of sexual behavior.
- a neurological control system modulates the activity of at least one nervous system component, and includes at least one stimulating electrode, each constructed and arranged to deliver a neural modulation signal to at least one nervous system component; at least one sensor, each constructed and arranged to sense at least one parameter, including but not limited to physiologic values and neural signals, which is indicative of at least one of disease state, magnitude of symptoms, and response to therapy; and a stimulating and recording unit constructed and arranged to generate the neural modulation signal based upon a neural response sensed by the at least one sensor in response to a previously delivered neural modulation signal.
- the disclosed apparatus and method optimizes the efficiency of energy used in the treatment given to the patient by minimizing to a satisfactory level the stimulation intensity to provide the level of treatment magnitude necessary to control disease symptoms without extending additional energy delivering unnecessary overtreatment and wasting energy, as well as to minimize side effects.
- a constant level of stimulation is delivered over a large area, resulting in either of two undesirable scenarios when disease state and symptoms fluctuate: (1) undertreatment, i.e. tremor amplitude exceeds desirable level, or (2) overtreatment or excess stimulation, in which more electrical energy is delivered than is actually needed. In the overtreatment case, battery life is unnecessarily reduced.
- the energy delivered to the tissue in the form of a stimulation signal represents a substantial portion of the energy consumed by the implanted device; minimization of this energy substantially extends battery life, with a consequent extension of time in between reoperations to replace expended batteries. Furthermore, by optimizing the coupling efficiency side effects can be reduced because stimulation is well localized to the target tissue and other tissue remains unaffected. In addition, the apparatus of the present disclosure relies on mainstream IC manufacturing techniques providing a cost effective solution to the prior art.
- the disclosed method and apparatus increase the signal to noise ratio for recording neuronal activity with extracellular recording devices. This means that less complex signal processing for action potential detection is required, including less electronics required, less power consumption, smaller and cheaper devices. Further, activity from adjacent neurons can be discriminated allowing a high spatial resolution of recordings.
- the amplitude for triggering action potentials can be reduced resulting in a decreased power consumption and increased lifetime of the implant's battery.
- stimuli from close-by electrodes do not overlap any more enabling also higher spatial resolution for stimulation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Cardiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Electrotherapy Devices (AREA)
Abstract
L'invention concerne un appareil et un procédé destinés à améliorer le contact électrique entre un dispositif implanté (10), afin d'enregistrer ou de stimuler l'activité neuronale, et le tissu environnant (12) (par exemple le tissu du cerveau, des fibres nerveuses etc.). Dans un mode de réalisation pris à titre d'exemple, une structure topographique nanométrique (36, 136) (par exemple une colonne d'échelle nanométrique) est traitées pour permettre une connexion électrique à une électrode correspondante (30, 32) du dispositif implanté (10). La structure topographique nanométrique (36, 136) forme un pont sur un espace (26) entre le dispositif implanté (10) et le tissu environnant (12), améliorant ainsi le raccordement neurone-électrode. La présente invention peut également être étendue à n'importe quelle application dans laquelle un couplage capacitif à des cellules individuelles ou multiples (20) peut être utilisé pour détecter et/ou stimuler celles-ci.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70133705P | 2005-07-21 | 2005-07-21 | |
PCT/IB2006/052348 WO2007010441A2 (fr) | 2005-07-21 | 2006-07-11 | Appareil et procede de couplage d'electrodes implantees au tissu nerveux |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1909892A2 true EP1909892A2 (fr) | 2008-04-16 |
Family
ID=37594966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06780038A Withdrawn EP1909892A2 (fr) | 2005-07-21 | 2006-07-11 | Appareil et procede de couplage d'electrodes implantees au tissu nerveux |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080214920A1 (fr) |
EP (1) | EP1909892A2 (fr) |
JP (1) | JP2009501600A (fr) |
CN (1) | CN101222949A (fr) |
WO (1) | WO2007010441A2 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2009115195A (ru) | 2006-09-22 | 2010-10-27 | Конинклейке Филипс Электроникс Н.В. (Nl) | Имплантируемое устройство с множеством электродов |
WO2009054575A1 (fr) * | 2007-10-23 | 2009-04-30 | Industry-Academic Cooperation Foundation, Yonsei University | Dispositif neuronal utilisant au moins un nanofil |
US8805517B2 (en) | 2008-12-11 | 2014-08-12 | Nokia Corporation | Apparatus for providing nerve stimulation and related methods |
US8779307B2 (en) | 2009-10-05 | 2014-07-15 | Nokia Corporation | Generating perceptible touch stimulus |
US8791800B2 (en) | 2010-05-12 | 2014-07-29 | Nokia Corporation | Detecting touch input and generating perceptible touch stimulus |
US9579690B2 (en) | 2010-05-20 | 2017-02-28 | Nokia Technologies Oy | Generating perceptible touch stimulus |
US9110507B2 (en) | 2010-08-13 | 2015-08-18 | Nokia Technologies Oy | Generating perceptible touch stimulus |
DE102014014927A1 (de) * | 2014-10-07 | 2016-04-07 | Neuroloop GmbH | Implantierbare Elektrodenanordnung |
JP6400483B2 (ja) * | 2015-01-06 | 2018-10-03 | 国立大学法人神戸大学 | ナノギャップ構造型基板 |
KR102344486B1 (ko) | 2015-03-19 | 2021-12-29 | 한국전자통신연구원 | 신경 신호 측정용 신경전극 및 이의 제조 방법 |
KR20180124470A (ko) * | 2017-05-12 | 2018-11-21 | 이진규 | 광 발광분자 소강 기반 인공 신경세포 |
US11959874B2 (en) | 2018-11-29 | 2024-04-16 | International Business Machines Corporation | Nanostructure featuring nano-topography with optimized electrical and biochemical properties |
US12023162B2 (en) | 2018-11-29 | 2024-07-02 | International Business Machines Corporation | Three-dimensional silicon-based comb probe with optimized biocompatible dimensions for neural sensing and stimulation |
US11562907B2 (en) | 2018-11-29 | 2023-01-24 | International Business Machines Corporation | Nanostructure featuring nano-topography with optimized electrical and biochemical properties |
CN113677389A (zh) * | 2019-03-25 | 2021-11-19 | 小利兰·斯坦福大学托管委员会 | 用于视网膜假体的蜂窝形电神经接口 |
CN111938625B (zh) * | 2020-08-10 | 2024-08-02 | 中国科学院上海微系统与信息技术研究所 | 具有光电刺激和记录功能的神经成像系统及其制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4969468A (en) * | 1986-06-17 | 1990-11-13 | Alfred E. Mann Foundation For Scientific Research | Electrode array for use in connection with a living body and method of manufacture |
US5821142A (en) * | 1996-04-08 | 1998-10-13 | Vanguard International Semiconductor | Method for forming a capacitor with a multiple pillar structure |
US6151526A (en) * | 1998-04-29 | 2000-11-21 | Advanced Bionics Corporation | Ribbed electrode for cochlear stimulation |
US6690959B2 (en) * | 2000-09-01 | 2004-02-10 | Medtronic, Inc. | Skin-mounted electrodes with nano spikes |
AU2002247449B2 (en) * | 2001-03-30 | 2006-10-12 | Case Western Reserve University | Systems and methods for selectively stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses |
US8232074B2 (en) * | 2002-10-16 | 2012-07-31 | Cellectricon Ab | Nanoelectrodes and nanotips for recording transmembrane currents in a plurality of cells |
WO2004041996A2 (fr) * | 2002-11-06 | 2004-05-21 | Ramot At Tel Aviv University Ltd. | Systeme et procede de positionnement de cellules et determination d'activite cellulaire de celles-ci |
US20050203601A1 (en) * | 2003-02-14 | 2005-09-15 | Daniel Palanker | Neural stimulation array providing proximity of electrodes to cells via cellular migration |
-
2006
- 2006-07-11 EP EP06780038A patent/EP1909892A2/fr not_active Withdrawn
- 2006-07-11 CN CNA2006800263509A patent/CN101222949A/zh active Pending
- 2006-07-11 WO PCT/IB2006/052348 patent/WO2007010441A2/fr not_active Application Discontinuation
- 2006-07-11 JP JP2008522118A patent/JP2009501600A/ja not_active Withdrawn
- 2006-07-11 US US11/995,846 patent/US20080214920A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2007010441A2 * |
Also Published As
Publication number | Publication date |
---|---|
US20080214920A1 (en) | 2008-09-04 |
WO2007010441A2 (fr) | 2007-01-25 |
WO2007010441A3 (fr) | 2007-04-19 |
JP2009501600A (ja) | 2009-01-22 |
CN101222949A (zh) | 2008-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080214920A1 (en) | Apparatus and Method For Coupling Implanted Electrodes to Nervous Tissue | |
US20210052898A1 (en) | Implantable neuro-stimulation device | |
Liu et al. | Conjugated polymer for implantable electronics toward clinical application | |
Ferro et al. | Electronic and ionic materials for neurointerfaces | |
US8126562B2 (en) | Apparatus and methods for applying neural stimulation to a patient | |
US7774053B2 (en) | Neural probe array | |
Lee et al. | Micro-coil design influences the spatial extent of responses to intracortical magnetic stimulation | |
CN101622029A (zh) | 用于深度大脑刺激的电极系统 | |
JP2009508558A (ja) | 生体内での電気刺激/センシングのための装置及び方法 | |
KR20140046709A (ko) | 염증 억제용 약물을 구비한 신경 전극 및 그 제조 방법 | |
Lee et al. | Suppression of subthalamic nucleus activity by micromagnetic stimulation | |
WO2014022828A1 (fr) | Dispositifs de réseau de nanofils intégré pour détection et/ou application de signaux électriques à un tissu | |
Steins et al. | A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine | |
US11497913B1 (en) | Micro-fabricated electrode arrays with flexible substrate for highly charge-efficient and selective stimulation of nerve tissue | |
Johnson et al. | Electrical stimulation of isolated retina with microwire glass electrodes | |
Borda et al. | Three-dimensional multilayer concentric bipolar electrodes restrict spatial activation in optic nerve stimulation | |
US7774068B1 (en) | System and method for treating movement disorders, including restless leg syndrome | |
Sun et al. | Advances in Material‐Assisted Electromagnetic Neural Stimulation | |
Howell et al. | Design of electrodes for stimulation and recording | |
Krishnan et al. | A Review on Implantable Neuroelectrodes | |
Choi et al. | Fabrication and evaluation of nanostructured microelectrodes for high-spatial resolution in retinal prostheses | |
Rincón Montes | Development, characterization, and application of intraretinal implants | |
Shiraz et al. | Wearable neuromodulators | |
Abraham et al. | Development of nanowire arrays for neural probe | |
Kölbl | Design of electrical adaptive stimulators for different pathological contexts: a global approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080221 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090513 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090924 |