EP1907226A2 - Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile - Google Patents

Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile

Info

Publication number
EP1907226A2
EP1907226A2 EP06779008A EP06779008A EP1907226A2 EP 1907226 A2 EP1907226 A2 EP 1907226A2 EP 06779008 A EP06779008 A EP 06779008A EP 06779008 A EP06779008 A EP 06779008A EP 1907226 A2 EP1907226 A2 EP 1907226A2
Authority
EP
European Patent Office
Prior art keywords
rear wheels
accelerations
acquired
tires
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06779008A
Other languages
German (de)
English (en)
Inventor
Zahir Djama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP1907226A2 publication Critical patent/EP1907226A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0481System diagnostic, e.g. monitoring battery voltage, detecting hardware detachments or identifying wireless transmission failures

Definitions

  • the present invention relates to a system for determining the inflation pressure of tires mounted on front and rear wheels of a motor vehicle.
  • such systems comprising accelerometers equipping a front wheel and a rear wheel of the vehicle to measure their vertical accelerations, means for estimating the stiffness coefficients of the tires thereof as a function of the accelerations. measured and means for calculating the inflation pressures of these tires as a function of the estimated stiffness coefficients.
  • tire pressure monitoring systems of a vehicle which comprise pressure sensors directly located in the tires.
  • the pressure sensors of such systems comprise information transmission means operating in association with corresponding receiving means embedded in the vehicle.
  • the present invention aims to solve these problems by providing a system based on redundancy of information and allowing increased reliability and accuracy.
  • the subject of the invention is a system for determining the inflation pressure of tires mounted on front and rear wheels of a motor vehicle, characterized in that it comprises: means for acquiring pressure inflating the tires of the front and rear wheels;
  • system according to the invention may comprise one or more of the following characteristics:
  • the melting means comprise: means for estimating the stiffness coefficients of the tires of the front and rear wheels as a function of the vertical accelerations acquired therefrom; and
  • the means for estimating the stiffness coefficients comprise means for temporally resetting one of the accelerations acquired on the other of the accelerations acquired and means for calculating the stiffness coefficients as a function of the accelerations thus time-adjusted;
  • the means for estimating the stiffness coefficients comprise bandpass filtering means of the accelerations acquired arranged between means for acquiring acceleration and time resetting means;
  • the band-pass filtering means are adapted to implement a filtering in a frequency range substantially equal to [8, 20] Hz;
  • the means of time registration comprise means for calculating the intercorrelation of the accelerations acquired and means for applying a delay corresponding to the maximum of the calculated correlation to the acceleration gained from the front wheel;
  • the means for calculating the stiffness coefficients are adapted to implement a recursive least squares algorithm in real time based on a predetermined mechanical model of the wheel;
  • the estimation means are adapted to estimate said stiffness coefficients from a single-wheel mechanical model of the front and rear wheels;
  • the estimation means are capable of estimating said stiffness coefficients based on discrete time modeling of the corrected accelerations of the front and rear wheels according to the relation:
  • Avr (k) where k is the k th time of sampling, Avr and Ava are the vertical accelerations of the rear and front wheels respectively, Zvr and Zva are the altitudes of the centers of the rear and front wheels respectively, Kpr and Kpa are the stiffness coefficients of the tires front and rear wheels respectively, and n is a sampling instant corresponding to a time shift between the rear and front wheels undergoing the same portion of roadway;
  • the estimation means are capable of estimating said stiffness coefficients based on discrete time modeling of the corrected accelerations of the front and rear wheels according to the relation:
  • Ava (k) - (mrrxAvr (k + n) Zvr (k + n) - Zva (k)) Kpa () Kpr ( 'I mra I Kpa (k) J
  • k is the k th time of sampling
  • Avr and Ava are the vertical accelerations of the rear and front wheels respectively
  • Zvr and Zva are the altitudes of the centers of the rear and front wheels respectively
  • Kpr and Kpa are the stiffness coefficients of the tires front and rear wheels respectively
  • n is a sampling instant corresponding to a time shift between the rear and front wheels undergoing the same portion of roadway;
  • the estimation means are adapted to estimate said stiffness coefficients from a bicycle mechanical model thereof;
  • the estimation means are capable of estimating said stiffness coefficients based on discrete time modeling of the corrected accelerations of the front and rear wheels according to the relation:
  • k is the k ⁇ J è e m e th sampling instant
  • Avr and Ava are the vertical accelerations of the rear and front wheels, respectively
  • Zvr Zva are the altitudes of the rear wheels and front centers, respectively
  • Kpr Kpa are the stiffness coefficients of the tires of the front and rear wheels respectively
  • n is a sampling instant corresponding to a time shift between the rear and front wheels undergoing the same portion of roadway
  • Ra and Rr are stiffness coefficients of the suspensions of the front and rear wheels respectively
  • Zva and Zvr are the first derivatives of the altitudes of the centers of the front and rear wheels respectively;
  • the means for estimating the inflation pressures are adapted to implement, for each of the front and rear wheels, a Kalman estimator based on a model linking the inflation pressure and the stiffness coefficient of the tire of the tire. wheel; the melting means are adapted to implement a Kalman estimator based on a model linking the tire inflation pressures and the vertical accelerations of the front and rear wheels;
  • system further comprises means for diagnosing the operating state of the means for acquiring the inflation pressures and the mounting state of the tires as a function of the estimated and acquired inflation pressures and the acquired vertical accelerations of the wheels. front and rear ;
  • the diagnostic means are adapted to calculate the tire pressures of the front and rear wheels as a function of the vertical accelerations acquired from them, to compare the pressure acquired with the calculated pressures and to determine that, if the pressure acquired corresponds to one of the calculated pressures, the tire associated with the calculated pressure corresponding to the pressure acquired is subject to an inverted montage;
  • FIG. 1 is a schematic view of a mechanical model used by a system according to the invention
  • FIG. 2 is a diagram illustrating a calculation hypothesis used by a system according to the invention
  • FIG. 3 is a schematic view of a system according to the invention.
  • FIG. 4 is a schematic view of a second mechanical model used by another embodiment of the system according to the invention.
  • the system according to the invention is based on a mechanical model of the interactions between the body C of a vehicle, of mass Mc, the wheels R of it and the ground S.
  • FIG. 1 is a schematic view of a "single-wheel" type of model, of the interactions between a vehicle wheel Ro, the vehicle body C and the vehicle. soil S.
  • the wheel Ro and the body C move in a vertical direction and occupy respective altitudes Zr and Zc with respect to a reference level, for example the altitude of the ground when the vehicle is started.
  • the wheel Ro carries a pneumatic tire Pn resting on the ground S and similar to a stiffness spring K composed of a spring modeling the tire envelope Pn of structural stiffness Ks in parallel with a spring modeling the gas contained in the tire of stiffness Pneumatic Kp, all in series with a spring modeling rubber gum tire eraser Kg.
  • FIG. 2 illustrates the progress of a vehicle on a roadway between two instants t and t + ⁇ t.
  • the front and rear wheels of the vehicle undergo, most of the time, with a time shift ⁇ t depending on the speed V and the wheelbase of the vehicle, the same road profile.
  • the system according to the invention is then advantageously based on the following relationship to determine the stiffness coefficients of the tires and therefore the inflation pressure thereof, as will appear in more detail below:
  • Z sa (t) Z sr (t + ⁇ t) (2)
  • t is the time
  • ⁇ t is the time between the passage of a front wheel on a point of the road, the passage of a rear wheel on this same point
  • Z sa is the ground altitude at the front wheel
  • Z sr is the ground altitude at the rear wheel.
  • FIG. 3 schematically illustrates, under the general reference 10, a system for determining the inflation pressure of the tires mounted on a front wheel and a rear wheel of a motor vehicle, arranged on the same side of the vehicle. this.
  • This system includes, associated with each of the front and rear wheels:
  • a pressure sensor 12, 14 for measuring and delivering the inflation pressure of the tire Pa, Pr of the wheel, for example mounted inside the tire;
  • an accelerometer 16, 18 for measuring and delivering the vertical acceleration Avr, Ava of the wheel at its center, for example a single-axis or tri-axis accelerometer mounted in the center of the wheel;
  • a temperature sensor 20, 22 for measuring and delivering the temperature Ta, Tr of the gas contained in the tire of the wheel, for example a temperature sensor mounted inside thereof.
  • Each of these sensors 12-22 comprises means 12a, 14a, 16a, 18a, 20a, 22a forming a transmitting antenna for the delivery of a low frequency electromagnetic signal representative of the quantity it measures.
  • Receiving antenna means 24 are provided in the system 10 for receiving the signals emitted by the sensors 12-22 and extracting therefrom the corresponding measured quantities Ava, Avr, Pa, Pr, Ta, Tr.
  • the reception antenna means 24 are connected to an analog / digital converter 26 (CAN), for example a 0-order blocker.
  • CAN analog / digital converter
  • the CAN 26 is capable of sampling all the measurements Ava, Avr, Pa, Pr, Ta , Tr at a predetermined sampling frequency fe, for example 50 Hz, and delivering sampled measurements Ava (k), Avr (k), Pa (k), Pr (k), Ta (k), Tr (k), where k is the k th sampling instant.
  • Compensation means 28, 30 are connected to the CAN 26 and are adapted to correct the measurement of the inflation pressure Pa (k), Pr (k) of each tire by the corresponding temperature measurement Ta (k), Tr (k ) in order to compensate for the temperature drifts of the pressure sensors 12, 14 with respect to a nominal operating state, as is known per se in the state of the art.
  • the system 10 further comprises means 32 for melting tire inflation pressures and vertical accelerations of the front and rear wheels. These means 32 of fusion are particularly suitable for estimating the tire inflation pressure using the redundancy of information contained in the measurements. The estimation of the inflation pressures of the tires is thus more reliable and more accurate.
  • This estimate therefore largely eliminates the aberrant measurements of sensors and their corruption due to the wireless transmission of information between the sensors and the rest of the system.
  • the merging means 32 comprise means 34 for estimating the stiffness coefficients Kpa, Kpr of the tires of the front and rear wheels as a function of the measurements of the vertical accelerations thereof.
  • These estimation means 34 comprise a bandpass filter 36 connected to the CAN 26 and adapted to process the accelerations Ava (k), Avr (k) sampled by applying band pass filtering.
  • This filtering is implemented in a frequency range in which the power of the modes of the front and rear wheels is concentrated. This frequency range corresponds to the rolling resistance range and is for example substantially equal to the range [8; 20] Hz.
  • the estimation means 34 also comprise time-shift means 38 connected to the band-pass filter 36 and adapted to temporally reset the sampled acceleration Ava (k) of the front wheel to the sampled acceleration Avr (k) of the wheel. rearward to output the accelerated accelerations Avr (k), Ava (kn) front and rear wheels, corresponding to the same altitude of the ground to apply the hypothesis according to the relationship (2) described above.
  • recalibration means 38 comprise, for this purpose, calculation means 40 adapted to estimate the digital intercorrelation IC (N) of the accelerations Avr (k), Ava (k) delivered by the filter 36 according to the relation:
  • the means 40 for calculating the cross-correlation are adapted to implement an estimator of this cross-correlation, as is known per se in the field of signal processing.
  • the resetting means 38 also comprise, connected to the calculation means 40, means 42 for determining the maximum of the correlation IC (N) and the sampling instant n corresponding to this
  • Time delay means 44 are connected to the means
  • the means 34 for estimating the stiffness coefficients of the tires of the front and rear wheels further comprise means
  • These calculation means 46 are adapted to calculate the stiffness coefficients of the tires of the front and rear wheels as a function of the accelerations they receive based on the mechanical model of Figure 1 to model the dynamic behavior of the front and rear wheels. More particularly, by using the fundamental principle of the dynamics applied to this model in relation to the hypothesis according to relation (2), it can be shown that the vertical accelerations Avr (k), Ava (k) of the wheel centers can to be modeled in discrete time according to the relations:
  • Ava (k) where mrr and mra are the masses of the rear and front wheels respectively, and Zvr and Zva are the altitudes of the centers of the rear and front wheels respectively with respect to the reference level.
  • a (k) is the regression vector at the instant k
  • E (A ⁇ (k) A (k)) is the Variance of the vector A ⁇ at time k
  • 05 is a predetermined forgetting factor and ⁇ (k)
  • x (k) and s (k) are vectors or intermediate matrices used in estimating the vector ⁇ .
  • the means 46 are suitable for calculating the altitudes Zvr (k), Zva (kn) of the centers of the rear and front wheels at each sampling instant as a function of the vertical accelerations Avr (k) and Ava (kn), by example by performing a double integration thereof after filtering between 8 Hz and 20 Hz.
  • the estimation means 34 are adapted to implement a recursive least squares algorithm in real time based on the relation (5) in a manner similar to that described above.
  • the means 34 are suitable for implementing an inversion or deconvolution algorithm based on the relation (4) or (5) for estimating the stiffness coefficients.
  • the calculation means 46 are thus adapted to deliver, at each sampling instant, estimated values Kpa (k) and Kpr (k) of the pneumatic stiffness coefficients of the front and rear wheels.
  • the merging means 32 also comprise, connected to the calculation means 46 and the compensation means 28, 30, means 48 for estimating the inflation pressures of the tires of the front and rear wheels. These estimating means 48 are adapted to implement, for each of the front and rear wheels, an algorithm merging the compensated inflation pressure Pac (k), Prc (k) with the estimate of the coefficient of stiffness. Kpa (k), Kpr (k) of the tire of the wheel to estimate the inflation pressure thereof.
  • the estimating means 48 implement an extended Kalman algorithm for calculating an estimate Kpa (k) of the stiffness coefficient of the front wheel as a function of the compensated inflation pressure Pac (k) of its pneumatic and stiffness coefficient Kpa (k) estimated by the calculation means 46, from an observation model according to the relation:
  • Y (k + 1) h (Pac (k)) + w (k) (11)
  • Y is the magnitude observed at time k + 1, here the coefficient of stiffness
  • h (Pac (k)) cPac (k) ⁇
  • w (k) is a measurement noise on the predetermined variance stiffness coefficient ⁇ Kpa .
  • estimation means 48 are adapted to implement a Kalman algorithm according to the relationships:
  • Kpa (k + 1) Kpa (k) + K (k + 1) (Kpa (k + 1) -h (Pac (k)) (12)
  • K (k + 1) Q (k + 1 / k) H (k + 1) ( ⁇ pa + H (k + 1) Q (k + 1 / k) H (k + 1)) (16) where K (k + 1) is the Kalman gain matrix at time k + 1, Q (k + 1 / k) is the prediction of the covariance matrix of the estimation error at time k + 1, and Q (k + 1 / k + 1) is the correction of the covariance matrix of the estimation error at time k + 1.
  • the estimation means 48 are able to estimate the stiffness coefficient of the tire of a wheel, and therefore the inflation pressure thereof via the relation (1), with increased accuracy because two sources of information. Additional information regarding this pressure is used. This makes it possible in particular to reject outliers in the measurement of the inflation pressure by the pressure sensor 12, 14 and the information transmission errors between means 12a, 14a transmitting antenna of this sensor 12, 14 and the means 24 forming receiving antenna.
  • v (k) is a measurement noise on the pressure compensated inflation of predetermined variance ⁇ p a .
  • estimation means 48 are suitable for implementing an algorithm according to the relationships:
  • Pac (k + 1) Pac (k) + K (k + 1) (Pac (k + 1) - g (Kpa (k)) (18)
  • Pac (k) of the inflation pressure of the tire of the front wheel is made as a function of an estimation error formed by the difference of the compensated inflation pressure Pa (k + 1) of the tire of the front wheel and of the an inflation pressure g (Kpa (K)) of this tire calculated according to the relation
  • the calculation means 46 are able to estimate the tire inflation pressure of a wheel with increased precision because two sources of additional information concerning this pressure are used.
  • this makes it possible in particular to reject outliers in the measurement of the inflation pressure by the pressure sensor 12, 14 and the information transmission errors between means 12a, 14a forming the transmission antenna of this device. sensor 12, 14 and means 24 forming receiving antenna.
  • the melting means 32 are adapted to directly merge the inflation pressures of the tires with the vertical accelerations of the wheels.
  • the merging means 32 are structurally similar to those described in relation to FIG. 3. They comprise the bandpass filter 36 as well as the time resetting means 38.
  • the means 48 for estimating the inflation pressures of the tires are connected to the filter 36 to receive the accelerations Avr (k), Ava (k) of the rear and front wheels, to the resetting means 44 for receiving the acceleration Ava (kn) recalée of the front wheel, and means 28, 30 of compensation for receiving the compensated inflation pressures Pac (k), Prc (k).
  • the estimating means 48 implement an extended Kalman algorithm for calculating an estimate Kpa (k) of the stiffness coefficient of the front wheel as a function of the compensated inflation pressure Pac (k ) of his tire and the acceleration they receive from an observation model according to the relation:
  • Y (k + 1) d (Pac (k), Pr c (k)) + x (k) (23) where Y is the magnitude observed at time k + 1, here the vertical acceleration of the wheel before,
  • d (Pac (k), Prc (k)) (mraxAva (k-n) (24) and x (k) is a measurement noise on the vertical acceleration of the rear wheel of predetermined variance ⁇ vr .
  • the estimation means 48 are suitable for implementing an algorithm according to the relationships:
  • Pac (k + 1) Pac (k) + K (k + 1) (Avr (k + 1) -d (Pac (k), Prc (k)) (25)
  • R (k + 1 / k + 1) R (k + 1 / k) - K (k + 1) D (k + 1) R (k + 1 / k) (28)
  • K (k + 1) R (k + 1 / k) D (k + 1) ( ⁇ vr + D ⁇ (k + 1) R (k + 1 / k) D (k + 1)) ⁇ 1 ( 29) where R (k + 1 / k) is the prediction of the covariance matrix of the estimation error at time k + 1, and R (k + 1 / k + 1) is the correction of the covariance matrix of the estimation error at time k + 1.
  • the ground altitudes of the front and rear wheels are for example calculated in the manner described above.
  • Pac (k) of the tire inflation pressure of the front wheel is made according to an estimation error formed by the difference of the acceleration vertical acquired Avr (k + 1) of the tire of the front wheel and a vertical acceleration d (Pac (k), Prc (k)) thereof calculated according to relation (24) as a function of the compensated inflation pressures tires at the moment k.
  • the means 46 this calculation are able to estimate the inflation pressure of the tire of a wheel with increased precision because two sources of additional information concerning this pressure are used.
  • this makes it possible in particular to reject outliers in the measurement of the inflation pressure by the pressure sensor 12, 14 and the transmission errors of information between means 12a, 14a forming the transmitting antenna of this sensor 12 , 14 and means 24 forming receiving antenna.
  • the system 10 finally comprises diagnostic means 50 connected to the compensation means 28 and 30 and to the means 48 for estimating the inflation pressures.
  • These diagnostic means 50 are particularly adapted to diagnose the malfunctions at each tire, that is to say a failure of the pressure sensors mounted therein or an inversion of the mounting of the tire (for example the mounting of the tire on the left front wheel instead of the left rear wheel as would normally be the case) by comparing the compensated inflation pressures to the respective estimated inflation pressures.
  • the means 50 diagnose that the pressure sensor has failed or that the tire comprising this sensor has been mounted on a wrong wheel, if the compensated and estimated pressures associated with this tire differ by more than X%, where X is a predetermined number, for at least a predetermined duration.
  • the measurement of the pressure sensor 12, 14 is included in a communication frame comprising a sensor identification field and the frame is transmitted by the means forming a transmission antenna 12a, 14a to the receiving antenna means 24. These then extract the measurement of the received frame and associate it with the sensor identified by the identification field. Thus, if the tire is mounted on the left front wheel instead of the left rear wheel, the means 24 combine the measurement extracted from the communication frame to the left rear wheel and not to the left front wheel. It then follows errors in the calculations using such a measurement and therefore an estimate of the tire inflation pressure invalid.
  • the accelerometers 16, 18 are not mounted in the tires but on the wheels so that they can not be subject to an inversion mounting. If the estimated pressure and the compensated pressure associated by the system according to the invention to the same tire differ by more than X%, the means 50 then calculate the inflation pressures of the tires of the front and rear wheels from the relation (1 ) as a function of the stiffness coefficients calculated by the means 46 In a variant, the means 50 calculate these stiffness coefficients as a function of the vertical accelerations as previously described if they have not already been calculated and then calculate the inflation pressures. according to these.
  • the means 50 then compare the compensated pressure at each of the pressures thus calculated.
  • the diagnostic means 50 locate the tire from which the failure originates as being that associated with the pressure calculated as a function of the stiffness coefficients, c that is to say the tire associated with the accelerometer whose measurements were used to calculate the coefficient of stiffness of the tire of the wheel on which it is mounted.
  • the means 50 diagnose a defective state of the pressure sensor associated with this compensated pressure.
  • the means 50 diagnose that a pressure sensor is faulty or an inversion of the mounting of a tire if the matrix Q (k / k), R (k / k), S (k / k) covariance of the associated estimation error calculated by the estimation means 48 does not tend to 0.
  • the means 50 diagnoses the inflation state of the tires according to the estimated inflation pressures.
  • the means 50 are adapted to compare each of these estimated pressures to a predetermined set of pressure intervals each representative of a tire inflation state (puncture, under-inflation, normal inflation, over-inflation). The means 50 thus determine the state of inflation of the tire associated with this estimated pressure as a function of the membership of the latter at one of the pressure intervals.
  • the means 28, 30 for compensating the inflation pressures and the temperature sensors 20, 22 are omitted, the algorithms described above being executed as a function of the inflation pressures acquired delivered by the pressure sensors 12, 14.
  • Figure 4 is a schematic view of a mechanical model generally referred to as "bicycle model". This type of model allows in particular to take into account the case of active suspensions equipping the vehicle and applies to front and rear wheels arranged on the same side of the vehicle.
  • fusion means 32 have been described based on an estimation of inflation pressures by Kalman filtering. Other types of estimates are possible.
  • the estimating means 48 implement an estimate of inflation pressures based on Baysian filtering using one or other of the observation models according to the relationships (11), (17) and (23).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

L'invention concerne un système de détermination de la pression de gonflage de pneumatiques montés sur des roues avant et arrière d'un véhicule automobile. Ce système comprend des moyens (12,14) d'acquisition des pressions de gonflage des pneumatiques des roues avant et arrière, des moyens (16, 18) d'acquisition des accélérations verticales des roues avant et arrière, et des moyens (32) de fusion des pressions acquises et des accélérations acquises pour estimer les pressions de gonflage des pneumatiques des roues avant et arrière.

Description

Système de détermination de la pression de gonflage de pneumatiques montés sur des roues avant et arrière d'un véhicule automobile.
La présente invention concerne un système de détermination de la pression de gonflage de pneumatiques montés sur des roues avant et arrière de véhicule automobile.
On connaît dans l'état de la technique de tels systèmes comprenant des accéléromètres équipant une roue avant et une roue arrière du véhicule pour mesurer leurs accélérations verticales, des moyens d'estimation des coefficients de raideur des pneumatiques de celles-ci en fonction des accélérations mesurées et des moyens de calcul des pressions de gonflage de ces pneumatiques en fonction des coefficients de raideur estimés.
Dans de tels systèmes, lorsque l'un des accéléromètres est défaillant, l'estimation de la pression de gonflage des pneumatiques n'est alors plus disponible. De plus lorsque les mesures des accéléromètres sont défectueuses, par exemple lorsqu'elles sont entachées d'un bruit non négligeable ou que les mesures de l'accélération avant et de l'accélération arrière ne sont plus cohérentes, ces systèmes renvoient des estimations de la pression erronées.
De même, ces systèmes estiment de façon peu satisfaisante la pression de gonflage des pneumatiques lorsque que ceux-ci connaissent des chutes rapides de pression. Par ailleurs, la précision de l'estimation dépend fortement du type de trajectoires empruntées par le véhicule.
On connaît également des systèmes de surveillance de la pression de gonflage des pneumatiques d'un véhicule qui comprennent des capteurs de pression directement localisés dans les pneumatiques.
Les capteurs de pression de tels systèmes comprennent des moyens d'émission d'informations fonctionnant en association avec des moyens de réception correspondants embarqués dans le véhicule.
Or, des problèmes de communication entre les moyens d'émission et de réception sont souvent présents, par exemple à cause d'un trop fort bruit, de sorte que la fonction de surveillance de la pression des pneumatiques n'est pas assurée de manière satisfaisante. De plus, lorsqu'un capteur de pression est défectueux, aucune mesure de la pression de gonflage du pneumatique associé à ce capteur n'est alors disponible.
La présente invention a pour but de résoudre ces problèmes en proposant un système se fondant sur une redondance d'informations et permettant une fiabilité et une précision accrues.
A cet effet, l'invention a pour objet un système de détermination de la pression de gonflage de pneumatiques montés sur des roues avant et arrière d'un véhicule automobile, caractérisé en ce qu'il comprend : - des moyens d'acquisition des pressions de gonflage des pneumatiques des roues avant et arrière;
- des moyens d'acquisition des accélérations verticales des roues avant et arrière ; et
- des moyens de fusion des pressions acquises et des accélérations acquises pour estimer les pressions de gonflage des pneumatiques des roues avant et arrière.
Selon des modes particuliers de réalisation, le système selon l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes :
- les moyens de fusion comprennent : - des moyens d'estimation des coefficients de raideur des pneumatiques des roues avant et arrière en fonction des accélérations verticales acquises de celles-ci ; et
- des moyens d'estimation des pressions de gonflage des pneumatiques des roues avant et arrière en fonction des pressions de gonflage acquises et des coefficients de raideur estimés des pneumatiques des roues avant et arrière,
- les moyens d'estimation des coefficients de raideur comprennent des moyens de recalage temporel de l'une des accélérations acquises sur l'autre des accélérations acquises et des moyens de calcul des coefficients de raideur en fonction des accélérations ainsi recalées temporellement ;
- les moyens d'estimation des coefficients de raideur comprennent des moyens de filtrage passe-bande des accélérations acquises agencés entre des moyens d'acquisition des accélérations et les moyens de recalage temporel ;
- les moyens de filtrage passe-bande sont adaptés pour mettre en œuvre un filtrage dans une gamme de fréquences sensiblement égale à [8, 20] Hz. ;
- les moyens de recalage temporel comprennent des moyens de calcul de l'intercorrélation des accélérations acquises et des moyens d'application d'un retard correspondant au maximum de l'intercorrélation calculée à l'accélération acquise de la roue avant ; - les moyens de calcul des coefficients de raideur sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel se fondant sur un modèle mécanique prédéterminé de la roue ;
- les moyens d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique mono-roue des roues avant et arrière ;
- les moyens d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Avr(k) = où k est le kιeme instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée ;
- les moyens d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Ava(k) = — (mrrxAvr(k + n) Zvr(k + n)- Zva(k)) Kpa( ) Kpr( ' I mra I Kpa(k) J où k est le kιeme instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée ;
- les moyens d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique bicyclette de celles-ci ;
- les moyens d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
où k est le k Jιèemmee instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée, Ra et Rr sont des coefficients de raideur des suspensions des roues avant et arrière respectivement, et Zva et Zvr sont les dérivées premières des altitudes des centres des roues avant et arrière respectivement ;
- les moyens d'estimation des pressions de gonflage sont adaptés sont adaptés pour mettre en œuvre, pour chacune des roues avant et arrière, un estimateur de Kalman se fondant sur un modèle liant la pression de gonflage et le coefficient de raideur du pneumatique de la roue ; - les moyens de fusion sont adaptés pour mettre en œuvre un estimateur de Kalman se fondant sur modèle liant les pressions de gonflage des pneumatiques et les accélérations verticales des roues avant et arrière ;
- le système comprend en outre des moyens de diagnostic de l'état de fonctionnement des moyens d'acquisition des pressions de gonflage et de l'état de montage des pneumatiques en fonction des pressions de gonflage estimées et acquises et des accélérations verticales acquises des roues avant et arrière ;
- si une pression de gonflage acquise et sa pression estimée associée diffèrent de plus de X%, où X est un nombre prédéterminé, les moyens de diagnostic sont adaptés pour calculer les pressions de gonflages des pneumatiques des roues avant et arrière en fonction des accélérations verticales acquises de celles-ci, pour comparer la pression acquise aux pressions calculées et pour déterminer que, si la pression acquise correspond à l'une des pressions calculées, le pneumatique associé à la pression calculée correspondant à la pression acquise fait l'objet d'un montage inversé ; et
- si aucun des pneumatiques ne présente d'inversion de montage, alors les moyens de diagnostic sont propres à diagnostiquer que les moyens d'acquisition associés à la pression acquise sont défaillants. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en relation avec les dessins annexés dans lesquels :
- la figure 1 est une vue schématique d'un modèle mécanique utilisé par un système selon l'invention ; - la figure 2 est un schéma illustrant une hypothèse de calcul utilisée par un système selon l'invention ;
- la figure 3 est une vue schématique d'un système selon l'invention ; et
- la figure 4 est une vue schématique d'un second modèle mécanique utilisé par un autre mode de réalisation du système selon l'invention. Le système selon l'invention se fonde sur un modèle mécanique des interactions entre la caisse C d'un véhicule, de masse Mc, les roues R de celui- ci et le sol S.
Un premier exemple de modélisation mécanique de ces interactions est illustré sur la figure 1 qui est une vue schématique d'un modèle du type « mono-roue », des interactions entre une roue Ro du véhicule, la caisse C de celui-ci et le sol S.
Comme le montre cette figure, dans cette modélisation à deux degrés de liberté, la caisse C du véhicule est assimilée à une masse Mc suspendue à la roue Ro de masse Mr par une suspension Su assimilée à un ensemble ressort/amortisseur de raideur Kc et de coefficient d'amortissement
R.
La roue Ro et la caisse C se déplacent selon une direction verticale et occupent des altitudes respectives Zr et Zc par rapport à un niveau de référence, par exemple l'altitude du sol au démarrage du véhicule.
La roue Ro porte un pneumatique Pn reposant sur le sol S et assimilé à un ressort de raideur K composé d'un ressort modélisant l'enveloppe du pneumatique Pn de raideur structurelle Ks en parallèle avec un ressort modélisant le gaz contenu dans le pneumatique de raideur pneumatique Kp, le tout en série avec un ressort modélisant la gomme du pneumatique de raideur de gomme Kg.
Le comportement de ce système mécanique est commandé par l'évolution dans le temps de l'altitude Zs du sol par rapport au niveau de référence, c'est-à-dire le profil de la chaussée. On sait par ailleurs que la pression de gonflage Pg du pneumatique est directement liée à la raideur pneumatique Kp de celui-ci, cette dépendance pouvant être par exemple modélisée selon la relation :
où c et α sont des constantes prédéterminées, par exemple sensiblement égales à 6,7 et 0,85 respectivement pour un pneumatique donné. Le système selon l'invention se fonde également sur la constatation suivante présentée à la figure 2 qui illustre l'avancement d'un véhicule sur une chaussée entre deux instants t et t + Δt .
Comme il est illustré sur cette figure, les roues avant et arrière du véhicule subissent, la plupart du temps, avec un décalage temporel Δt dépendant de la vitesse V et de l'empattement d du véhicule, le même profil de chaussée.
Le système selon l'invention se fonde alors avantageusement sur la relation suivante pour déterminer les coefficients de raideur des pneumatiques et donc la pression de gonflage de ceux-ci, comme il apparaîtra plus en détail par la suite :
Zsa(t) = Zsr(t + Δt) (2) où t est le temps, Δt est la durée séparant le passage d'une roue avant sur un point de la chaussée, du passage d'une roue arrière sur ce même point, Zsa est l'altitude au sol au niveau de la roue avant et Zsr est l'altitude au sol au niveau de la roue arrière.
Sur la figure 3, on a illustré schématiquement, sous la référence générale 10, un système de détermination de la pression de gonflage des pneumatiques montés sur une roue avant et une roue arrière d'un véhicule automobile, agencées sur un même côté de celui-ci.
Ce système comprend, associés à chacune des roues avant et arrière :
- un capteur de pression 12, 14 pour mesurer et délivrer la pression de gonflage du pneumatique Pa, Pr de la roue, par exemple monté à l'intérieur du pneumatique ;
- un accéléromètre 16, 18 pour mesurer et délivrer l'accélération verticale Avr, Ava de la roue en son centre, par exemple un accéléromètre mono-axe ou tri-axe monté au centre de la roue ; et
- un capteur de température 20, 22 pour mesurer et délivrer la température Ta, Tr du gaz contenu dans le pneumatique de la roue, par exemple un capteur de température monté à l'intérieur de celui-ci. Chacun de ces capteurs 12-22 comprend des moyens 12a, 14a, 16a, 18a, 20a, 22a formant antenne d'émission pour la délivrance d'un signal électromagnétique en basse fréquence représentatif de la grandeur qu'il mesure. Des moyens 24 formant antenne de réception sont prévus dans le système 10 pour recevoir les signaux émis par les capteurs 12-22 et extraire de ceux-ci les grandeurs mesurées Ava, Avr, Pa, Pr, Ta, Tr correspondantes.
Les moyens 24 formant antenne de réception sont connectés à un convertisseur analogique/numérique 26 (CAN), par exemple un bloqueur d'ordre 0. Le CAN 26 est propre à échantillonner l'ensemble des mesures Ava, Avr , Pa, Pr, Ta, Tr à une fréquence d'échantillonnage fe prédéterminée, par exemple 50Hz, et délivrer des mesures échantillonnées Ava(k), Avr(k) , Pa(k), Pr(k), Ta(k), Tr(k), où k est le kième instant d'échantillonnage.
Des moyens 28, 30 de compensation sont connectés au CAN 26 et sont propres à corriger la mesure de la pression de gonflage Pa(k), Pr(k) de chaque pneumatique par la mesure de température correspondante Ta(k), Tr(k) afin de compenser les dérives en température des capteurs 12, 14 de pression par rapport à un état de fonctionnement nominal, comme cela est connu en soi dans l'état de la technique. Le système 10 comprend par ailleurs des moyens 32 de fusion des pressions de gonflage des pneumatiques et des accélérations verticales des roues avant et arrière. Ces moyens 32 de fusion sont particulièrement adaptés pour estimer la pression de gonflage des pneumatiques en utilisant la redondance d'informations contenues dans les mesures. L'estimation des pressions de gonflage des pneumatiques est ainsi plus fiable et plus précise.
Cette estimation s'affranchit donc dans une large mesure des mesures aberrantes des capteurs et de la corruption de celles-ci du fait de la transmission sans fil des informations entre les capteurs et le reste du système.
Les moyens 32 de fusion comprennent des moyens 34 d'estimation des coefficients de raideur Kpa, Kpr des pneumatiques des roues avant et arrière en fonction des mesures des accélérations verticales de celles-ci.
Ces moyens 34 d'estimation comprennent un filtre passe-bande 36 connecté au CAN 26 et adapté pour traiter les accélérations Ava(k), Avr(k) échantillonnées en leur appliquant un filtrage passe-bande. Ce filtrage est mis en œuvre dans une gamme de fréquences dans laquelle se concentre essentiellement la puissance des modes des roues avant et arrière. Cette gamme de fréquences correspond à la gamme de résistance au roulement et est par exemple sensiblement égale à la gamme [8 ; 20] Hz.
Les moyens 34 d'estimation comportent également des moyens 38 de recalage temporel connectés au filtre passe-bande 36 et propres à recaler temporellement l'accélération échantillonnée Ava(k) de la roue avant sur l'accélération échantillonnée Avr(k) de la roue arrière pour délivrer en sortie des accélérations recalées Avr(k), Ava(k-n) des roues avant et arrière, correspondant à la même altitude du sol afin d'appliquer l'hypothèse selon la relation (2) décrite ci-dessus.
Ces moyens 38 de recalage comprennent à cet effet des moyens 40 de calcul adaptés pour estimer l'intercorrélation numérique IC(N) des accélérations Avr(k), Ava(k) délivrées par le filtre 36 selon la relation :
+OO
IC(N) = ∑Avr(k)xAva(N -k) (3) k = -oo
Les moyens 40 de calcul de l'intercorrélation sont adaptés pour mettre en œuvre un estimateur de cette intercorrélation, comme cela est connu en soi dans le domaine du traitement du signal. Les moyens 38 de recalage comprennent également, connectés aux moyens 40 de calcul, des moyens 42 de détermination du maximum de l'intercorrélation IC(N) et de l'instant d'échantillonnage n correspondant à ce
maximum. Cet instant n correspond donc au décalage temporel — entre les fe roues avant et arrière subissant la même portion de chaussée. Des moyens 44 de décalage temporel sont connectés aux moyens
42 et au filtre 36, et sont propres à appliquer un retard de n échantillons à l'accélération échantillonnée Ava(k) de la roue avant et ainsi délivrer une accélération échantillonnée Ava(k-n) recalée temporellement sur l'accélération échantillonnée Avr(k) de la roue arrière. Les moyens 34 d'estimation des coefficients de raideur des pneumatiques des roues avant et arrière comprennent par ailleurs des moyens
46 de calcul de ces derniers, connectés au filtre 36 pour recevoir les accélérations Avr(k), Ava(k) des roues arrière et avant et aux moyens 44 de recalage pour recevoir l'accélération Ava(k-n) recalée de la roue avant.
Ces moyens 46 de calcul sont adaptés pour calculer les coefficients de raideur des pneumatiques des roues avant et arrière en fonction des accélérations qu'ils reçoivent en se fondant sur le modèle mécanique de la figure 1 pour modéliser le comportement dynamique des roues avant et arrière. Plus particulièrement, en utilisant le principe fondamental de la dynamique appliqué à ce modèle en relation avec l'hypothèse selon la relation (2), il peut être montré que les accélérations verticales Avr(k), Ava(k) des centres des roues peuvent être modélisées en temps discret selon les relations :
Avr(k) = (4)
Ava(k) (5) où mrr et mra sont les masses des roues arrière et avant respectivement, et Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement par rapport au niveau de référence. Les moyens 46 de calcul sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel se fondant la relation (4), selon les relations : θ(k + 1) = θ(k)+ K(k + l)(Avr(k + 1)- A(k + l)θ(k)) (6)
K(k + 1) = GT1 S(k)Xτ (k + l)(σ2 (k) + ϋ5~l A(k + l)s(k)Aτ (k + 1))'1 (7) S(k + l) = 05"1 (s(k)-K(k + l)A(k + l)s(k)) (8)
X(k + l) = E(Aτ (k + I)A^ + !)) 1 (9) σ(k) = Var(e(k)) (10) où (»)τ est le symbole de la transposée, θ(k) est l'estimée du vecteur
à l'instant k , A(k) est le vecteur de régression à l'instant k , E(Aτ (k)A(k)) est la variance du vecteur Aτ à l'instant k , Var(e(k)) est la variance de l'erreur d'estimation e(k) = Avr(k)-A(k)θ(k) à l'instant k , 05 est un facteur d'oubli prédéterminé et κ(k), x(k) et s(k) sont des vecteurs ou des matrices intermédiaires utilisées lors de l'estimation du vecteur θ .
De préférence, les moyens 46 sont propres à calculer les altitudes Zvr(k), Zva(k-n) des centres des roues arrière et avant à chaque instant d'échantillonnage en fonction des accélérations verticales Avr(k) et Ava(k-n), par exemple en réalisant une double intégration de celles-ci après leur filtrage entre 8 Hz et 20 Hz. Un autre exemple d'un calcul de l'altitude d'une roue en fonction de son accélération verticale est décrit dans la demande de brevet français FR 2 858 267 au nom de la demanderesse. En variante, les moyens 34 d'estimation sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel se fondant sur la relation (5) d'une manière analogue à celle décrite précédemment.
En variante, les moyens 34 sont propres à mettre en œuvre un algorithme d'inversion ou de déconvolution se fondant sur la relation (4) ou (5) pour estimer les coefficients de raideur.
Les moyens 46 de calcul sont ainsi propres à délivrer à chaque instant d'échantillonnage des valeurs estimées Kpa(k) et Kpr(k) des coefficients de raideur pneumatique des roues avant et arrière.
Les moyens 32 de fusion comprennent également, connectés aux moyens 46 de calcul et aux moyens 28, 30 de compensation, des moyens 48 d'estimation des pressions de gonflage des pneumatiques des roues avant et arrière. Ces moyens 48 d'estimation sont adaptés pour mettre en œuvre, pour chacune des roues avant et arrière, un algorithme fusionnant la pression de gonflage compensée Pac(k), Prc(k) avec l'estimation du coefficient de raideur Kpa(k), Kpr(k) du pneumatique de la roue pour estimer la pression de gonflage de celui-ci.
Par souci de concision, seule la fusion des données associées à la roue avant sera décrite, la fusion des données associées à la roue arrière étant obtenue de manière identique à celle de la roue avant.
Par exemple, les moyens 48 d'estimation mettent en œuvre un algorithme de Kalman étendu pour le calcul d'une estimation Kpa(k) du coefficient de raideur de la roue avant en fonction de la pression de gonflage compensée Pac(k) de son pneumatique et du coefficient de raideur Kpa(k) estimé par les moyens 46 de calcul, à partir d'un modèle d'observation selon la relation :
Y(k + l) = h(Pac(k)) + w(k) (11) où Y est la grandeur observée à l'instant k+1 , ici le coefficient de raideur, h(Pac(k)) = cPac(k)α et w(k) est un bruit de mesure sur le coefficient de raideur de variance prédéterminée σKpa .
Par exemple, les moyens 48 d'estimation sont adaptés pour mettre en œuvre un algorithme de Kalman selon les relations :
Kpa(k + 1) = Kpa(k) + K(k + l)(Kpa(k + 1) - h(Pac(k)) (12)
Q(k + l/k) = E(Kpa(k)Kpa(k)) (13)
H(k + l) = -^-(Pac(k + l)) = cαPac(k + l)α"1 (14) dPac
Q(k + l/k + l) = Q(k + l/k) - K(k + l)H(k + l)Q(k + l/k) (15)
K(k + 1) = Q(k + 1 / k)H(k + l)(σκpa + H(k + l)Q(k + 1 / k)H(k + 1)) (16) où K(k+1 ) est la matrice de gain de Kalman à l'instant k+1 , Q(k+1/k) est la prédiction de la matrice de covariance de l'erreur d'estimation à l'instant k+1 , et Q(k+1/k+1 ) est la correction de la matrice de covariance de l'erreur d'estimation à l'instant k+1.
Comme on peut le noter, le calcul à l'instant k+1 de l'estimation
Kpa(k + 1) du coefficient de raideur du pneumatique de la roue avant est réalisé en fonction d'une erreur d'estimation formée de la différence du coefficient de raideur Kpa(k+1 ) du pneumatique de la roue avant estimé par les moyens 46 de calcul et d'un coefficient de raideur h(Pac(k)) de ce pneumatique calculé selon la relation h(Pac(k)) = cPac(k)α en fonction de la pression de gonflage compensée Pac(k) à l'instant k du pneumatique de la roue avant. Ainsi, les moyens 48 d'estimation sont propres à estimer le coefficient de raideur du pneumatique d'une roue, et donc la pression de gonflage de celui-ci via la relation (1 ), avec une précision accrue car deux sources d'informations complémentaires concernant cette pression sont utilisées. Ceci permet notamment de rejeter des valeurs aberrantes dans la mesure de la pression de gonflage par le capteur de pression 12, 14 et les erreurs de transmission d'informations entre moyens 12a, 14a formant antenne d'émission de ce capteur 12, 14 et les moyens 24 formant antenne de réception.
En variante, les moyens 48 de calcul mettent en œuvre un algorithme de Kalman étendu pour le calcul d'une estimation Pac(k) du coefficient de raideur de la roue avant en fonction de la pression de gonflage compensée Pac(k) de son pneumatique et du coefficient de raideur Kpa(k) estimé par les moyens 46 de calcul à partir d'un modèle d'observation selon la relation : Y(k + l) = g(Kpa(k)) + v(k) (17) où Y est la grandeur observée à l'instant k+1 , ici la pression de
et v(k) est un bruit de mesure sur la pression de gonflage compensée de variance prédéterminée σpa .
Par exemple, dans cette variante, les moyens 48 d'estimation sont propres à mettre en œuvre un algorithme selon les relations :
Pac(k + 1) = Pac(k) + K(k + l)(Pac(k + 1) - g(Kpa(k)) (18)
S(k + l/k) = E(Pac(k)Pac(k)) (19)
G(k + 1) (20)
S(k + l/k + l) = S(k + l/k) - K(k + l)G(k + l)S(k + l/k) (21 ) K(k + 1) = S(k + 1 / k)G(k + l)(σκpa + G(k + l)S(k + 1 / k)G(k + I)J 1 (22) où S(k+1/k) est la prédiction de la matrice de covariance de l'erreur d'estimation à l'instant k+1 , et S(k+1/k+1) est la correction de la matrice de covariance de l'erreur d'estimation à l'instant k+1. Comme on peut le noter, le calcul à l'instant k+1 de estimation
Pac(k) de la pression de gonflage du pneumatique de la roue avant est réalisé en fonction d'une erreur d'estimation formée de la différence de la pression de gonflage compensée Pa(k+1 ) du pneumatique de la roue avant et d'une pression de gonflage g(Kpa(K)) de ce pneumatique calculée selon la relation
en fonction du coefficient de raideur Kpa(k) de ce pneumatique à l'instant k.
Ainsi, dans cette variante également, les moyens 46 de calcul sont propres à estimer la pression de gonflage du pneumatique d'une roue avec une précision accrue car deux sources d'informations complémentaires concernant cette pression sont utilisées. Tout comme la variante précédente, ceci permet notamment de rejeter des valeurs aberrantes dans la mesure de la pression de gonflage par le capteur de pression 12, 14 et les erreurs de transmission d'informations entre moyens 12a, 14a formant antenne d'émission de ce capteur 12, 14 et moyens 24 formant antenne de réception. Dans un autre mode de réalisation du système selon l'invention, les moyens 32 de fusion sont adaptés pour directement fusionner les pressions de gonflage des pneumatiques avec les accélérations verticales des roues.
Dans ce mode de réalisation, les moyens 32 de fusion sont structurellement analogues à ceux décrits en relation avec la figure 3. Ils comprennent le filtre passe-bande 36 ainsi que les moyens 38 de recalage temporel.
Les moyens 48 d'estimation des pressions de gonflage des pneumatiques sont connectés au filtre 36 pour recevoir les accélérations Avr(k), Ava(k) des roues arrière et avant, aux moyens 44 de recalage pour recevoir l'accélération Ava(k-n) recalée de la roue avant, et aux moyens 28, 30 de compensation pour recevoir les pressions de gonflage compensées Pac(k), Prc(k).
Dans ce mode de réalisation, les moyens 48 d'estimation mettent en œuvre un algorithme de Kalman étendu pour le calcul d'une estimation Kpa(k) du coefficient de raideur de la roue avant en fonction de la pression de gonflage compensée Pac(k) de son pneumatique et des accélérations qu'ils reçoivent à partir d'un modèle d'observation selon la relation :
Y(k + 1) = d(Pac(k), Pr c(k)) + x(k) (23) où Y est la grandeur observée à l'instant k+1 , ici l'accélération verticale de la roue avant,
d(Pac(k),Prc(k)) = (mraxAva(k -n) (24) et x(k) est un bruit de mesure sur l'accélération verticale de la roue arrière de variance prédéterminée σvr .
Par exemple, dans ce mode de réalisation, les moyens 48 d'estimation sont propres à mettre en œuvre un algorithme selon les relations :
Pac(k + 1) = Pac(k) + K(k + l)(Avr(k + 1) - d(Pac(k), Pr c(k)) (25)
R(k + 1 / k) = E(Pac(k)Pac(k)) (26)
R(k + l/k + l) = R(k + l/k) - K(k + l)D(k + l)R(k + l/k) (28)
K(k + l) = R(k + l/k)D(k + l)(σvr + Dτ (k + l)R(k + l/k)D(k + l))~1 (29) où R(k+1/k) est la prédiction de la matrice de covariance de l'erreur d'estimation à l'instant k+1 , et R(k+1/k+1 ) est la correction de la matrice de covariance de l'erreur d'estimation à l'instant k+1.
Les altitudes au sol des roues avant et arrière sont par exemple calculées de la manière décrite précédemment.
Comme on peut le noter, le calcul à l'instant k+1 de l'estimation
Pac(k) de la pression de gonflage du pneumatique de la roue avant est réalisé en fonction d'une erreur d'estimation formée de la différence de l'accélération verticale acquise Avr(k+1 ) du pneumatique de la roue avant et d'une accélération verticale d(Pac(k),Prc(k)) de celle-ci calculée selon la relation (24) en fonction des pressions de gonflage compensées des pneumatiques à l'instant k. Ainsi, dans ce mode de réalisation, les moyens 46 ce calcul sont propres à estimer la pression de gonflage du pneumatique d'une roue avec une précision accrue car deux sources d'informations complémentaires concernant cette pression sont utilisées. Tout comme précédemment, ceci permet notamment de rejeter des valeurs aberrantes dans la mesure de la pression de gonflage par le capteur de pression 12, 14 et les erreurs de transmission d'informations entre moyens 12a, 14a formant antenne d'émission de ce capteur 12, 14 et moyens 24 formant antenne de réception.
Le système 10 selon l'invention comprend enfin des moyens 50 de diagnostic connectés aux moyens 28 et 30 de compensation et aux moyens 48 d'estimation des pressions de gonflage.
Ces moyens 50 de diagnostic sont notamment adaptés pour diagnostiquer les dysfonctionnements au niveau de chaque pneumatique, c'est- à-dire une défaillance du capteurs de pression monté dans celui-ci ou une inversion du montage du pneumatique (par exemple le montage du pneumatique sur la roue avant gauche au lieu de la roue arrière gauche comme cela devrait normalement être le cas) en comparant les pressions de gonflage compensées aux pressions de gonflage estimées respectives.
Par exemple, les moyens 50 diagnostiquent que le capteur de pression est défaillant ou que le pneumatique comprenant ce capteur a été monté sur une mauvaise roue, si les pressions compensées et estimées associées à ce pneumatique diffèrent de plus de X%, où X est un nombre prédéterminé, pendant au moins une durée prédéterminée.
La mesure du capteur de pression 12, 14 est incluse dans une trame de communication comprenant un champ d'identification du capteur et la trame est émise par les moyens formant 12a, 14a antenne d'émission à destination des moyens 24 formant antenne de réception. Ceux-ci extraient alors la mesure de la trame reçue et associent celle-ci au capteur identifié par le champ d'identification. Ainsi, si le pneumatique est monté sur la roue avant gauche au lieu de la roue arrière gauche, les moyens 24 associent la mesure extraite de la trame de communication à la roue arrière gauche et non pas à la roue avant gauche. Il s'ensuit alors des erreurs dans les calculs utilisant une telle mesure et donc une estimation de la pression de gonflage des pneumatiques non valide.
Or, les accéléromètres 16, 18 ne sont pas montés dans les pneumatiques mais sur les roues de sorte qu'ils ne peuvent pas être l'objet d'une inversion de montage. Si la pression estimée et la pression compensée associées par le système selon l'invention à un même pneumatique diffèrent de plus de X%, les moyens 50 calculent alors les pressions de gonflage des pneumatiques des roues avant et arrière à partir de la relation (1) en fonction des coefficients de raideur calculés par les moyens 46 En variante, les moyens 50 calculent ces coefficients de raideur en fonction des accélérations verticales comme cela a été décrit précédemment s'ils n'ont pas déjà été calculés puis calculent les pressions de gonflage en fonction de ceux-ci.
Les moyens 50 comparent ensuite la pression compensée à chacune des pressions ainsi calculées.
Si la pression compensée correspond à l'une des pressions calculées en fonction des coefficients de raideur, alors les moyens 50 de diagnostic localisent le pneumatique d'où provient la défaillance comme étant celui associé à la pression calculée en fonction des coefficients de raideur, c'est-à-dire le pneumatique associé à l'accéléromètre dont les mesures ont été utilisées pour calculer le coefficient de raideur du pneumatique de la roue sur lequel il est monté.
Si la pression compensée ne correspond à aucune des pressions calculées en fonction des coefficients de raideur, alors les moyens 50 diagnostiquent un état défectueux du capteur de pression associée à cette pression compensée.
En variante, les moyens 50 diagnostiquent qu'un capteur de pression est défaillant ou une inversion du montage d'un pneumatique si la matrice Q(k/k), R(k/k), S(k/k) de covariance de l'erreur d'estimation associée calculée par les moyens 48 d'estimation ne tend pas vers 0.
Enfin, si les pressions compensées et les pressions prédites correspondent, alors les moyens 50 diagnostiquent l'état de gonflage des pneumatiques en fonction des pressions de gonflage estimées.
Par exemple, les moyens 50 sont propres à comparer chacune de ces pressions estimées à un ensemble prédéterminé d'intervalles de pression chacun représentatif d'un état de gonflage de pneumatique (crevaison, sous- gonflage, gonflage normal, sur-gonflage). Les moyens 50 déterminent ainsi l'état de gonflage du pneumatique associé à cette pression estimée en fonction de l'appartenance de cette dernière à l'un des intervalles de pression.
Il a été décrit des modes de réalisation particuliers de l'invention.
En variante, les moyens 28, 30 de compensation des pressions de gonflage et les capteurs de températures 20, 22 sont omis, les algorithmes décrits ci-dessus étant exécutés en fonction des pressions de gonflage acquises délivrées par les capteurs 12, 14 de pression.
Il a été décrit un système se fondant sur un modèle mécanique de la roue illustré à la figure 1. En variante, le système se fonde sur le modèle mécanique illustré sur la figure 4. La figure 4 est une vue schématique d'un modèle mécanique généralement désigné sous l'expression de « modèle bicyclette ». Ce type de modèle permet notamment de prendre en compte le cas de suspensions actives équipant le véhicule et s'applique à des roues avant et arrière agencées du même côté du véhicule.
La différence avec le modèle de la figure 1 consiste dans le fait que la caisse C du véhicule est assimilée à une masse Mc suspendue à la fois sur la roue avant Roa et la roue arrière Ror.
En se fondant sur le principe fondamental de la dynamique appliqué à ce modèle bicyclette ainsi que l'hypothèse selon la relation (2), il peut être montré que les accélérations verticales Ava(k) , Avr(k) des roues avant et arrière sont modélisables selon la relation : mra
Ava(k -n) mrr Kpr(k) / Kpa(k)
— (Zva(k -n)- Zvr(k)) Kpr(k)
Avr(k) = mrr (30)
Zva(k -n) (Kpr(k) / Kpa(k))xRa(k) mnr Rr(k)
1
Zvr(k) mrr où Ra et Rr sont des coefficients de raideur des suspensions des roues avant et arrière respectivement, et Zva et Zvrsont les dérivées premières des altitudes des centres des roues avant et arrière respectivement, c'est-à-dire les vitesses de déplacement vertical de celles-ci.
Les relations précédentes sont alors modifiées pour tenir compte de l'introduction de ces dérivées premières.
De même, il a été décrit des moyens 32 de fusion se fondant sur une estimation des pressions de gonflage par un filtrage de Kalman. D'autres types d'estimations sont possibles. Par exemple, en variante, les moyens 48 d'estimation mettent en œuvre une estimation des pressions de gonflages se fondant sur un filtrage Baysien utilisant l'un ou l'autre des modèles d'observation selon les relations (11 ), (17) et (23).
Il a été décrit un système selon l'invention appliqué à une paire de roues avant et arrière d'un véhicule automobile agencées sur un même côté de celui-ci. Bien entendu, on comprendra que ce système peut également s'appliquer à chacune des paires de roues avant et arrière agencées sur un même côté du véhicule.

Claims

REVENDICATIONS
1. Système de détermination de la pression de gonflage de pneumatiques montés sur des roues avant et arrière d'un véhicule automobile, caractérisé en ce qu'il comprend : - des moyens (12,14) d'acquisition des pressions de gonflage des pneumatiques des roues avant et arrière;
- des moyens (16, 18) d'acquisition des accélérations verticales des roues avant et arrière ; et
- des moyens (32) de fusion des pressions acquises et des accélérations acquises pour estimer les pressions de gonflage des pneumatiques des roues avant et arrière.
2. Système selon la revendication 1 , caractérisé en ce que les moyens (32) de fusion comprennent :
- des moyens (34) d'estimation des coefficients de raideur des pneumatiques des roues avant et arrière en fonction des accélérations verticales acquises de celles-ci ; et
- des moyens (48) d'estimation des pressions de gonflage des pneumatiques des roues avant et arrière en fonction des pressions de gonflage acquises et des coefficients de raideur estimés des pneumatiques des roues avant et arrière.
3. Système selon la revendication 2, caractérisé en ce que les moyens (34) d'estimation des coefficients de raideur comprennent des moyens (38) de recalage temporel de l'une des accélérations acquises sur l'autre des accélérations acquises et des moyens de calcul des coefficients de raideur en fonction des accélérations ainsi recalées temporellement.
4. Système selon la revendication 2 ou 3, caractérisé en ce que les moyens (34) d'estimation des coefficients de raideur comprennent des moyens (36) de filtrage passe-bande des accélérations acquises agencés entre des moyens d'acquisition des accélérations et les moyens de recalage temporel.
5. Système selon la revendication 4, caractérisé en ce que les moyens (36) de filtrage passe-bande sont adaptés pour mettre en œuvre un filtrage dans une gamme de fréquences sensiblement égale à [8, 20] Hz.
6. Système selon la revendication 3, 4 ou 5, caractérisé en ce que les moyens (38) de recalage temporel comprennent des moyens (40) de calcul de l'intercorrélation des accélérations acquises et des moyens (42) d'application d'un retard correspondant au maximum de l'intercorrélation calculée à l'accélération acquise de la roue avant.
7. Système selon l'une quelconque des revendications 3 à 6, caractérisé en ce que les moyens (46) de calcul des coefficients de raideur sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel se fondant sur un modèle mécanique prédéterminé de la roue.
8. Système selon l'une quelconque des revendications 2 à 7, caractérisé en ce que les moyens (34) d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique mono-roue des roues avant et arrière.
9. Système selon la revendication 8, caractérisé en ce que les moyens (34) d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Avr(k) = où k est le kιeme instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et
Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée.
10. Système selon la revendication 8, caractérisé en ce que les moyens (34) d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Ava(k) = — (mrrxAvr(k + n) Zvr(k + n)- Zva(k)) Kpa( ) Kpr( ' I mra I Kpa(k) J où k est le kιeme instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée.
11. Système selon l'une quelconque des revendications 2 à 7, caractérisé en ce que les moyens (34) d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique bicyclette de celles-ci.
12. Système selon la revendication 11 , caractérisé en ce que les moyens (34) d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
où k est le kιeme instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée, Ra et Rr sont des coefficients de raideur des suspensions des roues avant et arrière respectivement, et Zva et Zvr sont les dérivées premières des altitudes des centres des roues avant et arrière respectivement.
13. Système selon l'une quelconque des revendications 2 à 7, caractérisé en ce que les moyens (48) d'estimation des pressions de gonflage sont adaptés sont adaptés pour mettre en œuvre, pour chacune des roues avant et arrière, un estimateur de Kalman se fondant sur un modèle liant la pression de gonflage et le coefficient de raideur du pneumatique de la roue.
14. Système selon la revendication 1 , caractérisé en ce que les moyens (32) de fusion sont adaptés pour mettre en œuvre un estimateur de
Kalman se fondant sur modèle liant les pressions de gonflage des pneumatiques et les accélérations verticales des roues avant et arrière.
15. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens (50) de diagnostic de l'état de fonctionnement des moyens d'acquisition des pressions de gonflage et de l'état de montage des pneumatiques en fonction des pressions de gonflage estimées et acquises et des accélérations verticales acquises des roues avant et arrière.
16. Système selon la revendication 15, caractérisé en ce que, si une pression de gonflage acquise et sa pression estimée associée diffèrent de plus de X%, où X est un nombre prédéterminé, les moyens (50) de diagnostic sont adaptés pour calculer les pressions de gonflages des pneumatiques des roues avant et arrière en fonction des accélérations verticales acquises de celles-ci, pour comparer la pression acquise aux pressions calculées et pour déterminer que, si la pression acquise correspond à l'une des pressions calculées, le pneumatique associé à la pression calculée correspondant à la pression acquise fait l'objet d'un montage inversé.
17. Système selon la revendication 16, caractérisé en ce que, si aucun des pneumatiques ne présente d'inversion de montage, alors les moyens (50) de diagnostic sont propres à diagnostiquer que les moyens d'acquisition associés à la pression acquise sont défaillants.
EP06779008A 2005-07-26 2006-07-04 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile Withdrawn EP1907226A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0507977A FR2889111B1 (fr) 2005-07-26 2005-07-26 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile
PCT/FR2006/050667 WO2007012771A2 (fr) 2005-07-26 2006-07-04 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile

Publications (1)

Publication Number Publication Date
EP1907226A2 true EP1907226A2 (fr) 2008-04-09

Family

ID=36088575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06779008A Withdrawn EP1907226A2 (fr) 2005-07-26 2006-07-04 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile

Country Status (4)

Country Link
US (1) US7823443B2 (fr)
EP (1) EP1907226A2 (fr)
FR (1) FR2889111B1 (fr)
WO (1) WO2007012771A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890898B1 (fr) * 2005-09-16 2007-12-07 Peugeot Citroen Automobiles Sa Procede et systeme de diagnostic de l'etat de pneumatiques d'un vehicule automobile.
US20100212798A1 (en) * 2009-02-20 2010-08-26 Nissan Technical Center North America, Inc. Tire pressure inflation system
FR2998514B1 (fr) * 2012-11-23 2016-06-10 Renault Sa Systeme de surveillance de pression des pneumatiques d'un vehicule automobile
FR3011200B1 (fr) 2013-09-27 2015-09-04 Renault Sa Procede et systeme de surveillance d'un pneumatique
FR3014752B1 (fr) * 2013-12-13 2016-02-05 Renault Sas Systeme de surveillance de pression des pneumatiques d'un vehicule automobile
US10449811B2 (en) * 2015-06-15 2019-10-22 Infineon Technologies Ag Tire monitoring system and method
DE102019209137A1 (de) * 2019-06-25 2020-12-31 Zf Friedrichshafen Ag Verfahren zum Prüfen des Reifendrucks eines Fahrzeugs
EP4190651A1 (fr) 2021-12-02 2023-06-07 Volvo Truck Corporation Systèmes de commande de véhicule redondants basés sur des capteurs de pneu

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE416919B (sv) * 1979-04-03 1981-02-16 Brajnandan Sinha Anordning for indikering av endring hos tryck i fordonsdeck
DE3151254C2 (de) * 1981-12-24 1984-04-26 Bayerische Motoren Werke AG, 8000 München Prüfvorrichtung für den Reifenluftdruck von Rädern an Fahrzeugen und Verfahren für eine derartige Vorrichtung
US4574267A (en) * 1982-05-06 1986-03-04 Trw Inc. Tire pressure warning system
DE4009540A1 (de) * 1990-03-24 1991-09-26 Teves Gmbh Alfred Verfahren und system zur reifendruckueberwachung
JPH1178465A (ja) * 1997-09-10 1999-03-23 Nissan Motor Co Ltd ロール剛性制御装置
DE19803386A1 (de) * 1998-01-29 1999-08-05 Daimler Chrysler Ag Vorrichtung zur Überwachung des Luftdrucks eines Fahrzeugreifens
AU5910400A (en) * 1999-07-02 2001-01-22 Pressure Guard, Inc. On-axle tire inflation system
US6435238B1 (en) * 2001-03-22 2002-08-20 Equalaire Systems, Inc. Combination of an automatic tire inflation system and anti-locking braking system
US6235124B1 (en) * 2000-04-10 2001-05-22 The United States Of America As Represented By The Secretary Of The Navy Method and solution for removal of mildew
US6394159B1 (en) * 2001-01-26 2002-05-28 Meritor Heavy Vehicle Technology, Llc Hub cap filter for tire inflation system
JP3956693B2 (ja) * 2001-12-27 2007-08-08 トヨタ自動車株式会社 統合型車両運動制御装置
US7207365B2 (en) * 2003-03-06 2007-04-24 Nelson Christopher A Central tire inflation system rotary air union
FR2858267B1 (fr) * 2003-07-31 2006-03-03 Peugeot Citroen Automobiles Sa Methode d'evaluation de la pression des pneumatiques, et vehicule automobile equipe d'un dispositif de serveillance de la pression apte a la mettre en oeuvre.
US7185688B2 (en) * 2004-01-27 2007-03-06 Arvinmeritor Technology, Llc Central tire inflation system for drive axle
US7273082B2 (en) * 2004-03-05 2007-09-25 Hendrickson Usa, L.L.C. Tire inflation system apparatus and method
US7168468B2 (en) * 2004-04-27 2007-01-30 Hutchinson, S.A. Vehicle wheel assembly with a hollow stud and internal passageways connected to a CTIS
FR2889112B1 (fr) * 2005-07-26 2007-10-19 Peugeot Citroen Automobiles Sa Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile
US7590481B2 (en) * 2005-09-19 2009-09-15 Ford Global Technologies, Llc Integrated vehicle control system using dynamically determined vehicle conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007012771A2 *

Also Published As

Publication number Publication date
WO2007012771A3 (fr) 2007-03-29
WO2007012771A2 (fr) 2007-02-01
FR2889111A1 (fr) 2007-02-02
FR2889111B1 (fr) 2007-10-19
US7823443B2 (en) 2010-11-02
US20080208515A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
EP1907226A2 (fr) Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile
WO2007017606A1 (fr) Systeme et procede d'estimation d'au moins une caracteristique d'une suspension de vehicule automobile
US20090005985A1 (en) GPS-based in-vehicle sensor calibration algorithm
FR2915568A1 (fr) Procede et dispositif de detection d'un axe de rotation sensiblement invariant
WO2015092246A1 (fr) Estimation du potentiel d'adhérence par évaluation du rayon de roulement
EP1819984A1 (fr) Systeme de navigation inertielle hybride base sur un modele cinematique
EP3765818B1 (fr) Procédé de calibration d'un gyromètre équipant un véhicule
EP3159701A1 (fr) Procédé de calcul de l'accélération propre d'un véhicule ferroviaire, produit programme d'ordinateur et système associés
WO2007012772A2 (fr) Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile
WO2003045718A1 (fr) Procede pour evaluer la frequence instantanee d'une excitation mecanique exercee sur une roue d'un vehicule automobile, et applications
EP1924859A1 (fr) Dispositif et procede de mesure d'une quantite representative de la vitesse de rotation d'une roue de vehicule automobile et systeme et procede utilisant un tel dispositif et un tel procede
EP1894800A1 (fr) Procédé de détermination de la pente sur laquelle se déplace un véhicule automobile
FR3014191A1 (fr) Procede et dispositif d'estimation de la masse d'un vehicule automobile
EP1924450A2 (fr) Procede et systeme de diagnostic de l'etat de pneumatiques d'un vehicule automobile
WO2022243392A1 (fr) Procede de surveillance d'un atterrisseur d'aeronef faisant usage d'au moins un accelerometre porte par une roue de l'atterrisseur, et aeronef mettant en œuvre ce procede
WO2017216466A1 (fr) Procédé de détermination de l'état d'une route
FR3084460A1 (fr) Procede de calibration d'un capteur d'acceleration radiale d'une roue d'un vehicule automobile
EP3328668B1 (fr) Dispositif pour estimer un indicateur d'état d'une voie de circulation empruntée par un véhicule terrestre
FR2994258A1 (fr) Procede de compensation d'un signal de capteur d'un vehicule et systeme d'informations appliquant un tel procede
WO2002032733A1 (fr) Dispositif et procede pour detecter l'adherence d'un pneumatique de vehicule sur le sol
FR2947899A1 (fr) Procede de detection de pente et de devers, et d'estimation de leur signe
EP3080565B1 (fr) Dispositif et procédé d'estimation de la masse totale d'un véhicule automobile a étalonnage embarque de capteurs de débattement des suspensions
FR2912363A1 (fr) Systeme et procede de determination de l'angle de devers d'un vehicule a partir des efforts exerces sur les roues
FR3043466A1 (fr) Procede de determination de l'erreur de mesure de l'acceleration radiale d'une roue et de correction dynamique de cette mesure
FR2864225A1 (fr) Procede de mesure du mouvement d'un solide, utilisant une mesure absolue associee a une mesure par double integration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20101105