WO2007012772A2 - Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile - Google Patents

Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile Download PDF

Info

Publication number
WO2007012772A2
WO2007012772A2 PCT/FR2006/050677 FR2006050677W WO2007012772A2 WO 2007012772 A2 WO2007012772 A2 WO 2007012772A2 FR 2006050677 W FR2006050677 W FR 2006050677W WO 2007012772 A2 WO2007012772 A2 WO 2007012772A2
Authority
WO
WIPO (PCT)
Prior art keywords
accelerations
wheels
rear wheels
stiffness coefficients
time
Prior art date
Application number
PCT/FR2006/050677
Other languages
English (en)
Other versions
WO2007012772A3 (fr
Inventor
Zahir Djama
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Priority to EP06779017A priority Critical patent/EP1907227A2/fr
Priority to US11/996,959 priority patent/US7657393B2/en
Publication of WO2007012772A2 publication Critical patent/WO2007012772A2/fr
Publication of WO2007012772A3 publication Critical patent/WO2007012772A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle

Definitions

  • the present invention relates to a system for determining the inflation pressure of tires mounted on motor vehicle wheels.
  • Such systems are known in the state of the art which use the vertical acceleration of one or more wheels of the vehicle to determine the stiffness coefficients of the tires thereof, and their inflation pressures from these coefficients.
  • the invention aims to solve these problems by proposing a system of the aforementioned type that does not use a reconstruction of the road profile to calculate the tire inflation pressure.
  • the subject of the invention is a system for determining the inflation pressure of tires mounted on motor vehicle wheels, the system comprising: means for acquiring the vertical accelerations of a front wheel and of a rear wheel of the vehicle; and
  • means for estimating coefficients of stiffness of the tires of these wheels as a function of the accelerations acquired characterized in that it furthermore comprises means for time registration of one of the accelerations acquired on the other of the accelerations acquired, and in that the estimation means are adapted to estimate said stiffness coefficients as a function of the accelerations thus time-corrected.
  • the system comprises one or more of the following characteristics:
  • the means of time registration comprise means for calculating the intercorrelation of the accelerations acquired and means for applying a delay corresponding to the maximum of the calculated correlation to the acceleration gained from the front wheel;
  • the estimation means are adapted to implement a recursive least squares algorithm in real time to estimate said stiffness coefficients;
  • the estimation means are adapted to implement an inversion or deconvolution algorithm for estimating said stiffness coefficients
  • the system further comprises means for bandpass filtering the acquired accelerations arranged between means for acquiring the accelerations and the time resetting means; the band-pass filtering means are adapted to implement a filtering in a frequency range substantially equal to [8, 20] Hz;
  • the estimation means are adapted to estimate said stiffness coefficients from a single-wheel mechanical model of the front and rear wheels; the estimation means are capable of estimating said stiffness coefficients based on discrete time modeling of the corrected accelerations of the front and rear wheels according to the relation:
  • Avr (k) where k is the k th time of sampling, Avr and Ava are the vertical accelerations of the rear and front wheels respectively, Zvr and Zva are the altitudes of the centers of the rear wheels and respectively before, Kpr and
  • Kpa are the stiffness coefficients of the tires of the front and rear wheels respectively, and n is a sampling instant corresponding to a time shift between the rear and front wheels undergoing the same portion of roadway;
  • the estimation means are capable of estimating said stiffness coefficients based on discrete time modeling of the corrected accelerations of the front and rear wheels according to the relation:
  • Ava (k) where k is the kth sampling time, Avr and Ava are the vertical accelerations of the rear and front wheels respectively, Zvr and Zva are the altitudes of the centers of the rear and front wheels respectively, Kpr and Kpa are the stiffness coefficients of the tires of the front and rear wheels respectively, and n is a sampling instant corresponding to a time shift between the rear and front wheels undergoing the same portion of roadway;
  • the estimation means are adapted to estimate said stiffness coefficients from a bicycle mechanical model thereof;
  • the estimation means are capable of estimating said stiffness coefficients based on discrete time modeling of the corrected accelerations of the front and rear wheels according to the relation:
  • k is the kth sampling time
  • Avr and Ava are the vertical accelerations of the rear and front wheels respectively
  • Zvr and Zva are the altitudes of the centers of the rear wheels and before respectively
  • Kpr and Kpa are the coefficients of stiffness of the front and rear wheel tires respectively
  • n is a sampling instant corresponding to a time shift between the rear and front wheels undergoing the same portion of roadway
  • Ra and Rr are stiffness coefficients of the front and rear wheel suspensions respectively
  • Zva and Zvr are the first derivatives of the altitudes of the centers of the front and rear wheels respectively;
  • It further comprises means for diagnosing the operating state of the means for acquiring vertical accelerations of the rear front wheels adapted to diagnose the operating state thereof by testing their consistency over a predetermined period of time;
  • the means are adapted to calculate the frequency spectra of the accelerations delivered by the acquisition means, to compare these spectra and to diagnose a defective state of the acquisition means if the spectra differ by more than a predetermined value;
  • the diagnostic means are further adapted to predict one of the accelerations of the front and rear wheels depending on the other of these accelerations delivered by the acquisition means and to diagnose a defective state of the acquisition means if furthermore the predicted acceleration and the acceleration used for this prediction are not coherent.
  • FIG. 1 is a schematic view of a mechanical model used in a first embodiment of a system according to the invention
  • FIG. 2 is a diagram illustrating the calculation hypothesis used by the system according to the invention.
  • FIG. 3 is a schematic view of a first embodiment of the system according to the invention.
  • FIG. 4 is a schematic view of a second mechanical model used by a second embodiment of a system according to the invention.
  • - Figures 5 to 7 are graphs of temporal variation of the pneumatic stiffness coefficients of front and rear wheels estimated by the system according to the invention.
  • the system according to the invention is based on a mechanical model of the interactions between the body C of a vehicle, mass Mc, the wheels R thereof and the ground S.
  • FIG. 1 is a schematic view of a "single-wheel" type of model, of the interactions between a vehicle wheel Ro, the vehicle body C and the vehicle.
  • the body C of the vehicle is likened to a mass Mc suspended from the wheel Ro mass Mr by a suspension Su assimilated to a spring / damping stiffness Kc and damping coefficient R.
  • the wheel Ro and the body C move in a vertical direction and occupy respective attitudes Zr and Zc with respect to a reference level, for example the altitude of the ground when the vehicle is started.
  • the wheel Ro carries a pneumatic tire Pn resting on the ground S and similar to a stiffness spring K composed of a spring modeling the tire envelope Pn of structural stiffness Ks in parallel with a spring Modeling the gas contained in the pneumatic stiffness tire Kp, all in series with a spring modeling the gum of the tire of rubber stiffness Kg.
  • c and ⁇ are predetermined constants, for example substantially equal to 6.7 and 0.85 respectively for a given tire.
  • the system according to the invention is also based on the following observation presented in FIG. 2 which illustrates the progress of a vehicle on a roadway between two instants t and t + ⁇ t.
  • the front and rear wheels of the vehicle undergo, most of the time, with a time shift ⁇ t depending on the speed V and the wheelbase of the vehicle, the same road profile.
  • the system according to the invention is then advantageously based on the following relationship to determine the stiffness coefficients of the tires and therefore the inflation pressure thereof, as will appear in more detail below:
  • Z sa (t) Z sr (t + ⁇ t) (2)
  • t is the time
  • ⁇ t is the time between the passage of a rear wheel on a point of the road, the passage of a front wheel on this same point
  • Z sa is the ground altitude at the front wheel
  • Z sr is the ground altitude at the rear wheel.
  • FIG. 3 schematically illustrates, under the general reference 10, a first embodiment of the system according to the invention for determining the inflation pressure of the tires mounted on a wheel. front and a rear wheel of a motor vehicle, arranged on the same side thereof.
  • This system 10 comprises an accelerometer 12, 14 fitted to each of these wheels to measure the vertical acceleration Avr, Ava thereof at its center.
  • This accelerometer 12, 14 is for example a single-axis accelerometer or tri-axis mounted in the center of the wheel and comprising means 16, 18 forming a transmission antenna for the delivery of a high frequency electromagnetic signal representative of the vertical acceleration Apr, Ava in the center of the wheel.
  • Receiving antenna means 20 are provided in the system 10 for receiving the signals emitted by the accelerometers 12, 14 and extracting from these signals the accelerations Avr, Ava measured by them.
  • the means 20 are connected to a bandpass filter 22 adapted to process the accelerations Avr, Ava of the wheels delivered by the means 20 by applying a band-pass filtering.
  • This filtering is implemented in a frequency range in which the power of the modes of the front and rear wheels is concentrated. This frequency range corresponds to the rolling resistance range and is for example substantially equal to the range [8; 20] Hz.
  • the bandpass filter 22 is moreover connected to an analog / digital converter 24, for example an order 0, a buffer sampler adapted to digitize at a predetermined sampling frequency fe, for example between about 50 Hz and 1000 Hz. , filtered accelerations and thus outputting digital acceleration Avr (k), Ava (k) of the front and rear wheels, where k represents the k sampling instant ⁇ eme.
  • a predetermined sampling frequency fe for example between about 50 Hz and 1000 Hz.
  • the system 10 also comprises means 26 of time registration connected to the converter 24 and adapted to time shift the digital acceleration Ava (k) of the front wheel on the digital acceleration Avr (k) of the rear wheel for outputted accelerations Avr (k), Ava (k -n) of the front and rear wheels, corresponding to the same altitude of the ground in order to apply the hypothesis according to the relation (2) described above.
  • These adjustment means 26 comprise, for this purpose, calculation means 28 adapted to estimate the digital intercorrelation IC (N) of the accelerations Avr (k), Ava (k) delivered by the converter 24 according to the relation:
  • the calculation means 28 are adapted to implement an estimator of this cross-correlation, as is known per se in the field of signal processing.
  • the retiming means 26 also comprise, connected to the calculation means 28, means 30 for determining the maximum of the intercorrelation IC (N) and the sampling instant n corresponding to this
  • Time-shift means 32 are connected to the means 30 and to the converter 24, and are suitable for applying a delay of n samples to the acceleration Ava (k) of the front wheel and thus to deliver an acceleration Ava (kn) set back temporally on the acceleration Avr (k) of the rear wheel.
  • the system 10 further comprises means 34 for estimating the pneumatic stiffness coefficients Kpn, Kpa of the front and rear wheels. These means 34 are connected to the converter 24 to receive the accelerations
  • the means 34 are suitable for estimating said coefficients of stiffness Kpa, Kpn as a function of the accelerations they receive.
  • the means 34 are based on the mechanical model of Figure 1 to model the dynamic behavior of the front and rear wheels.
  • Ava (k) (5) where mrr and mra are the masses of the rear and front wheels respectively, and Zvret Zva are the altitudes of the centers of the rear and front wheels respectively with respect to the reference level.
  • at time k
  • a (k) is the regression vector at the instant k
  • E (A ⁇ (k) A (k)) is the Variance of the vector A ⁇ at time k
  • 05 is a predetermined forgetting factor and ⁇ (k)
  • x (k) and s (k) are vectors or intermediate matrices used in estimating the vector ⁇ .
  • the means 34 are capable of calculating the altitudes Zvr (k), Zva (k -n) of the centers of the rear wheels and before each sampling instant as a function of the vertical accelerations Avr (k) and Ava (k - n), for example by carrying out a double integration of these after their filtering between 8 Hz and 20 Hz.
  • Another example of a calculation of the altitude of a wheel in function of its vertical acceleration is described in the French patent application FR 2 858 267 in the name of the applicant.
  • the estimation means 34 are adapted to implement a recursive least squares algorithm in real time based on the relation (5) in a manner similar to that described above.
  • the means 34 are suitable for implementing an inversion or deconvolution algorithm based on the relation (4) or (5) for estimating the stiffness coefficients.
  • the estimation means 34 are thus adapted to deliver at each sampling instant estimated values Kpa (k) and Kpr (k) of the pneumatic stiffness coefficients of the front and rear wheels.
  • the system 10 also comprises means 36 for determining the inflation pressure Pa (k), Pr (k) of the tires of the front and rear wheels connected to the estimating means 34.
  • These means 36 receive the estimated values Kpa (k) and Kpr (k) and are adapted to calculate, as a function of these, the inflation pressures Pa (k) and Pb (k) of the front and rear wheels, for example from of the relation (1).
  • the inflation pressures Pa and Pr are tabulated in the means 36 as a function of the pneumatic stiffness coefficients Kpa and Kpn respectively, or the means 36 are adapted to evaluate the function according to the relation (1) as a function of the values of the coefficients. of stiffness that they receive.
  • the system 10 finally comprises means 40 for diagnosing the state of inflation of the tires of the front and rear wheels.
  • These means 40 are for example connected to the estimation means 34, the converter 24 and the determination means 36 for receiving the estimated stiffness coefficients, the vertical accelerations Avr (k), Ava (k) of the rear and front wheels and the inflation pressures Pa (k), Pr (k) and are adapted to determine, according to these, the operating state of the accelerometers 12, 14 as well as the inflation state of the tires (under-inflation, over-inflation , puncture ).
  • the means 40 comprise means 42 for diagnosing the operating state of the accelerometers adapted to test the coherence of the accelerations Avr (k) and Ava (k) with each other over a predetermined period of time, for example between 5 minutes and 10 minutes.
  • a predetermined period of time for example between 5 minutes and 10 minutes.
  • the means 42 are adapted to calculate the frequency spectra of these accelerations by means of a fast Fourier transform of the accelerations included in the predetermined period of time and to compare the calculated spectra. If these differ by more than a predetermined value, for example in quadratic error, then the accelerometers are diagnosed as defective by the means 42.
  • the means 42 are further adapted to predict the vertical acceleration of the rear wheel as a function of the vertical acceleration of the front wheel delivered by the converter 24 and the stiffness coefficients of the front and rear wheels calculated by the means 34, to from relation (4) by varying the sampling instant n.
  • the means 44 are also adapted to test the coherence between this predicted acceleration of the rear wheel and the acceleration of the front wheel delivered by the converter 24, for example in the manner previously described for the accelerations delivered by the converter 24. If, in addition, the coherence between these accelerations is not proven, then the means 42 diagnose a malfunction of the accelerometers 12, 14.
  • the means 40 also comprise means 44 for diagnosing the state of inflation of the tires as a function of the inflation pressures Pa (k), Pr (k) estimated.
  • the means 44 are able to compare each of these pressures to a predetermined set of pressure intervals each representative of a state of inflation of the tire (puncture, under-inflation, normal inflation, over-inflation). The means 44 thus determine the state of inflation of the tire associated with this pressure as a function of the membership of the latter at one of the pressure intervals.
  • the means 40 may furthermore comprise means for supplying the driver of the vehicle with this information, for example light indicators arranged on the dashboard of the vehicle and / or audible warning of incorrect tire inflation or defective condition of accelerometers.
  • Figure 4 is a schematic view of a mechanical model generally referred to as the "bicycle model". This type of model allows in particular to take into account the case of active suspensions equipping the vehicle and applies to front and rear wheels arranged on the same side of the vehicle.
  • the estimation means 34 are then adapted to implement a recursive algorithm of the least squares in real time based on the relation (11).
  • the elevations Zvr (k), Zva (k -n) of the centers of the wheels relative to the reference level and their first derivatives Zvr (k), Zva (k -n) are calculated at each sampling step in a manner analogous to the first embodiment, for example by integrating the corresponding vertical accelerations or in a manner described in the French patent application FR 2 858 267.
  • the application of the least squares recursive algorithm in real time based on the bicycle model can simultaneously estimate the pneumatic stiffness coefficients Kpa, Kpr and the stiffness coefficients Ra and Rr suspensions.
  • FIGS. 5A and 5B are graphs of temporal variations of the pneumatic stiffness coefficients Kpa, Kpr of the front and rear wheels arranged on the left side of the vehicle and the front and rear wheels arranged on the right side of the vehicle respectively, the tires of the wheels. front of the vehicle being inflated to a pressure of 2.4 bar, the tire of the left rear wheel being inflated to a pressure of 3 bar and the tire of the right rear wheel being inflated to a pressure of 2.4 bar.
  • the system according to the invention reliably determines the pneumatic stiffness coefficients and the associated inflation pressures. It has been described a system according to the invention applied to a pair of front and rear wheels of a motor vehicle arranged on the same side thereof. Of course, it will be understood that this system can also be applied to each pair of front and rear wheels arranged on the same side of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Measuring Fluid Pressure (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un système de détermination de la pression de gonflage de pneumatiques montés sur des roues de véhicule automobile, le système comportant des moyens (12, 14) d'acquisition des accélérations verticales d'une roue avant et d'une roue arrière du véhicule et des moyens (34) d'estimation de coefficients de raideur des pneumatiques de ces roues en fonction des accélérations acquises. Ce système est caractérisé en ce qu'il comprend des moyens (26) de recalage temporel de l'une des accélérations acquises sur l'autre des accélérations acquises, et en ce que les moyens (34) d'estimation sont adaptés pour estimer lesdits coefficients de raideur en fonction des accélérations ainsi recalées temporellement.

Description

Système de détermination de la pression de gonflage de pneumatiques montés sur des roues de véhicule automobile
La présente invention concerne un système de détermination de la pression de gonflage de pneumatiques montés sur des roues de véhicule automobile.
On connaît dans l'état de la technique de tels systèmes qui utilisent l'accélération verticale d'une ou plusieurs roues du véhicule pour déterminer les coefficients de raideur des pneumatiques de celles-ci, et leurs pressions de gonflage à partir de ces coefficients.
Toutefois, ces systèmes déterminent le profil de la chaussée pour déterminer les coefficients de raideur, ce qui pose des problèmes de précision du fait même de la reconstruction imparfaite de ce profil.
L'invention a pour but de résoudre ces problèmes en proposant un système du type précité qui n'utilise pas de reconstruction du profil de la chaussée pour calculer la pression de gonflage des pneumatiques.
A cet effet, l'invention a pour objet un système de détermination de la pression de gonflage de pneumatiques montés sur des roues de véhicules automobiles, le système comportant : - des moyens d'acquisition des accélérations verticales d'une roue avant et d'une roue arrière du véhicule ; et
- des moyens d'estimation de coefficients de raideur des pneumatiques de ces roues en fonction des accélérations acquises, caractérisé en ce qu'il comprend en outre des moyens de recalage temporel de l'une des accélérations acquises sur l'autre des accélérations acquises, et en ce que les moyens d'estimation sont adaptés pour estimer lesdits coefficients de raideur en fonction des accélérations ainsi recalées temporellement.
Selon des modes particuliers de réalisation, le système comporte une ou plusieurs des caractéristiques suivantes :
- les moyens de recalage temporel comprennent des moyens de calcul de l'intercorrélation des accélérations acquises et des moyens d'application d'un retard correspondant au maximum de l'intercorrélation calculée à l'accélération acquise de la roue avant ; - les moyens d'estimation sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel pour estimer lesdits coefficients de raideur ;
- les moyens d'estimation sont adaptés pour mettre en œuvre un algorithme d'inversion ou de déconvolution pour estimer lesdits coefficients de raideur ;
- le système comprend en outre des moyens de filtrage passe-bande des accélérations acquises agencées entre des moyens d'acquisition des accélérations et les moyens de recalage temporel ; - les moyens de filtrage passe-bande sont adaptés pour mettre en œuvre un filtrage dans une gamme de fréquences sensiblement égale à [8, 20] Hz ;
- les moyens d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique mono-roue des roues avant et arrière ; - les moyens d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Avr(k) =
Figure imgf000004_0001
où k est le kιeme instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et
Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée ;
- les moyens d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Ava(k) =
Figure imgf000004_0002
où k est le k .ième instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée ;
- les moyens d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique bicyclette de celles-ci ;
- les moyens d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Figure imgf000005_0001
où k est le k .ième instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée, Ra et Rr sont des coefficients de raideur des suspensions des roues avant et arrière respectivement, et Zva et Zvr sont les dérivées premières des altitudes des centres des roues avant et arrière respectivement ;
- il comprend en outre des moyens de diagnostic de l'état de fonctionnement des moyens d'acquisition des accélérations verticales des roues avant arrière adaptés pour diagnostiquer l'état de fonctionnement de ceux-ci en testant leur cohérence sur une période de temps prédéterminée ;
- les moyens sont adaptés pour calculer les spectres fréquentiels des accélérations délivrées par les moyens d'acquisition, comparer ces spectres et diagnostiquer un état défectueux des moyens d'acquisition si les spectres diffèrent de plus d'une valeur prédéterminée ; et
- les moyens de diagnostic sont en outre adaptés pour prédire une des accélérations des roues avant et arrière en fonction de l'autre de ces accélérations délivrée par les moyens d'acquisition et pour diagnostiquer un état défectueux des moyens d'acquisition si en outre l'accélération prédite et l'accélération utilisée pour cette prédiction ne sont pas cohérentes.
L'invention sera mieux comprise à la lecture de la description qui va suivre, faite uniquement à titre d'exemple et en relation avec les dessins annexés dans lesquels :
- la figure 1 est une vue schématique d'un modèle mécanique utilisé dans un premier mode de réalisation d'un système selon l'invention ;
- la figure 2 est un schéma illustrant l'hypothèse de calcul utilisée par le système selon l'invention ;
- la figure 3 est une vue schématique d'un premier mode de réalisation du système selon l'invention ;
- la figure 4 est une vue schématique d'un second modèle mécanique utilisé par un second mode de réalisation d'un système selon l'invention ; et - les figures 5 à 7 sont des graphiques de variation temporelle des coefficients de raideur pneumatique de roues avant et arrière estimées par le système selon l'invention.
Le système selon l'invention se fonde sur un modèle mécanique des interactions entre la caisse C d'un véhicule, de masse Mc, les roues R de celui-ci et le sol S.
Un premier exemple de modélisation mécanique de ces interactions est illustré sur la figure 1 qui est une vue schématique d'un modèle du type « mono-roue », des interactions entre une roue Ro du véhicule, la caisse C de celui-ci et le sol S. Comme le montre cette figure, dans cette modélisation à deux degrés de liberté, la caisse C du véhicule est assimilée à une masse Mc suspendue à la roue Ro de masse Mr par une suspension Su assimilée à un ensemble ressort/amortisseur de raideur Kc et de coefficient d'amortissement R.
La roue Ro et la caisse C se déplacent selon une direction verticale et occupent des attitudes respectives Zr et Zc par rapport à un niveau de référence, par exemple l'altitude du sol au démarrage du véhicule.
La roue Ro porte un pneumatique Pn reposant sur le sol S et assimilé à un ressort de raideur K composé d'un ressort modélisant l'enveloppe du pneumatique Pn de raideur structurelle Ks en parallèle avec un ressort modélisant le gaz contenu dans le pneumatique de raideur pneumatique Kp, le tout en série avec un ressort modélisant la gomme du pneumatique de raideur de gomme Kg.
Le comportement de ce système mécanique est commandé par l'évolution dans le temps de l'altitude Zs du sol par rapport au niveau de référence, c'est-à-dire le profil de la chaussée.
On sait par ailleurs que la pression de gonflage Pg du pneumatique est directement liée à la raideur pneumatique Kp de celui-ci, cette dépendance pouvant être par exemple modélisée selon la relation :
Figure imgf000007_0001
où c et α sont des constantes prédéterminées, par exemple sensiblement égales à 6,7 et 0,85 respectivement pour un pneumatique donné.
Le système selon l'invention se fonde également sur la constatation suivante présentée à la figure 2 qui illustre l'avancement d'un véhicule sur une chaussée entre deux instants t et t + Δt .
Comme il est illustré sur cette figure, les roues avant et arrière du véhicule subissent, la plupart du temps, avec un décalage temporel Δt dépendant de la vitesse V et de l'empattement d du véhicule, le même profil de chaussée. Le système selon l'invention se fonde alors avantageusement sur la relation suivante pour déterminer les coefficients de raideur des pneumatiques et donc la pression de gonflage de ceux-ci, comme il apparaîtra plus en détail par la suite :
Zsa(t) = Zsr(t + Δt) (2) où t est le temps, Δt est la durée séparant le passage d'une roue arrière sur un point de la chaussée, du passage d'une roue avant sur ce même point, Zsa est l'altitude au sol au niveau de la roue avant et Zsr est l'altitude au sol au niveau de la roue arrière.
Sur la figure 3, on a illustré schématiquement, sous la référence générale 10, un premier mode de réalisation du système selon l'invention de détermination de la pression de gonflage des pneumatiques montés sur une roue avant et une roue arrière d'un véhicule automobile, agencées sur un même côté de celui-ci.
Ce système 10 comprend un accéléromètre 12, 14 équipant chacune de ces roues pour mesurer l'accélération verticale Avr , Ava de celle-ci en son centre. Cet accéléromètre 12, 14 est par exemple un accéléromètre mono-axe ou tri-axe monté au centre de la roue et comprenant des moyens 16, 18 formant antenne d'émission pour la délivrance d'un signal électromagnétique de haute fréquence représentatif de l'accélération verticale Avr , Ava au centre de la roue. Des moyens 20 formant antenne de réception sont prévus dans le système 10 pour recevoir les signaux émis par les accéléromètres 12, 14 et extraire de ces signaux les accélérations Avr , Ava mesurées par ceux-ci.
Les moyens 20 sont connectés à un filtre passe-bande 22 adapté pour traiter les accélérations Avr , Ava des roues délivrées par les moyens 20 en leur appliquant un filtrage passe-bande. Ce filtrage est mis en œuvre dans une gamme de fréquences dans laquelle se concentre essentiellement la puissance des modes des roues avant et arrière. Cette gamme de fréquences correspond à la gamme de résistance au roulement et est par exemple sensiblement égale à la gamme [8 ; 20] Hz.
Le filtre passe-bande 22 est par ailleurs connecté à un convertisseur analogique/numérique 24, par exemple un échantillonneur bloqueur d'ordre 0, adapté pour numériser à une fréquence d'échantillonnage prédéterminée fe, par exemple comprise entre environ 50 Hz et 1000 Hz, les accélérations filtrées et ainsi délivrer en sortie des accélérations numériques Avr(k) , Ava(k) des roues avant et arrière, où k représente le kιeme instant d'échantillonnage. Bien entendu, un agencement différent des éléments venant d'être décrits est possible. L'échantillonnage des accélérations peut être, par exemple, appliqué antérieurement à un filtrage passe-bande exécuté en temps discret.
Le système 10 selon l'invention comporte également des moyens 26 de recalage temporel connectés au convertisseur 24 et propres à recaler temporellement l'accélération numérique Ava(k) de la roue avant sur l'accélération numérique Avr(k) de la roue arrière pour délivrer en sortie des accélérations recalées Avr(k), Ava(k -n) des roues avant et arrière, correspondant à la même altitude du sol afin d'appliquer l'hypothèse selon la relation (2) décrite ci-dessus.
Ces moyens 26 de recalage comprennent à cet effet des moyens 28 de calcul adaptés pour estimer l'intercorrélation numérique IC(N) des accélérations Avr(k) , Ava(k) délivrées par le convertisseur 24 selon la relation :
+OO
IC(N) = ∑Avr(k)xAva(N -k) (3) k = -oo
Les moyens 28 de calcul sont adaptés pour mettre en œuvre un estimateur de cette intercorrélation, comme cela est connu en soi dans le domaine du traitement du signal. Les moyens 26 de recalage comprennent également, connectés aux moyens 28 de calcul, des moyens 30 de détermination du maximum de l'intercorrélation IC(N) et de l'instant d'échantillonnage n correspondant à ce
maximum. Cet instant n correspond donc au décalage temporel — entre les fe roues avant et arrière subissant la même portion de chaussée. Des moyens 32 de décalage temporel sont connectés aux moyens 30 et au convertisseur 24, et sont propres à appliquer un retard de n échantillons à l'accélération Ava(k) de la roue avant et ainsi délivrer une accélération Ava(k-n) recalée temporellement sur l'accélération Avr(k) de la roue arrière.
Le système 10 comprend par ailleurs des moyens 34 d'estimation des coefficients de raideur pneumatique Kpn, Kpa des roues avant et arrière. Ces moyens 34 sont connectés au convertisseur 24 pour recevoir les accélérations
Avr(k) , Ava(k) des roues arrière et avant et aux moyens 26 de recalage pour recevoir l'accélération Ava(k-n) recalée de la roue avant. Les moyens 34 sont propres à estimer lesdits coefficients de raideur Kpa, Kpn en fonction des accélérations qu'ils reçoivent.
Les moyens 34 se fondent sur le modèle mécanique de la figure 1 pour modéliser le comportement dynamique des roues avant et arrière.
Plus particulièrement, en utilisant le principe fondamental de la dynamique appliqué à ce modèle en relation avec l'hypothèse selon la relation (2), il peut être montré que les accélérations verticales Avr(k) , Ava(k) des centres des roues peuvent être modélisées en temps discret selon les relations :
Avr(k) = (4)
Ava(k) = (5)
Figure imgf000010_0001
où mrr et mra sont les masses des roues arrière et avant respectivement, et Zvret Zva sont les altitudes des centres des roues arrière et avant respectivement par rapport au niveau de référence.
Les moyens 34 d'estimation sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel se fondant la relation (4), selon les relations : θ(k + 1) = θ(k)+ K(k + l)(Avr(k + 1)- A(k + l)θ(k)) (6)
K(k + l) = 05~1 S(k)Xτ (k + l)(σ2 (k) + Oî"1 A(k + l)s(k)Aτ (k + l))~1 (7) S(k + I) = OJ"1 (S(k)- K(k + l)A(k + l)s(k)) (8)
X(k + l) = E(Aτ (k + l^k + l)^1 (9) σ(k) = Var(e(k)) (10) où (»)τ est le symbole de la transposée, θ(k) est l'estimée du vecteur
des paramètres θ = à l'instant k , A(k) est le vecteur de régression
Figure imgf000010_0002
à l'instant k , E(Aτ (k)A(k)) est la
Figure imgf000010_0003
variance du vecteur Aτ à l'instant k , Var(e(k)) est la variance de l'erreur d'estimation e(k) = Avr(k)-A(k)θ(k) à l'instant k , 05 est un facteur d'oubli prédéterminé et κ(k), x(k) et s(k) sont des vecteurs ou des matrices intermédiaires utilisées lors de l'estimation du vecteur θ .
De préférence, les moyens 34 sont propres à calculer les altitudes Zvr(k) , Zva(k -n) des centres des roues arrière et avant à chaque instant d'échantillonnage en fonction des accélérations verticales Avr(k) et Ava(k -n), par exemple en réalisant une double intégration de celles-ci après leur filtrage entre 8 Hz et 20 Hz. Un autre exemple d'un calcul de l'altitude d'une roue en fonction de son accélération verticale est décrit dans la demande de brevet français FR 2 858 267 au nom de la demanderesse.
En variante, les moyens 34 d'estimation sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel se fondant sur la relation (5) d'une manière analogue à celle décrite précédemment.
En variante, les moyens 34 sont propres à mettre en œuvre un algorithme d'inversion ou de déconvolution se fondant sur la relation (4) ou (5) pour estimer les coefficients de raideur.
Les moyens 34 d'estimation sont ainsi propres à délivrer à chaque instant d'échantillonnage des valeurs estimées Kpa(k) et Kpr(k) des coefficients de raideur pneumatique des roues avant et arrière.
Le système 10 comprend également des moyens 36 de détermination de la pression de gonflage Pa(k), Pr(k) des pneumatiques des roues avant et arrière connectés aux moyens 34 d'estimation. Ces moyens 36 reçoivent les valeurs estimées Kpa(k) et Kpr(k) et sont adaptés pour calculer en fonction de celles-ci les pressions de gonflage Pa(k) et Pb(k) des roues avant et arrière, par exemple à partir de la relation (1 ).
Par exemple, les pressions de gonflage Pa et Pr sont tabulées dans les moyens 36 en fonction des coefficients de raideur pneumatiques Kpa et Kpn respectivement, ou les moyens 36 sont adaptés pour évaluer la fonction selon la relation (1 ) en fonction des valeurs des coefficients de raideur qu'ils reçoivent.
Le système 10 comprend enfin des moyens 40 de diagnostic de l'état de gonflage des pneumatiques des roues avant et arrière. Ces moyens 40 sont par exemple connectés aux moyens 34 d'estimation, au convertisseur 24 et aux moyens 36 de détermination pour recevoir les coefficients de raideur estimés, les accélérations verticales Avr(k) , Ava(k) des roues arrière et avant et les pressions de gonflage Pa(k), Pr(k) et sont adaptés pour déterminer en fonction de ceux-ci l'état de fonctionnement des accéléromètres 12, 14 ainsi que l'état de gonflage des pneumatiques (sous-gonflage, sur-gonflage, crevaison...). Plus particulièrement, les moyens 40 comprennent des moyens 42 de diagnostic de l'état de fonctionnement des accéléromètres adaptés pour tester la cohérence des accélérations Avr(k) et Ava(k) entre elles sur une période de temps prédéterminée, comprise par exemple entre 5 minutes et 10 minutes. Comme cela a été décrit précédemment, on sait que les accélérations verticales des roues avant et arrière sont cohérentes du fait que les roues subissent avec un décalage temporel la même portion de chaussée.
Par exemple, les moyens 42 sont adaptés pour calculer les spectres fréquentiels de ces accélérations au moyen d'une transformée de Fourier rapide des accélérations comprises dans la période de temps prédéterminée et pour comparer les spectres calculés. Si ceux-ci diffèrent de plus d'une valeur prédéterminée, par exemple en erreur quadratique, alors les accéléromètres sont diagnostiqués comme défectueux par les moyens 42. Pour plus de robustesse dans le diagnostic de l'état de fonctionnement des accéléromètres, en variante, les moyens 42 sont en outre adaptés pour prédire l'accélération verticale de la roue arrière en fonction de l'accélération verticale de la roue avant délivrée par le convertisseur 24 et des coefficients de raideur des roues avant et arrière calculés par les moyens 34, à partir de la relation (4) en faisant varier l'instant n d'échantillonnage. Les moyens 44 sont également adaptés pour tester la cohérence entre cette accélération prédite de la roue arrière et l'accélération de la roue avant délivrée par le convertisseur 24, par exemple de la manière décrite précédemment pour les accélérations délivrées par le convertisseur 24. Si, en outre, la cohérence entre ces accélérations n'est pas avérée, alors les moyens 42 diagnostiquent un dysfonctionnement des accéléromètres 12, 14.
Les moyens 40 comprennent également des moyens 44 de diagnostic de l'état de gonflage des pneumatiques en fonction des pressions de gonflage Pa(k), Pr(k) estimées.
Par exemple, les moyens 44 sont propres à comparer chacune de ces pressions à un ensemble prédéterminé d'intervalles de pression chacun représentatif d'un état de gonflage du pneumatique (crevaison, sous-gonflage, gonflage normal, sur-gonflage). Les moyens 44 déterminent ainsi l'état de gonflage du pneumatique associé à cette pression en fonction de l'appartenance de cette dernière à l'un des intervalles de pression.
Les moyens 40 peuvent en outre comprendre des moyens de délivrance au conducteur du véhicule de ces informations, par exemple des voyants lumineux agencés sur la planche de bord du véhicule et/ou un avertisseur sonore du mauvais état de gonflage des pneumatiques ou de l'état défectueux des accéléromètres.
Il vient d'être décrit un mode de réalisation se fondant sur un modèle mécanique mono-roue d'une roue de véhicule automobile tel qu'illustré sur la figure 1.
D'autres modes de réalisation du système selon l'invention se basant sur d'autres modèles sont bien entendu possibles. De tels modes de réalisation sont structurellement identiques à celui illustré sur la figure 3, seul l'algorithme mis en œuvre par les moyens 34 d'estimation étant modifié.
Par exemple, en variante, le système se fonde sur le modèle mécanique illustré sur la figure 4. La figure 4 est une vue schématique d'un modèle mécanique généralement désigné sous l'expression de « modèle bicyclette ». Ce type de modèle permet notamment de prendre en compte le cas de suspensions actives équipant le véhicule et s'applique à des roues avant et arrière agencées du même côté du véhicule.
La différence avec le modèle de la figure 1 consiste dans le fait que la caisse C du véhicule est assimilée à une masse Mc suspendue à la fois sur la roue avant Roa et la roue arrière Ror.
En se fondant sur le principe fondamental de la dynamique appliqué à ce modèle bicyclette ainsi que l'hypothèse selon la relation (2), il peut être montré que les accélérations verticales Ava(k) , Avr(k) des roues avant et arrière sont modélisables en temps discret selon la relation : mra
Ava(k -n) mrr Kpr(k) / Kpa(k)
— (Zva(k -n)- Zvr(k)) Kpr(k)
Avr(k) = mrr (H)
Zva(k -n) (Kpr(k) / Kpa(k))xRa(k) mnr Rr(k)
1
Zvr(k) mrr où Ra et Rr sont des coefficients de raideur des suspensions des roues avant et arrière respectivement, et Z va et Zvrsont les dérivées premières des altitudes des centres des roues avant et arrière respectivement, c'est-à-dire les vitesses de déplacement vertical de celles-ci. Les moyens 34 d'estimation sont alors adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel se fondant sur la relation (11 ).
Cet algorithme est analogue à celui décrit précédemment (relations (6) (10)) avec le vecteur des paramètres défini par la relation
Kpr/Kpa Kpr θ = (12)
( (KKpprr//Kpa) x Ra
Rr et le vecteur de régression défini par la relation :
A(k) =
Figure imgf000014_0001
Les altitudes Zvr(k), Zva(k -n) des centres des roues par rapport au niveau de référence et leurs dérivées premières Zvr(k), Zva(k -n) sont calculées à chaque pas d'échantillonnage d'une manière analogue au premier mode de réalisation, par exemple en intégrant les accélérations verticales correspondantes ou d'une manière décrite dans la demande de brevet français FR 2 858 267. Comme on peut le constater, l'application de l'algorithme récursif des moindres carrés en temps réel se fondant sur le modèle bicyclette permet d'estimer simultanément les coefficients de raideur pneumatiques Kpa , Kpr ainsi que les coefficients de raideur Ra et Rr des suspensions.
Des exemples d'estimation des coefficients de raideurs Kpa , Kpr des roues avant et arrière par le premier mode de réalisation du système selon l'invention sont illustrés sur les graphiques des figures 5 à 7.
Les figures 5A et 5B sont des graphiques de variations temporelles des coefficients de raideur pneumatiques Kpa , Kpr des roues avant et arrière agencées sur le côté gauche du véhicule et des roues avant et arrière agencées sur le côté droit du véhicule respectivement, les pneumatiques des roues avant du véhicule étant gonflés à une pression de 2,4 bars, le pneumatique de la roue arrière gauche étant gonflé à une pression de 3 bars et le pneumatique de la roue arrière droite étant gonflé à une pression de 2,4 bars. La figure 6 est un graphique de variations temporelles des coefficients de raideur pneumatique Kpa , Kpr des roues avant et arrière agencées sur le côté droit du véhicule, les pneumatiques de celles-ci étant initialement gonflés à une pression de 2,5 bars et le pneumatique de la roue avant subissant une chute de pression de 4 mbar/s sur 400 s à partir de l'instant t=300s.
La figure 7 est un graphique des variations temporelles des coefficients de raideur pneumatique Kpa , Kpr des roues avant et arrière agencées sur le côté droit du véhicule, les pneumatiques de celles-ci étant initialement gonflés à une pression de 2,5 bars et le pneumatique de la roue avant subissant une chute de pression de 1 ,6 bar quasi-instantanée, ici sur une durée de 1s à l'instant t=300s.
On conçoit alors que le système selon l'invention détermine de façon fiable les coefficients de raideur pneumatiques et les pressions de gonflage associées. II a été décrit un système selon l'invention appliqué à une paire de roues avant et arrière d'un véhicule automobile agencées sur un même côté de celui-ci. Bien entendu, on comprendra que ce système peut également s'appliquer à chacune des paires de roues avant et arrière agencées sur un même côté du véhicule.

Claims

REVENDICATIONS
1. Système de détermination de la pression de gonflage de pneumatiques montés sur des roues de véhicule automobile, le système comportant :
- des moyens (12, 14) d'acquisition des accélérations verticales d'une roue avant et d'une roue arrière du véhicule ; et
- des moyens (34) d'estimation de coefficients de raideur des pneumatiques de ces roues en fonction des accélérations acquises, caractérisé en ce qu'il comprend en outre des moyens (26) de recalage temporel de l'une des accélérations acquises sur l'autre des accélérations acquises, et en ce que les moyens (34) d'estimation sont adaptés pour estimer lesdits coefficients de raideur en fonction des accélérations ainsi recalées temporellement.
2. Système selon la revendication 1 , caractérisé en ce que les moyens
(26) de recalage temporel comprennent des moyens (28) de calcul de l'intercorrélation des accélérations acquises et des moyens (30, 32) d'application d'un retard correspondant au maximum de l'intercorrélation calculée à l'accélération acquise de la roue avant.
3. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens (34) d'estimation sont adaptés pour mettre en œuvre un algorithme récursif des moindres carrés en temps réel pour estimer lesdits coefficients de raideur.
4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les moyens (34) d'estimation sont adaptés pour mettre en œuvre un algorithme d'inversion ou de déconvolution pour estimer lesdits coefficients de raideur.
5. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre des moyens (22) de filtrage passe- bande des accélérations acquises agencées entre des moyens (12, 14) d'acquisition des accélérations et les moyens (26) de recalage temporel.
6. Système selon la revendication 5, caractérisé en ce que les moyens (22) de filtrage passe-bande sont adaptés pour mettre en œuvre un filtrage dans une gamme de fréquences sensiblement égale à [8, 20] Hz.
7. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens (34) d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique mono-roue des roues avant et arrière.
8. Système selon la revendication 7, caractérisé en ce que les moyens
(34) d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Avr(k) =
Figure imgf000017_0001
où k est le kιeme instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée.
9. Système selon la revendication 7, caractérisé en ce que les moyens (34) d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
Ava(k) =
Figure imgf000017_0002
où k est le k .ième instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, et n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée.
10. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les moyens (34) d'estimation sont adaptés pour estimer lesdits coefficients de raideur à partir d'un modèle mécanique bicyclette de celles-ci.
11. Système selon la revendication 10, caractérisé en ce que les moyens (34) d'estimation sont propres à estimer lesdits coefficients de raideur en se fondant sur une modélisation en temps discret des accélérations recalées des roues avant et arrière selon la relation :
a(k)
Figure imgf000018_0001
où k est le k Jιèemmee instant d'échantillonnage, Avr et Ava sont les accélérations verticales des roues arrière et avant respectivement, Zvr et Zva sont les altitudes des centres des roues arrière et avant respectivement, Kpr et Kpa sont les coefficients de raideur des pneumatiques des roues avant et arrière respectivement, n est un instant d'échantillonnage correspondant à un décalage temporel entre les roues arrière et avant subissant la même portion de chaussée, Ra et Rr sont des coefficients de raideur des suspensions des roues avant et arrière respectivement, et Zva et Zvr sont les dérivées premières des altitudes des centres des roues avant et arrière respectivement.
12. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens (42) de diagnostic de l'état de fonctionnement des moyens (12, 14) d'acquisition des accélérations verticales des roues avant arrière adaptés pour diagnostiquer l'état de fonctionnement de ceux-ci en testant leur cohérence sur une période de temps prédéterminée.
13. Système selon la revendication 12, caractérisé en ce que les moyens (42) sont adaptés pour calculer les spectres fréquentiels des accélérations délivrées par les moyens (12, 14) d'acquisition, comparer ces spectres et diagnostiquer un état défectueux des moyens d'acquisition (12, 14) si les spectres diffèrent de plus d'une valeur prédéterminée.
14. Système selon la revendication 12 ou 13, caractérisé en ce que les moyens (42) de diagnostic sont en outre adaptés pour prédire une des accélérations des roues avant et arrière en fonction de l'autre de ces accélérations délivrée par les moyens d'acquisition et pour diagnostiquer un état défectueux des moyens d'acquisition (12, 14) si en outre l'accélération prédite et l'accélération utilisée pour cette prédiction ne sont pas cohérentes.
PCT/FR2006/050677 2005-07-26 2006-07-05 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile WO2007012772A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06779017A EP1907227A2 (fr) 2005-07-26 2006-07-05 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile
US11/996,959 US7657393B2 (en) 2005-07-26 2006-07-05 System for determining inflating pressures of tires mounted on a motor vehicle wheels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0507979A FR2889112B1 (fr) 2005-07-26 2005-07-26 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile
FR0507979 2005-07-26

Publications (2)

Publication Number Publication Date
WO2007012772A2 true WO2007012772A2 (fr) 2007-02-01
WO2007012772A3 WO2007012772A3 (fr) 2007-03-29

Family

ID=36202503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050677 WO2007012772A2 (fr) 2005-07-26 2006-07-05 Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile

Country Status (4)

Country Link
US (1) US7657393B2 (fr)
EP (1) EP1907227A2 (fr)
FR (1) FR2889112B1 (fr)
WO (1) WO2007012772A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857303A2 (fr) * 2006-05-15 2007-11-21 Ho-Jook Lim Appareil de détection de défauts pneumatiques utilisant un capteur piézo et son procédé
FR2915928A1 (fr) * 2007-05-10 2008-11-14 Bosch Gmbh Robert Procede et installation pour surveiller l'etat des pneumatiques d'un vehicule
FR2926751A3 (fr) * 2008-01-30 2009-07-31 Renault Sas Procede et dispositif de surveillance de la pression d'un pneumatique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889111B1 (fr) * 2005-07-26 2007-10-19 Peugeot Citroen Automobiles Sa Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455993A2 (fr) * 1990-05-09 1991-11-13 Bayerische Motoren Werke Aktiengesellschaft Méthode et dispositif pour établir et contrÀ´ler l'état d'un composant technique d'un véhicule
FR2858267A1 (fr) * 2003-07-31 2005-02-04 Peugeot Citroen Automobiles Sa Methode d'evaluation de la pression des pneumatiques, et vehicule automobile equipe d'un dispositif de serveillance de la pression apte a la mettre en oeuvre.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832801B1 (fr) * 2001-11-28 2004-02-27 Peugeot Citroen Automobiles Sa Procede pour evaluer la frequence instantanee d'une excitation mecanique exercee sur une roue d'un vehicule automobile, et applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455993A2 (fr) * 1990-05-09 1991-11-13 Bayerische Motoren Werke Aktiengesellschaft Méthode et dispositif pour établir et contrÀ´ler l'état d'un composant technique d'un véhicule
FR2858267A1 (fr) * 2003-07-31 2005-02-04 Peugeot Citroen Automobiles Sa Methode d'evaluation de la pression des pneumatiques, et vehicule automobile equipe d'un dispositif de serveillance de la pression apte a la mettre en oeuvre.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAYER H: "Model based detection of tyre deflation by estimation of a virtual transfer function" CONTROL APPLICATIONS, 1995., PROCEEDINGS OF THE 4TH IEEE CONFERENCE ON ALBANY, NY, USA 28-29 SEPT. 1995, NEW YORK, NY, USA,IEEE, US, 28 septembre 1995 (1995-09-28), pages 285-290, XP010207459 ISBN: 0-7803-2550-8 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857303A2 (fr) * 2006-05-15 2007-11-21 Ho-Jook Lim Appareil de détection de défauts pneumatiques utilisant un capteur piézo et son procédé
EP1857303A3 (fr) * 2006-05-15 2011-11-02 Ho-Jook Lim Appareil de détection de défauts pneumatiques utilisant un capteur piézo et son procédé
FR2915928A1 (fr) * 2007-05-10 2008-11-14 Bosch Gmbh Robert Procede et installation pour surveiller l'etat des pneumatiques d'un vehicule
FR2926751A3 (fr) * 2008-01-30 2009-07-31 Renault Sas Procede et dispositif de surveillance de la pression d'un pneumatique

Also Published As

Publication number Publication date
WO2007012772A3 (fr) 2007-03-29
US20080177498A1 (en) 2008-07-24
EP1907227A2 (fr) 2008-04-09
FR2889112B1 (fr) 2007-10-19
FR2889112A1 (fr) 2007-02-02
US7657393B2 (en) 2010-02-02

Similar Documents

Publication Publication Date Title
EP3083360B1 (fr) Estimation du potentiel d'adhérence par évaluation du rayon de roulement
EP1907226A2 (fr) Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues avant et arriere d'un vehicule automobile
EP1451029B1 (fr) Procede pour evaluer la frequence instantanee d'une excitation mecanique exercee sur une roue d'un vehicule automobile, et applications
EP1907227A2 (fr) Systeme de determination de la pression de gonflage de pneumatiques montes sur des roues de vehicule automobile
EP3083350B1 (fr) Procede et dispositif de detection d'une situation de roulage d'un vehicule automobile sur mauvaise route
EP1924859A1 (fr) Dispositif et procede de mesure d'une quantite representative de la vitesse de rotation d'une roue de vehicule automobile et systeme et procede utilisant un tel dispositif et un tel procede
EP1924450A2 (fr) Procede et systeme de diagnostic de l'etat de pneumatiques d'un vehicule automobile
EP3875906A1 (fr) Procédé de détermination du type de voie empruntée par un véhicule automobile
WO2017216466A1 (fr) Procédé de détermination de l'état d'une route
FR3014191A1 (fr) Procede et dispositif d'estimation de la masse d'un vehicule automobile
EP4341106A1 (fr) Procede de surveillance d'un atterrisseur d'aeronef faisant usage d'au moins un accelerometre porte par une roue de l'atterrisseur, et aeronef mettant en oeuvre ce procede
EP3328668B1 (fr) Dispositif pour estimer un indicateur d'état d'une voie de circulation empruntée par un véhicule terrestre
FR3084460A1 (fr) Procede de calibration d'un capteur d'acceleration radiale d'une roue d'un vehicule automobile
WO2002032733A1 (fr) Dispositif et procede pour detecter l'adherence d'un pneumatique de vehicule sur le sol
FR2858267A1 (fr) Methode d'evaluation de la pression des pneumatiques, et vehicule automobile equipe d'un dispositif de serveillance de la pression apte a la mettre en oeuvre.
FR2838828A1 (fr) Procede pour evaluer des accelerations subies par une piece mobile, notamment un organe d'un vehicule, a mesures intrinsequement redondantes
FR2988850A1 (fr) Procede de detection du sens de rotation d'une roue utilisant un capteur de vitesse non signe
EP1612062A2 (fr) Méthode de détection d'une anomalie de pression sur un pneumatique d'un véhicule automobile
EP1940662A1 (fr) Procede de determination de l'etat des roues d'un vehicule automobile et dispositif de mise en oeuvre
WO2007031677A2 (fr) Procede et systeme de determination de l'etat d'au moins un pneumatique d'une roue de vehicule
FR2922026A3 (fr) Procede d'estimation de la vitesse longitudinale d'un vehicule automobile
FR2920707A3 (fr) Procede de detection de l'adherence d'une roue de vehicule automobile

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11996959

Country of ref document: US

Ref document number: 2006779017

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006779017

Country of ref document: EP