EP1903275B1 - Illumination unit with light diode, light conduction body and secondary lens - Google Patents

Illumination unit with light diode, light conduction body and secondary lens Download PDF

Info

Publication number
EP1903275B1
EP1903275B1 EP07017814A EP07017814A EP1903275B1 EP 1903275 B1 EP1903275 B1 EP 1903275B1 EP 07017814 A EP07017814 A EP 07017814A EP 07017814 A EP07017814 A EP 07017814A EP 1903275 B1 EP1903275 B1 EP 1903275B1
Authority
EP
European Patent Office
Prior art keywords
light
guide body
lighting unit
light guide
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP07017814A
Other languages
German (de)
French (fr)
Other versions
EP1903275A1 (en
Inventor
Stephanie Specht
Emil Dr. Stefanov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Odelo GmbH
Original Assignee
Odelo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Odelo GmbH filed Critical Odelo GmbH
Priority to SI200730300T priority Critical patent/SI1903275T1/en
Publication of EP1903275A1 publication Critical patent/EP1903275A1/en
Application granted granted Critical
Publication of EP1903275B1 publication Critical patent/EP1903275B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a lighting unit having at least one light emitting diode, which comprises at least one light emitting chip as a light source, with at least one of the light emitting diode optically downstream, in the Lichtausbreitungsraum expanding light guide body and a light guide body optically downstream secondary lens, wherein two oppositely arranged, the light guide delimiting surfaces which form a bottom surface and a top surface in a longitudinal section intersecting these surfaces, have oppositely curved curve sections adjoining the light entry surface of the light guide body, the bottom surface having a curve section positively curved with respect to the light propagation direction and the cover surface having a negative direction with respect to the light propagation direction curved curved portion and such a light guide.
  • the present invention is therefore based on the problem to develop a lighting unit with a high light output, which takes up a small space.
  • At least one of the curves delimiting the light guide body has a point of inflection.
  • the Figures 1 and 2 show a lighting unit (10), for example, a light module (10) of a motor vehicle headlight, in a dimetric view and in a view from below.
  • the light module (10) comprises, for example, a light-emitting diode (20), a primary optic (30) and a secondary optic (90).
  • the light propagation direction (15) is oriented by the light-emitting diode (20) in the direction of the secondary optics (90).
  • the optical axis (11) of the light module (10) here intersects the geometric center of the light-emitting diode (20) and penetrates the primary (30) and the secondary optics (90).
  • the light-emitting diode (20 for example a light-emitting diode (20), is seated, for example, in a base (26) and in this exemplary embodiment comprises a group (21) of four light-emitting chips (22-25) which are arranged in a square, cf. FIG. 3 , Each of the light sources (22-25) thus has two immediately adjacent light-emitting chips (23, 24, 22, 25, 22, 25, 23, 24).
  • the light-emitting chips (22-25) of the group (21) can also be arranged in a rectangle, in a triangle, in a hexagon, in a circle with or without a central light source, etc.
  • the individual light-emitting chip (22-25) is square in this embodiment and has, for example, an edge length of one millimeter.
  • the distance of the light-emitting chips (22-25) from one another is, for example, one tenth of a millimeter.
  • An embodiment with a single light-emitting chip (22, 23, 24, 25) is also conceivable.
  • the light-emitting diode (20) here has a transparent body, which in the light propagation direction (15) from the base (26) has a length of, for example, 1.6 millimeters.
  • the primary optic (30) comprises in the in the Figures 1 and 2 illustrated embodiment, a light guide body (31) and the light guide body (31) in the light propagation direction (15) downstream optical lens (81).
  • the distance of the light guide body (31) to the light emitting diode (20) is for example a few tenths of a millimeter, for example between 0.2 millimeters and 0.5 millimeters.
  • the intermediate space (16) between the light guide body (31) and the light-emitting diode (20) can be filled, for example, with a silicone-like, transparent material.
  • the light guide body (31) is a plastic body made of a highly transparent thermoplastic material, e.g. Polymethacrylic acid methyl ester (PMMA) or polycarbonate (PC). This material of the light guide body (31) formed, for example, as a solid body has e.g. a refractive index of 1.49.
  • the length of the light guide body (31) is 13.5 millimeters in this embodiment.
  • the light guide body (31) of the light unit (10) described here may be e.g. also have a length between 15 and 16 millimeters.
  • the light guide body (31) is shown in detail. This shows the FIG. 4 a view of the light guide body (31) from the light entry side (32).
  • FIGS. 5 and 6 are shown dimetric views of the light guide body (31) and the FIG. 7 shows the light exit surface (34).
  • the light entry surface (32) facing the light sources (22-25) and the light exit surface (34) facing away from the light sources (22-25) are arranged parallel to one another and normal to the optical axis (11) in this exemplary embodiment.
  • the light entry surface (32) is here a trapezoidal, flat surface.
  • the short baseline for example, has a length of 2.4 millimeters, is located below.
  • the overhead long baseline is for example 3.02 millimeters long.
  • the surface area of the light entry surface (32) in this embodiment is 5.5 square millimeters.
  • the light entry surface (32) can also be square, rectangular, etc.
  • the light exit surface (34), for example, has an area of 44 square millimeters. Its height is 5.8 millimeters, its maximum width is 9 millimeters.
  • the light exit surface (34) has in the embodiment at least approximately the shape of a portion of an oval.
  • the imaginary center line of the light exit surface (34) is, for example, offset downwards by 7% of the height of the light exit surface (34) with respect to the optical axis (11).
  • the lower edge (35) of the light exit surface (34) has two mutually offset in height portions (36, 37) which are interconnected by means of a connecting portion (38).
  • the side surfaces (41, 43) of the light guide body (31) are arranged in mirror image to each other. They each comprise a flat surface section (42, 44). These surface portions (42, 44) lie in planes which are e.g. together include an angle of 13 degrees oriented in the direction of the light guide body (31). The imaginary line of intersection of the planes lies below the light guide body (31).
  • the surface portions (42, 44) referred to herein as flat surface portions (42, 44) may also be e.g. be twisted in the longitudinal direction.
  • top surface (51) of the light guide body (31) comprises in this embodiment, a cylindrically mounted parabolic surface portion (52), a uniaxially curved surface portion (53) and a flat surface portion (54).
  • These surface sections (52-54) are arranged one behind the other in the light propagation direction (15), the parabolic surface section (52) being in contact with the light entry surface (32) adjacent and the planar surface portion (54) adjacent to the light exit surface (34).
  • the imaginary axes of curvature of the surface sections (52, 53) lie, for example, parallel to the upper edge (33) of the light entry surface (32).
  • the length of the parabolic surface portion (52) is e.g. 30% of the length of the top surface (51).
  • the focal line (55) of the associated parabolic surface in this embodiment is e.g. in the middle in the light entry surface (32). It is, for example, oriented parallel to the upper edge (33) of the light entry surface (32) and cuts e.g. the optical axis (11).
  • the parabolic surface portion (52) is thus mathematically negative with respect to the light propagation direction (15), i. clockwise, curved.
  • the cover surface (51) is shown in longitudinal section as a curve (61) and the parabolic surface section (52) as a parabolic section (62).
  • the parabolic section (62) is part of a second order curve. For example, it is rotated clockwise by 118 degrees with respect to a parabola that is symmetrical to the upward-oriented ordinate of a Cartesian coordinate system lying in the plane of the drawing.
  • the imaginary pivot point of the parabola - and of the parabola-related coordinate system - is the focal point (65) as the point of the focal line (55).
  • the abscissa of the parabolic coordinate system is the guideline of the parabola, the ordinate intersects the focal line (55).
  • the distance of the focal point from the origin of the parabolic coordinate system in this embodiment is 1.49 millimeters.
  • y the ordinate value
  • x the abscissa value of the parabola-related coordinate system
  • the length of the curved surface portion (53) is for example 45% of the length of the light guide body (31).
  • the bending radius corresponds for example to two and a half times the length of the light guide body (31).
  • the bending line lies outside the light guide body (31) on the side of the cover surface (51).
  • the surface portion (53) is thus mathematically positive, counterclockwise, curved.
  • the transition between the parabolic surface portion (52) and the curved surface portion (53) is tangential.
  • the top surface (51) has a turning line (56) in this transition. In longitudinal section, cf. the FIGS. 8 and 11 , the curve (61) has a turning point (66).
  • the curved surface portion (53) merges into the flat surface portion (54).
  • the latter for example, encloses an angle of 12 degrees with a plane normal to the light entry surface (32) in which the upper edge (33) lies.
  • the curve (61) here has a straight section (64).
  • the upper longitudinal edges of the in the FIGS. 4 and 5 illustrated light guide body (31) are rounded.
  • the radius of curvature increases in the light propagation direction (15), for example linearly from zero millimeters to four millimeters.
  • the rounding (57) can also be formed continuously in regions. They pass tangentially into the adjacent surfaces (41, 51, 43, 51). In the FIGS. 5 and 6 these transitions are shown as solid lines for clarity. A version without rounding (57) is conceivable.
  • the bottom surface (71) of the light guide body (31) in this embodiment comprises two staggered parabolic surface sections (72, 73) which are cylindrically mounted.
  • the two parabolic surface portions (72, 73) are, for example, a common Axis, for example, the upper edge (33) of the light entry surface (32), rotated against each other.
  • the twist angle is 2 degrees in this embodiment, for example, in the light propagation direction (15) left parabola surface portion (73) further protrudes from the light guide body (31) than the right parabolic surface portion (72).
  • the two parabolic surface sections (72, 73) have, for example, a common focal line (74) which, for example, coincides with the upper edge (33) of the light entry surface (32).
  • the longitudinal section shown is, for example, the parabolic surface section (72) a parabola section (76).
  • the associated parabola for example, is rotated clockwise by 71.5 degrees with respect to a parabola that is symmetrical to the upward-oriented ordinate of a Cartesian coordinate system lying in the plane of the drawing.
  • the imaginary pivot point of the parabola - and of the parabola-related coordinate system - is the focal point (78) as the point of the focal line (74).
  • the abscissa of the parabolic coordinate system is the guideline of the parabola, the ordinate intersects the focal point (78).
  • the distance of the focal point (78) from the origin of the parabolic coordinate system in this embodiment is 2.59 millimeters.
  • y the ordinate value
  • x the abscissa value of the parabola-related coordinate system
  • a transition region (75) is arranged at least approximately centrally along the bottom surface (71). It closes with the adjacent parabola sections (72, 73) e.g. an angle of 135 degrees.
  • the height of the transition region (75) thus increases in the light propagation direction (15).
  • the height of the transition region (75) at the transition region (38) of the light exit surface (34) is 0.5 millimeters.
  • the optical lens (81) of the primary optics (30) is, for example, a plano-convex aspheric condenser lens (81), for example a condenser lens.
  • the plan side (82) of the lens (81) lies in the representation of Figures 1 and 2 at the light exit surface (34) of the light guide body (31).
  • the optical lens (81) may also be integrated in the light guide body (31).
  • the maximum diameter of the optical lens (81) is, for example, 30% greater than the length of the optical waveguide (31).
  • the longitudinal section of the optical lens (81) is, for example, a segment of an ellipse whose major axis is two and a half times and whose minor axis is 160% of the length of the optical waveguide (31).
  • the thickness of the optical lens (81) is here 50% of the length of the light guide body (31).
  • the light module (10) may be designed without the optical lens (81), cf. the FIGS. 8 and 10 ,
  • the secondary optics (90) in this embodiment comprises a secondary lens (91).
  • This is, for example, an aspheric plano-convex lens.
  • the envelope of this lens is eg a sphere section.
  • the center (95) of the secondary lens (91) and the lower edge (35) of the light exit surface (34) of the light guide body (31) have, for example, at least approximately the same distance from the optical axis (11) of the light module (10).
  • the radius of the ball section is in the presentation of the Figures 1 and 2 240% and the height 110% of the length of the light guide body (31).
  • the maximum distance of the plane surface (92) from the light exit surface (93), the thickness of the secondary lens (91) corresponds for example to the length of the light guide body (31).
  • the distance of the secondary lens (91) from the light exit surface (34) is for example 260% of the length of the light guide body (31).
  • each light-emitting chip (22-25) acts as a Lambertian emitter, which emits light (100) in the half-space.
  • a beam path of a light module (10) is shown in a longitudinal section of the light module (10).
  • the light module (10) shown here corresponds to that in the FIG. 8 illustrated light module (10).
  • the beam path within the light guide (31) shows the enlarged FIG. 11 ,
  • light beams (101-109) are shown which are emitted by two light-emitting chips (23, 25) arranged one above the other.
  • the light-emitting chips (23, 25) are shown here as punctiform light sources.
  • the light beams (101 - 105) are shown, which are emitted offset by 15 degrees to each other.
  • the light beam (101) is emitted upward by 45 degrees
  • the light beam (105) is emitted downward by 45 degrees with respect to the optical axis (11).
  • the respective light beams of the lower light-emitting chip (25) are the light beams (106-109).
  • This upper interface (151) is formed by the top surface (51) and has a maximum size.
  • the respective impact point lies here in the area of the parabolic surface (52).
  • the incident light beams (102) include with the normal at the point of impact an angle which is greater than the critical angle of total reflection for the transition of the material of the light guide body (31) with air.
  • the upper interface (151) thus forms a total reflection surface (151) for the incident light (102).
  • the reflected light beams (102) pass through the light exit surface (34), being refracted away from the solder in the passage point.
  • the light beams (102) lying approximately parallel here are refracted in the direction of the solder in the respective passage point and are broken away from the solder when they exit into the environment (1).
  • the illustrated light beams (102) occur here in the lower segment of the secondary lens (91) in the environment (1).
  • the light (101) emitted from the upper light-emitting chip (23) at an upward angle of 45 degrees is first detected at the upper total reflection surface (151). reflected.
  • the reflected light (101) strikes the lower boundary surface (161).
  • the angle of incidence of the light (101) and the normal at the point of impact include an angle greater than the critical angle of total reflection.
  • the lower boundary surface (161) thus acts for the incident light (101) as the lower total reflection surface (161).
  • the light (101) reflected by this total reflection surface (161) penetrates the light exit surface (34) and the secondary lens (91), being refracted as it passes through the respective body boundary surfaces (34, 92, 93). This light (101) enters the environment (1) in the upper segment of the secondary lens (91).
  • the in the Figures 10 and 11 The light beam (104) of the upper light-emitting chip (23), which has a downward angle of 15 degrees with the optical axis (11), is not reflected in the light guide body (31). It is broken when passing through the light exit surface (34) and through the secondary lens (91). This light beam (104) lies in the lower segment of the secondary lens (91).
  • the light (108) emitted by the lower light-emitting chip (25) parallel to the optical axis (11) is at least approximately parallel to the light (103) of the upper light-emitting chip (23).
  • Light (107) emitted at an upward angle of 15 degrees strikes the upper boundary surface (151) in the region of the inflection line (56). Here it is completely reflected and passes under refraction through the light exit surface (34) and the lower segment of the secondary lens (91) through into the environment (1).
  • the light rays (109) of the lower light-emitting chip (25) including a downward angle of 15, 30 and 45 degrees with the optical axis (11) are reflected at the lower boundary surface (161). Under refraction they penetrate the light exit surface (34) and the secondary lens (91). For example, the light beams (109) emerging into the environment (1) are approximately symmetrical with respect to the optical axis (11).
  • the light beam (100) is widened to an angle of 17 degrees.
  • the midline (95) of the secondary lens (91) penetrates the measuring wall, for example, at the intersection (171) of two reference grid lines (172, 173).
  • the horizontal grid lines (172) have a distance of two meters to each other on the measuring wall.
  • the distances of the vertical grid lines (173) to each other here is for example five meters.
  • the individual isolines (174) are lines of equal illuminance. Illuminance, measured in lux or lumens per square meter, increases from outside to inside in this diagram.
  • An inner isoline (174) has, for example, 1.8 times the illuminance of a further outlying isoline.
  • the secondary lens (91) forms the light exit surface (34) or (83) of the primary optics (30).
  • This light exit surface (34, 83) may be the light exit surface (34) of the light guide body (31) or the convex surface (83) of the condenser lens (81).
  • the area (175) of the highest illuminance, the so-called hot spot (175), lies here on the right below the point of intersection (171). At the top, the illuminance decreases rapidly at the cut-off (176).
  • the light-dark boundary (176) is here z-shaped. It has a higher section (177) on the right and a lower section (178) on the left.
  • Both sections (177, 178) are interconnected by means of a connecting section (179) which, with the two other sections (177, 178), each have an angle of e.g. Includes 135 degrees.
  • this light-dark boundary (176) the lower edge (35) of the light exit surface (34) of the primary optics (30) is imaged.
  • the in the FIG. 12 illustrated illuminance distribution shows a wide illuminated area (181) whose illuminance in width with the distance from the intersection (171) decreases.
  • the illuminated area (181) Towards the bottom, the illuminated area (181) has a height of, for example, four to six meters.
  • the light module (10) shown in the embodiments has a high light output due to its geometric design and requires only a small space.
  • the relative coupling-out efficiency achievable with such a light module (10) without additional antireflection coatings is 97% of the maximum possible coupling-out efficiency. This corresponds to an absolute value of 80% to 82%.
  • the lower parabolic surface portions (72, 73) can be rotated about the focal line (74). So does in the view after FIG. 8 a rotation of the parabolic surfaces (72, 73) in a clockwise direction an increase in the light distribution. At the same time - if the optical axis (11) is not adjusted - the light-dark boundary (176) can be moved upwards. The intensity of the hot spot (175) is retained.
  • the light distribution at the measuring wall results from the superposition of different light components, cf. FIG. 10 ,
  • the hot spot (175) is generated by the superimposition of light components which are delimited from the upper light-emitting chip (23) in a segment between, for example, 0 degrees and, for example, 15 degrees downwards and upwards with light components emitted from the lower light-emitting chip (FIG. 25) is limited between, for example, 0 degrees and eg 15 degrees upwards and between, for example, 30 degrees and eg 45 downwards.
  • the intensity of the hot spot (175) e.g. the overhead parabolic surface portion (52) are changed.
  • a rotation of the parabolic surface section 52 in a clockwise direction can mean a weakening of the intensity.
  • a change of the outlet (54) of the top surface (51) alters the gradient of the light intensity distribution.
  • the condenser lens (81) By means of the condenser lens (81), the light (100) emerging from the light exit surface (34) can additionally be bundled.
  • a secondary lens (91) of small diameter can be used.
  • the convex surface (83) of the condenser lens (81) is, for example, an aspherical surface.
  • the distance of the secondary (90) from the primary optics (30) also influences the illumination intensity distribution.
  • a larger secondary lens (91) is required than at a small distance.
  • the larger secondary lens (91) allows - with identical light guide body (31) - the formation of the hot spot (175), while forming a basic light distribution, a small distance between primary (30) and secondary optics (90) and a small secondary lens (91) is required.
  • the light distribution on the sides of the illuminated region (181) can be influenced.
  • a rotation of the side surfaces (41, 43) - with the lower edge (35) fixed to one another - reduces the width of the light distribution diagram (171), cf. FIG. 12 ,
  • a reduction in the radii of the rounding (57) causes a sharper transition from the illuminated to the non-illuminated area in the corners.
  • FIG. 13 a light exit surface (34) of a light guide body (31) is shown.
  • the main dimensions of this light exit surface (34) correspond to the main dimensions in the FIG. 7 illustrated light exit surface (34).
  • the transition region (75) between the parabolic surfaces (72, 73) is compared to FIG. 7 moved to the left.
  • the connecting portions (179) coincide.
  • two asymmetrically split lighting profiles overlap only partially.
  • In the middle in the area of the desired hotspot (175) and on the z-shaped light-dark border (176), a region of high illuminance is achieved in comparison with the lateral areas.
  • the two parabolic surfaces (72, 73) can, as in the FIG. 14 shown to be inclined to each other. This can be used, for example, to compensate for distorted images in the target plane.
  • the parabolic surfaces (72, 73) may also be curved in the transverse direction. Optionally, they may be additionally modified, for example, in the third of the light guide body (31) adjoining the light exit surface (34).
  • the connecting section (75) can be curved along the light distribution body (31), cf. FIG. 15 ,
  • the sharpness of the cut-off (176) is not affected. Indeed this can be used to influence the light concentration near the hot spot (175).
  • an arrangement of the optical waveguide (31) which is tilted laterally causes a shift of the center of gravity of the illuminance distribution (181) on the wall.
  • the light entrance (32) and the light exit surface (34) are not parallel to each other.
  • the connecting section (75) can have transition radii (77) in the transition to the parabolic surfaces (72, 73), cf. FIG. 6 ,
  • the light guiding body (31) may also comprise two underlying parabolic surfaces (72, 73) immediately adjacent to each other, e.g. inclined by 15 degrees to each other.
  • an illumination can be generated with a 15 degree rise.
  • the bottom surface (71) with only one continuous parabolic surface (72, 73), cf. FIG. 9 , With such a light module (10), for example, a horizontal light-dark boundary (176) is generated.
  • the corresponding light module (10) can in this case be designed so that a hot spot (175) is generated.
  • the top surface (51) has a parabolic surface portion (52), a curved surface portion (53) and a flat surface portion (54). Between the parabolic surface portion (52) and the curved surface portion (54) is a turning line (56).
  • the bottom surface (71) can be described at least in regions by a family of adjacent parabolas oriented in the light propagation direction (15). These parabolas can have different parameters.
  • the bottom surface (71) and the top surface (51) of the light guide body (31) can also be reversed, so that the area designated here as the bottom surface (71) is at the top.
  • the illumination intensity distribution is then designed such that the light-dark boundary (176) lies below.
  • the surfaces described here may be enveloping surfaces.
  • the individual surface sections may be e.g. Be free-form surfaces whose envelope surface, e.g. Are parabolic surface.
  • the focal lines (55, 74) may be e.g. be shifted in the light propagation direction (15).
  • the parabolic surface section (52) of the cover surface (51) with individual steps. From each two adjacent interface portions of the light guide (31) then comprises a boundary surface portion, for example, a parabolic surface-like total reflection surface (151) for the light emitted from the upper light-emitting chip (23) light (101 - 105), while the other interface portion of a total reflection surface for that of the lower light-emitting Chip (25) emitted light (106 - 109) comprises.
  • the bottom surface (71) can be made stepped.

Description

Die Erfindung betrifft eine Leuchteinheit mit mindestens einer Leuchtdiode, die mindestens einen lichtemittierenden Chip als Lichtquelle umfasst, mit mindestens einem der Leuchtdiode optisch nachgeschalteten, sich in der Lichtausbreitungsrichtung aufweitenden Lichtleitkörper und mit einer dem Lichtleitkörper optisch nachgeschalteten Sekundärlinse, wobei zwei entgegengesetzt zueinander angeordnete, den Lichtleitkörper begrenzende Flächen, die in einem diese Flächen schneidenden Längsschnitt eine Bodenfläche und eine Deckfläche bilden, an die Lichteintrittsfläche des Lichtleitkörpers angrenzende gegensinnig gekrümmte Kurvenabschnitte aufweisen, wobei die Bodenfläche einen in Bezug auf die Lichtausbreitungsrichtung positiv gekrümmten Kurvenabschnitt und die Deckfläche einen in Bezug auf die Lichtausbreitungsrichtung negativ gekrümmten Kurvenabschnitt umfasst sowie einen derartigen Lichtleitkörper.The invention relates to a lighting unit having at least one light emitting diode, which comprises at least one light emitting chip as a light source, with at least one of the light emitting diode optically downstream, in the Lichtausbreitungsrichtung expanding light guide body and a light guide body optically downstream secondary lens, wherein two oppositely arranged, the light guide delimiting surfaces which form a bottom surface and a top surface in a longitudinal section intersecting these surfaces, have oppositely curved curve sections adjoining the light entry surface of the light guide body, the bottom surface having a curve section positively curved with respect to the light propagation direction and the cover surface having a negative direction with respect to the light propagation direction curved curved portion and such a light guide.

Aus der DE 10 2005 017 528 A1 ist eine derartige Leuchteinheit bekannt. Diese Leuchteinheit erfordert eine große Sekundärlinse, um das aus dem Lichtleitkörper stark divergent austretende Licht aufzufangen. Die Leuchteinheit erfordert somit einen großen Bauraum.From the DE 10 2005 017 528 A1 is such a light unit known. This light unit requires a large secondary lens to absorb the light divergently emerging from the light guide light. The light unit thus requires a large amount of space.

Siehe auch EP 1630576 als nächsten Stand der Technik.See also EP 1630576 as the closest prior art.

Der vorliegenden Erfindung liegt daher die Problemstellung zugrunde, eine Leuchteinheit mit einer hohen Lichtleistung zu entwickeln, die einen geringen Bauraum beansprucht.The present invention is therefore based on the problem to develop a lighting unit with a high light output, which takes up a small space.

Diese Problemstellung wird mit den Merkmalen des Hauptanspruches gelöst. In dem genannten Längsschnitt weist mindestens eine der den Lichtleitkörper begrenzenden Kurven einen Wendepunkt auf.This problem is solved with the features of the main claim. In said longitudinal section, at least one of the curves delimiting the light guide body has a point of inflection.

Weitere Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung schematisch dargestellter Ausführungsformen.

Figur 1:
Dimetrische Ansicht einer Leuchteinheit;
Figur 2:
Ansicht von unten auf Figur 1;
Figur 3:
Anordnung der Lichtquellen;
Figur 4:
Ansicht des Lichtleitkörpers von der Lichteintrittsseite;
Figur 5:
Dimetrische Ansicht des Lichtleitkörpers;
Figur 6:
Dimetrische Ansicht des Lichtleitkörpers von unten;
Figur 7:
Lichtaustrittsfläche;
Figur 8:
Längsschnitt einer Leuchteinheit;
Figur 9:
Ansicht eines Lichtleitkörpers schräg von oben;
Figur 10:
Strahlengang der Leuchteinheit;
Figur 11:
Strahlengang im Lichtleitkörper;
Figur 12:
Lichtverteilungsdiagramm;
Figur 13:
Lichtaustrittsfläche mit versetztem Übergangsbereich;
Figur 14:
Lichtaustrittsfläche mit gekrümmten Unterkanten;
Figur 15:
Lichtverteilkörper mit gewölbten Übergangsbereich von unten.
Further details of the invention will become apparent from the dependent claims and the following description of schematically illustrated embodiments.
FIG. 1:
Dimetric view of a light unit;
FIG. 2:
View from below FIG. 1 ;
FIG. 3:
Arrangement of the light sources;
FIG. 4:
View of the light guide from the light entrance side;
FIG. 5:
Dimetric view of the light guide body;
FIG. 6:
Dimetric view of the light guide body from below;
FIG. 7:
Light-emitting surface;
FIG. 8:
Longitudinal section of a lighting unit;
FIG. 9:
View of a light guide obliquely from above;
FIG. 10:
Beam path of the lighting unit;
FIG. 11:
Beam path in the light guide body;
FIG. 12:
Light distribution diagram;
FIG. 13:
Light exit surface with offset transition region;
FIG. 14:
Light exit surface with curved lower edges;
FIG. 15:
Light distribution body with arched transition area from below.

Die Figuren 1 und 2 zeigen eine Leuchteinheit (10), z.B. ein Lichtmodul (10) eines Kraftfahrzeugscheinwerfers, in einer dimetrischen Ansicht und in einer Ansicht von unten. Das Lichtmodul (10) umfasst z.B. eine Lumineszenzdiode (20), eine Primäroptik (30) und eine Sekundäroptik (90). Die Lichtausbreitungsrichtung (15) ist von der Lumineszenzdiode (20) in Richtung der Sekundäroptik (90) orientiert. Die optische Achse (11) des Lichtmoduls (10) schneidet hier die geometrische Mitte der Lumineszenzdiode (20) und durchdringt die Primär- (30) und die Sekundäroptik (90).The Figures 1 and 2 show a lighting unit (10), for example, a light module (10) of a motor vehicle headlight, in a dimetric view and in a view from below. The light module (10) comprises, for example, a light-emitting diode (20), a primary optic (30) and a secondary optic (90). The light propagation direction (15) is oriented by the light-emitting diode (20) in the direction of the secondary optics (90). The optical axis (11) of the light module (10) here intersects the geometric center of the light-emitting diode (20) and penetrates the primary (30) and the secondary optics (90).

Die Lumineszenzdiode (20), z.B. eine Leuchtdiode (20), sitzt beispielsweise in einem Sockel (26) und umfasst in diesem Ausführungsbeispiel eine Gruppe (21) von vier lichtemittierende Chips (22 - 25), die in einem Quadrat angeordnet sind, vgl. Figur 3. Jede der Lichtquellen (22 - 25) hat somit zwei unmittelbar benachbarte lichtemittierende Chips (23, 24; 22, 25; 22, 25; 23, 24). Die lichtemittierenden Chips (22 - 25) der Gruppe (21) können auch im Rechteck, im Dreieck, im Sechseck, in einem Kreis mit oder ohne mittige Lichtquelle, etc. angeordnet sein. Der einzelne lichtemittierende Chip (22 - 25) ist in diesem Ausführungsbeispiel quadratisch und hat z.B. eine Kantenlänge von einem Millimeter. Der Abstand der lichtemittierenden Chips (22 - 25) zueinander beträgt beispielsweise ein Zehntel Millimeter. Auch eine Ausführung mit einem einzelnen lichtemittierenden Chip (22; 23; 24; 25) ist denkbar. Die Leuchtdiode (20) hat hier einen transparenten Körper, der in der Lichtausbreitungsrichtung (15) vom Sockel (26) aus eine Länge von z.B. 1,6 Millimetern hat.The light-emitting diode (20), for example a light-emitting diode (20), is seated, for example, in a base (26) and in this exemplary embodiment comprises a group (21) of four light-emitting chips (22-25) which are arranged in a square, cf. FIG. 3 , Each of the light sources (22-25) thus has two immediately adjacent light-emitting chips (23, 24, 22, 25, 22, 25, 23, 24). The light-emitting chips (22-25) of the group (21) can also be arranged in a rectangle, in a triangle, in a hexagon, in a circle with or without a central light source, etc. The individual light-emitting chip (22-25) is square in this embodiment and has, for example, an edge length of one millimeter. The distance of the light-emitting chips (22-25) from one another is, for example, one tenth of a millimeter. An embodiment with a single light-emitting chip (22, 23, 24, 25) is also conceivable. The light-emitting diode (20) here has a transparent body, which in the light propagation direction (15) from the base (26) has a length of, for example, 1.6 millimeters.

Die Primäroptik (30) umfasst in dem in den Figuren 1 und 2 dargestellten Ausführungsbeispiel einen Lichtleitkörper (31) und eine dem Lichtleitkörper (31) in der Lichtausbreitungsrichtung (15) nachgeschaltete optische Linse (81). Der Abstand des Lichtleitkörpers (31) zur Leuchtdiode (20) beträgt beispielsweise einige Zehntel Millimeter, z.B. zwischen 0,2 Millimeter und 0,5 Millimeter. Der Zwischenraum (16) zwischen dem Lichtleitkörper (31) und der Leuchtdiode (20) kann z.B. mit einem silikonartigen, transparenten Werkstoff gefüllt sein.The primary optic (30) comprises in the in the Figures 1 and 2 illustrated embodiment, a light guide body (31) and the light guide body (31) in the light propagation direction (15) downstream optical lens (81). The distance of the light guide body (31) to the light emitting diode (20) is for example a few tenths of a millimeter, for example between 0.2 millimeters and 0.5 millimeters. The intermediate space (16) between the light guide body (31) and the light-emitting diode (20) can be filled, for example, with a silicone-like, transparent material.

Der Lichtleitkörper (31) ist ein Kunststoffkörper aus einem hochtransparenten, thermoplastischen Werkstoff, z.B. Polymethacrylsäuremethylester (PMMA) oder Polycarbonat (PC). Dieser Werkstoff des beispielsweise als Vollkörper ausgebildeten Lichtleitkörpers (31) hat z.B. eine Brechzahl von 1,49. Die Länge des Lichtleitkörpers (31) beträgt in diesem Ausführungsbeispiel 13,5 Millimeter. Der Lichtleitkörper (31) der hier beschriebenen Leuchteinheit (10) kann z.B. auch eine Länge zwischen 15 und 16 Millimetern aufweisen.The light guide body (31) is a plastic body made of a highly transparent thermoplastic material, e.g. Polymethacrylic acid methyl ester (PMMA) or polycarbonate (PC). This material of the light guide body (31) formed, for example, as a solid body has e.g. a refractive index of 1.49. The length of the light guide body (31) is 13.5 millimeters in this embodiment. The light guide body (31) of the light unit (10) described here may be e.g. also have a length between 15 and 16 millimeters.

In den Figuren 4 - 7 ist der Lichtleitkörper (31) im Detail dargestellt. Hierbei zeigt die Figur 4 eine Ansicht des Lichtleitkörpers (31) von der Lichteintrittsseite (32) aus. In den Figuren 5 und 6 sind dimetrische Ansichten des Lichtleitkörpers (31) dargestellt und die Figur 7 zeigt die Lichtaustrittsfläche (34). Die den Lichtquellen (22 - 25) zugewandte Lichteintrittsfläche (32) und die den Lichtquellen (22 - 25) abgewandte Lichtaustrittsfläche (34) sind in diesem Ausführungsbeispiel parallel zueinander und normal zur optischen Achse (11) angeordnet. Die Lichteintrittsfläche (32) ist hier eine trapezförmige, ebene Fläche. Die kurze Grundlinie, sie hat z.B. eine Länge von 2,4 Millimetern, ist unten angeordnet. Die obenliegende lange Grundlinie ist beispielsweise 3,02 Millimeter lang. Der Flächeninhalt der Lichteintrittsfläche (32) beträgt in diesem Ausführungsbeispiel 5,5 Quadratmillimeter. Die Lichteintrittsfläche (32) kann auch quadratisch, rechteckig, etc. sein.In the FIGS. 4 to 7 the light guide body (31) is shown in detail. This shows the FIG. 4 a view of the light guide body (31) from the light entry side (32). In the FIGS. 5 and 6 are shown dimetric views of the light guide body (31) and the FIG. 7 shows the light exit surface (34). The light entry surface (32) facing the light sources (22-25) and the light exit surface (34) facing away from the light sources (22-25) are arranged parallel to one another and normal to the optical axis (11) in this exemplary embodiment. The light entry surface (32) is here a trapezoidal, flat surface. The short baseline, for example, has a length of 2.4 millimeters, is located below. The overhead long baseline is for example 3.02 millimeters long. The surface area of the light entry surface (32) in this embodiment is 5.5 square millimeters. The light entry surface (32) can also be square, rectangular, etc.

Die Lichtaustrittsfläche (34) hat beispielsweise einen Flächeninhalt von 44 Quadratmillimetern. Ihre Höhe beträgt hier 5,8 Millimeter, ihre maximale Breite 9 Millimeter. Die Lichtaustrittsfläche (34) hat im Ausführungsbeispiel zumindest annähernd die Gestalt eines Abschnitts eines Ovals. Die gedachte Mittellinie der Lichtaustrittsfläche (34) ist beispielsweise um 7% der Höhe der Lichtaustrittsfläche (34) in bezug auf die optische Achse (11) nach unten versetzt. Die Unterkante (35) der Lichtaustrittsfläche (34) hat zwei in der Höhe zueinander versetzte Abschnitte (36, 37), die mittels eines Verbindungsabschnitts (38) miteinander verbunden sind.The light exit surface (34), for example, has an area of 44 square millimeters. Its height is 5.8 millimeters, its maximum width is 9 millimeters. The light exit surface (34) has in the embodiment at least approximately the shape of a portion of an oval. The imaginary center line of the light exit surface (34) is, for example, offset downwards by 7% of the height of the light exit surface (34) with respect to the optical axis (11). The lower edge (35) of the light exit surface (34) has two mutually offset in height portions (36, 37) which are interconnected by means of a connecting portion (38).

Die Seitenflächen (41, 43) des Lichtleitkörpers (31) sind spiegelbildlich zueinander angeordnet. Sie umfassen jeweils einen ebenen Flächenabschnitt (42, 44). Diese Flächenabschnitte (42, 44) liegen in Ebenen, die z.B. miteinander einen in Richtung des Lichtleitkörpers (31) orientierten Winkel von 13 Grad einschließen. Die gedachte Schnittlinie der Ebenen liegt unterhalb des Lichtleitkörpers (31). Die hier als ebene Flächenabschnitte (42, 44) bezeichneten Flächenabschnitte (42, 44) können auch z.B. in Längsrichtung tordiert sein.The side surfaces (41, 43) of the light guide body (31) are arranged in mirror image to each other. They each comprise a flat surface section (42, 44). These surface portions (42, 44) lie in planes which are e.g. together include an angle of 13 degrees oriented in the direction of the light guide body (31). The imaginary line of intersection of the planes lies below the light guide body (31). The surface portions (42, 44) referred to herein as flat surface portions (42, 44) may also be e.g. be twisted in the longitudinal direction.

Die in den Figuren 4 und 5 obenliegende Deckfläche (51) des Lichtleitkörpers (31) umfasst in diesem Ausführungsbeispiel einen zylindrisch aufgezogenen Parabelflächenabschnitt (52), einen einachsig gebogenen Flächenabschnitt (53) und einen ebenen Flächenabschnitt (54). Diese Flächenabschnitte (52 - 54) sind in der Lichtausbreitungsrichtung (15) hintereinander angeordnet, wobei der Parabelflächenabschnitt (52) an die Lichteintrittsfläche (32) angrenzt und der ebene Flächenabschnitt (54) an die Lichtaustrittsfläche (34) angrenzt. Die gedachten Krümmungsachsen der Flächenabschnitte (52, 53) liegen beispielsweise parallel zur Oberkante (33) der Lichteintrittsfläche (32).The in the FIGS. 4 and 5 Overlying top surface (51) of the light guide body (31) comprises in this embodiment, a cylindrically mounted parabolic surface portion (52), a uniaxially curved surface portion (53) and a flat surface portion (54). These surface sections (52-54) are arranged one behind the other in the light propagation direction (15), the parabolic surface section (52) being in contact with the light entry surface (32) adjacent and the planar surface portion (54) adjacent to the light exit surface (34). The imaginary axes of curvature of the surface sections (52, 53) lie, for example, parallel to the upper edge (33) of the light entry surface (32).

Die Länge des Parabelflächenabschnitts (52) beträgt z.B. 30 % der Länge der Deckfläche (51). Die Brennlinie (55) der zugehörigen Parabelfläche liegt in diesem Ausführungsbeispiel z.B. mittig in der Lichteintrittsfläche (32). Sie ist beispielsweise parallel zur oberen Kante (33) der Lichteintrittsfläche (32) orientiert und schneidet z.B. die optische Achse (11). Der Parabelflächenabschnitt (52) ist somit in Bezug auf die Lichtausbreitungsrichtung (15) mathematisch negativ, d.h. im Uhrzeigersinn, gekrümmt.The length of the parabolic surface portion (52) is e.g. 30% of the length of the top surface (51). The focal line (55) of the associated parabolic surface in this embodiment is e.g. in the middle in the light entry surface (32). It is, for example, oriented parallel to the upper edge (33) of the light entry surface (32) and cuts e.g. the optical axis (11). The parabolic surface portion (52) is thus mathematically negative with respect to the light propagation direction (15), i. clockwise, curved.

In den Figuren 8 und 11 ist die Deckfläche (51) im Längsschnitt als Kurve (61) und der Parabelflächenabschnitt (52) als Parabelabschnitt (62) dargestellt. Der Parabelabschnitt (62) ist Teil einer Kurve z.B. zweiter Ordnung. Er ist beispielsweise um 118 Grad im Uhrzeigersinn gegenüber einer Parabel gedreht, die symmetrisch zur nach oben orientierten Ordinate eines in der Zeichnungsebene liegenden kartesischen Koordinatensystems liegt. Der gedachte Drehpunkt der Parabel - und des auf die Parabel bezogene Koordinatensystems - ist der Brennpunkt (65) als Punkt der Brennlinie (55). Die Abszisse des parabelbezogenen Koordinatensystems ist die Leitlinie der Parabel, die Ordinate schneidet die Brennlinie (55). Der Abstand des Brennpunktes vom Ursprung des parabelbezogenen Koordinatensystems beträgt in diesem Ausführungsbeispiel 1,49 Millimeter. Mit y als Ordinatenwert und x als Abszissenwert des parabelbezogenen Koordinatensystems hat die hier dargestellte Parabel zumindest annähernd die Gleichung: y = 0,15 * x2 + xIn the FIGS. 8 and 11 the cover surface (51) is shown in longitudinal section as a curve (61) and the parabolic surface section (52) as a parabolic section (62). The parabolic section (62) is part of a second order curve. For example, it is rotated clockwise by 118 degrees with respect to a parabola that is symmetrical to the upward-oriented ordinate of a Cartesian coordinate system lying in the plane of the drawing. The imaginary pivot point of the parabola - and of the parabola-related coordinate system - is the focal point (65) as the point of the focal line (55). The abscissa of the parabolic coordinate system is the guideline of the parabola, the ordinate intersects the focal line (55). The distance of the focal point from the origin of the parabolic coordinate system in this embodiment is 1.49 millimeters. With y as the ordinate value and x as the abscissa value of the parabola-related coordinate system, the parabola shown here has at least approximately the equation: y = 0.15 * x 2 + x

Die Länge des gebogenen Flächenabschnitts (53) beträgt beispielsweise 45 % der Länge des Lichtleitkörpers (31). Der Biegeradius entspricht z.B. der zweieinhalbfachen Länge des Lichtleitkörpers (31). Die Biegelinie liegt außerhalb des Lichtleitkörpers (31) auf der Seite der Deckfläche (51). Der Flächenabschnitt (53) ist somit mathematisch positiv, entgegen des Uhrzeigersinns, gekrümmt. Der Übergang zwischen dem Parabelflächenabschnitt (52) und dem gebogenen Flächenabschnitt (53) ist tangential. Die Deckfläche (51) hat in diesem Übergang eine Wendelinie (56). Im Längsschnitt, vgl. die Figuren 8 und 11, hat die Kurve (61) einen Wendepunkt (66).The length of the curved surface portion (53) is for example 45% of the length of the light guide body (31). The bending radius corresponds for example to two and a half times the length of the light guide body (31). The bending line lies outside the light guide body (31) on the side of the cover surface (51). The surface portion (53) is thus mathematically positive, counterclockwise, curved. The transition between the parabolic surface portion (52) and the curved surface portion (53) is tangential. The top surface (51) has a turning line (56) in this transition. In longitudinal section, cf. the FIGS. 8 and 11 , the curve (61) has a turning point (66).

Der gebogene Flächenabschnitt (53) geht in den ebenen Flächenabschnitt (54) über. Letzterer schließt beispielsweise mit einer Ebene normal zur Lichteintrittsfläche (32), in der die obere Kante (33) liegt, einen Winkel von 12 Grad ein. Im Längsschnitt hat die Kurve (61) hier einen geraden Abschnitt (64).The curved surface portion (53) merges into the flat surface portion (54). The latter, for example, encloses an angle of 12 degrees with a plane normal to the light entry surface (32) in which the upper edge (33) lies. In longitudinal section, the curve (61) here has a straight section (64).

Die oberen Längskanten des in den Figuren 4 und 5 dargestellten Lichtleitkörpers (31) sind abgerundet. Der Rundungsradius steigt in der Lichtausbreitungsrichtung (15) z.B. linear von Null Millimeter auf vier Millimeter an. Die Abrundungen (57) können auch bereichsweise stetig ausgebildet sein. Sie gehen tangential in die angrenzenden Flächen (41, 51; 43, 51) über. In den Figuren 5 und 6 sind diese Übergänge zur Verdeutlichung als Volllinien dargestellt. Auch eine Ausführung ohne Abrundungen (57) ist denkbar.The upper longitudinal edges of the in the FIGS. 4 and 5 illustrated light guide body (31) are rounded. The radius of curvature increases in the light propagation direction (15), for example linearly from zero millimeters to four millimeters. The rounding (57) can also be formed continuously in regions. They pass tangentially into the adjacent surfaces (41, 51, 43, 51). In the FIGS. 5 and 6 these transitions are shown as solid lines for clarity. A version without rounding (57) is conceivable.

Die Bodenfläche (71) des Lichtleitkörpers (31) umfasst in diesem Ausführungsbeispiel zwei zueinander versetzte Parabelflächenabschnitte (72, 73), die zylindrisch aufgezogen sind. Die beiden Parabelflächenabschnitte (72, 73) sind z.B. um eine gemeinsame Achse, beispielsweise die obere Kante (33) der Lichteintrittsfläche (32), gegeneinander verdreht. Der Verdrehungswinkel beträgt in diesem Ausführungsbeispiel 2 Grad, wobei beispielsweise der in der Lichtausbreitungsrichtung (15) links gelegene Parabelflächenabschnitt (73) weiter aus dem Lichtleitkörper (31) herausragt als der rechts gelegene Parabelflächenabschnitt (72). Die beiden Parabelflächenabschnitte (72, 73) haben z.B. eine gemeinsame Brennlinie (74), die beispielsweise mit der oberen Kante (33) der Lichteintrittsfläche (32) zusammenfällt. Der Auslauf beider Parabelflächenabschnitte (72, 73) an der Lichtaustrittsfläche (34) liegt parallel zur optischen Achse (11). Hierbei stößt der Parabelflächenabschnitt (72) an den Unterkantenabschnitt (36) und der Parabelflächenabschnitt (73) an den Unterkantenabschnitt (37).The bottom surface (71) of the light guide body (31) in this embodiment comprises two staggered parabolic surface sections (72, 73) which are cylindrically mounted. The two parabolic surface portions (72, 73) are, for example, a common Axis, for example, the upper edge (33) of the light entry surface (32), rotated against each other. The twist angle is 2 degrees in this embodiment, for example, in the light propagation direction (15) left parabola surface portion (73) further protrudes from the light guide body (31) than the right parabolic surface portion (72). The two parabolic surface sections (72, 73) have, for example, a common focal line (74) which, for example, coincides with the upper edge (33) of the light entry surface (32). The outlet of both parabolic surface sections (72, 73) on the light exit surface (34) is parallel to the optical axis (11). At this time, the parabolic surface portion (72) abuts the lower edge portion (36) and the parabolic surface portion (73) abuts the lower edge portion (37).

In dem in den Figuren 8 und 11 dargestellten Längsschnitt ist z.B. der Parabelflächenabschnitt (72) ein Parabelabschnitt (76). Die zugehörige Parabel ist beispielsweise um 71,5 Grad im Uhrzeigersinn gegenüber einer Parabel gedreht, die symmetrisch zur nach oben orientierten Ordinate eines in der Zeichnungsebene liegenden kartesischen Koordinatensystems liegt. Der gedachte Drehpunkt der Parabel - und des auf die Parabel bezogene Koordinatensystems - ist der Brennpunkt (78) als Punkt der Brennlinie (74). Die Abszisse des parabelbezogenen Koordinatensystems ist die Leitlinie der Parabel, die Ordinate schneidet den Brennpunkt (78). Der Abstand des Brennpunktes (78) vom Ursprung des parabelbezogenen Koordinatensystems beträgt in diesem Ausführungsbeispiel 2,59 Millimeter. Mit y als Ordinatenwert und x als Abszissenwert des parabelbezogenen Koordinatensystems hat die hier dargestellte Parabel zumindest annähernd die Gleichung: y = 0,17 * x2 + 0,15 * x + 1,05.In the in the FIGS. 8 and 11 The longitudinal section shown is, for example, the parabolic surface section (72) a parabola section (76). The associated parabola, for example, is rotated clockwise by 71.5 degrees with respect to a parabola that is symmetrical to the upward-oriented ordinate of a Cartesian coordinate system lying in the plane of the drawing. The imaginary pivot point of the parabola - and of the parabola-related coordinate system - is the focal point (78) as the point of the focal line (74). The abscissa of the parabolic coordinate system is the guideline of the parabola, the ordinate intersects the focal point (78). The distance of the focal point (78) from the origin of the parabolic coordinate system in this embodiment is 2.59 millimeters. With y as the ordinate value and x as the abscissa value of the parabola-related coordinate system, the parabola shown here has at least approximately the equation: y = 0.17 * x 2 + 0.15 * x + 1.05.

Zwischen den beiden Parabelflächenabschnitten (72, 73) liegt in diesem Ausführungsbeispiel ein Übergangsbereich (75). Dieser ist zumindest annähernd mittig entlang der Bodenfläche (71) angeordnet. Er schließt mit den angrenzenden Parabelabschnittsflächen (72, 73) z.B. einen Winkel von 135 Grad ein. Die Höhe des Übergangsbereichs (75) nimmt damit in der Lichtausbreitungsrichtung (15) zu. In diesem Ausführungsbeispiel beträgt die Höhe des Übergangsbereichs (75) am Übergangsbereich (38) der Lichtaustrittsfläche (34) 0,5 Millimeter.Between the two parabolic surface sections (72, 73) lies in this embodiment, a transition region (75). This is arranged at least approximately centrally along the bottom surface (71). It closes with the adjacent parabola sections (72, 73) e.g. an angle of 135 degrees. The height of the transition region (75) thus increases in the light propagation direction (15). In this embodiment, the height of the transition region (75) at the transition region (38) of the light exit surface (34) is 0.5 millimeters.

Die optische Linse (81) der Primäroptik (30) ist z.B. eine plankonvexe asphärische Sammellinse (81), beispielsweise eine Kondensorlinse. Die Planseite (82) der Linse (81) liegt in der Darstellung der Figuren 1 und 2 an der Lichtaustrittsfläche (34) des Lichtleitkörpers (31) an. Die optische Linse (81) kann auch in den Lichtleitkörper (31) integriert sein. Der maximale Durchmesser der optischen Linse (81) ist beispielsweise 30 % größer als die Länge des Lichtleitkörpers (31). Der Längsschnitt der optischen Linse (81) ist z.B. ein Segment einer Ellipse, deren große Achse das Zweieinhalbfache und deren kleine Achse 160% der Länge des Lichtleitkörpers (31) beträgt. Die Dicke der optischen Linse (81) beträgt hier 50 % der Länge des Lichtleitkörpers (31). Gegebenenfalls kann das Lichtmodul (10) ohne die optische Linse (81) ausgeführt sein, vgl. die Figuren 8 und 10.The optical lens (81) of the primary optics (30) is, for example, a plano-convex aspheric condenser lens (81), for example a condenser lens. The plan side (82) of the lens (81) lies in the representation of Figures 1 and 2 at the light exit surface (34) of the light guide body (31). The optical lens (81) may also be integrated in the light guide body (31). The maximum diameter of the optical lens (81) is, for example, 30% greater than the length of the optical waveguide (31). The longitudinal section of the optical lens (81) is, for example, a segment of an ellipse whose major axis is two and a half times and whose minor axis is 160% of the length of the optical waveguide (31). The thickness of the optical lens (81) is here 50% of the length of the light guide body (31). Optionally, the light module (10) may be designed without the optical lens (81), cf. the FIGS. 8 and 10 ,

Die Sekundäroptik (90) umfasst in diesem Ausführungsbeispiel eine Sekundärlinse (91). Diese ist beispielsweise eine asphärische plankonvexe Linse. Die Hüllgestalt dieser Linse ist z.B. ein Kugelabschnitt. Das Zentrum (95) der Sekundärlinse (91) und die Unterkante (35) der Lichtaustrittsfläche (34) des Lichtleitkörpers (31) haben beispielsweise zumindest annähernd den gleichen Abstand zur optischen Achse (11) des Lichtmoduls (10). Der Radius des Kugelabschnitts beträgt in der Darstellung der Figuren 1 und 2 240 % und die Höhe 110 % der Länge des Lichtleitkörpers (31). Der maximale Abstand der Planfläche (92) von der Lichtaustrittsfläche (93), die Dicke der Sekundärlinse (91) entspricht z.B. der Länge des Lichtleitkörpers (31). Der Abstand der Sekundärlinse (91) von der Lichtaustrittsfläche (34) beträgt z.B. 260 % der Länge des Lichtleitkörpers (31).The secondary optics (90) in this embodiment comprises a secondary lens (91). This is, for example, an aspheric plano-convex lens. The envelope of this lens is eg a sphere section. The center (95) of the secondary lens (91) and the lower edge (35) of the light exit surface (34) of the light guide body (31) have, for example, at least approximately the same distance from the optical axis (11) of the light module (10). The radius of the ball section is in the presentation of the Figures 1 and 2 240% and the height 110% of the length of the light guide body (31). The maximum distance of the plane surface (92) from the light exit surface (93), the thickness of the secondary lens (91) corresponds for example to the length of the light guide body (31). The distance of the secondary lens (91) from the light exit surface (34) is for example 260% of the length of the light guide body (31).

Beim Betrieb des Lichtmoduls (10) wird Licht (100) z.B. von allen Lichtquellen (22 - 25) emittiert und tritt durch die Lichteintrittsfläche (32) hindurch in den Lichtleitkörper (31). Jeder lichtemittierende Chip (22 - 25) wirkt als Lambert'scher Strahler, der Licht (100) im Halbraum emittiert.In operation of the light module (10), light (100) is e.g. emitted from all the light sources (22-25) and passes through the light entry surface (32) into the light guide body (31). Each light-emitting chip (22-25) acts as a Lambertian emitter, which emits light (100) in the half-space.

In der Figur 10 ist exemplarisch ein Strahlengang eines Lichtmoduls (10) in einem Längsschnitt des Lichtmoduls (10) dargestellt. Das hier gezeigte Lichtmodul (10) entspricht dem in der Figur 8 dargestellten Lichtmodul (10). Den Strahlengang innerhalb des Lichtleitkörpers (31) zeigt vergrößert die Figur 11.In the FIG. 10 For example, a beam path of a light module (10) is shown in a longitudinal section of the light module (10). The light module (10) shown here corresponds to that in the FIG. 8 illustrated light module (10). The beam path within the light guide (31) shows the enlarged FIG. 11 ,

In den Figuren 10 und 11 sind exemplarisch Lichtstrahlen (101 - 109) dargestellt, die von zwei übereinander angeordneten lichtemittierenden Chips (23, 25) emittiert werden. Die lichtemittierenden Chips (23, 25) sind hier als punktförmige Lichtquellen dargestellt. Vom oberen lichtemittierenden Chip (23) sind beispielsweise die Lichtstrahlen (101 - 105) gezeigt, die um 15 Grad versetzt zueinander emittiert werden. Hierbei wird beispielsweise der Lichtstrahl (101) um 45 Grad nach oben emittiert, während der Lichtstrahl (105) um 45 Grad nach unten in bezug auf die optische Achse (11) emittiert wird. Die entsprechenden Lichtstrahlen des unteren lichtemittierenden Chips (25) sind die Lichtstrahlen (106 - 109).In the Figures 10 and 11 By way of example, light beams (101-109) are shown which are emitted by two light-emitting chips (23, 25) arranged one above the other. The light-emitting chips (23, 25) are shown here as punctiform light sources. From the upper light-emitting chip (23), for example, the light beams (101 - 105) are shown, which are emitted offset by 15 degrees to each other. Here, for example, the light beam (101) is emitted upward by 45 degrees, while the light beam (105) is emitted downward by 45 degrees with respect to the optical axis (11). The respective light beams of the lower light-emitting chip (25) are the light beams (106-109).

Licht (103), das vom oberen lichtemittierenden Chip (23) parallel zur optischen Achse (11) emittiert wird, durchdringt die Lichtaustrittsfläche (34) des Lichtleitkörpers (31) in normaler Richtung. Es trifft auf die Planfläche (92) der Sekundärlinse (91) ebenfalls in normaler Richtung auf, durchdringt die Sekundärlinse (91) und wird beim Austritt aus der Sekundärlinse (91) beispielsweise vom Lot im Durchtrittspunkt weg gebrochen.Light (103) emitted from the upper light emitting chip (23) parallel to the optical axis (11) penetrates the light exit surface (34) of the light guide body (31) in the normal direction. It impinges on the plane surface (92) of the secondary lens (91) also in the normal direction, penetrates the secondary lens (91) and is refracted on exiting the secondary lens (91), for example, from the solder in the passage point.

Die vom oberen lichtemittierenden Chip (23) emittierten Lichtstrahlen (102), die mit der optischen Achse (11) einen nach oben gerichteten Winkel von 15 Grad und von 30 Grad einschließen, treffen auf eine obere Grenzfläche (151) des Lichtleitkörpers (31). Diese obere Grenzfläche (151) wird durch die Deckfläche (51) gebildet und hat maximal deren Größe. Der jeweilige Auftreffpunkt liegt hier im Bereich der Parabelfläche (52). Die auftreffenden Lichtstrahlen (102) schließen mit der Normalen im Auftreffpunkt einen Winkel ein, der größer ist als der Grenzwinkel der Totalreflexion für den Übergang des Werkstoffs des Lichtleitkörpers (31) mit Luft. Die obere Grenzfläche (151) bildet somit eine Totalreflexionsfläche (151) für das auftreffende Licht (102). Die reflektierten Lichtstrahlen (102) durchtreten die Lichtaustrittsfläche (34), wobei sie vom Lot im Durchtrittspunkt weg gebrochen werden. Beim Eintritt in die Sekundärlinse (91) werden die hier annähernd parallel liegenden Lichtstrahlen (102) in Richtung des Lots im jeweiligen Durchtrittpunkt gebrochen und beim Austritt in die Umgebung (1) vom Lot weg gebrochen. Die dargestellten Lichtstrahlen (102) treten hier im unteren Segment der Sekundärlinse (91) in die Umgebung (1).The light beams (102) emitted from the upper light-emitting chip (23) and enclosing an upward angle of 15 degrees and 30 degrees with the optical axis (11) impinge on an upper boundary surface (151) of the light guide body (31). This upper interface (151) is formed by the top surface (51) and has a maximum size. The respective impact point lies here in the area of the parabolic surface (52). The incident light beams (102) include with the normal at the point of impact an angle which is greater than the critical angle of total reflection for the transition of the material of the light guide body (31) with air. The upper interface (151) thus forms a total reflection surface (151) for the incident light (102). The reflected light beams (102) pass through the light exit surface (34), being refracted away from the solder in the passage point. Upon entry into the secondary lens (91), the light beams (102) lying approximately parallel here are refracted in the direction of the solder in the respective passage point and are broken away from the solder when they exit into the environment (1). The illustrated light beams (102) occur here in the lower segment of the secondary lens (91) in the environment (1).

Das Licht (101), das unter einem nach oben gerichteten Winkel von 45 Grad vom oberen lichtemittierenden Chip (23) emittiert wird, wird zunächst an der oberen Totalreflexionsfläche (151) reflektiert. Das reflektierte Licht (101) trifft auf die untere Grenzfläche (161). Der Auftreffwinkel des Lichts (101) und die Normale im Auftreffpunkt schließen einen Winkel ein, der größer ist als der Grenzwinkel der Totalreflexion. Die untere Begrenzungsfläche (161) wirkt damit für das auftreffende Licht (101) als untere Totalreflexionsfläche (161). Das an dieser Totalreflexionsfläche (161) reflektierte Licht (101) durchdringt die Lichtaustrittsfläche (34) und die Sekundärlinse (91), wobei es beim Durchtritt durch die jeweiligen Körpergrenzflächen (34, 92, 93) gebrochen wird. Dieses Licht (101) tritt im oberen Segment der Sekundärlinse (91) in die Umgebung (1).The light (101) emitted from the upper light-emitting chip (23) at an upward angle of 45 degrees is first detected at the upper total reflection surface (151). reflected. The reflected light (101) strikes the lower boundary surface (161). The angle of incidence of the light (101) and the normal at the point of impact include an angle greater than the critical angle of total reflection. The lower boundary surface (161) thus acts for the incident light (101) as the lower total reflection surface (161). The light (101) reflected by this total reflection surface (161) penetrates the light exit surface (34) and the secondary lens (91), being refracted as it passes through the respective body boundary surfaces (34, 92, 93). This light (101) enters the environment (1) in the upper segment of the secondary lens (91).

Der in den Figuren 10 und 11 gezeigte Lichtstrahl (104) des oberen lichtemittierenden Chips (23), der mit der optischen Achse (11) einen nach unten gerichteten Winkel von 15 Grad einschließt, wird im Lichtleitkörper (31) nicht reflektiert. Er wird beim Durchtritt durch die Lichtaustrittsfläche (34) und durch die Sekundärlinse (91) gebrochen. Dieser Lichtstrahl (104) liegt im unteren Segment der Sekundärlinse (91).The in the Figures 10 and 11 The light beam (104) of the upper light-emitting chip (23), which has a downward angle of 15 degrees with the optical axis (11), is not reflected in the light guide body (31). It is broken when passing through the light exit surface (34) and through the secondary lens (91). This light beam (104) lies in the lower segment of the secondary lens (91).

Das in den genannten Figuren 10 und 11 unter einem nach unten gerichteten Winkel von 30 Grad und von 45 Grad zur optischen Achse (11) emittierte Licht (105) wird an der unteren Grenzfläche (161) totalreflektiert und tritt unter Brechung durch die Lichtaustrittsfläche (34) und die Sekundärlinse (91) hindurch in die Umgebung (1). Dieses Licht (105) liegt im oberen Segment der Sekundärlinse (91).That in the mentioned Figures 10 and 11 light (105) emitted at a downward angle of 30 degrees and at 45 degrees to the optical axis (11) is totally reflected at the lower boundary surface (161) and passes through the light exit surface (34) and the secondary lens (91) with refraction in the environment (1). This light (105) lies in the upper segment of the secondary lens (91).

Das vom unteren lichtemittierenden Chip (25) parallel zur optischen Achse (11) emittierte Licht (108) ist zumindest annähernd parallel zum Licht (103) des oberen lichtemittierenden Chips (23).The light (108) emitted by the lower light-emitting chip (25) parallel to the optical axis (11) is at least approximately parallel to the light (103) of the upper light-emitting chip (23).

Licht (107), das unter einem nach oben gerichteten Winkel von 15 Grad emittiert wird, trifft im Bereich der Wendelinie (56) auf die obere Grenzfläche (151). Hier wird es vollständig reflektiert und tritt unter Brechung durch die Lichtaustrittsfläche (34) und das untere Segment der Sekundärlinse (91) hindurch in die Umgebung (1).Light (107) emitted at an upward angle of 15 degrees strikes the upper boundary surface (151) in the region of the inflection line (56). Here it is completely reflected and passes under refraction through the light exit surface (34) and the lower segment of the secondary lens (91) through into the environment (1).

Die in den Figuren 10 und 11 unter 30 Grad und unter 45 Grad zur optischen Achse (11) nach oben dargestellten, vom unteren lichtemittierenden Chip (25) emittierten Lichtstrahlen (106) werden an der oberen (151) und an der unteren Grenzfläche (161) reflektiert.The in the Figures 10 and 11 Below 30 degrees and below 45 degrees to the optical axis (11), light rays (106) emitted from the lower light-emitting chip (25) are reflected at the upper (151) and lower (161) interfaces.

Die Lichtstrahlen (109) des unteren lichtemittierenden Chips (25), die mit der optischen Achse (11) einen nach unten gerichteten Winkel von 15, 30 und 45 Grad einschließen, werden an der unteren Grenzfläche (161) reflektiert. Unter Brechung durchdringen sie die Lichtaustrittsfläche (34) und die Sekundärlinse (91). Beispielsweise liegen die in die Umgebung (1) austretenden Lichtstrahlen (109) annähernd symmetrisch zur optischen Achse (11).The light rays (109) of the lower light-emitting chip (25) including a downward angle of 15, 30 and 45 degrees with the optical axis (11) are reflected at the lower boundary surface (161). Under refraction they penetrate the light exit surface (34) and the secondary lens (91). For example, the light beams (109) emerging into the environment (1) are approximately symmetrical with respect to the optical axis (11).

Von dem gesamten von den Lichtquellen (22 - 25) emittierten Licht (100) wird in diesem Ausführungsbeispiel 48 % an der unteren Grenzfläche (161) reflektiert und 26 % des Lichts an der oberen Grenzfläche (151) reflektiert.Of the total light (100) emitted by the light sources (22-25), 48% is reflected at the lower boundary surface (161) and 26% of the light is reflected at the upper boundary surface (151) in this embodiment.

In der Ansicht von unten, vgl. Figur 2, wird das Lichtbündel (100) beispielsweise auf einen Winkel von 17 Grad aufgeweitet.In the view from below, cf. FIG. 2 For example, the light beam (100) is widened to an angle of 17 degrees.

Die vom Lichtmodul (10) erzeugte Beleuchtungsstärkeverteilung (170), beispielsweise auf einer 25 Meter entfernten Wand, ist in der Figur 12 dargestellt. Die Mittellinie (95) der Sekundärlinse (91) durchdringt die Messwand z.B. im Schnittpunkt (171) zweier Bezugsgitternetzlinien (172, 173). In dieser Darstellung haben auf der Messwand die horizontalen Gitternetzlinien (172) zueinander einen Abstand von zwei Metern. Die Abstände der vertikalen Gitternetzlinien (173) zueinander beträgt hier z.B. fünf Meter. Die einzelnen Isolinien (174) sind Linien gleicher Beleuchtungsstärke. Die Beleuchtungsstärke, gemessen in Lux oder in Lumen pro Quadratmeter, steigt in diesem Diagramm von außen nach innen an. Eine innenliegende Isolinie (174) hat z.B. die 1,8-fache Beleuchtungsstärke einer weiter außen gelegenen Isolinie.The illumination intensity distribution (170) generated by the light module (10), for example on a wall 25 meters away, is in the FIG. 12 shown. The midline (95) of the secondary lens (91) penetrates the measuring wall, for example, at the intersection (171) of two reference grid lines (172, 173). In this illustration, the horizontal grid lines (172) have a distance of two meters to each other on the measuring wall. The distances of the vertical grid lines (173) to each other here is for example five meters. The individual isolines (174) are lines of equal illuminance. Illuminance, measured in lux or lumens per square meter, increases from outside to inside in this diagram. An inner isoline (174) has, for example, 1.8 times the illuminance of a further outlying isoline.

Auf der Messwand bildet die Sekundärlinse (91) die Lichtaustrittsfläche (34) oder (83) der Primäroptik (30) ab. Diese Lichtaustrittsfläche (34, 83) kann die Lichtaustrittsfläche (34) des Lichtleitkörpers (31) oder die konvexe Fläche (83) der Kondensorlinse (81) sein. Der Bereich (175) der höchsten Beleuchtungsstärke, der sogenannte Hot Spot (175), liegt hier rechts unterhalb des Schnittpunkts (171). Nach oben hin fällt die Beleuchtungsstärke an der Hell-Dunkel-Grenze (176) rapide ab. Die Hell-Dunkel-Grenze (176) ist hier z-förmig ausgebildet. Sie hat in dieser Darstellung rechts einen höherliegenden Abschnitt (177) und links einen tieferliegenden Abschnitt (178). Beide Abschnitte (177, 178) sind mittels eines Verbindungsabschnittes (179) miteinander verbunden, der mit den beiden anderen Abschnitten (177, 178) jeweils einen Winkel von z.B. 135 Grad einschließt. In dieser Hell-Dunkel-Grenze (176) wird die Unterkante (35) der Lichtaustrittsfläche (34) der Primäroptik (30) abgebildet.On the measuring wall, the secondary lens (91) forms the light exit surface (34) or (83) of the primary optics (30). This light exit surface (34, 83) may be the light exit surface (34) of the light guide body (31) or the convex surface (83) of the condenser lens (81). The area (175) of the highest illuminance, the so-called hot spot (175), lies here on the right below the point of intersection (171). At the top, the illuminance decreases rapidly at the cut-off (176). The light-dark boundary (176) is here z-shaped. It has a higher section (177) on the right and a lower section (178) on the left. Both sections (177, 178) are interconnected by means of a connecting section (179) which, with the two other sections (177, 178), each have an angle of e.g. Includes 135 degrees. In this light-dark boundary (176), the lower edge (35) of the light exit surface (34) of the primary optics (30) is imaged.

Die in der Figur 12 dargestellte Beleuchtungsstärkeverteilung zeigt einen breiten ausgeleuchteten Bereich (181), dessen Beleuchtungsstärke in der Breite mit der Entfernung vom Schnittpunkt (171) abnimmt. Nach unten hin hat der ausgeleuchtete Bereich (181) eine Höhe von z.B. vier bis sechs Metern.The in the FIG. 12 illustrated illuminance distribution shows a wide illuminated area (181) whose illuminance in width with the distance from the intersection (171) decreases. Towards the bottom, the illuminated area (181) has a height of, for example, four to six meters.

Beim Betrieb z.B. mehrerer Lichtmodule (10) ergibt sich so ein unscharf begrenzter, streifen- und fleckenfrei ausgeleuchteter Bereich (181) mit einer scharfen, z-förmigen Hell-Dunkel-Grenze (176).When operating e.g. a plurality of light modules (10) results in a blurred limited, streak and spot-free illuminated area (181) with a sharp, z-shaped cut-off (176).

Das in den Ausführungsbeispielen dargestellte Lichtmodul (10) hat aufgrund seiner geometrischen Gestaltung eine hohe Lichtleistung und erfordert nur einen geringen Bauraum. Die mit einem derartigen Lichtmodul (10) ohne zusätzliche Entspiegelungen erreichbare relative Auskoppeleffizienz liegt bei 97 % der maximal möglichen Auskoppeleffizienz. Dies entspricht einem Absolutwert von 80 % bis 82 %.The light module (10) shown in the embodiments has a high light output due to its geometric design and requires only a small space. The relative coupling-out efficiency achievable with such a light module (10) without additional antireflection coatings is 97% of the maximum possible coupling-out efficiency. This corresponds to an absolute value of 80% to 82%.

Um die Höhenlage der Lichtverteilung zu ändern, können die unteren Parabelflächenabschnitte (72, 73) um die Brennlinie (74) gedreht werden. So bewirkt in der Ansicht nach Figur 8 eine Verdrehung der Parabelflächen (72, 73) im Uhrzeigersinn eine Erhöhung der Lichtverteilung. Gleichzeitig kann - wenn die optische Achse (11) nicht verstellt wird - die Hell-Dunkel-Grenze (176) nach oben verlagert werden. Die Intensität des Hot-Spots (175) bleibt hierbei erhalten.In order to change the altitude of the light distribution, the lower parabolic surface portions (72, 73) can be rotated about the focal line (74). So does in the view after FIG. 8 a rotation of the parabolic surfaces (72, 73) in a clockwise direction an increase in the light distribution. At the same time - if the optical axis (11) is not adjusted - the light-dark boundary (176) can be moved upwards. The intensity of the hot spot (175) is retained.

Die Lichtverteilung an der Messwand ergibt sich durch Überlagerung verschiedener Lichtanteile, vgl. Figur 10. Beispielsweise wird der Hot-Spot (175) durch Überlagerung von Lichtanteilen erzeugt, die vom oberen lichtemittierenden Chip (23) in einem Segment zwischen z.B. 0 Grad und z.B. 15 Grad nach unten und nach oben begrenzt wird mit Lichtanteilen, die vom unteren lichtemittierenden Chip (25) zwischen beispielsweise 0 Grad und z.B. 15 Grad nach oben sowie zwischen z.B. 30 Grad und z.B. 45 nach unten begrenzt wird.The light distribution at the measuring wall results from the superposition of different light components, cf. FIG. 10 , For example, the hot spot (175) is generated by the superimposition of light components which are delimited from the upper light-emitting chip (23) in a segment between, for example, 0 degrees and, for example, 15 degrees downwards and upwards with light components emitted from the lower light-emitting chip (FIG. 25) is limited between, for example, 0 degrees and eg 15 degrees upwards and between, for example, 30 degrees and eg 45 downwards.

Um die Intensität des Hot-Spots (175) zu verändern, kann z.B. der obenliegende Parabelflächenabschnitt (52) verändert werden. So kann beispielsweise - im Längsschnitt des Lichtleitkörpers (31) betrachtet - eine Verdrehung des Parabelflächenabschnitts (52) im Uhrzeigersinn eine Schwächung der Intensität bedeuten. Eine Veränderung des Auslaufs (54) der Deckfläche (51) verändert den Gradienten der Lichtstärkenverteilung.To change the intensity of the hot spot (175), e.g. the overhead parabolic surface portion (52) are changed. Thus, for example-viewed in the longitudinal section of the light guide body 31-a rotation of the parabolic surface section 52 in a clockwise direction can mean a weakening of the intensity. A change of the outlet (54) of the top surface (51) alters the gradient of the light intensity distribution.

Außerdem kann durch Versetzen des Anfangs des Verbindungsbereiches die Höhe der Beleuchtungsstärke im Hot Spot (175) und um den Hot Spot (175) gezielt kontrolliert werden. Eine ungünstige Wahl kann eine Abschwächung des Hot Spots (175) bewirken.In addition, by moving the beginning of the connection area, you can specifically control the level of illuminance in the hot spot (175) and around the hot spot (175). An unfavorable choice can cause a weakening of the hot spot (175).

Mittels der Kondensorlinse (81) kann das aus der Lichtaustrittsfläche (34) austretende Licht (100) zusätzlich gebündelt werden. Somit kann eine Sekundärlinse (91) geringen Durchmessers eingesetzt werden. Die konvexe Fläche (83) der Kondensorlinse (81) ist beispielsweise eine asphärische Fläche.By means of the condenser lens (81), the light (100) emerging from the light exit surface (34) can additionally be bundled. Thus, a secondary lens (91) of small diameter can be used. The convex surface (83) of the condenser lens (81) is, for example, an aspherical surface.

Auch der Abstand der Sekundär- (90) von der Primäroptik (30) beeinflusst die Beleuchtungsstärkeverteilung. Um das bei einem großen Abstand das aus der Primäroptik (30) divergent austretende Licht (100) zu bündeln, ist eine größere Sekundärlinse (91) erforderlich als bei einem kleinen Abstand. Die größere Sekundärlinse (91) erlaubt - bei identischem Lichtleitkörper (31) - die Ausbildung des Hot Spots (175), während zur Ausbildung einer Grundlichtverteilung ein kleiner Abstand zwischen Primär- (30) und Sekundäroptik (90) und eine kleiner Sekundärlinse (91) erforderlich ist.The distance of the secondary (90) from the primary optics (30) also influences the illumination intensity distribution. In order to concentrate the light (100) diverging exiting from the primary optics (30) at a large distance, a larger secondary lens (91) is required than at a small distance. The larger secondary lens (91) allows - with identical light guide body (31) - the formation of the hot spot (175), while forming a basic light distribution, a small distance between primary (30) and secondary optics (90) and a small secondary lens (91) is required.

Mittels der seitlichen Flächen (41, 43) und der Abrundungen (57) kann die Lichtverteilung an den Seiten des ausgeleuchteten Bereichs (181) beeinflusst werden. Eine Verdrehung der Seitenflächen (41, 43) - bei festliegender Unterkante (35) - zueinander verringert die Breite des Lichtverteilungsdiagramms (171), vgl. Figur 12. Eine Verringerung der Radien der Abrundungen (57) bewirkt einen schärferen Übergang vom ausgeleuchteten zum nicht ausgeleuchteten Bereich in den Ecken.By means of the lateral surfaces (41, 43) and the rounded portions (57), the light distribution on the sides of the illuminated region (181) can be influenced. A rotation of the side surfaces (41, 43) - with the lower edge (35) fixed to one another - reduces the width of the light distribution diagram (171), cf. FIG. 12 , A reduction in the radii of the rounding (57) causes a sharper transition from the illuminated to the non-illuminated area in the corners.

In der Figur 13 ist eine Lichtaustrittsfläche (34) eines Lichtleitkörpers (31) dargestellt. Die Hauptabmessungen dieser Lichtaustrittsfläche (34) entsprechen den Hauptabmessungen der in der Figur 7 dargestellten Lichtaustrittsfläche (34). Der Übergangsbereich (75) zwischen den Parabelflächen (72, 73) ist im Vergleich zur Figur 7 nach links verschoben. Bei der Montage mehrerer Lichtmodule (10) werden diese so angeordnet, dass beim Betrieb die Verbindungsabschnitte (179) zusammenfallen. Somit überlappen sich zwei asymmetrisch aufgeteilte Beleuchtungsprofile nur teilweise. In der Mitte, im Bereich des gewünschten Hot-Spots (175) und an der z-förmigen Hell-Dunkel-Grenze (176), wird so ein Bereich hoher Beleuchtungsstärke im Vergleich zu den seitlichen Bereichen erreicht.In the FIG. 13 a light exit surface (34) of a light guide body (31) is shown. The main dimensions of this light exit surface (34) correspond to the main dimensions in the FIG. 7 illustrated light exit surface (34). The transition region (75) between the parabolic surfaces (72, 73) is compared to FIG. 7 moved to the left. When mounting a plurality of light modules (10) they are arranged so that during operation, the connecting portions (179) coincide. Thus, two asymmetrically split lighting profiles overlap only partially. In the middle, in the area of the desired hotspot (175) and on the z-shaped light-dark border (176), a region of high illuminance is achieved in comparison with the lateral areas.

Die beiden Parabelflächen (72, 73) können, wie in der Figur 14 gezeigt, zueinander geneigt sein. Hiermit können beispielsweise verzerrte Abbildungen in der Zielebene kompensiert werden. Die Parabelflächen (72, 73) können auch in Querrichtung gewölbt sein. Gegebenenfalls können sie z.B. in dem an die Lichtaustrittsfläche (34) angrenzenden Drittel des Lichtleitkörpers (31) zusätzlich modifiziert sein.The two parabolic surfaces (72, 73) can, as in the FIG. 14 shown to be inclined to each other. This can be used, for example, to compensate for distorted images in the target plane. The parabolic surfaces (72, 73) may also be curved in the transverse direction. Optionally, they may be additionally modified, for example, in the third of the light guide body (31) adjoining the light exit surface (34).

Der Verbindungsabschnitt (75) kann entlang des Lichtverteilkörpers (31) gewölbt sein, vgl. Figur 15. Die Schärfe der Hell-Dunkel-Grenze (176) wird hiermit nicht beeinflusst. Allerdings kann hiermit die Lichtkonzentration in der Nähe des Hot-Spots (175) beeinflusst'werden. Eine z.B. seitlich verkippte Anordnung des Lichtleitkörpers (31) bewirkt eine Verschiebung des Schwerpunkts der Beleuchtungsstärkeverteilung (181) an der Wand. In diesem Ausführungsbeispiel sind die Lichteintritts- (32) und die Lichtaustrittsfläche (34) nicht parallel zueinander.The connecting section (75) can be curved along the light distribution body (31), cf. FIG. 15 , The sharpness of the cut-off (176) is not affected. Indeed this can be used to influence the light concentration near the hot spot (175). For example, an arrangement of the optical waveguide (31) which is tilted laterally causes a shift of the center of gravity of the illuminance distribution (181) on the wall. In this embodiment, the light entrance (32) and the light exit surface (34) are not parallel to each other.

Der Verbindungsabschnitt (75) kann im Übergang zu den Parabelflächen (72, 73) Übergangsradien (77) aufweisen, vgl. Figur 6.The connecting section (75) can have transition radii (77) in the transition to the parabolic surfaces (72, 73), cf. FIG. 6 ,

Der Lichtleitkörper (31) kann auch zwei untenliegende Parabelflächen (72, 73) umfassen, die unmittelbar einander angrenzen und z.B. um 15 Grad zueinander geneigt sind. Hiermit kann beispielsweise eine Ausleuchtung mit einem 15 Grad-Anstieg erzeugt werden.The light guiding body (31) may also comprise two underlying parabolic surfaces (72, 73) immediately adjacent to each other, e.g. inclined by 15 degrees to each other. Hereby, for example, an illumination can be generated with a 15 degree rise.

Es ist auch denkbar, die Bodenfläche (71) mit nur einer durchgehenden Parabelfläche (72; 73) auszuführen, vgl. Figur 9. Mit einem derartigen Lichtmodul (10) wird beispielsweise eine waagerechte Hell-Dunkel-Grenze (176) erzeugt. Das entsprechende Lichtmodul (10) kann hierbei so ausgeführt sein, dass ein Hot-Spot (175) erzeugt wird. Auch in diesem Ausführungsbeispiel hat die Deckfläche (51) einen Parabelflächenabschnitt (52), einen gebogenen Flächenabschnitt (53) und einen ebenen Flächenabschnitt (54). Zwischen dem Parabelflächenabschnitt (52) und dem gebogenen Flächenabschnitt (54) liegt eine Wendelinie (56).It is also conceivable to design the bottom surface (71) with only one continuous parabolic surface (72, 73), cf. FIG. 9 , With such a light module (10), for example, a horizontal light-dark boundary (176) is generated. The corresponding light module (10) can in this case be designed so that a hot spot (175) is generated. Also in this embodiment, the top surface (51) has a parabolic surface portion (52), a curved surface portion (53) and a flat surface portion (54). Between the parabolic surface portion (52) and the curved surface portion (54) is a turning line (56).

Die Bodenfläche (71) kann zumindest bereichsweise durch eine Schar nebeneinander liegender, in der Lichtausbreitungsrichtung (15) orientierter Parabeln beschrieben werden. Diese Parabeln können unterschiedliche Parameter aufweisen.The bottom surface (71) can be described at least in regions by a family of adjacent parabolas oriented in the light propagation direction (15). These parabolas can have different parameters.

Die Bodenfläche (71) und die Deckfläche (51) des Lichtleitkörpers (31) können auch vertauscht sein, so dass die hier als Bodenfläche (71) bezeichnete Fläche oben liegt. Die Beleuchtungsstärkeverteilung ist dann so ausgebildet, dass die Hell-Dunkel-Grenze (176) unten liegt.The bottom surface (71) and the top surface (51) of the light guide body (31) can also be reversed, so that the area designated here as the bottom surface (71) is at the top. The illumination intensity distribution is then designed such that the light-dark boundary (176) lies below.

Die hier beschriebenen Flächen können Hüllflächen sein. So können die einzelnen Flächenabschnitte z.B. Freiformflächen sein, deren Hüllfläche z.B. Parabelfläche sind. Die Brennlinien (55, 74) können z.B. in der Lichtausbreitungsrichtung (15) verschoben sein.The surfaces described here may be enveloping surfaces. Thus, the individual surface sections may be e.g. Be free-form surfaces whose envelope surface, e.g. Are parabolic surface. The focal lines (55, 74) may be e.g. be shifted in the light propagation direction (15).

Auch ist es denkbar, beispielsweise den Parabelflächenabschnitt (52) der Deckfläche (51) mit einzelnen Stufen auszuführen. Von jeweils zwei einander angrenzenden Grenzflächenabschnitten des Lichtleitkörpers (31) umfasst dann ein Begrenzungsflächenabschnitt eine z.B. parabelflächenartige Totalreflexionsfläche (151) für das vom oberen lichtemittierenden Chip (23) emittierte Licht (101 - 105), während der andere Grenzflächenabschnitt eine Totalreflexionsfläche für das vom unteren lichtemittierenden Chip (25) emittierte Licht (106 - 109) umfasst. Gegebenenfalls kann auch die Bodenfläche (71) gestuft ausgeführt sein.It is also conceivable, for example, to execute the parabolic surface section (52) of the cover surface (51) with individual steps. From each two adjacent interface portions of the light guide (31) then comprises a boundary surface portion, for example, a parabolic surface-like total reflection surface (151) for the light emitted from the upper light-emitting chip (23) light (101 - 105), while the other interface portion of a total reflection surface for that of the lower light-emitting Chip (25) emitted light (106 - 109) comprises. Optionally, the bottom surface (71) can be made stepped.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
UmgebungSurroundings
1010
Leuchteinheit, LichtmodulLight unit, light module
1111
optische Achseoptical axis
1515
LichtausbreitungsrichtungLight propagation direction
1616
Zwischenraumgap
2020
Leuchtdiode, LumineszenzdiodeLight emitting diode, light emitting diode
2121
Gruppe von LichtquellenGroup of light sources
22 - 2522 - 25
Lichtquellen, lichtemittierende ChipsLight sources, light emitting chips
2626
Sockelbase
3030
Primäroptikprimary optics
3131
Lichtleitkörperfiber-optic element
3232
LichteintrittsflächeLight entry surface
3333
obere Kante von (32)upper edge of (32)
3434
LichtaustrittsflächeLight-emitting surface
3535
Unterkante von (34)Lower edge of (34)
36, 3736, 37
Abschnitte von (35)Sections of (35)
3838
Übergangsabschnitt von (35)Transitional section of (35)
4141
Seitenflächeside surface
4242
ebener Flächenabschnittplane surface section
4343
Seitenflächeside surface
4444
ebener Flächenabschnittplane surface section
5151
Deckflächecover surface
5252
ParabelflächenabschnittParabolic surface section
5353
gebogener Flächenabschnittcurved surface section
5454
ebener Flächenabschnitt; Auslauf von (51)flat surface section; Spout of (51)
5555
Brennliniefocal line
5656
Wendelinieturning line
5757
Abrundungenroundings
6161
KurveCurve
6262
Kurvenabschnitt, ParabelabschnittCurve section, parabolic section
6464
gerader Abschnittstraight section
6565
Brennpunkt von (62)Focal point of (62)
6666
Wendepunktturning point
7171
Bodenflächefloor area
7272
ParabelflächenabschnittParabolic surface section
7373
ParabelflächenabschnittParabolic surface section
7474
Brennliniefocal line
7575
ÜbergangsbereichTransition area
7676
Kurvenabschnitt, ParabelabschnittCurve section, parabolic section
7777
ÜbergangsradiusTransition radius
7878
Brennpunkt von (76)Focal point of (76)
8181
optische Linse, Sammellinse, Kondensorlinseoptical lens, condenser lens, condenser lens
8282
Planseiteplan page
8383
konvexe Fläche, Lichtaustrittsfläche von (81)convex surface, light-emitting surface of (81)
9090
Sekundäroptiksecondary optics
9191
Sekundärlinsesecondary lens
9292
Planflächeplane surface
9393
LichtaustrittsflächeLight-emitting surface
9595
Mittellinie von (91)Centerline of (91)
100100
Licht, LichtbündelLight, light bundles
101 - 105101-105
Lichtstrahlen von (23)Beams of (23)
106 - 109106-109
Lichtstrahlen von (25)Beams of (25)
151151
obere Grenzfläche, Totalreflexionsflächeupper interface, total reflection surface
161161
untere Grenzfläche, Totalreflexionsflächelower interface, total reflection surface
170170
BeleuchtungsstärkeverteilungIlluminance distribution
171171
Schnittpunktintersection
172172
Bezugsgitternetzlinien, horizontalReference grid lines, horizontal
173173
Bezugsgitternetzlinien, vertikalReference grid lines, vertical
174174
Isoliniencontours
175175
Bereich höchster Beleuchtungsstärke, Hot-spotHighest luminance area, hot spot
176176
Hell-Dunkel-GrenzeLight-off
177177
Abschnitt von (176)Section of (176)
178178
Abschnitt von (176)Section of (176)
179179
Verbindungsabschnittconnecting portion
181181
ausgeleuchteter Bereichilluminated area

Claims (17)

  1. Lighting unit (10) having at least one light-emitting diode (20) comprising at least one light-emitting chip (22; 23; 24; 25) as the light source, having at least one light guide body (31) optically downstream of the light-emitting diode (20) and flaring out in the light propagation direction (15) and having a secondary lens (91) optically downstream of the light guide body (31), where two surfaces (51, 71) arranged opposite one another and limiting the light guide body (31), which in a longitudinal section bisecting these surfaces (51, 71) form a bottom surface (71) and a top surface (51), have opposingly curved sections (62, 76) adjoining the light entry surface (32) of the light guide body (31), where the bottom surface (71) comprises a curved section (76) positively curved relative to the light propagation direction (15) and the top surface (51) a curved section (62) negatively curved relative to the light propagation direction (15), characterized in that,
    - in the said longitudinal section at least one of the curves (62, 76) limiting the light guide body (31) has a reversal point (66).
  2. Lighting unit (10) according to Claim 1, characterized in that the light-emitting diode (20) comprises a group (21) of light-emitting chips (22 - 25) as light sources.
  3. Lighting unit (10) according to Claim 2, characterized in that each light-emitting chip (22 - 25) inside the group (21) has at least two directly adjacent light-emitting chips (23, 24; 22, 25; 22, 25; 23, 24).
  4. Lighting unit (10) according to Claim 1, characterized in that the curved sections (62, 76) are parabolic sections.
  5. Lighting unit (10) according to Claim 4, characterized in that the abscissas of the coordinate systems relative to the parabolas form with the optical axis (11) of the lighting unit (10) an angle of at least 50 degrees.
  6. Lighting unit (10) according to Claim 4, characterized in that the surfaces (51, 71) have in each longitudinal section at least one parabolically curved section (62, 76).
  7. Lighting unit (10) according to Claim 1, characterized in that the curve (61) containing the reversal point (66) comprises a straight section (64).
  8. Lighting unit (10) according to Claim 1, characterized in that the light-emitting chips (22 - 25) are arranged in a square.
  9. Lighting unit (10) according to Claim 1, characterized in that two surfaces (41, 43) of the light guide body (31) arranged opposite to one another and connnecting the top surface (51) and the bottom surface (71) each comprise at least one flat surface section (42, 44), where the associated planes form an acute angle outside the bottom surface (71) and oriented in the direction of the light guide body (31).
  10. Lighting unit (10) according to Claim 1, characterized in that the top surface (51) or the bottom surface (71) have at least two curved surface sections (72, 73) arranged offset to one another and rotated against one another around the intersecting line of the light entry surface (32) with the respectively oppositely arranged surface (71; 51).
  11. Lighting unit (10) according to Claim 10, characterized in that the two surface sections (72, 73) are connected by means of a transitional area (75).
  12. Lighting unit (10) according to Claim 11, characterized in that the transitional area (75) forms with the two surface sections (72, 73) an angle of 135 degrees in each case.
  13. Lighting unit (10) according to Claim 10, characterized in that the longitudinal edges of the light guide body (31) which face away from the surface section (72, 73) have rounded portions (57).
  14. Lighting unit (10) according to Claim 13, characterized in that the curvature radius of the rounded portions (57) increases in the light propagation direction (15).
  15. Lighting unit (10) according to Claim 1, characterized in that a collimating lens (81) optically upstream of the secondary lens (91) is optically downstream of the light guide body (31).
  16. Light guide body (31) having a light entry surface (32) and a light exit surface (34) and whose cross-section flares out in the light propagation direction (15), where two surfaces (51, 71) arranged opposite one another and limiting the light guide body (31), which in a longitudinal section bisecting these surfaces (51, 71) form a bottom surface (71) and a top surface (51), have opposingly curved sections (62, 76) adjoining the light entry surface (32), where the bottom surface (71) comprises a curved section (76) positively curved relative to the light propagation direction (15) and the top surface (51) a curved section (62) negatively curved relative to the light propagation direction (15), characterized in that
    - in the said longitudinal section at least one of the curves (62, 76) limiting the light guide body (31) has a reversal point (66).
  17. Light guide body according to Claim 16, characterized in that the light exit surface (34) has at least seven times the size of the light entry surface (32).
EP07017814A 2006-09-19 2007-09-12 Illumination unit with light diode, light conduction body and secondary lens Expired - Fee Related EP1903275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200730300T SI1903275T1 (en) 2006-09-19 2007-09-12 Illumination unit with light diode, light conduction body and secondary lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006044641A DE102006044641A1 (en) 2006-09-19 2006-09-19 Light unit with LED, light guide and secondary lens

Publications (2)

Publication Number Publication Date
EP1903275A1 EP1903275A1 (en) 2008-03-26
EP1903275B1 true EP1903275B1 (en) 2010-06-09

Family

ID=38705151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07017814A Expired - Fee Related EP1903275B1 (en) 2006-09-19 2007-09-12 Illumination unit with light diode, light conduction body and secondary lens

Country Status (4)

Country Link
US (1) US7810975B2 (en)
EP (1) EP1903275B1 (en)
DE (2) DE102006044641A1 (en)
SI (1) SI1903275T1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130655A2 (en) * 2008-04-25 2009-10-29 Philips Intellectual Property & Standards Gmbh Lamp assembly
DE102008027234B4 (en) * 2008-06-06 2014-05-28 Ifm Electronic Gmbh Lighting unit and optical element
WO2012005686A1 (en) * 2010-07-05 2012-01-12 I3 Lab Pte Ltd An automotive led headlamp comprising a light tunnel device
JP5618721B2 (en) * 2010-09-13 2014-11-05 株式会社小糸製作所 Lens manufacturing method
AT510824B1 (en) * 2010-11-23 2016-05-15 Swarco Futurit Verkehrssignalsysteme Ges M B H COLOR MIXED COLLECTION
AT510437B1 (en) * 2011-02-16 2012-04-15 Zizala Lichtsysteme Gmbh LED LIGHT MODULE AND VEHICLE HEADLIGHTS
JP5589007B2 (en) 2012-01-18 2014-09-10 シャープ株式会社 Light emitting device, lighting device, and vehicle headlamp
EP2827048B1 (en) * 2012-03-15 2020-04-22 Koito Manufacturing Co., Ltd. Automotive lamp
DE102012009596A1 (en) * 2012-05-15 2013-11-21 Docter Optics Se Method for producing a headlight lens
DE102013006707A1 (en) * 2012-05-26 2013-11-28 Docter Optics Se vehicle headlights
JP6030864B2 (en) * 2012-06-13 2016-11-24 株式会社小糸製作所 Lamp unit and projection lens
DE102012211284A1 (en) * 2012-06-29 2014-01-02 Automotive Lighting Reutlingen Gmbh Light-guiding element for lighting device and light guide, has light entry surface for entry of light in light-guiding element and light exit surface spaced from light entry surface, by which light guided in light-guiding element is exit
DE102012213845B4 (en) 2012-08-03 2015-05-28 Automotive Lighting Reutlingen Gmbh Light guide and light module
JP5805327B2 (en) * 2012-08-28 2015-11-04 三菱電機株式会社 Headlight light source and headlight
DE102012108175B4 (en) * 2012-09-04 2022-04-28 HELLA GmbH & Co. KGaA Lighting device for vehicles
DE102012218684B9 (en) * 2012-10-12 2016-05-25 Automotive Lighting Reutlingen Gmbh light module
US9664352B2 (en) 2012-11-08 2017-05-30 Docter Optics Se Headlight lens for a vehicle headlight
DE102013013995B4 (en) 2013-01-23 2023-06-07 Docter Optics Se Headlight lens for a vehicle headlight
WO2014114308A1 (en) * 2013-01-23 2014-07-31 Docter Optics Se Headlamp lens for a vehicle headlamp
CN103267256A (en) * 2013-03-25 2013-08-28 苏州奥浦迪克光电技术有限公司 LED (light emitting diode) automobile headlamp
JP6131724B2 (en) * 2013-06-11 2017-05-24 スタンレー電気株式会社 Vehicle lighting
JP6177596B2 (en) 2013-06-18 2017-08-09 シャープ株式会社 Light emitting device
DE102013106620B4 (en) * 2013-06-25 2022-10-20 HELLA GmbH & Co. KGaA Lighting device for vehicles
JP6222557B2 (en) * 2013-10-17 2017-11-01 スタンレー電気株式会社 Vehicle lighting
KR101592648B1 (en) * 2013-12-23 2016-02-12 현대자동차주식회사 Head lamp apparatus for vehicle
KR20150116665A (en) * 2014-04-08 2015-10-16 현대모비스 주식회사 Primary Optic Lens and Lamp for Vehicle Using the Same
TWI607181B (en) * 2015-07-06 2017-12-01 隆達電子股份有限公司 Light-guiding pillar and vehicle lamp using the same
FR3039630A1 (en) 2015-07-28 2017-02-03 Valeo Vision LIGHTING SYSTEM FOR MOTOR VEHICLE PROJECTOR
FR3039883B1 (en) * 2015-08-06 2020-10-02 Valeo Vision LUMINOUS MODULE IN TRANSPARENT MATERIAL WITH TWO SIDES OF REFLECTION
WO2017059945A1 (en) 2015-10-07 2017-04-13 Docter Optics Se Headlamp lens for a vehicle headlamp
JP6746896B2 (en) * 2015-11-10 2020-08-26 市光工業株式会社 Vehicle lighting
JP6305967B2 (en) * 2015-11-11 2018-04-04 シャープ株式会社 Light emitting device, lighting device, and vehicle headlamp
DE102015225093A1 (en) * 2015-12-14 2017-06-14 Osram Gmbh LIGHTING SYSTEM AND VEHICLE HEADLIGHTS
US20200292143A1 (en) * 2016-03-21 2020-09-17 Lumileds Llc Lighting arrangement
ITUA20164515A1 (en) * 2016-06-20 2017-12-20 Automotive Lighting Italia Spa COMPACT LIGHTING DEVICE FOR VEHICLES
EP3382263B1 (en) * 2016-09-30 2020-04-08 H.A. Automotive Systems, Inc. Condenser for low-beam vehicle light module
CN108343861B (en) * 2017-01-24 2020-07-10 清华大学 Free-form surface illumination system
KR101907372B1 (en) * 2017-04-26 2018-10-12 현대모비스 주식회사 Head lamp apparatus
US10851959B2 (en) * 2017-11-22 2020-12-01 Stanley Electric Co., Ltd. Vehicle headlight
US10288248B1 (en) * 2017-12-14 2019-05-14 Valeo North America, Inc. Device for automotive lighting
US11226078B2 (en) * 2018-04-23 2022-01-18 Stanley Electric Co., Ltd. Vehicular lamp fitting
JP7176810B2 (en) * 2018-06-21 2022-11-22 スタンレー電気株式会社 vehicle lamp
CN112771306B (en) * 2018-10-02 2024-04-05 亮锐控股有限公司 Optical element for a lighting device
CN210197182U (en) * 2019-05-17 2020-03-27 华域视觉科技(上海)有限公司 Light guide element, vehicle lighting device and automobile
CN111964000A (en) * 2019-05-20 2020-11-20 华域视觉科技(上海)有限公司 Vehicle lighting module, car light and car
US11391429B2 (en) 2019-05-20 2022-07-19 Hasco Vision Technology Co., Ltd. Vehicle lamp optical element assembly, vehicle illumination module, vehicle lamp, and vehicle
DE102020107075A1 (en) * 2020-03-15 2021-09-16 Docter Optics Se Headlight lens for a vehicle headlight
WO2022044078A1 (en) * 2020-08-24 2022-03-03 三菱電機株式会社 Headlight module and headlight device
KR102489648B1 (en) 2021-02-24 2023-01-18 현대모비스 주식회사 Lamp for automobile and automobile including the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170400A (en) * 1977-07-05 1979-10-09 Bert Bach Wide angle view optical system
US6152588A (en) * 1994-09-28 2000-11-28 Sdl, Inc. Addressable vehicular lighting system
US6527411B1 (en) * 2000-08-01 2003-03-04 Visteon Corporation Collimating lamp
DE10302969B4 (en) * 2003-01-25 2010-05-12 Automotive Lighting Reutlingen Gmbh Headlamps, in particular for motor vehicles
DE10319274A1 (en) * 2003-04-29 2004-12-02 Osram Opto Semiconductors Gmbh light source
DE10325330B4 (en) * 2003-06-04 2010-06-02 Automotive Lighting Reutlingen Gmbh Headlight for motor vehicles
EP1738107A4 (en) * 2004-04-23 2008-12-31 Light Prescriptions Innovators Optical manifold for light-emitting diodes
DE102005017528A1 (en) * 2004-08-27 2006-03-09 Osram Opto Semiconductors Gmbh Illuminant with predetermined emission characteristic and primary optic element for a light source
JP2006127856A (en) * 2004-10-27 2006-05-18 Koito Mfg Co Ltd Vehicular lighting lamp
US7777955B2 (en) * 2005-07-29 2010-08-17 Optical Research Associates Rippled mixers for uniformity and color mixing
US7832878B2 (en) * 2006-03-06 2010-11-16 Innovations In Optics, Inc. Light emitting diode projection system
DE102006044640A1 (en) * 2006-09-19 2008-03-27 Schefenacker Vision Systems Germany Gmbh Lighting unit for high and low beam generation

Also Published As

Publication number Publication date
US7810975B2 (en) 2010-10-12
SI1903275T1 (en) 2010-09-30
EP1903275A1 (en) 2008-03-26
DE102006044641A1 (en) 2008-03-27
US20080080207A1 (en) 2008-04-03
DE502007004058D1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
EP1903275B1 (en) Illumination unit with light diode, light conduction body and secondary lens
EP1903274A1 (en) Illumination unit for full and dipped headlights
EP2587125B1 (en) Headlamp projection module for a motor vehicle
EP2910847B1 (en) Light module of a motor vehicle headlight and headlight with such a light module
EP1818599B1 (en) Dipped headlight which creates a strongly contrasted cut-off
EP1684002B1 (en) Lighting unit with light distributor
EP2306073B1 (en) Light module for a lighting device of a motor vehicle
EP1818600B1 (en) Dipped headlight with hot spot generation
DE102013013995B4 (en) Headlight lens for a vehicle headlight
EP2607774B1 (en) Motor vehicle lighting device with a long and flat luminescent area
EP3080513B1 (en) Motor-vehicle lighting device
EP2507542B1 (en) Luminaire and traffic route illumination device
DE102007016923A1 (en) Light guide body and light unit with light guide body
EP3864341B1 (en) Low-beam headlight
EP3168657B1 (en) Attachment lens and attachment lens assembly with multiple attachment lenses
WO2014114308A1 (en) Headlamp lens for a vehicle headlamp
EP3575674B1 (en) Light guide for a motor vehicle lighting device
EP3388734B1 (en) Primary lens unit for light module of vehicle headlamp
EP2618045A1 (en) Lighting device for a motor vehicle
DE102015213827B4 (en) Lens attachment for a signal lamp of a motor vehicle lighting device
DE102021117696A1 (en) Optics for a lighting device and lighting device
DE102017125212B4 (en) LENS AND LIGHT MODULE
DE102012209013B4 (en) Optical element and a light module
DE102016208138A1 (en) Illuminating device for emitting illumination light

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080814

AKX Designation fees paid

Designated state(s): DE FR IT SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ODELO GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SI

REF Corresponds to:

Ref document number: 502007004058

Country of ref document: DE

Date of ref document: 20100722

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004058

Country of ref document: DE

Effective date: 20110309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20130904

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130919

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130930

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004058

Country of ref document: DE

Representative=s name: KAUFMANN, URSULA, DIPL.-PHYS. DR.RER.NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004058

Country of ref document: DE

Representative=s name: RPK PATENTANWAELTE REINHARDT, POHLMANN UND KAU, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140922

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004058

Country of ref document: DE

Representative=s name: RPK PATENTANWAELTE REINHARDT, POHLMANN UND KAU, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20150505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004058

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401