JP6222557B2 - Vehicle lighting - Google Patents
Vehicle lighting Download PDFInfo
- Publication number
- JP6222557B2 JP6222557B2 JP2013216363A JP2013216363A JP6222557B2 JP 6222557 B2 JP6222557 B2 JP 6222557B2 JP 2013216363 A JP2013216363 A JP 2013216363A JP 2013216363 A JP2013216363 A JP 2013216363A JP 6222557 B2 JP6222557 B2 JP 6222557B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- lens
- light guide
- unit
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 32
- 230000004075 alteration Effects 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 206010010071 Coma Diseases 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/255—Lenses with a front view of circular or truncated circular outline
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/143—Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/151—Light emitting diodes [LED] arranged in one or more lines
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
本発明は、車両用灯具に係り、特に、光源と光源の前方に配置されたレンズとを備えた車両用灯具に関する。 The present invention relates to a vehicular lamp, and more particularly, to a vehicular lamp including a light source and a lens disposed in front of the light source.
従来、車両用灯具の分野においては、光源と光源の前方に配置されたレンズとを備え、光源からの直射光が、レンズを透過して前方に照射されて、上端縁にカットオフラインを含むすれ違いビーム用配光パターンを形成するように構成された車両用灯具が提案されている(例えば、特許文献1参照)。 Conventionally, in the field of vehicular lamps, a light source and a lens disposed in front of the light source are provided, and direct light from the light source is transmitted forward through the lens, and the upper edge includes a cut-off line. There has been proposed a vehicular lamp configured to form a beam light distribution pattern (see, for example, Patent Document 1).
図8は、特許文献1に記載の車両用灯具200の斜視図である。 FIG. 8 is a perspective view of the vehicular lamp 200 described in Patent Document 1. FIG.
図8に示すように、特許文献1に記載の車両用灯具200は、光源210、光源210の前方に配置された凸レンズ220、凸レンズ220の周囲を囲むように配置された付加レンズ230を備え、光源210からの直射光の一部(車両前後方向に延びる基準軸AXに対して狭角方向に放出される相対強度が強い光)が凸レンズ220を透過して前方に照射されるとともに、光源210からの直射光の他の一部(基準軸AXに対して広角方向に放出される相対強度が弱い光)が付加レンズ230内部に入射し、当該付加レンズ230内部で内面反射されて進路を変更された後、前方に照射されて、上端縁にカットオフラインを含むすれ違いビーム用配光パターンを形成するように構成されている。 As shown in FIG. 8, the vehicular lamp 200 described in Patent Document 1 includes a light source 210, a convex lens 220 disposed in front of the light source 210, and an additional lens 230 disposed so as to surround the convex lens 220. A part of the direct light from the light source 210 (light having a high relative intensity emitted in a narrow-angle direction with respect to the reference axis AX extending in the vehicle front-rear direction) passes through the convex lens 220 and is irradiated forward, and the light source 210 Another part of the direct light from the light (light having a low relative intensity emitted in the wide-angle direction with respect to the reference axis AX) enters the additional lens 230 and is internally reflected inside the additional lens 230 to change the course. Then, the light beam is irradiated forward, and a light distribution pattern for a passing beam including a cut-off line at the upper end edge is formed.
しかしながら、上記構成の車両用灯具200においては、付加レンズ230の作用により光源210からの直射光の他の一部(基準軸AXに対して広角方向に放出される相対強度が弱い光)を利用する構成であるため、光利用効率が向上するものの、付加レンズ230が凸レンズ220の周囲を囲むように配置されているため、その分、車両用灯具200が大型化するという問題がある。 However, in the vehicular lamp 200 having the above-described configuration, another part of the direct light from the light source 210 (light with low relative intensity emitted in the wide-angle direction with respect to the reference axis AX) is used by the action of the additional lens 230. Therefore, although the light use efficiency is improved, the additional lens 230 is disposed so as to surround the convex lens 220, and therefore, there is a problem that the vehicular lamp 200 is correspondingly enlarged.
本発明は、このような事情に鑑みてなされたものであり、光利用効率が向上し、かつ、小型化できる車両用灯具を提供することを目的とする。 This invention is made | formed in view of such a situation, and it aims at providing the vehicle lamp which can improve light utilization efficiency and can be reduced in size.
上記目的を達成するため、請求項1に記載の発明は、車両前方側から車両後方側に向かって順に配置された、第1レンズ部、第2レンズ部、導光部及び光源を備え、前記光源からの光が、前記導光部で導光された後、前記第2レンズ部、前記第1レンズ部の順に透過して前方に照射されて、すれ違いビーム用配光パターンを形成する車両用灯具において、前記第1レンズ部及び前記第2レンズ部は、車両前後方向に延びる基準軸上に配置されており、前記導光部は、前記光源からの光が前記導光部内部に入射する入射面と、前記導光部内部に入射した前記光源からの光が出射する出射面と、を含み、前記基準軸より上に配置されており、前記導光部の出射面の下端縁は、カットオフラインに対応した形状の段差付きエッジ部を含み、前記基準軸近傍に配置されており、前記第1レンズ部及び前記第2レンズ部は、焦点が前記段差付きエッジ部近傍に位置する投影レンズを構成しており、前記光源は、横長の発光面を含み、前記横長の発光面が前記導光部の入射面近傍において当該入射面に対向した状態で前記基準軸より上かつ前記基準軸近傍に配置されており、前記導光部の出射面と前記第2レンズ部の入射面は、面接触しており、前記投影レンズの後方焦点面は、前記段差付きエッジ部に略一致し、前記第1レンズ部は、その出射面が前記基準軸に直交する平面形状の光学面でその入射面が車両後方側に向かって凸の光学面の凸レンズとして構成されており、前記第2レンズ部は、その出射面が車両前方側に向かって凸の光学面でその入射面が車両後方側に向かって凸の光学面の、全体として略球状のレンズとして構成されていることを特徴とする。 In order to achieve the above object, the invention described in claim 1 includes a first lens unit, a second lens unit, a light guide unit, and a light source, which are sequentially arranged from the vehicle front side toward the vehicle rear side, After the light from the light source is guided by the light guide unit, the light is transmitted through the second lens unit and the first lens unit in this order and irradiated forward to form a light distribution pattern for passing beam. In the lamp, the first lens unit and the second lens unit are disposed on a reference axis extending in a vehicle front-rear direction, and the light guide unit receives light from the light source inside the light guide unit. Including an incident surface and an exit surface from which light from the light source incident on the inside of the light guide portion exits, and is disposed above the reference axis, and a lower end edge of the exit surface of the light guide portion is Including a stepped edge portion having a shape corresponding to a cut-off line, The first lens unit and the second lens unit are arranged in the vicinity of each other to form a projection lens whose focal point is positioned in the vicinity of the stepped edge unit, and the light source includes a horizontally long light emitting surface, The horizontally long light emitting surface is disposed above the reference axis and in the vicinity of the reference axis in a state of being opposed to the incident surface in the vicinity of the incident surface of the light guide unit. The incident surface of the lens unit is in surface contact, the rear focal plane of the projection lens substantially coincides with the stepped edge portion, and the first lens unit has a plane whose exit surface is orthogonal to the reference axis. The optical surface is configured as a convex lens whose optical surface is convex toward the rear side of the vehicle, and the second lens portion is an optical surface whose output surface is convex toward the front side of the vehicle. An optical surface whose entrance surface is convex toward the rear of the vehicle. Characterized in that it is configured as a substantially spherical lens as a whole.
請求項1に記載の発明によれば、光利用効率が向上し、かつ、小型化できる車両用灯具を提供することができる。 According to the first aspect of the present invention, it is possible to provide a vehicular lamp that can improve light utilization efficiency and can be miniaturized.
光利用効率が向上するのは、光源(発光面)が導光部の入射面近傍において当該入射面に対向した状態で配置されているため、光源(発光面)からの光の略全てが、導光部の入射面から導光部内部に入射することによるものである。 The light use efficiency is improved because the light source (light emitting surface) is disposed in the vicinity of the incident surface of the light guide unit in a state facing the incident surface, so that almost all of the light from the light source (light emitting surface) This is because the light enters the light guide from the incident surface of the light guide.
小型化できるのは、従来技術(例えば特許第5196314号公報)に記載の付加レンズを用いることなく、光利用効率を向上させることができることによるものである。 The downsizing is possible because the light utilization efficiency can be improved without using the additional lens described in the prior art (for example, Japanese Patent No. 5196314).
請求項1に記載の発明によれば、第2レンズ部と導光部とが物理的に分離した別部材として構成されているため、各々を容易に製造することができる。また、導光部を耐熱性の高い材料製とし、第2レンズ部を透明樹脂製とすることができる。 According to invention of Claim 1 , since the 2nd lens part and the light guide part are comprised as another member which isolate | separated physically, each can be manufactured easily. Further, the light guide portion can be made of a material having high heat resistance, and the second lens portion can be made of a transparent resin.
請求項2に記載の発明は、請求項1に記載の発明において、前記第2レンズ部の出射面の曲率が前記第1レンズ部の入射面の曲率より小さいことを特徴とする。 According to a second aspect of the present invention, in the first aspect of the present invention, the curvature of the exit surface of the second lens unit is smaller than the curvature of the incident surface of the first lens unit.
請求項2に記載の発明によれば、投影レンズを、球面収差が除去され、かつ、アッベの正弦条件を満たす収差の少ないレンズとして構成することができる。その結果、遠方照度を高めつつ、水平線よりも上にコマ収差等に起因する幻惑光が発生しない(又はほとんど発生しない)明瞭なカットオフラインを持つすれ違いビーム用配光パターンを形成することができる。 According to the second aspect of the present invention, the projection lens can be configured as a lens from which spherical aberration is removed and which has less aberration that satisfies the Abbe sine condition. As a result, it is possible to form a light distribution pattern for a passing beam having a clear cut-off line that does not generate (or hardly generates) illusion light due to coma aberration or the like above the horizontal line while increasing the far-field illuminance.
これは、投影レンズを、一つのレンズではなく、第1レンズ部及び第2レンズ部(特に、第1レンズ部の出射面及び入射面並びに第2レンズ部の出射面)で構成し、かつ、第2レンズ部の出射面の曲率を第1レンズ部の入射面の曲率より小さくしたことによるものである。 This is because the projection lens is composed of a first lens part and a second lens part (in particular, an exit surface and an entrance surface of the first lens part and an exit surface of the second lens part) instead of a single lens, and This is because the curvature of the exit surface of the second lens unit is made smaller than the curvature of the entrance surface of the first lens unit.
請求項3に記載の発明は、請求項1又は2に記載の発明において、第2レンズ部及び導光部は、前記導光部の出射面と前記第2レンズ部の入射面とが面接触した部分が存在しない一体のレンズ体として構成されていることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the invention, the second lens portion and the light guide portion are in surface contact between the light exit surface of the light guide portion and the light entrance surface of the second lens portion. It is characterized in that it is configured as an integral lens body in which such a portion does not exist.
請求項3に記載の発明によれば、第2レンズ部と導光部の界面における光量ロスをなくすことができる。 According to the third aspect of the present invention, it is possible to eliminate a light amount loss at the interface between the second lens unit and the light guide unit.
請求項4に記載の発明は、請求項1から3のいずれか1項に記載の発明において、前記後方焦点面上には、前記導光部内部に入射し、当該導光部の下端面で内面反射された後、前記後方焦点面に到達する前記光源からの光と、前記導光部内部に入射し、前記導光部の下端面で内面反射されることなく前記後方焦点面に到達する前記光源からの光によって、前記すれ違いビーム用配光パターンに対応する光度分布が形成され、前記光度分布が前記投影レンズによって前方に反転投影されることで、前記すれ違いビーム用配光パターンが形成されることを特徴とする。 The invention according to claim 4 is the invention according to any one of claims 1 to 3 , wherein the light incident on the rear focal plane is incident on the inside of the light guide section, and the lower end face of the light guide section. After being internally reflected, the light from the light source that reaches the back focal plane and the inside of the light guide unit, and reaches the back focal plane without being internally reflected by the lower end surface of the light guide unit. A light intensity distribution corresponding to the low beam light distribution pattern is formed by the light from the light source, and the light intensity distribution is reversely projected forward by the projection lens, thereby forming the low beam light distribution pattern. It is characterized by that.
請求項4に記載の発明によれば、水平線付近にホットゾーン(高光度領域)を含む遠方視認性に優れたすれ違いビーム用配光パターンを形成することができる。
According to the fourth aspect of the present invention, it is possible to form a light distribution pattern for a passing beam that includes a hot zone (high luminous intensity region) in the vicinity of the horizontal line and has excellent distance visibility.
本発明によれば、光利用効率が向上し、かつ、小型化できる車両用灯具を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the light utilization efficiency can improve and the vehicle lamp which can be reduced in size can be provided.
以下、本発明の一実施形態である車両用灯具10について、図面を参照しながら説明する。 Hereinafter, a vehicular lamp 10 according to an embodiment of the present invention will be described with reference to the drawings.
図1は本実施形態の車両用灯具10の縦断面図、図2は斜視図(レンズホルダ20省略)、図3は光源18からの光の光路図、図4は車両用灯具10から前方に照射される光により、車両前面に正対した仮想鉛直スクリーン(車両前面から約25m前方に配置されている)上に形成されるすれ違いビーム用配光パターンPLoの例である。 1 is a longitudinal sectional view of a vehicular lamp 10 according to the present embodiment, FIG. 2 is a perspective view (lens holder 20 omitted), FIG. 3 is an optical path diagram of light from a light source 18, and FIG. 4 is a front view from the vehicular lamp 10. the light irradiated is an example of directly facing the virtual vertical screen low-beam light distribution pattern P Lo formed on (located about 25m forward from the vehicle front) to the vehicle front.
図1、図2に示すように、本実施形態の車両用灯具10は、車両前方側から車両後方側に向かって順に配置された、第1レンズ部12、第2レンズ部14、導光部16及び光源18を備え、図3に示すように、光源18からの光が、導光部16で導光された後、第2レンズ部14、第1レンズ部12の順に透過して前方に照射されて、図4に示すように、上端縁にカットオフラインCL(CL1〜CL3)を含むすれ違いビーム用配光パターンPLoを形成する車両用灯具として構成されている。 As shown in FIGS. 1 and 2, the vehicular lamp 10 according to the present embodiment is arranged in order from the front side of the vehicle toward the rear side of the vehicle, the first lens unit 12, the second lens unit 14, and the light guide unit. 16 and the light source 18, as shown in FIG. 3, after the light from the light source 18 is guided by the light guide unit 16, the light is transmitted through the second lens unit 14 and the first lens unit 12 in this order. As shown in FIG. 4, it is configured as a vehicular lamp that is irradiated and forms a passing beam light distribution pattern P Lo including a cut-off line CL (CL1 to CL3) at its upper edge.
図1に示すように、第1レンズ部12は、前方側表面12a(以下出射面12aと称する)が無限の曲率半径をもつ平面形状の光学面で後方側表面12b(以下入射面12bと称する)が車両後方側に向かって凸の光学面(負の曲率の光学面)の平凸レンズとして構成されている。なお、本実施形態では、第1レンズ部12の出射面12aは車両前後方向に延びる基準軸AX(光軸とも称される)に直交する平面形状の光学面として構成されており、第1レンズ部12の入射面12bの曲率半径は48mm程度に設定されている。 As shown in FIG. 1, the first lens portion 12 is a planar optical surface having a front surface 12a (hereinafter referred to as an emission surface 12a) having an infinite radius of curvature, and a rear surface 12b (hereinafter referred to as an incident surface 12b). ) Is configured as a plano-convex lens having a convex optical surface (an optical surface having a negative curvature) toward the vehicle rear side. In the present embodiment, the exit surface 12a of the first lens unit 12 is configured as a planar optical surface orthogonal to a reference axis AX (also referred to as an optical axis) extending in the vehicle front-rear direction, and the first lens The radius of curvature of the incident surface 12b of the portion 12 is set to about 48 mm.
第1レンズ部12は、レンズホルダ20に保持されて、基準軸AX上に配置されている。レンズホルダ20は、ヒートシンク22の前面22aに固定されて、図1に示す位置に配置されている。 The first lens unit 12 is held by the lens holder 20 and disposed on the reference axis AX. The lens holder 20 is fixed to the front surface 22a of the heat sink 22 and arranged at the position shown in FIG.
第2レンズ部14は、前方側表面14a(以下出射面14aと称する)が車両前方側に向かって凸の光学面(正の曲率の光学面)で後方側表面14b(以下入射面14bと称する)が車両後方側に向かって凸の光学面の、全体として球状のレンズ部と、フランジ部14cと、を含むレンズ部として構成されている。なお、本実施形態では、第2レンズ部14の出射面14aは、車両前方側に向かって凸の光学面(正の曲率の光学面)で、次の多項式を満たす非球面形状に最適化されている。 The second lens portion 14 has a front surface 14a (hereinafter referred to as an emission surface 14a) having a convex optical surface (an optical surface having a positive curvature) toward the vehicle front side, and a rear surface 14b (hereinafter referred to as an incident surface 14b). ) Is configured as a lens portion including a generally spherical lens portion and a flange portion 14c of an optical surface convex toward the vehicle rear side. In the present embodiment, the exit surface 14a of the second lens portion 14 is an optical surface convex toward the front side of the vehicle (an optical surface having a positive curvature) and is optimized to have an aspheric shape that satisfies the following polynomial. ing.
本実施形態で用いた上記多項式中の各変数は、次の表のとおりである。 Each variable in the polynomial used in the present embodiment is as shown in the following table.
第2レンズ部14は、その入射面14bが導光部16の出射面16aに面接触した状態でフランジ部14cが導光部16に保持されて、基準軸AX上に配置されている。なお、第2レンズ部14の入射面14bと導光部16の出射面16aとは、シリコン樹脂等の透明接着剤で接着されている。第2レンズ部14の周囲は、内部構造を覆い隠す目的でレンズホルダ20の内周面に設けられた遮蔽部20aで取り囲まれている。なお、第2レンズ部14は、光学的機能を奏さない部分がカットされた形状に構成されていてもよい。 The second lens portion 14 is disposed on the reference axis AX with the flange portion 14c held by the light guide portion 16 in a state where the incident surface 14b is in surface contact with the exit surface 16a of the light guide portion 16. The incident surface 14b of the second lens unit 14 and the output surface 16a of the light guide unit 16 are bonded with a transparent adhesive such as silicon resin. The periphery of the second lens portion 14 is surrounded by a shielding portion 20a provided on the inner peripheral surface of the lens holder 20 for the purpose of covering the internal structure. In addition, the 2nd lens part 14 may be comprised in the shape where the part which does not show | play an optical function was cut.
第1レンズ部12及び第2レンズ部14(特に、第1レンズ部12の出射面12a及び入射面12b並びに第2レンズ部14の出射面14a)は、焦点Fが導光部16の出射面16aと第2レンズ部14の入射面14bの界面上(例えば、導光部16の出射面16aの下端縁16a1(段付きエッジ部)近傍)に位置する投影レンズ(以下投影レンズ24と称する)を構成している。そして、投影レンズ24の像面湾曲(後方焦点面)は、導光部16の出射面16aと第2レンズ部14の入射面14bの界面(少なくとも導光部16の出射面16aの下端縁16a1、すなわち段付きエッジ部)に略一致している。 The first lens unit 12 and the second lens unit 14 (particularly, the emission surface 12 a and the incident surface 12 b of the first lens unit 12 and the emission surface 14 a of the second lens unit 14) have a focal point F of the emission surface of the light guide unit 16. Projection lens (hereinafter referred to as projection lens 24) located on the interface between 16a and the entrance surface 14b of the second lens unit 14 (for example, near the lower edge 16a1 (stepped edge) of the exit surface 16a of the light guide unit 16) Is configured. The curvature of field (rear focal plane) of the projection lens 24 is the interface between the exit surface 16a of the light guide unit 16 and the entrance surface 14b of the second lens unit 14 (at least the lower edge 16a1 of the exit surface 16a of the light guide unit 16). That is, it substantially coincides with the stepped edge portion).
以上のように、投影レンズ24を、一つのレンズではなく、第1レンズ部12及び第2レンズ部14(特に、第1レンズ部12の出射面12a及び入射面12b並びに第2レンズ部14の出射面14a)で構成し、かつ、第2レンズ部14の出射面14aの曲率を第1レンズ部12の入射面12bの曲率より小さくすることで、投影レンズ24を、球面収差が除去され、かつ、アッベの正弦条件を満たす収差の少ないレンズとして構成することができる。その結果、遠方照度を高めつつ、水平線Hよりも上にコマ収差等に起因する幻惑光が発生しない(又はほとんど発生しない)明瞭なカットオフラインCL(CL1〜CL3)を持つすれ違いビーム用配光パターンPLoを形成することができる。 As described above, the projection lens 24 is not a single lens, but the first lens unit 12 and the second lens unit 14 (in particular, the exit surface 12a and the entrance surface 12b of the first lens unit 12 and the second lens unit 14). By making the exit surface 14a) and the curvature of the exit surface 14a of the second lens unit 14 smaller than the curvature of the entrance surface 12b of the first lens unit 12, the projection lens 24 is free from spherical aberration, In addition, it can be configured as a lens with less aberration that satisfies Abbe's sine condition. As a result, a light distribution pattern for a passing beam having a clear cut-off line CL (CL1 to CL3) in which distant light is not generated (or hardly generated) due to coma aberration or the like above the horizontal line H while increasing the illuminance in the distance. P Lo can be formed.
導光部16は、光源18からの光が導光部16内部に入射する車両後方側の光学面16b(以下入射面16bと称する)と、導光部16内部に入射した光源18からの光が出射する車両前方側の光学面16a(以下出射面16aと称する)と、を含んでいる。入射面16bは、平面形状の光学面として構成されている。なお、本実施形態では、入射面16bは、基準軸AXに直交する平面形状の光学面として構成されている。出射面16aは、第2レンズ部14の入射面14bが面接触するように、当該第2レンズ部14の入射面14bに対応して車両後方側に向かって凹の光学面として構成されている。 The light guide unit 16 includes an optical surface 16b on the vehicle rear side where light from the light source 18 enters the light guide unit 16 (hereinafter referred to as an incident surface 16b), and light from the light source 18 that enters the light guide unit 16 inside. , And an optical surface 16a (hereinafter referred to as an emission surface 16a) on the vehicle front side. The incident surface 16b is configured as a planar optical surface. In the present embodiment, the incident surface 16b is configured as a planar optical surface perpendicular to the reference axis AX. The exit surface 16a is configured as a concave optical surface toward the vehicle rear side corresponding to the entrance surface 14b of the second lens unit 14 so that the entrance surface 14b of the second lens unit 14 is in surface contact. .
導光部16は、ヒートシンク22の前面22aに固定されて、基準軸AXより上に配置されている。導光部16の出射面16aの下端縁16a1は、カットオフラインCL(CL1〜CL3)に対応した形状の段差付きエッジ部を含み、基準軸AX近傍に配置されている。 The light guide unit 16 is fixed to the front surface 22a of the heat sink 22 and is disposed above the reference axis AX. The lower end edge 16a1 of the exit surface 16a of the light guide unit 16 includes a stepped edge portion corresponding to the cut-off line CL (CL1 to CL3), and is disposed in the vicinity of the reference axis AX.
図5は導光部16の斜視図、図6は図5中の矢印A方向から見た矢視図(正面図)である。 5 is a perspective view of the light guide unit 16, and FIG. 6 is an arrow view (front view) seen from the direction of arrow A in FIG.
図5、図6に示すように、導光部16の出射面16aの下端縁16a1(段付きエッジ部)は、左水平カットオフラインCL1に対応する辺e1、右水平カットオフラインCL2に対応する辺e2、及び、左水平カットオフラインCL1と右水平カットオフラインCL2とを接続する斜めカットオフラインCL3に対応する辺e3を含んでいる。導光部16の下端面16cは、出射面16aの下端縁16a1(段付きエッジ部)が基準軸AXに沿って車両後方側に引き延ばされて、入射面16bの下端縁16b1に接続された形状の光学面として構成されている。導光部16の下端面16cは、光源18を構成する発光面18b1の下端縁(下側の長辺)よりも若干下方に配置されている(図6参照)。 As shown in FIGS. 5 and 6, the lower end edge 16a1 (stepped edge portion) of the light exit surface 16a of the light guide portion 16 is a side e1 corresponding to the left horizontal cutoff line CL1, and a side corresponding to the right horizontal cutoff line CL2. e2 and a side e3 corresponding to an oblique cut-off line CL3 connecting the left horizontal cut-off line CL1 and the right horizontal cut-off line CL2. The lower end surface 16c of the light guide unit 16 is connected to the lower end edge 16b1 of the incident surface 16b by extending the lower end edge 16a1 (stepped edge portion) of the emission surface 16a to the vehicle rear side along the reference axis AX. It is configured as an optical surface having a different shape. The lower end surface 16c of the light guide part 16 is disposed slightly below the lower end edge (lower long side) of the light emitting surface 18b1 constituting the light source 18 (see FIG. 6).
第1レンズ部12、第2レンズ部14及び導光部16は、ポリカーボネイト(PC)製であってよいし、それ以外のアクリル(PMMA)、シクロオレフィンポリマー(COP)、シリコン樹脂等の透明樹脂製であってもよいし、ガラス製であってもよい。 The first lens unit 12, the second lens unit 14, and the light guide unit 16 may be made of polycarbonate (PC), or other transparent resins such as acrylic (PMMA), cycloolefin polymer (COP), and silicon resin. It may be made of glass or glass.
本実施形態では、第2レンズ部14と導光部16とが物理的に分離した別部材として構成されているため、各々を容易に製造することができる。また、導光部16を耐熱性の高い材料製(例えばガラス製)とし、第2レンズ部14を透明樹脂製とすることができる。なお、導光部16は、発熱する光源18の近くに配置されるため、耐熱性の高い材料製とするのが好ましい。 In this embodiment, since the 2nd lens part 14 and the light guide part 16 are comprised as another member which isolate | separated physically, each can be manufactured easily. In addition, the light guide unit 16 can be made of a material having high heat resistance (for example, glass), and the second lens unit 14 can be made of a transparent resin. In addition, since the light guide part 16 is arrange | positioned near the light source 18 which generate | occur | produces heat | fever, it is preferable to make it into a product with high heat resistance.
図6に示すように、光源18は、例えば、金属製の基板18a、横長矩形の発光面18b1(本実施形態では1×4mm)を含む白色LED光源等の半導体発光素子18bを備えている。基板18aの表面には、三つの半導体発光素子18b(本実施形態では光束が1000lm程度の三つの白色LED光源)が水平方向に一列に実装されて、横長矩形の発光面を構成している。なお、半導体発光素子18bは、白色LED光源に限らず、白色LD光源であってもよい。半導体発光素子18bの数は、三つに限らず、適宜の数とすることができる。 As shown in FIG. 6, the light source 18 includes a semiconductor light emitting element 18b such as a white LED light source including a metal substrate 18a and a horizontally long light emitting surface 18b1 (1 × 4 mm in this embodiment). On the surface of the substrate 18a, three semiconductor light emitting elements 18b (in this embodiment, three white LED light sources having a luminous flux of about 1000 lm) are mounted in a line in the horizontal direction to form a horizontally-long rectangular light emitting surface. The semiconductor light emitting element 18b is not limited to a white LED light source, and may be a white LD light source. The number of the semiconductor light emitting elements 18b is not limited to three and can be an appropriate number.
光源18(発光面18b1)から放出される光の指向特性はランバーシアンで、I(θ)=I0×cosθで表すことができる。これは、光源18(発光面18b1)が放出する光の広がりを表している。但し、I(θ)は光源18(発光面18b1)の光軸(発光面18b1の略中心を通りかつ発光面18b1に直交する方向に延びている)から角度θ傾いた方向の光度を表し、I0は光源18(発光面18b1)の光軸上の光度を表している。光源18(発光面18b1)では、その光軸上(θ=0)の光度が最大となる。 The directivity of light emitted from the light source 18 (light emitting surface 18b1) is Lambertian and can be expressed as I (θ) = I 0 × cos θ. This represents the spread of light emitted from the light source 18 (light emitting surface 18b1). However, I (θ) represents the luminous intensity in the direction inclined by the angle θ from the optical axis of the light source 18 (light emitting surface 18b1) (extending in the direction perpendicular to the light emitting surface 18b1 through the approximate center of the light emitting surface 18b1). I 0 represents the luminous intensity on the optical axis of the light source 18 (light emitting surface 18b1). In the light source 18 (light emitting surface 18b1), the luminous intensity on the optical axis (θ = 0) is maximized.
図1に示すように、光源18は、その発光面18b1が導光部16の入射面16b近傍において当該入射面16bに対向した状態で基板18aの裏面がヒートシンク22の前面22aに固定されて、基準軸AXより上かつ基準軸AX近傍に配置されている。 As shown in FIG. 1, the light source 18 has a light emitting surface 18b1 in the vicinity of the incident surface 16b of the light guide 16 and the rear surface of the substrate 18a fixed to the front surface 22a of the heat sink 22 in a state facing the incident surface 16b. It is arranged above the reference axis AX and in the vicinity of the reference axis AX.
このように光源18(発光面18b1)が導光部16の入射面16b(その下端縁16b1)近傍において当該入射面16bに対向した状態で配置されているため、光源18(発光面18b1)からの光の略全てが、導光部16の入射面16bから導光部16内部に入射する。光源18(発光面18b1)と導光部16の入射面16bとの間の間隔は、光源18からの光を効率よく入射させる観点から、小さい方が好ましく、特に、1mm以下であるのが好ましい。本実施形態では、光源18(発光面18b1)と導光部16の入射面16bとの間の間隔は、約0.2mmに設定されている。 Thus, since the light source 18 (light emitting surface 18b1) is arranged in the state facing the incident surface 16b in the vicinity of the incident surface 16b (its lower edge 16b1) of the light guide unit 16, the light source 18 (light emitting surface 18b1) is separated. Substantially all of the light enters the light guide 16 from the light incident surface 16 b of the light guide 16. The distance between the light source 18 (light emitting surface 18b1) and the incident surface 16b of the light guide unit 16 is preferably smaller from the viewpoint of efficiently making the light from the light source 18 incident, and particularly preferably 1 mm or less. . In this embodiment, the space | interval between the light source 18 (light emission surface 18b1) and the entrance plane 16b of the light guide part 16 is set to about 0.2 mm.
図7は、導光部16の入射面16b近傍の拡大図で、光源18(発光面18b1)からの光の光路を表している。 FIG. 7 is an enlarged view of the vicinity of the incident surface 16b of the light guide unit 16, and represents an optical path of light from the light source 18 (light emitting surface 18b1).
図7に示すように、導光部16内部に入射する光源18(発光面18b1)からの光は、入射面16bの屈折作用により、光源18(発光面18b1)の光軸AX18に対して約45度の範囲内に集光された光となり、出射面16aに向かって(本実施形態では約2mm程度)導光部16内部を導光されて、出射面16aから出射することで、導光部16の出射面16a(すなわち後方焦点面上)にすれ違いビーム用配光パターンPLoに対応する光度分布を形成する。 As shown in FIG. 7, the light from the light source 18 (light emitting surface 18b1) that enters the light guide unit 16 is refracted by the incident surface 16b with respect to the optical axis AX 18 of the light source 18 (light emitting surface 18b1). The light is condensed within a range of about 45 degrees, is guided through the light guide 16 toward the emission surface 16a (about 2 mm in this embodiment), and is emitted from the emission surface 16a. A luminous intensity distribution corresponding to the light distribution pattern P Lo for the passing beam is formed on the exit surface 16a of the light section 16 (that is, on the rear focal plane).
この光度分布は、導光部16内部に入射し、導光部16の下端面16cで内面反射(全反射)された後、後方焦点面に到達する光源18(発光面18b1)からの光と、導光部16内部に入射し、導光部16の下端面16cで内面反射(全反射)されることなく後方焦点面に到達する光源18(発光面18b1)からの光によって形成される。この光度分布は、ホットゾーンZ(高光度領域。図4参照)に対応する領域がその周囲に比べて明るいものとなる。 This luminous intensity distribution is incident on the inside of the light guide unit 16 and is internally reflected (total reflection) at the lower end surface 16c of the light guide unit 16 and then the light from the light source 18 (light emitting surface 18b1) reaching the rear focal plane. It is formed by light from the light source 18 (light emitting surface 18b1) that enters the light guide unit 16 and reaches the rear focal plane without being internally reflected (totally reflected) by the lower end surface 16c of the light guide unit 16. In this light intensity distribution, the area corresponding to the hot zone Z (high light intensity area, see FIG. 4) is brighter than the surrounding area.
これは、光源18(発光面18b1)が導光部16の入射面16b(その下端縁16b1)近傍において当該入射面16bに対向した状態で配置されていること、及び、導光部16の入射面16bから導光部16内部に入射する光源18(発光面18b1)からの光の一部が、導光部16の下端面16cで内面反射(全反射)された後、後方焦点面上のホットゾーンZ(図4参照)に対応する領域に向かうこと、によるものである。 This is because the light source 18 (light-emitting surface 18b1) is disposed in the vicinity of the incident surface 16b (its lower end edge 16b1) of the light guide unit 16 so as to face the incident surface 16b, and the light guide unit 16 is incident. A part of the light from the light source 18 (light emitting surface 18b1) that enters the light guide unit 16 from the surface 16b is internally reflected (total reflection) by the lower end surface 16c of the light guide unit 16, and then on the rear focal plane. By going to the area corresponding to the hot zone Z (see FIG. 4).
また、この光度分布は、光源18(発光面18b1)が投影レンズ24の焦点Fから車両後方側に(本実施形態では約2mm程度)デフォーカスされた位置に配置されているため、光源18(発光面18b1)の輝度ムラがほとんど現れないものとなる。 In addition, since the light source 18 (light-emitting surface 18b1) is disposed at a position defocused from the focal point F of the projection lens 24 to the vehicle rear side (about 2 mm in the present embodiment), the light intensity distribution 18 ( The luminance unevenness of the light emitting surface 18b1) hardly appears.
また、この光度分布は、導光部16の出射面16aの下端縁16a1が段付きエッジ部を含んでいるため、カットオフラインCL(CL1〜CL3)に対応する辺e1〜e3を含むものとなる。 Further, this luminous intensity distribution includes the sides e1 to e3 corresponding to the cut-off lines CL (CL1 to CL3) since the lower end edge 16a1 of the light exit surface 16a of the light guide unit 16 includes a stepped edge portion. .
上記光度分布が投影レンズ24によって前方に反転投影されることで、図4に示すように、上端縁にカットオフラインCL(CL1〜CL3)を含むすれ違いビーム用配光パターンPLoが形成される。すれ違いビーム用配光パターンPLoは、水平線H付近にホットゾーンZ(高光度領域)を含む遠方視認性に優れたすれ違いビーム用配光パターンとなる。 By the light intensity distribution is inverted projected forward by the projection lens 24, as shown in FIG. 4, the light distribution pattern P Lo for low beam including a cut-off line CL (CL1 to CL3) the upper edge is formed. The passing beam light distribution pattern P Lo is a passing beam light distribution pattern that includes a hot zone Z (high luminous intensity region) in the vicinity of the horizontal line H and has excellent distant visibility.
以上説明したように、本実施形態によれば、光利用効率が向上し、かつ、小型化できる車両用灯具10を提供することができる。 As described above, according to the present embodiment, it is possible to provide the vehicular lamp 10 that can improve the light utilization efficiency and can be downsized.
光利用効率が向上するのは、光源18(発光面18b1)が導光部16の入射面16b近傍において当該入射面16bに対向した状態で配置されているため、光源18(発光面18b1)からの光の略全てが、導光部16の入射面16bから導光部16内部に入射することによるものである。 The light utilization efficiency is improved because the light source 18 (light emitting surface 18b1) is disposed in the vicinity of the incident surface 16b of the light guide 16 in a state of facing the incident surface 16b, and therefore from the light source 18 (light emitting surface 18b1). This is because almost all of the light enters the light guide portion 16 from the incident surface 16b of the light guide portion 16.
小型化できるのは、従来技術(例えば特許第5196314号公報)に記載の付加レンズを用いることなく、光利用効率を向上させることができることによるものである。 The downsizing is possible because the light utilization efficiency can be improved without using the additional lens described in the prior art (for example, Japanese Patent No. 5196314).
次に、変形例について説明する。 Next, a modified example will be described.
上記実施形態では、第2レンズ部14と導光部16とが物理的に分離した別部材として構成されている例について説明したが、これに限定されず、第2レンズ部14と導光部16とが、導光部16の出射面16aと第2レンズ部14の入射面14bとが面接触した部分が存在しない一体のレンズ体として構成されていてもよい。 In the above embodiment, an example in which the second lens unit 14 and the light guide unit 16 are configured as separate members that are physically separated from each other has been described. However, the present invention is not limited thereto, and the second lens unit 14 and the light guide unit are configured. 16 may be configured as an integral lens body in which there is no portion where the exit surface 16a of the light guide portion 16 and the entrance surface 14b of the second lens portion 14 are in surface contact.
このようにすれば、第2レンズ部14と導光部16の界面における光量ロスをなくすことができる。 In this way, it is possible to eliminate a light amount loss at the interface between the second lens unit 14 and the light guide unit 16.
上記実施形態で示した各数値は全て例示であり、これと異なる適宜の数値を用いることができる。 All the numerical values shown in the above embodiment are examples, and appropriate different numerical values can be used.
上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することなく他の様々な形で実施することができる。 The above embodiment is merely an example in all respects. The present invention is not construed as being limited to these descriptions. The present invention can be implemented in various other forms without departing from the spirit or main features thereof.
10…車両用灯具、12…第1レンズ部、12a…前方側表面(出射面)、12b…後方側表面(入射面)、14…第2レンズ部、14a…前方側表面(出射面)、14b…後方側表面(入射面)、14c…フランジ部、16…導光部、16a…出射面、16a1…下端縁、16a2…下端面、16b…入射面、18…光源、18a…基板、18b…半導体発光素子、18b1…発光面、20…レンズホルダ、20a…遮蔽部、22…ヒートシンク、22a…前面、24…投影レンズ DESCRIPTION OF SYMBOLS 10 ... Vehicle lamp, 12 ... 1st lens part, 12a ... Front side surface (emission surface), 12b ... Back side surface (incidence surface), 14 ... 2nd lens part, 14a ... Front side surface (emission surface), 14b ... rear side surface (incident surface), 14c ... flange portion, 16 ... light guide portion, 16a ... emitting surface, 16a1 ... lower end edge, 16a2 ... lower end surface, 16b ... incident surface, 18 ... light source, 18a ... substrate, 18b ... Semiconductor light emitting element, 18b1 ... Light emitting surface, 20 ... Lens holder, 20a ... Shielding part, 22 ... Heat sink, 22a ... Front, 24 ... Projection lens
Claims (4)
前記第1レンズ部及び前記第2レンズ部は、車両前後方向に延びる基準軸上に配置されており、
前記導光部は、前記光源からの光が前記導光部内部に入射する入射面と、前記導光部内部に入射した前記光源からの光が出射する出射面と、を含み、前記基準軸より上に配置されており、
前記導光部の出射面の下端縁は、カットオフラインに対応した形状の段差付きエッジ部を含み、前記基準軸近傍に配置されており、
前記第1レンズ部及び前記第2レンズ部は、焦点が前記段差付きエッジ部近傍に位置する投影レンズを構成しており、
前記光源は、横長の発光面を含み、前記横長の発光面が前記導光部の入射面近傍において当該入射面に対向した状態で前記基準軸より上かつ前記基準軸近傍に配置されており、
前記導光部の出射面と前記第2レンズ部の入射面は、面接触しており、
前記投影レンズの後方焦点面は、前記段差付きエッジ部に略一致し、
前記第1レンズ部は、その出射面が前記基準軸に直交する平面形状の光学面でその入射面が車両後方側に向かって凸の光学面の凸レンズとして構成されており、
前記第2レンズ部は、その出射面が車両前方側に向かって凸の光学面でその入射面が車両後方側に向かって凸の光学面の、全体として略球状のレンズとして構成されていることを特徴とする車両用灯具。 A first lens unit, a second lens unit, a light guide unit, and a light source arranged in order from the vehicle front side toward the vehicle rear side, and after the light from the light source is guided by the light guide unit In the vehicular lamp, the second lens unit and the first lens unit are transmitted in order and irradiated forward to form a light distribution pattern for a passing beam.
The first lens part and the second lens part are disposed on a reference axis extending in the vehicle front-rear direction,
The light guide unit includes an incident surface on which light from the light source enters the light guide unit, and an output surface on which light from the light source incident on the light guide unit exits, and the reference axis Is located above and
The lower end edge of the exit surface of the light guide part includes a stepped edge part having a shape corresponding to a cut-off line, and is disposed in the vicinity of the reference axis.
The first lens part and the second lens part constitute a projection lens whose focal point is located in the vicinity of the stepped edge part,
The light source includes a horizontally elongated light emitting surface, and the horizontally elongated light emitting surface is disposed above the reference axis and in the vicinity of the reference axis in a state facing the incident surface in the vicinity of the incident surface of the light guide unit,
The exit surface of the light guide unit and the entrance surface of the second lens unit are in surface contact,
The rear focal plane of the projection lens substantially coincides with the stepped edge portion ,
The first lens portion is configured as a convex lens having a planar optical surface whose exit surface is orthogonal to the reference axis and an optical surface whose incident surface is convex toward the vehicle rear side.
The second lens portion is configured as a substantially spherical lens as a whole, with an optical surface convex toward the vehicle front side and an optical surface convex toward the vehicle rear side . A vehicular lamp characterized by the above.
前記光度分布が前記投影レンズによって前方に反転投影されることで、前記すれ違いビーム用配光パターンが形成されることを特徴とする請求項1から3のいずれか1項に記載の車両用灯具。 On the rear focal plane, the light from the light source that enters the light guide section and is internally reflected by the lower end surface of the light guide section and then reaches the rear focal plane, and the inside of the light guide section A light intensity distribution corresponding to the light distribution pattern for the low beam is formed by the light from the light source that reaches the rear focal plane without being internally reflected at the lower end surface of the light guide unit,
The light intensity distribution is to be inverted projected forward by the projection lens, the vehicle lamp according to any one of claims 1 to 3, characterized in that the low-beam light distribution pattern is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013216363A JP6222557B2 (en) | 2013-10-17 | 2013-10-17 | Vehicle lighting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013216363A JP6222557B2 (en) | 2013-10-17 | 2013-10-17 | Vehicle lighting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015079660A JP2015079660A (en) | 2015-04-23 |
JP6222557B2 true JP6222557B2 (en) | 2017-11-01 |
Family
ID=53010926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013216363A Active JP6222557B2 (en) | 2013-10-17 | 2013-10-17 | Vehicle lighting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6222557B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI607181B (en) * | 2015-07-06 | 2017-12-01 | 隆達電子股份有限公司 | Light-guiding pillar and vehicle lamp using the same |
JP2018106837A (en) * | 2016-12-22 | 2018-07-05 | スタンレー電気株式会社 | Vehicular lighting tool |
JP2018106889A (en) | 2016-12-26 | 2018-07-05 | スタンレー電気株式会社 | Vehicular lighting tool |
JP6818542B2 (en) * | 2016-12-26 | 2021-01-20 | スタンレー電気株式会社 | Lens holding structure and vehicle lighting equipment |
JP2018120834A (en) * | 2017-01-27 | 2018-08-02 | 株式会社小糸製作所 | Lighting fixture unit and vehicular lighting fixture |
KR101959306B1 (en) * | 2017-08-21 | 2019-03-18 | 엘지전자 주식회사 | Lamp for vehicle and vehicle |
JP2019192429A (en) * | 2018-04-23 | 2019-10-31 | スタンレー電気株式会社 | Vehicular lighting tool |
JP7176810B2 (en) * | 2018-06-21 | 2022-11-22 | スタンレー電気株式会社 | vehicle lamp |
JP7051607B2 (en) * | 2018-06-21 | 2022-04-11 | スタンレー電気株式会社 | Vehicle lighting |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006044641A1 (en) * | 2006-09-19 | 2008-03-27 | Schefenacker Vision Systems Germany Gmbh | Light unit with LED, light guide and secondary lens |
JP5879876B2 (en) * | 2011-09-28 | 2016-03-08 | スタンレー電気株式会社 | Vehicle lamp unit |
-
2013
- 2013-10-17 JP JP2013216363A patent/JP6222557B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015079660A (en) | 2015-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6222557B2 (en) | Vehicle lighting | |
JP6131724B2 (en) | Vehicle lighting | |
JP6340751B2 (en) | Lens body and vehicle lamp | |
JP5518559B2 (en) | Lamp unit | |
KR20240024155A (en) | Lighting system for motor vehicle headlight | |
CN106439670B (en) | Transparent material light emitting module with two reflecting surfaces | |
JP6146040B2 (en) | Vehicle headlamp | |
JP6595881B2 (en) | Diffuse light distribution optical system and vehicle lamp | |
JP6720809B2 (en) | Light guide member, light guide member unit, and lighting device | |
JP6074630B2 (en) | Lighting device and automobile equipped with the lighting device | |
JP6045834B2 (en) | Vehicle headlamp | |
JP6963380B2 (en) | Lens body and vehicle lighting equipment | |
WO2020021825A1 (en) | Headlight device | |
JP6490432B2 (en) | Lighting device | |
JP2017212037A (en) | Vehicular headlight | |
US20160273728A1 (en) | Vehicular lamp | |
JP2019096614A (en) | Vehicular lighting tool | |
JP6073718B2 (en) | Optical lens | |
CN109073179B (en) | Vehicle lamp | |
US10281103B2 (en) | Body and lighting tool for vehicle | |
US10072812B2 (en) | Lens body and vehicle lighting fixture | |
KR20170129445A (en) | Lens assembly for implementing low-beam | |
JP7536543B2 (en) | Vehicle lighting fixtures | |
JP6725282B2 (en) | Vehicle lighting | |
CN106895335B (en) | Light emitting module made of transparent material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6222557 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170921 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |