EP1902433A1 - Device for detecting a body falling in a pool - Google Patents

Device for detecting a body falling in a pool

Info

Publication number
EP1902433A1
EP1902433A1 EP05786098A EP05786098A EP1902433A1 EP 1902433 A1 EP1902433 A1 EP 1902433A1 EP 05786098 A EP05786098 A EP 05786098A EP 05786098 A EP05786098 A EP 05786098A EP 1902433 A1 EP1902433 A1 EP 1902433A1
Authority
EP
European Patent Office
Prior art keywords
probe
detection device
immersed
axis
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05786098A
Other languages
German (de)
French (fr)
Inventor
Anthony Ginter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG International SA
Original Assignee
MG International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MG International SA filed Critical MG International SA
Publication of EP1902433A1 publication Critical patent/EP1902433A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/08Alarms for ensuring the safety of persons responsive to the presence of persons in a body of water, e.g. a swimming pool; responsive to an abnormal condition of a body of water
    • G08B21/084Alarms for ensuring the safety of persons responsive to the presence of persons in a body of water, e.g. a swimming pool; responsive to an abnormal condition of a body of water by monitoring physical movement characteristics of the water

Definitions

  • the present invention relates to a device for detecting the fall of a body in a pool such as a swimming pool, in particular the fall of a child or an animal.
  • a device for detecting the fall of a body in a pool such as a swimming pool, in particular the fall of a child or an animal.
  • Such a device makes it possible to detect the fall of a body in a body of water and alert the entourage, by a siren, lights, or any other means adapted to attract attention, to allow a quick rescue.
  • the ideal solution to effectively prevent falls in the pool while maintaining easy access and a friendly seal is to provide the pool with a body falls detection device in the pool.
  • Such detection devices exist and are marketed.
  • Aquapremium TM devices, Aquasensor TM SensorPremium, SensorSolar, SensorElite, SensorEspio or SensorDomo marketed by the applicant can detect the fall of a body in the pool of a pool and alert the entourage.
  • Known fall detection devices generally consist of a probe plunging into the basin and connected to an emerging housing.
  • Figure 1 depicts a known detection device.
  • Figure 1 shows a detection device disposed on the lip 30 of a basin 20, such as a pool for domestic use for example.
  • a probe 1 dips into the pool water and opens into a compression chamber 8 formed in a portion of the housing 7 of the detection apparatus.
  • the compression chamber could be directly constituted by the immersed probe itself filled with air and serving as compression chamber.
  • the probe 1 is generally a tube at least partially filled with air having a free end immersed and an end opening into the housing 7 of the apparatus of detection emerged.
  • the tube 1 is thus adapted to transmit water waves that propagate in the basin 20 to the compression chamber 8.
  • This chamber is hermetically sealed and perceives the rising water waves of the tube 1 as pressure variations.
  • a pressure sensor 2, for example of the piezoelectric type, is arranged in the compression chamber 8 to convert the pressure variations into electrical signals.
  • the pressure sensor 2 is connected to an electronic unit 4 disposed in the housing 7 of the detection apparatus, outside the compression chamber 8.
  • any movement in the basin 20, and in particular the fall of a body causes the formation of waves that induce pressure variations in the compression chamber 8 of the fall detector.
  • the sensor 2 converts these pressure variations into voltage and the electronic card 4 processes these signals to interpret whether they correspond to a fall. If necessary, the electronic card 4 controls the emission of an alert signal by releasing a siren 6 and / or by transmitting a signal to a remote control center via an antenna 5 or any other appropriate telecommunication link.
  • the known detection devices have the disadvantage of being sensitive to external disturbances and of being subjected to nuisance tripping, because the electronic card interprets disturbing signals such as a fall. Such disturbing signals may be due to the movement of the robot cleaner, the start of filtration, but also to rain or waves caused by wind.
  • the pressure in the probe is changed and the measurement of the amplitude of the submarine waves is parasitized.
  • This parasitic signal derived from the measurement of the surface waves around the probe, adds to the signal, said to be useful, generated by the basin during a fall.
  • the sensor can read a wave amplitude underwater more or less strong than it actually is. If the amplitude of the spurious signal is subtracted from the amplitude of the submarine wave, an actual fall detection may be delayed and if the amplitude of the spurious signal adds to the amplitude of a submarine wave, a nuisance tripping of the alarm can be caused.
  • Adjusting the sensitivity of the detector can not mitigate this phenomenon without risking a real non-detection of fall.
  • the invention proposes to protect the probe from the effects of surface waves by creating a rigid obstacle between the immersed free end of the probe and the surface of the water.
  • the pressure variations generated by the surface waves are not transmitted inside the tube of the probe and the pressure detector only detects the pressure variations due to the water waves propagating under the rigid obstacle.
  • the invention more particularly relates to a device for detecting a fall of a body in a water body of a basin comprising: a probe adapted to transmit aquatic waves propagating in the basin, the probe having a free end immersed in the basin and a substantially vertical axis; an electronic unit adapted to receive and interpret electrical signals representative of pressure variations caused by the water waves collected by the probe; a rigid immersed obstacle extending between the immersed end of the probe and the surface of the water body of the pool in a plane forming an angle with the axis of the immersed probe.
  • the rigid obstacle is a plate comprising an opening through which the probe passes.
  • the device according to the invention further comprises one or more of the following characteristics: the plate extends in a plane forming an angle between 10 ° and 170 ° with the axis of the probe; the plate is integral with the probe; the plate is fixed to the basin; the plate has a thickness of between 1 and 5 mm.
  • the rigid obstacle is formed by a bent portion of the probe.
  • the probe has a first part extending in the axis of the probe and a second portion having at least one portion forming an angle with said axis, the second part being totally immersed.
  • the bent portion of the probe makes an angle between 40 ° and 90 ° with the axis of the probe.
  • the detection device according to the invention further comprises one or more of the following characteristics: the rigid obstacle has an area of between 10 and 350 cm; the probe is a tube at least partially filled with round, oval or trapezoidal base air; the device comprises a compression chamber comprising a pressure sensor connected to the electronic unit; the compression chamber is constituted by the hermetically sealed probe at its end opposite the immersed free end; the compression chamber is located in a housing of the device, the probe opening into said compression chamber at its end opposite the immersed free end.
  • FIG. 1 already described, a diagram of a detection device known fall;
  • - Figure 2 a diagram of a fall detection device a first embodiment of the invention;
  • FIGS. 3a to 3d are diagrammatic examples of surface wave detection obstacles that can be used on the device of FIG. 2;
  • FIGS. 5a and 5b are diagrammatic examples of surface wave detection obstacles that can be used on the device of FIG. 4.
  • FIG. 2 describes a detection device according to a first embodiment of the invention.
  • FIG. 2 shows a detection device disposed on the lip 30 of a basin 20, such as a pool for domestic use for example.
  • a probe 1 dips into the pool water and opens into a housing 7 of the detection apparatus.
  • the probe 1 is a tube at least partially filled with air having a first free end 11 immersed approximately 5 to 30 cm below the water level and a second end connected to the housing 7 of the device.
  • the probe also has a substantially vertical axis 12. Indeed, as explained above, the probe 1 must transmit the pressure variations induced by the water waves to a pressure sensor 2, these pressure variations being due to the thrust of the water on the air trapped in the tube according to the principle of Archimedes recalled above. It is therefore preferable that at least a portion of the tube of the probe 1 is vertical so that the pressure variations can be detected with a sufficient amplitude according to this principle.
  • the compression chamber is directly constituted by the immersed probe 1 at least partially filled with air.
  • the end of the tube 1 opposite the submerged end is hermetically sealed and a pressure sensor 2 is directly placed at this end, for example in a gland which allows the tight closure of the tube 1 while allowing the passage of a electrical connection.
  • the pressure sensor 2 thus perceives the aquatic waves rising in the tube 1 as pressure variations and transforms these pressure variations into electrical signals.
  • the sensor 2 may be of the piezoelectric type and be connected to an electronic unit (not shown) disposed in the housing 7 of the detection apparatus.
  • the electronic unit is adapted to receive and interpret the signals coming from the pressure sensor 2, that is to say the electrical signals representative of the pressure variations in the probe 1 serving as a compression chamber, thus representative of the aquatic waves. propagating in the basin.
  • the electronic unit is adapted to interpret the signals generated by the pool in that it can correlate, for example, amplitude and frequency values of electrical signal with a fall detection.
  • the electronic unit may include a microcontroller chip, in a manner known per se.
  • the electronic unit is adapted to interpret an electrical signal received from the pressure sensor 2 as corresponding to a fall when said electrical signal is a sinusoid having an amplitude greater than a predetermined threshold with a frequency close to 1 Hz. Such a signal is indeed characteristic of a fall of a body in water.
  • the electronic unit is then adapted to control the triggering of an audible alarm disposed in the housing for example.
  • the electronic unit can also trigger the transmission of an alert signal by a radio transmitter to a remote siren, for example in the house.
  • the surface waves can interfere with the measurement of the amplitude of the submarine waves and cause either a delay of a fall detection or a nuisance triggering of the alarm.
  • the aquatic waves are perceived by the electronic unit of the detection device as a sinusoidal electrical signal.
  • This sinusoidal signal is classically quantized in half-wave, a half-wave corresponding to a half-period of the sinusoidal signal whose peak exceeds a predetermined threshold of amplitude.
  • the electronic unit receives an electrical signal from the pressure sensor whose amplitude exceeds said predetermined threshold, it counts this event as valid information. If it detects a certain amount of successive and non-missing valid information in a predefined frequency range around 1 Hz, it interprets this as a fall.
  • the pressure sensor 2 may transmit a different pressure value than that generated by the single water wave and the electronic unit may then miss valid half-wave information and delay fall detection; or count invalid valid half-wave information and trigger the alarm unnecessarily.
  • the invention therefore proposes introducing a rigid obstacle 3 between the immersed end 11 of the probe 1 and the surface of the water.
  • This rigid obstacle 3 forms an angle with the axis 12 of the probe 1.
  • the rigid obstacle 3 may extend in a plane substantially perpendicular to said axis 12, that is to say substantially at least 'horizontal.
  • the rigid obstacle 3 may, however, be oriented in a plane other than the horizontal plane, for example in a plane forming an angle of between 10 ° and 170 ° with the axis 12 of the probe 1.
  • the submerged free end 11 of the probe 1 is thus protected from the pressure variations coming from the surface waves and transmits into the tube of the probe 1 only the pressure variations originating from the aquatic waves propagating under the obstacle 3.
  • the obstacle 3 must be rigid enough to reflect the water waves coming from the surface without transmitting pressure variation to the water body below.
  • the shape and size of the obstacle 3 are chosen to protect the submerged free end 11 of the tube.
  • the rigid obstacle is constituted by a plate 3 positioned around the probe 1 and extending in a plane perpendicular to the axis 12 of the probe.
  • the plate 3 is therefore substantially parallel to the surface of the water and can return upward the pressure variations due to the surface waves, without transmitting pressure variation downwards towards the free end 11 of the probe 1.
  • the plate 3 can be fixed directly to the tube of the probe 1 and / or hooked to the wall of the basin 20 and / or to the housing 7 of the device.
  • FIGS 3a to 3d illustrate different forms of possible plates to constitute the rigid obstacle. It is understood that other forms may be considered different from the four illustrated forms.
  • the plate 3 can be made of plastic, for example FABS (Acrylonitrile Butadiene Styrene) or polycarbonate, and can be obtained for example by injection molding in a manner known per se.
  • the plate 3 has an opening 31 for positioning the plate 3 around the tube of the probe 1 as illustrated in FIG. 2.
  • the opening 31 is preferably chosen with a periphery corresponding to the shape of the probe 1, this is that is, the plate 3 will have a round opening 31 if the probe is cylindrical with a circular base or an oval or trapezoidal opening if the probe is cylindrical with an oval or trapezoidal base. Any other form of opening 31 may be envisaged, depending on the forms of probe used for the detecting devices.
  • the dimensions of the opening 31 are preferably chosen to fit around the periphery of the probe so as not to allow water to pass through the opening 31 when the plate 3 is placed around the probe.
  • the plate 3 can thus be clipped onto the tube of the probe 1, for example in a groove provided for this purpose; the plate can also be glued to the tube of the probe and permanently secured to the tube.
  • the plate 3 can also be placed around the tube of the probe 1 and fixed elsewhere, for example with a rod connecting the plate to a fastening system, for example a suction cup, on the wall of the basin or under the housing of the device.
  • the plate 3 is sufficiently rigid and extended to act as an obstacle to pressure variations due to surface waves.
  • the plate may have a thickness of between 1 and 5 mm and extend over a surface having an area of between 10 and 350 cm 2 .
  • the shape of the plate - round, square, oval, arcuate, etc .... - depends on the shape and size of the detection device on which it is placed, and the distance between the probe and the basin wall.
  • FIG. 4 describes a detection device according to a second embodiment of the invention.
  • the elements identical to Figure 2 bear the same reference numbers.
  • the rigid obstacle is constituted by a bent portion of the tube of the immersed probe 1.
  • the tube is generally made of rigid plastic and can therefore serve to constitute the obstacle without requiring the use of an additional room.
  • the probe 1 always has a substantially vertical axis 12 as described above and for the same reasons of efficiency of measurement of the amplitude of the aquatic waves by pressure variation.
  • the submerged free end 11 of the probe 1 is not situated in the continuity of this vertical axis 12.
  • the probe 1 has a portion forming an angle with the vertical axis of thrust of the water on the trapped air in the tube.
  • the upper wall 3 of this tube portion forms a rigid obstacle between the surface of the water and the free end 11 of the tube. According to the models of probes used, the upper wall of the bent portion of the tube may form an angle between 40 ° and 90 ° with the axis 12 of the probe 1.
  • FIGS 5a and 5d give two examples of obstacles 3 constituted by the probe 1 itself. It is understood that other forms can be envisaged.
  • the probe 1 has a first portion 13 intended to extend along a substantially vertical axis 12 when the probe is immersed in the basin (FIG. 4). This first part 13 is intended to transmit the pressure variations caused by the water waves to the sensor 2, according to the physical principles mentioned above.
  • the probe 1 also has a second portion 14 which has a connecting bend and at least a portion 3 forming an angle with the aforementioned vertical axis.
  • the rigid portion 3 is substantially perpendicular to the vertical axis 12, but the tube portion forming the obstacle 3 may form an angle of between 40 ° and 90 ° with the axis of the probe.
  • the second portion 14 is intended to be totally immersed when the probe is immersed in the basin ( Figure 4).
  • the bent portion of the probe then constitutes an obstacle to the transmission of the pressure variations due to the surface waves towards the immersed free end 11 of the probe 1.
  • the bent portion of the probe may have a hook or S shape with several junction elbows. Whatever the form envisaged, it is necessary that the probe 1 has a substantially vertical portion for the transmission of pressure variations to the sensor 2 and a totally immersed portion having an angle with the vertical, preferably a right angle.
  • the submerged free end 11 of the probe may be located at one end of the bent portion, as shown in FIG. 4, or at one end of another vertical portion of the probe, the bent portion being located in a central zone. of the probe.
  • the bent portion 3 is indeed a rigid obstacle within the meaning of the invention, with a surface substantially perpendicular to the axis 12 of the probe located between the surface of the water and the submerged end 11 of the probe.
  • This bent portion 3 is preferably sufficiently long to allow a good stop of the propagation of surface water waves propagating towards the free end 11 of the probe, for example a bent portion length of between 5 cm and 20 cm is adapted to different form of probe to form a rigid obstacle having an area of between 10 and 350 cm 2 .
  • the fall detection device thus makes it possible to measure the pressure variations induced by the aquatic waves propagating in the basin without parasitizing these measurements with pressure variations induced by a variation in the level of the water due to the waves. of surface.
  • the detection of a body drop in the pool is thus optimized and nuisance tripping of the alarm is limited.
  • the present invention is not limited to the embodiments described by way of example.
  • the probe 1 may not be hermetically closed at its upper end and open into a compression chamber located in the housing of the detection device.
  • other forms of obstacles 3 may be envisaged, in particular an S-shaped or hook-shaped shape of the probe 1 rather than the illustrated L shape.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The invention concerns a device for detecting a body falling in a volume of water (20) of a pool comprising a probe (1) adapted to transmit aquatic waves propagated in the pool (20) and an electronic unit (4) adapted to receive and interpret electric signals representing pressure variations caused by the aquatic waves received by the probe. The probe (1) has a free end (11) immersed in the pool (20) and a substantially vertical axis (12). The device further comprises an immersed rigid obstacle (3) extending between the immersed end of the probe and the surface of the volume of water of the pool in a plane substantially perpendicular to the axis of the immersed probe. The rigid obstacle (3) enables disturbances caused by the surface waves to be eliminated from the measurements of pressure variations caused by the aquatic waves in the probe (1).

Description

DISPOSITIF DE DETECTION DE LA CHUTE D'UN CORPS DANS UN BASSIN DEVICE FOR DETECTING THE FALL OF A BODY IN A BASIN
La présente invention se rapporte à un dispositif pour détecter la chute d'un corps dans un bassin telle qu'une piscine, en particulier la chute d'un enfant ou d'un animaL Un tel dispositif permet de détecter la chute d'un corps dans une masse d'eau et d'alerter l'entourage, par une sirène, des voyants lumineux, ou tout autre moyen adapté pour attirer l'attention, afin de permettre un sauvetage rapide.The present invention relates to a device for detecting the fall of a body in a pool such as a swimming pool, in particular the fall of a child or an animal. Such a device makes it possible to detect the fall of a body in a body of water and alert the entourage, by a siren, lights, or any other means adapted to attract attention, to allow a quick rescue.
En effet, la noyade dé jeunes enfants concerne de nombreux accidents domestiques.Indeed, the drowning of young children concerns many domestic accidents.
Il existe bien des dispositifs de sécurité comme des barrières de protection entourant la piscine avec un portillon d'accès. Cependant, il est nécessaire de bien refermer le portillon à chaque passage. De plus, des enfants d'environ trois ans peuvent parvenir à ouvrir un tel portillon alors qu'ils sont encore très exposés à la noyade.There are many safety devices such as protective barriers surrounding the pool with an access gate. However, it is necessary to properly close the door at each passage. In addition, children of about three years of age can manage to open such a gate while they are still very exposed to drowning.
Il existe également des dispositifs de sécurité comme des abris, couvertures ou volets recouvrant la piscine. Un tel dispositif est cependant disgracieux et nécessite une opération complexe pour être retiré avant utilisation de la piscine.There are also safety devices such as shelters, blankets or shutters covering the pool. Such a device is however unsightly and requires a complex operation to be removed before use of the pool.
La solution idéale pour prévenir efficacement les chutes dans la piscine tout en conservant un accès facile et un cachet convivial est de munir la piscine d'un dispositif de détection des chutes de corps dans le bassin.The ideal solution to effectively prevent falls in the pool while maintaining easy access and a friendly seal is to provide the pool with a body falls detection device in the pool.
De tels dispositifs de détection existent et sont commercialisés. Par exemple, les appareils Aquapremium™, Aquasensor™' SensorPremium, SensorSolar, SensorElite, SensorEspio ou SensorDomo commercialisés par la demanderesse permettent de détecter la chute d'un corps dans le bassin d'une piscine et d'alerter l'entourage.Such detection devices exist and are marketed. For example, Aquapremium ™ devices, Aquasensor ™ SensorPremium, SensorSolar, SensorElite, SensorEspio or SensorDomo marketed by the applicant can detect the fall of a body in the pool of a pool and alert the entourage.
Les appareils de détection de chute connus sont généralement constitués d'une sonde plongeant dans le bassin et reliée à un boîtier émergé. La figure 1 décrit un dispositif de détection connu.Known fall detection devices generally consist of a probe plunging into the basin and connected to an emerging housing. Figure 1 depicts a known detection device.
La figure 1 montre un dispositif de détection disposé sur la margelle 30 d'un bassin 20, tel qu'une piscine à usage domestique par exemple. Une sonde 1 plonge dans l'eau du bassin et débouche dans une chambre de compression 8 ménagée dans une partie du boîtier 7 de l'appareil de détection. La chambre de compression pourrait être directement constituée par la sonde immergée elle-même remplie d'air et servant de chambre de compression. La sonde 1 est généralement un tube au moins partiellement rempli d'air présentant une extrémité libre immergée et une extrémité débouchant dans le boîtier 7 de l'appareil de détection émergé. Le tube 1 est ainsi adapté à transmettre des ondes aquatiques qui se propagent dans le bassin 20 vers la chambre de compression 8. Cette chambre est hermétiquement close et perçoit les ondes aquatiques remontant du tube 1 comme des variations de pression. Un capteur de pression 2, par exemple du type piézo-électrique, est disposé dans la chambre de compression 8 pour transformer les variations de pression en signaux électriques. Le capteur de pression 2 est relié à une unité électronique 4 disposée dans le boîtier 7 de l'appareil de détection, en dehors de la chambre de compression 8.Figure 1 shows a detection device disposed on the lip 30 of a basin 20, such as a pool for domestic use for example. A probe 1 dips into the pool water and opens into a compression chamber 8 formed in a portion of the housing 7 of the detection apparatus. The compression chamber could be directly constituted by the immersed probe itself filled with air and serving as compression chamber. The probe 1 is generally a tube at least partially filled with air having a free end immersed and an end opening into the housing 7 of the apparatus of detection emerged. The tube 1 is thus adapted to transmit water waves that propagate in the basin 20 to the compression chamber 8. This chamber is hermetically sealed and perceives the rising water waves of the tube 1 as pressure variations. A pressure sensor 2, for example of the piezoelectric type, is arranged in the compression chamber 8 to convert the pressure variations into electrical signals. The pressure sensor 2 is connected to an electronic unit 4 disposed in the housing 7 of the detection apparatus, outside the compression chamber 8.
Tout mouvement dans le bassin 20, et en particulier la chute d'un corps, provoque la formation de vagues qui induisent des variations de pression dans la chambre de compression 8 du détecteur de chute. Le capteur 2 convertit ces variations de pression en tension et la carte électronique 4 traite ces signaux afin d'interpréter s'ils correspondent à une chute. Le cas échéant, la carte électronique 4 commande l'émission d'un signal d'alerte en déclanchant une sirène 6 et/ou en émettant un signal vers une centrale d'alerte déportée via une antenne 5 ou tout autre lien de télécommunication approprié. Les dispositifs de détection connus présentent cependant l'inconvénient d'être sensibles aux perturbations extérieures et de subir des déclenchements intempestifs, du fait que la carte électronique interprète des signaux perturbateurs comme une chute. De tels signaux perturbateurs peuvent être dus au déplacement du robot nettoyeur, à la mise en route de la filtration, mais également à la pluie ou aux vagues provoquées par le vent. Ces perturbations peuvent provoquer un déclenchement intempestif de l'alarme, ce qui devient gênant pour l'entourage et peut inciter à mettre l'appareil à l'arrêt avec le risque de non détection d'une chute réelle. La plupart de ces perturbations peuvent être éliminées en réglant la sensibilité du détecteur.Any movement in the basin 20, and in particular the fall of a body, causes the formation of waves that induce pressure variations in the compression chamber 8 of the fall detector. The sensor 2 converts these pressure variations into voltage and the electronic card 4 processes these signals to interpret whether they correspond to a fall. If necessary, the electronic card 4 controls the emission of an alert signal by releasing a siren 6 and / or by transmitting a signal to a remote control center via an antenna 5 or any other appropriate telecommunication link. However, the known detection devices have the disadvantage of being sensitive to external disturbances and of being subjected to nuisance tripping, because the electronic card interprets disturbing signals such as a fall. Such disturbing signals may be due to the movement of the robot cleaner, the start of filtration, but also to rain or waves caused by wind. These disturbances can cause a nuisance tripping of the alarm, which becomes annoying for the entourage and can encourage to put the device at a standstill with the risk of not detecting a real fall. Most of these disturbances can be eliminated by adjusting the sensitivity of the detector.
En revanche, les vagues de surface, en particulier dues au vent, perturbent fortement la détection des vagues sous marines car elles modifient le niveau de l'eau autour de la sonde. En effet, la sonde immergée transmet les variations de pression dues aux vagues sous marines en transmettant la poussée de l'eau du bassin remontant dans le tube sur l'air remplissant ledit tube. Cette mesure s'explique par des phénomènes physiques bien connus et en particulier par le principe d'Archimède qui dispose que tout corps plongé dans un fluide reçoit une poussée de bas en haut égale au poids du volume du fluide déplacé, et par la Loi de Boyle-Mariotte qui dispose qu'à température constante, le volume d'un gaz est inversement proportionnel à la pression qu'il reçoit.On the other hand, surface waves, in particular due to the wind, strongly disturb the detection of the submarine waves because they modify the level of the water around the probe. Indeed, the immersed probe transmits the pressure variations due to the submarine waves by transmitting the thrust of the water of the basin rising in the tube on the air filling said tube. This measurement is explained by well-known physical phenomena and in particular by the principle of Archimedes which states that every body immersed in a fluid receives a thrust from below upwards equal to the weight of the volume of the fluid displaced, and by Boyle-Mariotte's law which states that at constant temperature, the volume of a gas is inversely proportional to the pressure it receives.
Ainsi, lorsque le niveau de l'eau est modifié à proximité de la sonde, la pression dans la sonde est modifiée et la mesure de l'amplitude des vagues sous marines est parasitée. Ce signal parasite, provenant de la mesure des vagues de surface autour de la sonde, s'additionne au signal, dit utile, généré par le bassin lors d'une chute. Selon le déphasage des signaux parasite et utile, le capteur peut lire une amplitude de vague sous marine plus ou moins forte qu'elle ne l'est réellement. Si l'amplitude du signal parasite se soustrait à l'amplitude de la vague sous marine, une détection de chute réelle peut être retardée et si l'amplitude du signal parasite s'additionne à l'amplitude d'une vague sous marine, un déclenchement intempestif de l'alarme peut être provoqué.Thus, when the water level is changed near the probe, the pressure in the probe is changed and the measurement of the amplitude of the submarine waves is parasitized. This parasitic signal, derived from the measurement of the surface waves around the probe, adds to the signal, said to be useful, generated by the basin during a fall. Depending on the parasitic and useful signal phase shift, the sensor can read a wave amplitude underwater more or less strong than it actually is. If the amplitude of the spurious signal is subtracted from the amplitude of the submarine wave, an actual fall detection may be delayed and if the amplitude of the spurious signal adds to the amplitude of a submarine wave, a nuisance tripping of the alarm can be caused.
Le réglage de la sensibilité du détecteur ne parvient pas à atténuer ce phénomène sans risquer une non détection de chute réelle.Adjusting the sensitivity of the detector can not mitigate this phenomenon without risking a real non-detection of fall.
Il existe donc un besoin pour réduire les risques de déclenchements intempestifs de l'alarme de l'appareil de détection dus aux effets de surface sur le bassin de la piscine tout en garantissant une détection de chute réelle dans l'eau du bassin.There is therefore a need to reduce the risk of nuisance tripping of the alarm of the detection device due to the surface effects on the pool of the pool while ensuring a real fall detection in the water basin.
A cet effet, l'invention propose de protéger la sonde des effets de vagues de surface en créant un obstacle rigide entre l'extrémité libre immergée de la sonde et la surface de l'eau. Ainsi, les variations de pression engendrées par les vagues de surface ne sont pas transmises à l'intérieur du tube de la sonde et le détecteur de pression ne détecte plus que les variations de pression dues aux ondes aquatiques se propageant sous l'obstacle rigide.For this purpose, the invention proposes to protect the probe from the effects of surface waves by creating a rigid obstacle between the immersed free end of the probe and the surface of the water. Thus, the pressure variations generated by the surface waves are not transmitted inside the tube of the probe and the pressure detector only detects the pressure variations due to the water waves propagating under the rigid obstacle.
L'invention concerne plus particulièrement un dispositif de détection d'une chute d'un corps dans une masse d'eau d'un bassin comprenant : une sonde adaptée à transmettre des ondes aquatiques se propageant dans le bassin, la sonde présentant une extrémité libre immergée dans le bassin et un axe sensiblement vertical ; une unité électronique adaptée à recevoir et interpréter des signaux électriques représentatifs de variations de pression provoquées par les ondes aquatiques recueillies par la sonde ; un obstacle rigide immergé s'étendant entre l'extrémité immergée de la sonde et la surface de la masse d'eau du bassin dans un plan formant un angle avec l'axe de la sonde immergée.The invention more particularly relates to a device for detecting a fall of a body in a water body of a basin comprising: a probe adapted to transmit aquatic waves propagating in the basin, the probe having a free end immersed in the basin and a substantially vertical axis; an electronic unit adapted to receive and interpret electrical signals representative of pressure variations caused by the water waves collected by the probe; a rigid immersed obstacle extending between the immersed end of the probe and the surface of the water body of the pool in a plane forming an angle with the axis of the immersed probe.
Selon un mode de réalisation, l'obstacle rigide est une plaque comprenant une ouverture traversée par la sonde.According to one embodiment, the rigid obstacle is a plate comprising an opening through which the probe passes.
Selon les variantes de réalisation, le dispositif selon l'invention comprend en outre une ou plusieurs des caractéristiques suivantes : la plaque s'étend dans un plan formant un angle compris entre 10° et 170° avec l'axe de la sonde ; - la plaque est solidaire de la sonde ; la plaque est fixée au bassin ; la plaque présente une épaisseur comprise entre 1 et 5 mm.According to the embodiments, the device according to the invention further comprises one or more of the following characteristics: the plate extends in a plane forming an angle between 10 ° and 170 ° with the axis of the probe; the plate is integral with the probe; the plate is fixed to the basin; the plate has a thickness of between 1 and 5 mm.
Selon un mode de réalisation, l'obstacle rigide est formé par une portion coudée de la sonde. Selon une caractéristique, la sonde présente une première partie s'étendant dans l'axe de la sonde et une deuxième partie présentant au moins une portion formant un angle avec ledit axe, la deuxième partie étant totalement immergée.According to one embodiment, the rigid obstacle is formed by a bent portion of the probe. According to one characteristic, the probe has a first part extending in the axis of the probe and a second portion having at least one portion forming an angle with said axis, the second part being totally immersed.
Selon une autre caractéristique, la portion coudée de la sonde fait un angle compris entre 40° et 90° avec l'axe de la sonde. Selon les modes de réalisation, le dispositif de détection selon l'invention comprend en outre une ou plusieurs des caractéristiques suivantes : l'obstacle rigide présente une aire comprise entre 10 et 350 cm ; la sonde est un tube au moins partiellement rempli d'air de base ronde, ovale ou trapézoïdale ; - le dispositif comprend une chambre de compression comprenant un capteur de pression relié à l'unité électronique ; la chambre de compression est constituée par la sonde hermétiquement close à son extrémité opposée à l'extrémité libre immergée ; la chambre de compression est située dans un boîtier du dispositif, la sonde débouchant dans ladite chambre de compression par son extrémité opposée à l'extrémité libre immergée. Les particularités et avantages de la présente invention apparaîtront au cours de la description qui suit donnée à titre d'exemple illustratif et non limitatif, et faite en référence aux figures qui représentent : figure 1, déjà décrite, un schéma d'un dispositif de détection de chute connu ; - figure 2, un schéma d'un dispositif de détection de chute un premier mode de réalisation de l'invention ; figures 3a à 3d, des exemples schématiques d'obstacles de détection des vagues de surface pouvant être utilisés sur le dispositif de la figure 2 ;According to another characteristic, the bent portion of the probe makes an angle between 40 ° and 90 ° with the axis of the probe. According to the embodiments, the detection device according to the invention further comprises one or more of the following characteristics: the rigid obstacle has an area of between 10 and 350 cm; the probe is a tube at least partially filled with round, oval or trapezoidal base air; the device comprises a compression chamber comprising a pressure sensor connected to the electronic unit; the compression chamber is constituted by the hermetically sealed probe at its end opposite the immersed free end; the compression chamber is located in a housing of the device, the probe opening into said compression chamber at its end opposite the immersed free end. The features and advantages of the present invention will become apparent from the following description given by way of illustrative and nonlimiting example, and with reference to the figures which represent: FIG. 1, already described, a diagram of a detection device known fall; - Figure 2, a diagram of a fall detection device a first embodiment of the invention; FIGS. 3a to 3d are diagrammatic examples of surface wave detection obstacles that can be used on the device of FIG. 2;
- figure 4, un schéma d'un dispositif de détection de chute un deuxième mode de réalisation de l'invention ;- Figure 4, a diagram of a fall detection device a second embodiment of the invention;
- figures 5a et 5b, des exemples schématiques d'obstacles de détection des vagues de surface pouvant être utilisés sur le dispositif de la figure 4.FIGS. 5a and 5b are diagrammatic examples of surface wave detection obstacles that can be used on the device of FIG. 4.
Dans le cadre de l'invention, on entend par « ondes aquatiques » tout mouvement de masse d'eau dans le bassin que ce soit en surface (vagues) ou en profondeur (vagues sous marines), et on utilise l'expression « signaux générés par le bassin » pour désigner les signaux électriques représentatifs des ondes aquatiques (vagues et mouvements sous marins) se propageant dans le bassin et reçus par la carte électronique du dispositif de détection de chute par l'intermédiaire de la sonde immergée. La figure 2 décrit un dispositif de détection selon un premier mode de réalisation de l'invention.In the context of the invention, the term "water waves" any movement of water mass in the basin either on the surface (waves) or in depth (submarine waves), and the expression "signals generated by the basin "to designate electrical signals representative of the aquatic waves (waves and submarine movements) propagating in the basin and received by the electronic card of the device for detecting a fall via the immersed probe. FIG. 2 describes a detection device according to a first embodiment of the invention.
La figure 2 montre un dispositif de détection disposé sur la margelle 30 d'un bassin 20, tel qu'une piscine à usage domestique par exemple. Une sonde 1 plonge dans l'eau du bassin et débouche dans un boîtier 7 de l'appareil de détection. La sonde 1 est un tube au moins partiellement rempli d'air présentant une première extrémité 11 libre immergée environ 5 à 30 cm sous le niveau de l'eau et une seconde extrémité reliée au boîtier 7 du dispositif. La sonde présente aussi un axe 12 sensiblement vertical. En effet, comme expliqué plus haut, la sonde 1 doit transmettre les variations de pression induites par les ondes aquatiques vers un capteur de pression 2, ces variations de pressions étant dues à la poussée de l'eau sur l'air emprisonné dans le tube selon le principe d'Archimède rappelé plus haut. Il est donc préférable qu'au moins une partie du tube de la sonde 1 soit verticale pour que les variations de pression puissent être détectées avec une amplitude suffisante selon ce principe.Figure 2 shows a detection device disposed on the lip 30 of a basin 20, such as a pool for domestic use for example. A probe 1 dips into the pool water and opens into a housing 7 of the detection apparatus. The probe 1 is a tube at least partially filled with air having a first free end 11 immersed approximately 5 to 30 cm below the water level and a second end connected to the housing 7 of the device. The probe also has a substantially vertical axis 12. Indeed, as explained above, the probe 1 must transmit the pressure variations induced by the water waves to a pressure sensor 2, these pressure variations being due to the thrust of the water on the air trapped in the tube according to the principle of Archimedes recalled above. It is therefore preferable that at least a portion of the tube of the probe 1 is vertical so that the pressure variations can be detected with a sufficient amplitude according to this principle.
Sur la figure 2, la chambre de compression est directement constituée par la sonde immergée 1 au moins partiellement remplie d'air. L'extrémité du tube 1 opposée à l'extrémité immergée est hermétiquement close et un capteur de pression 2 est directement placé à cette extrémité, par exemple dans un presse étoupe qui permet la fermeture étanche du tube 1 tout en permettant le passage d'une connexion électrique. Le capteur de pression 2 perçoit ainsi les ondes aquatiques remontant dans le tube 1 comme des variations de pression et transforme ces variations de pression en signaux électriques. Le capteur 2 peut être du type piézo-électrique et être relié à une unité électronique (non illustrée) disposée dans le boîtier 7 de l'appareil de détection.In FIG. 2, the compression chamber is directly constituted by the immersed probe 1 at least partially filled with air. The end of the tube 1 opposite the submerged end is hermetically sealed and a pressure sensor 2 is directly placed at this end, for example in a gland which allows the tight closure of the tube 1 while allowing the passage of a electrical connection. The pressure sensor 2 thus perceives the aquatic waves rising in the tube 1 as pressure variations and transforms these pressure variations into electrical signals. The sensor 2 may be of the piezoelectric type and be connected to an electronic unit (not shown) disposed in the housing 7 of the detection apparatus.
L'unité électronique est adaptée à recevoir et interpréter les signaux provenant du capteur de pression 2, c'est-à-dire les signaux électriques représentatifs des variations de pression dans la sonde 1 servant de chambre de compression, donc représentatifs des ondes aquatiques se propageant dans le bassin.The electronic unit is adapted to receive and interpret the signals coming from the pressure sensor 2, that is to say the electrical signals representative of the pressure variations in the probe 1 serving as a compression chamber, thus representative of the aquatic waves. propagating in the basin.
L'unité électronique est adaptée à interpréter les signaux générés par le bassin en ce qu'elle peut corréler par exemple des valeurs d'amplitude et de fréquence de signal électrique avec une détection de chute. L'unité électronique peut inclure une puce de microcontrôleur, de manière connue en soi. De manière générale, l'unité électronique est adaptée à interpréter un signal électrique reçu du capteur de pression 2 comme correspondant à une chute lorsque ledit signal électrique est une sinusoïde présentant une amplitude supérieure à un seuil prédéterminé avec une fréquence voisine de IHz. Un tel signal est en effet caractéristique d'une chute d'un corps dans l'eau. L'unité électronique est alors adaptée à commander le déclenchement d'une alarme sonore disposée dans le boîtier par exemple. L'unité électronique peut également déclencher l'émission d'un signal d'alerte par un émetteur radio vers une sirène déportée, par exemple dans la maison.The electronic unit is adapted to interpret the signals generated by the pool in that it can correlate, for example, amplitude and frequency values of electrical signal with a fall detection. The electronic unit may include a microcontroller chip, in a manner known per se. In general, the electronic unit is adapted to interpret an electrical signal received from the pressure sensor 2 as corresponding to a fall when said electrical signal is a sinusoid having an amplitude greater than a predetermined threshold with a frequency close to 1 Hz. Such a signal is indeed characteristic of a fall of a body in water. The electronic unit is then adapted to control the triggering of an audible alarm disposed in the housing for example. The electronic unit can also trigger the transmission of an alert signal by a radio transmitter to a remote siren, for example in the house.
Or, comme indiqué précédemment, les vagues de surface peuvent parasiter la mesure de l'amplitude des vagues sous marines et provoquer soit un retard d'une détection de chute soit un déclenchement intempestif de l'alarme. En effet, les ondes aquatiques sont perçues par l'unité électronique du dispositif de détection comme un signal électrique sinusoïdal. Ce signal sinusoïdal est classiquement quantifié en demi-vague, une demi-vague correspondant à une demi période du signal sinusoïdal dont la crête dépasse un seuil prédéterminé d'amplitude. Ainsi, lorsque l'unité électronique reçoit un signal électrique du capteur de pression dont l'amplitude dépasse ledit seuil prédéterminé, elle compte cet événement comme une information valide. Si elle détecte, dans une gamme de fréquences prédéfinie autour de 1 Hz, un certain nombre d'informations valides successives et non manquantes, elle interprète cela comme une chute.However, as indicated above, the surface waves can interfere with the measurement of the amplitude of the submarine waves and cause either a delay of a fall detection or a nuisance triggering of the alarm. Indeed, the aquatic waves are perceived by the electronic unit of the detection device as a sinusoidal electrical signal. This sinusoidal signal is classically quantized in half-wave, a half-wave corresponding to a half-period of the sinusoidal signal whose peak exceeds a predetermined threshold of amplitude. Thus, when the electronic unit receives an electrical signal from the pressure sensor whose amplitude exceeds said predetermined threshold, it counts this event as valid information. If it detects a certain amount of successive and non-missing valid information in a predefined frequency range around 1 Hz, it interprets this as a fall.
Si des vagues de surface viennent perturber la mesure des ondes aquatiques, le capteur de pression 2 peut transmettre une valeur de pression différente que celle engendrée par la seule onde aquatique et l'unité électronique peut alors manquer une information de demi- vague valide et retarder une détection de chute ; ou compter une information de demi- vague valide erronée et déclencher l'alarme sans nécessité.If surface waves disturb the measurement of the water waves, the pressure sensor 2 may transmit a different pressure value than that generated by the single water wave and the electronic unit may then miss valid half-wave information and delay fall detection; or count invalid valid half-wave information and trigger the alarm unnecessarily.
L'invention propose donc d'introduire un obstacle rigide 3 entre l'extrémité immergée 11 de la sonde 1 et la surface de l'eau. Cet obstacle rigide 3 forme un angle avec l'axe 12 de la sonde 1. Pour une efficacité optimale, l'obstacle rigide 3 peut s'étendre dans un plan sensiblement perpendiculaire audit axe 12, c'est-à-dire sensiblement à l'horizontal. L'obstacle rigide 3 peut cependant être orientée selon un plan autre que le plan horizontal, par exemple dans un plan formant un angle compris entre 10° et 170° avec l'axe 12 de la sonde 1. L'extrémité libre immergée 11 de la sonde 1 est ainsi protégée des variations de pression provenant des vagues de surface et ne transmet dans le tube de la sonde 1 que les variations de pressions provenant des ondes aquatiques se propageant sous l'obstacle 3.The invention therefore proposes introducing a rigid obstacle 3 between the immersed end 11 of the probe 1 and the surface of the water. This rigid obstacle 3 forms an angle with the axis 12 of the probe 1. For optimum efficiency, the rigid obstacle 3 may extend in a plane substantially perpendicular to said axis 12, that is to say substantially at least 'horizontal. The rigid obstacle 3 may, however, be oriented in a plane other than the horizontal plane, for example in a plane forming an angle of between 10 ° and 170 ° with the axis 12 of the probe 1. The submerged free end 11 of the probe 1 is thus protected from the pressure variations coming from the surface waves and transmits into the tube of the probe 1 only the pressure variations originating from the aquatic waves propagating under the obstacle 3.
L'obstacle 3 doit être suffisamment rigide pour réfléchir les ondes aquatiques venant de la surface sans transmettre de variation de pression à la masse d'eau située en dessous. La forme et la taille de l'obstacle 3 sont choisies pour bien protéger l'extrémité libre immergée 11 du tube.The obstacle 3 must be rigid enough to reflect the water waves coming from the surface without transmitting pressure variation to the water body below. The shape and size of the obstacle 3 are chosen to protect the submerged free end 11 of the tube.
Dans le mode de réalisation illustré sur la figure 2, l'obstacle rigide est constitué par une plaque 3 positionnée autour de la sonde 1 et s'étendant dans un plan perpendiculaire à l'axe 12 de la sonde. La plaque 3 est donc sensiblement parallèle à la surface de l'eau et peut renvoyer vers le haut les variations de pression dues aux vagues de surface, sans transmettre de variation de pression vers le bas en direction de l'extrémité libre 11 de la sonde 1. La plaque 3 peut être fixée directement au tube de la sonde 1 et/ou accrochée à la paroi du bassin 20 et/ou au boîtier 7 du dispositif.In the embodiment illustrated in Figure 2, the rigid obstacle is constituted by a plate 3 positioned around the probe 1 and extending in a plane perpendicular to the axis 12 of the probe. The plate 3 is therefore substantially parallel to the surface of the water and can return upward the pressure variations due to the surface waves, without transmitting pressure variation downwards towards the free end 11 of the probe 1. The plate 3 can be fixed directly to the tube of the probe 1 and / or hooked to the wall of the basin 20 and / or to the housing 7 of the device.
Les figures 3a à 3d illustrent différentes formes de plaques possibles pour constituer l'obstacle rigide. Il est entendu que d'autres formes peuvent être envisagées différentes des quatre formes illustrées.Figures 3a to 3d illustrate different forms of possible plates to constitute the rigid obstacle. It is understood that other forms may be considered different from the four illustrated forms.
La plaque 3 peut être en plastique, par exemple de FABS (Acrylonitrile Butadiène Styrène) ou du polycarbonate, et être obtenue par exemple par moulage injection de façon connue en soi. La plaque 3 présente une ouverture 31 permettant de positionner la plaque 3 autour du tube de la sonde 1 comme illustré sur la figure 2. L'ouverture 31 est de préférence choisie avec une périphérie correspondant à la forme de la sonde 1, c'est-à-dire que la plaque 3 présentera une ouverture 31 ronde si la sonde est cylindrique de base circulaire ou une ouverture ovale ou trapézoïdale si la sonde est cylindrique de base ovoïdale ou trapézoïdale. Toute autre forme d'ouverture 31 peut être envisagée, selon les formes de sonde utilisée pour les dispositifs de détections. De plus les dimensions de l'ouverture 31 sont de préférence choisies pour s'ajuster à la périphérie de la sonde afin de ne pas laisser passer de l'eau à travers l'ouverture 31 lorsque la plaque 3 est placée autours de la sonde. La plaque 3 peut ainsi être clippée sur le tube de la sonde 1, par exemple dans une ramure prévue à cette effet ; la plaque peut aussi être collée au tube de la sonde et solidarisée de manière définitive sur le tube. La plaque 3 peut aussi être placée autour du tube de la sonde 1 et fixée ailleurs, par exemple avec une tige reliant la plaque à un système de fixation, par exemple une ventouse, sur la paroi du bassin ou sous le boîtier du dispositif.The plate 3 can be made of plastic, for example FABS (Acrylonitrile Butadiene Styrene) or polycarbonate, and can be obtained for example by injection molding in a manner known per se. The plate 3 has an opening 31 for positioning the plate 3 around the tube of the probe 1 as illustrated in FIG. 2. The opening 31 is preferably chosen with a periphery corresponding to the shape of the probe 1, this is that is, the plate 3 will have a round opening 31 if the probe is cylindrical with a circular base or an oval or trapezoidal opening if the probe is cylindrical with an oval or trapezoidal base. Any other form of opening 31 may be envisaged, depending on the forms of probe used for the detecting devices. In addition, the dimensions of the opening 31 are preferably chosen to fit around the periphery of the probe so as not to allow water to pass through the opening 31 when the plate 3 is placed around the probe. The plate 3 can thus be clipped onto the tube of the probe 1, for example in a groove provided for this purpose; the plate can also be glued to the tube of the probe and permanently secured to the tube. The plate 3 can also be placed around the tube of the probe 1 and fixed elsewhere, for example with a rod connecting the plate to a fastening system, for example a suction cup, on the wall of the basin or under the housing of the device.
La plaque 3 est suffisamment rigide et étendue pour assurer sa fonction d'obstacle aux variations de pression dues aux vagues de surface. La plaque peut présenter une épaisseur comprise entre 1 et 5 mm et s'étendre sur une surface présentant une aire comprise entre 10 et 350 cm2. La forme de la plaque - ronde, carrée, ovale, en arc de cercle, etc.... - dépend de la forme et de la taille du dispositif de détection sur lequel elle est placée, et de la distance entre la sonde et la paroi du bassin.The plate 3 is sufficiently rigid and extended to act as an obstacle to pressure variations due to surface waves. The plate may have a thickness of between 1 and 5 mm and extend over a surface having an area of between 10 and 350 cm 2 . The shape of the plate - round, square, oval, arcuate, etc .... - depends on the shape and size of the detection device on which it is placed, and the distance between the probe and the basin wall.
La figure 3d montre une plaque présentant une surface supérieure, c'est-à-dire faisant face à la surface de l'eau, avec des cannelures. Une telle surface permet d'atténuer les ondes aquatiques se propageant depuis la surface plutôt que de les renvoyer vers le haut du bassin. La figure 4 décrit un dispositif de détection selon un deuxième mode de réalisation de l'invention. Les éléments identiques à la figure 2 portent les mêmes numéros de référence.Figure 3d shows a plate having a top surface, i.e. facing the surface of the water, with flutes. Such a surface makes it possible to attenuate the aquatic waves propagating from the surface rather than to send them towards the top of the basin. FIG. 4 describes a detection device according to a second embodiment of the invention. The elements identical to Figure 2 bear the same reference numbers.
Dans le mode de réalisation illustré sur la figure 4, l'obstacle rigide est constitué par une portion coudée du tube de la sonde immergée 1. Le tube est généralement constitué de plastique rigide et peut donc servir à constituer l'obstacle sans nécessiter l'utilisation d'une pièce supplémentaire.In the embodiment illustrated in FIG. 4, the rigid obstacle is constituted by a bent portion of the tube of the immersed probe 1. The tube is generally made of rigid plastic and can therefore serve to constitute the obstacle without requiring the use of an additional room.
La sonde 1 présente toujours un axe 12 sensiblement vertical tel que décrit précédemment et pour les mêmes raisons d'efficacité de mesure de l'amplitude des ondes aquatiques par variation de pression. L'extrémité libre immergée 11 de la sonde 1 n'est cependant pas située dans la continuité de cet axe vertical 12. La sonde 1 présente une portion formant un angle avec l'axe vertical de poussée de l'eau sur l'air emprisonné dans le tube. La paroi supérieure 3 de cette portion de tube forme un obstacle rigide entre la surface de l'eau et l'extrémité libre 11 du tube. Selon les modèles de sondes utilisées, la paroi supérieure de la portion coudée du tube peut former un angle compris entre 40° et 90° avec l'axe 12 de la sonde 1.The probe 1 always has a substantially vertical axis 12 as described above and for the same reasons of efficiency of measurement of the amplitude of the aquatic waves by pressure variation. The submerged free end 11 of the probe 1, however, is not situated in the continuity of this vertical axis 12. The probe 1 has a portion forming an angle with the vertical axis of thrust of the water on the trapped air in the tube. The upper wall 3 of this tube portion forms a rigid obstacle between the surface of the water and the free end 11 of the tube. According to the models of probes used, the upper wall of the bent portion of the tube may form an angle between 40 ° and 90 ° with the axis 12 of the probe 1.
Les figures 5 a et 5d donnent deux exemple d'obstacles 3 constitué par la sonde 1 elle-même. Il est entendu que d'autres formes peuvent être envisagées.Figures 5a and 5d give two examples of obstacles 3 constituted by the probe 1 itself. It is understood that other forms can be envisaged.
La sonde 1 présente une première partie 13 destinée à s'étendre selon un axe 12 sensiblement vertical lorsque la sonde est plongée dans le bassin (figure 4). Cette première partie 13 est destinée à transmettre les variations de pression provoquées par les ondes aquatiques vers le capteur 2, selon les principes physiques évoqués plus haut. La sonde 1 présente aussi une deuxième partie 14 qui présente un coude de jonction et au moins une portion 3 formant un angle avec l'axe vertical précité. De préférence, la portion rigide 3 est sensiblement perpendiculaire à l'axe 12 vertical, mais la portion de tube formant l'obstacle 3 peut former un angle compris entre 40° et 90° avec l'axe de la sonde. La deuxième partie 14 est destinée à être totalement immergée lorsque la sonde est plongée dans le bassin (figure 4). La surface supérieure de la portion coudée 3 de la sonde constitue alors un obstacle à la transmission des variations de pression dues aux vagues de surface vers l'extrémité libre immergée 11 de la sonde 1. Bien que non illustré, la portion coudée de la sonde peut présenter une forme de crochet ou de S présentant plusieurs coudes de jonction. Quelque soit la forme envisagée, il faut que la sonde 1 présente une partie sensiblement verticale pour la transmission des variations de pression vers le capteur 2 et une partie totalement immergée présentant un angle avec la verticale, de préférence un angle droit. L'extrémité libre immergée 11 de la sonde peut être située à une extrémité de la portion coudée, comme illustrée sur la figure 4, ou à une extrémité d'une autre partie verticale de la sonde, la portion coudée étant située dans une zone médiane de la sonde.The probe 1 has a first portion 13 intended to extend along a substantially vertical axis 12 when the probe is immersed in the basin (FIG. 4). This first part 13 is intended to transmit the pressure variations caused by the water waves to the sensor 2, according to the physical principles mentioned above. The probe 1 also has a second portion 14 which has a connecting bend and at least a portion 3 forming an angle with the aforementioned vertical axis. Preferably, the rigid portion 3 is substantially perpendicular to the vertical axis 12, but the tube portion forming the obstacle 3 may form an angle of between 40 ° and 90 ° with the axis of the probe. The second portion 14 is intended to be totally immersed when the probe is immersed in the basin (Figure 4). The upper surface of the bent portion 3 of the probe then constitutes an obstacle to the transmission of the pressure variations due to the surface waves towards the immersed free end 11 of the probe 1. Although not illustrated, the bent portion of the probe may have a hook or S shape with several junction elbows. Whatever the form envisaged, it is necessary that the probe 1 has a substantially vertical portion for the transmission of pressure variations to the sensor 2 and a totally immersed portion having an angle with the vertical, preferably a right angle. The submerged free end 11 of the probe may be located at one end of the bent portion, as shown in FIG. 4, or at one end of another vertical portion of the probe, the bent portion being located in a central zone. of the probe.
La portion coudée 3 constitue bien un obstacle rigide au sens de l'invention, avec une surface sensiblement perpendiculaire à l'axe 12 de la sonde située entre la surface de l'eau et l'extrémité immergée 11 de la sonde. Cette portion coudée 3 est de préférence suffisamment longue pour permettre un bon arrêt de la propagation des ondes aquatiques de surface se propageant vers l'extrémité libre 11 de la sonde, par exemple une longueur de portion coudée comprise entre 5 cm et 20 cm est adaptée à différente forme de sonde pour former un obstacle rigide présentant une aire comprises entre 10 et 350 cm2.The bent portion 3 is indeed a rigid obstacle within the meaning of the invention, with a surface substantially perpendicular to the axis 12 of the probe located between the surface of the water and the submerged end 11 of the probe. This bent portion 3 is preferably sufficiently long to allow a good stop of the propagation of surface water waves propagating towards the free end 11 of the probe, for example a bent portion length of between 5 cm and 20 cm is adapted to different form of probe to form a rigid obstacle having an area of between 10 and 350 cm 2 .
Le dispositif de détection de chute selon l'invention permet ainsi une mesure des variations de pression induites par les ondes aquatiques se propageant dans le bassin sans parasiter ces mesures avec des variations de pression induites par une variation du niveau de l'eau due aux vagues de surface. La détection d'une chute de corps dans le bassin est ainsi optimisée et les déclenchements intempestifs de l'alarme limités.The fall detection device according to the invention thus makes it possible to measure the pressure variations induced by the aquatic waves propagating in the basin without parasitizing these measurements with pressure variations induced by a variation in the level of the water due to the waves. of surface. The detection of a body drop in the pool is thus optimized and nuisance tripping of the alarm is limited.
Bien entendu, la présente invention n'est pas limitée aux modes de réalisation décrits à titre d'exemple. En particulier, la sonde 1 peut ne pas être hermétiquement close à son extrémité supérieure et déboucher dans une chambre de compression située dans le boîtier du dispositif de détection. Par ailleurs, d'autres formes d'obstacles 3 peuvent être envisagées, en particulier une forme en S ou en crochet de la sonde 1 plutôt que la forme en L illustré. Of course, the present invention is not limited to the embodiments described by way of example. In particular, the probe 1 may not be hermetically closed at its upper end and open into a compression chamber located in the housing of the detection device. On the other hand, other forms of obstacles 3 may be envisaged, in particular an S-shaped or hook-shaped shape of the probe 1 rather than the illustrated L shape.

Claims

REVENDICATIONS
1. Dispositif de détection d'une chute d'un corps dans une masse d'eau (20) d'un bassin comprenant : - une sonde (1) adaptée à transmettre des ondes aquatiques se propageant dans le bassin (20), la sonde présentant une extrémité libre immergée (11) dans le bassin et un axe (12) sensiblement vertical ;1. Device for detecting a fall of a body in a water body (20) of a basin comprising: - a probe (1) adapted to transmit aquatic waves propagating in the basin (20), the probe having a submerged free end (11) in the basin and a substantially vertical axis (12);
- une unité électronique (4) adaptée à recevoir et interpréter des signaux électriques représentatifs de variations de pression provoquées par les ondes aquatiques recueillies par la sonde (1) ;- an electronic unit (4) adapted to receive and interpret electrical signals representative of pressure variations caused by the water waves collected by the probe (1);
- un obstacle rigide (3) immergé s 'étendant entre l'extrémité immergée de la sonde et la surface de la masse d'eau du bassin dans un plan formant un angle avec l'axe de la sonde immergée.a rigid immersed obstacle (3) extending between the immersed end of the probe and the surface of the pool of water mass in a plane forming an angle with the axis of the immersed probe.
2. Dispositif de détection selon la revendication 1, caractérisé en ce que l'obstacle rigide (3) est une plaque comprenant une ouverture (31) traversée par la sonde (1).2. Detection device according to claim 1, characterized in that the rigid obstacle (3) is a plate comprising an opening (31) through which the probe (1).
3. Dispositif de détection selon la revendication 2, caractérisé en ce que la plaque (3) s'étend dans un plan formant un angle compris entre 10° et 170° avec l'axe (12) de la sonde (1).3. Detection device according to claim 2, characterized in that the plate (3) extends in a plane forming an angle between 10 ° and 170 ° with the axis (12) of the probe (1).
4. Dispositif de détection selon la revendication 2 ou 3, caractérisé en ce que la plaque (3) est solidaire de la sonde.4. Detection device according to claim 2 or 3, characterized in that the plate (3) is integral with the probe.
5. Dispositif de détection selon Tune des revendications 2 à 4, caractérisé en ce que la plaque (3) est fixée au bassin.5. Detection device according to one of claims 2 to 4, characterized in that the plate (3) is fixed to the basin.
6. Dispositif de détection selon l'une des revendications 2 à 5, caractérisé en ce que la plaque (3) présente une épaisseur comprise entre 1 et 5 mm.6. Detection device according to one of claims 2 to 5, characterized in that the plate (3) has a thickness of between 1 and 5 mm.
7. Dispositif de détection selon la revendication I5 caractérisé en ce que l'obstacle rigide (3) est formé par une portion coudée de la sonde (1).7. Detection device according to claim I 5 characterized in that the rigid obstacle (3) is formed by a bent portion of the probe (1).
8. Dispositif de détection selon la revendication 7, caractérisé en ce que la sonde (1) présente une première partie (13) s'étendant dans l'axe (12) de la sonde et une deuxième partie (14) présentant au moins une portion (3) formant un angle avec ledit axe, la deuxième partie (14) étant totalement immergée.8. Detection device according to claim 7, characterized in that the probe (1) has a first portion (13) extending in the axis (12) of the probe and a second portion (14) having at least one portion (3) forming an angle with said axis, the second portion (14) being fully immersed.
9. Dispositif de détection selon la revendication 8, caractérisé en ce que la portion coudée (3) de la sonde fait un angle compris entre 40° et 90° avec l'axe (12) de la sonde (1).9. Detection device according to claim 8, characterized in that the bent portion (3) of the probe is at an angle between 40 ° and 90 ° with the axis (12) of the probe (1).
10. Dispositif de détection selon l'une des revendications 1 à 9, caractérisé en ce que l'obstacle rigide (3) présente une aire comprise entre 10 et 350 cm2.10. Detection device according to one of claims 1 to 9, characterized in that the rigid obstacle (3) has an area of between 10 and 350 cm 2 .
11. Dispositif de détection selon l'une des revendications 1 à 10, caractérisé en ce que la sonde (1) est un tube au moins partiellement rempli d'air de base ronde, ovale ou trapézoïdale.11. Detection device according to one of claims 1 to 10, characterized in that the probe (1) is a tube at least partially filled with round, oval or trapezoidal base air.
12. Dispositif de détection selon l'une des revendications 1 à 11, caractérisé en ce qu'il comprend une chambre de compression (8) comprenant un capteur de pression (2) relié à l'unité électronique.12. Detection device according to one of claims 1 to 11, characterized in that it comprises a compression chamber (8) comprising a pressure sensor (2) connected to the electronic unit.
13. Dispositif de détection selon la revendication 12, caractérisé en ce que la chambre de compression est constituée par la sonde (1) hermétiquement close à son extrémité opposée à l'extrémité libre immergée (11).13. Detection device according to claim 12, characterized in that the compression chamber is constituted by the probe (1) hermetically closed at its end opposite the immersed free end (11).
14. Dispositif de détection selon la revendication 12, caractérisé en ce que la chambre de compression est située dans un boîtier du dispositif, la sonde (1) débouchant dans ladite chambre de compression par son extrémité opposée à l'extrémité libre immergée (11). 14. Detection device according to claim 12, characterized in that the compression chamber is located in a housing of the device, the probe (1) opening into said compression chamber at its end opposite the immersed free end (11). .
EP05786098A 2005-07-01 2005-07-01 Device for detecting a body falling in a pool Withdrawn EP1902433A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2005/001689 WO2007003719A1 (en) 2005-07-01 2005-07-01 Device for detecting a body falling in a pool

Publications (1)

Publication Number Publication Date
EP1902433A1 true EP1902433A1 (en) 2008-03-26

Family

ID=35853505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05786098A Withdrawn EP1902433A1 (en) 2005-07-01 2005-07-01 Device for detecting a body falling in a pool

Country Status (3)

Country Link
US (1) US20100079293A1 (en)
EP (1) EP1902433A1 (en)
WO (1) WO2007003719A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015028980A1 (en) * 2013-08-29 2015-03-05 Andries Petrus Cronje Fourie Swimming pool safety device
ES1195961Y (en) * 2017-10-11 2018-01-19 Burguete Ignacio Hinarejos POOL STAIRCASE WITH CHILD ALARM

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121200A (en) * 1976-07-22 1978-10-17 Colmenero Gustavo T Swimming pool alarm system
US4533907A (en) * 1983-05-09 1985-08-06 Thatcher John B Swimming pool alarm
US5115222A (en) * 1989-05-24 1992-05-19 Peralta Joaquin O Alarm to detect accidental sudden or slow falls from children into swimming pools
US5162777A (en) * 1990-12-21 1992-11-10 Kolbatz Klaus Peter Submerged alarm device for monitoring swimming pools
US5325086A (en) * 1991-05-14 1994-06-28 Thomas Raymond F Wave responsive alarm for swimming pool
US5959534A (en) * 1993-10-29 1999-09-28 Splash Industries, Inc. Swimming pool alarm
US6071480A (en) * 1994-12-22 2000-06-06 Abbott Laboratories Method for generating a standing sonic wave, methods of sonication with a standing sonic wave, and a standing sonic wave sonicator
FR2763684B1 (en) * 1997-05-20 1999-07-16 F And F International DEVICE FOR DETECTING THE FALL OF A BODY IN A POOL
FR2868861B3 (en) * 2004-04-07 2007-07-27 Azur Integration Sarl DEVICE FOR DETECTING THE FALL OF A BODY IN A SWIMMING POOL
FR2884952B1 (en) * 2005-04-26 2007-07-06 M G Internat DEVICE FOR DETECTING THE FALL OF A BODY IN A BASIN

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007003719A1 *

Also Published As

Publication number Publication date
WO2007003719A1 (en) 2007-01-11
US20100079293A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
EP1756784B1 (en) Device for detecting a fall into a swimming pool
EP1880373B1 (en) Device for detecting the falling of a body into a pool
CA1256977A (en) Bubble detector for use with the blood
EP0247908B1 (en) Liquid level pick-up head using elastically guided waves
FR2891056A1 (en) MOUNTING STRUCTURE OF A UTLTRASON SENSOR
FR2543677A1 (en) METHOD AND SENSOR FOR DETECTING ULTRASOUND LIQUID INTERFACE
EP1712899A2 (en) Device to analyse the composition of the contents of a receptacle
EP0409732B1 (en) Detector for the presence of a liquid using a composite elastic wave guide
FR2684768A1 (en) SECURITY SYSTEM FOR POOLS AND OTHER WATER PARTS.
EP1902433A1 (en) Device for detecting a body falling in a pool
FR2719113A1 (en) Liquid level sensor with plunger core.
WO2004011949A2 (en) Device for detecting the fall of a body into a swimming pool
WO2007003724A1 (en) Device for detecting a body falling into a tank
FR2499294A1 (en) METHOD AND DEVICE FOR MONITORING THE CONTROL BARS OF A NUCLEAR REACTOR
FR2763684A1 (en) Swimming pool body drop detector especially for detecting children falling into the pool
WO2004047040A1 (en) Safety system for persons running the risk of drowning
FR2894702A1 (en) Individual`s e.g. child, fall detection system for swimming pool, has portable security element communicating watering of detection element to immersion detection device independent of active/inactive states of detection device
EP4229367B1 (en) Device for counting objects
FR2822044A1 (en) Mailbox indicator comprises transmitter inside mailbox switched on when mail touches radiating arms, connected without wires to receiver in house
FR2789788A1 (en) Swimming pool perimeter laser protection unit having main block with processing unit laser light transmitting internal holes passing and carrier blocks laser light reflecting/main unit returning.
WO2007104864A1 (en) Secure container for accepting waste
FR2817379A1 (en) Young children swimming pool alarm system having floating sealed transmission unit/detection element with light slope mercury ball switches child fall closing/receiver alarm setting
FR2509168A1 (en) DEVICE FOR FILLING A DENTIST MUG FOR MOUTH FLUSHINGS
WO2008031990A1 (en) Water detection apparatus
EP2907721A1 (en) Device for controlling the opening of at least one door of a railway vehicle, vehicle comprising such a device and related control method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080520

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081202