EP1902326A1 - VERFAHREN ZUR ERKENNUNG VORGEBBARER GRÖßEN EINES ELEKTRISCHEN SPEICHERS - Google Patents

VERFAHREN ZUR ERKENNUNG VORGEBBARER GRÖßEN EINES ELEKTRISCHEN SPEICHERS

Info

Publication number
EP1902326A1
EP1902326A1 EP06755142A EP06755142A EP1902326A1 EP 1902326 A1 EP1902326 A1 EP 1902326A1 EP 06755142 A EP06755142 A EP 06755142A EP 06755142 A EP06755142 A EP 06755142A EP 1902326 A1 EP1902326 A1 EP 1902326A1
Authority
EP
European Patent Office
Prior art keywords
parameters
adaptable
parameter
battery
slowly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06755142A
Other languages
German (de)
English (en)
French (fr)
Inventor
Eberhard Schoch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1902326A1 publication Critical patent/EP1902326A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Definitions

  • the invention relates to a method for detecting predeterminable sizes of an electrical memory with the features of claim 1.
  • quantities of an electrical energy or charge storage are determined for a motor vehicle, with predeterminable sizes include the performance, the storage capability or the type of electrical storage.
  • Energy storage in the motor vehicle electrical system for example in the context of electrical energy management, usually methods are used, which use to a certain extent a priori knowledge about the energy storage used. Such methods are described for example in DE 199 59 019. Such knowledge about the energy storage used use e.g. the rated capacity or the cold start current to the desired sizes linen- u. Storage capacity to be determined.
  • the a priori data of the battery state detection must be communicated when installing or replacing the energy store. This can be done in the workshop by appropriate coding, but is not practical when changing the battery by the end user. In addition, errors in the coding can not be excluded.
  • Another possibility is provided by adaptive model-based methods for battery state detection, which autonomously determine, for example, the parameters relevant to the power or storage capability continuous measurement of current, voltage u. Adapt the temperature of the energy storage. These methods are dependent on a sufficient on-board network dynamics and cyclization of the energy storage for a quick adaptation of the desired parameters, since an active intervention in the electrical system is not approved by the vehicle manufacturer or too expensive and therefore too expensive.
  • Battery has adapted. This applies in particular to the battery capacity, for the adaptation of which current charging / discharging strokes of> 20-30% nominal capacity are required. Another aspect is that in general not all relevant parameters for power and storage capability can be adapted, otherwise the procedure would be too costly, the measured quantities current, voltage, temperature would not be sufficient or the energy storage would have to be operated at operating points. that does not normally occur in the vehicle, for example, overcharging or low state of charge.
  • the inventive method for detecting predeterminable sizes of an electrical memory with the features of claim 1 has the advantage of enabling rapid detection of the memory type and the parameters of the memory type and to carry out the adaptation of relevant for the determination of power and / or storage capacity parameters. It is particularly suitable to be used for an electrical storage in a vehicle electrical system, such as a lead acid battery and to get along from the continuous measurement of current, voltage and temperature without conditioning the storage or battery type or active stimulation of the electrical system.
  • the type and the parameters of the electrical energy store can also be determined much faster compared to the known model-based methods.
  • the method according to the invention allows a reliable statement about the performance and storage capacity of the exchanged within a few minutes of the first operating phase Energy storage. This is particularly important for safety-critical applications such as x-by-wire applications, so that it is recognized as quickly as possible whether the exchanged energy storage or the exchanged energy is approved for this application and the subsidized performance or storage capability can basically.
  • Days are adapted.
  • One such slow adaptable parameter is the battery capacity. Since the rapidly adaptable parameters correlate with the slowly adaptable parameters, the latter, in particular the battery capacity, is deduced from the rapidly adaptable parameters, taking account of predefinable estimation routines and estimation errors. By comparing the determined parameters with stored parameters, the type of battery used can be detected.
  • the method according to the invention can also detect whether an exchange of the energy storage has taken place at all or whether the possibly aged battery is only used for other purposes, e.g. for recharging in a charger was disconnected from the electrical system.
  • time constants of RC elements with small time constants, which consist of specifiable resistors and
  • Assemble capacities of the electrical storage or the ohmic internal resistance of the electrical storage are selected.
  • the equivalent capacity of the electrical memory is selected.
  • Parameters with stored parameters can be reliably concluded on the performance and / or the storage capability or whether it is the energy storage is an approved energy storage whether an exchange of memory has occurred. It is particularly advantageous that a distance measure is formed from the adapted and the non-adapted parameters, which is compared with the stored parameters for the recognition of the predeterminable variables and that from the comparison result on the predeterminable size, in particular the memory type is concluded.
  • the distance measure can be formed depending on the error square or on absolute values of predefinable parameters. Relative error squares of predeterminable parameters or parameter sets can be determined, depending on the current accuracy of the estimated parameter and its significance for a particular memory type, taking into account the significance by means of weighting factors.
  • the advantage here is that quickly adaptable parameters contribute more to the distance measure than slow ones whose
  • parameters are weighted with respect to their significance for distinguishing the different memory types, and the parameter with the greatest relative variance is most heavily weighted with respect to the memory type, in particular the battery type, and vice versa.
  • FIG. 1 essentially describes the equivalent circuit diagram of a lead-acid battery and FIG. 2 shows essential to the invention
  • FIG. 3 shows a flowchart with essential method steps.
  • the basic idea behind the invention is that certain parameters (seconds to minutes) of an electrical energy store, for example a lead-acid battery, correlate with parameters that are rather slowly adaptable (hours to days) such as the battery capacity, so that after the transient of the battery quickly adaptable parameters can be concluded on the slowly adaptable parameters.
  • FIG. 1 Essential parameters or sizes of an electrical storage device, for example a lead-acid battery or a lead-acid battery, are given in FIG.
  • the equivalent circuit of a lead-acid battery shows the following relationships:
  • Uco open-circuit voltage
  • U k concentration polarization
  • U Dp penetration polarization of the positive electrode
  • U Dn penetration polarization of the negative electrode
  • R 1 resistive internal resistance (lead grid + acid)
  • C 0 replacement capacity of the battery
  • R DP , C DP resistance and capacity of the positive electrode double layer
  • R Dn5 C Dn resistance and capacitance of the negative electrode double layer
  • the replacement capacity C 0 of the battery is typically in starter batteries in the
  • Replacement capacity C 0 can be adapted. Furthermore, the ohmic internal resistance R 1, at least in the case of a new battery and based on the fixed state of charge and temperature, also provides an indication of the replacement capacity since this decreases as the battery capacity increases.
  • the parameter set p_ Batt the currently built-in battery is closest to the following "distance measure" is used for the adapted parameters:
  • the absolute value can also be used, for example.
  • the rel. Error squares of the individual parameters are determined by the factor m individually weighted for each of the m parameters of a parameter set as a function of the current accuracy of the estimated parameter and its significance for a particular battery type. If, for example, the parameters estimated with a Kalman filter, this provides for each parameter and its error variance P p i m; Batt, so that the weighting factors for the following approach offers:
  • Variance threshold Ps C hweiie limited to the maximum value of 1.
  • step S3 by minimizing the distance measures closest to the estimated parameter set, and replacing the slow or unadaptable parameters with those of the selected parameter set.
  • step S3 it can be decided whether a battery replacement ever existed and whether, if the stored parameter sets were too large, a battery that was not intended for the intended purpose was exchanged:
  • step S4 the condition is checked if min (D 2 0 .. n ) ⁇ D 2 ⁇
  • step S4 If YES in step S4, it is checked in step S6 if k> 0.
  • inventive method according to the main claim including the advantageous developments are carried out with the aid of an evaluation, in particular a computational insight or a control device, such as a battery control unit or a
  • On-board control unit represents and in addition to suitable processors also includes storage means.
  • the variables required for carrying out the method are measured by suitable means, for example sensors and fed to the evaluation and processed by this optionally after a treatment.
  • FIG 2 are essential to the invention Means of the evaluation device shown.
  • a processor P in which the methods according to the invention run, one or more memories SP, into which initial values are stored, which can be accessed by the processor P. Measurements can also be taken continuously in the memories SP.
  • a display A may indicate the determined state of charge or the battery type and so on.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
EP06755142A 2005-07-05 2006-05-11 VERFAHREN ZUR ERKENNUNG VORGEBBARER GRÖßEN EINES ELEKTRISCHEN SPEICHERS Ceased EP1902326A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031254A DE102005031254A1 (de) 2005-07-05 2005-07-05 Verfahren zur Erkennung vorgebbarer Größen eines elektrischen Speichers
PCT/EP2006/062229 WO2007003460A1 (de) 2005-07-05 2006-05-11 VERFAHREN ZUR ERKENNUNG VORGEBBARER GRÖßEN EINES ELEKTRISCHEN SPEICHERS

Publications (1)

Publication Number Publication Date
EP1902326A1 true EP1902326A1 (de) 2008-03-26

Family

ID=36868791

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06755142A Ceased EP1902326A1 (de) 2005-07-05 2006-05-11 VERFAHREN ZUR ERKENNUNG VORGEBBARER GRÖßEN EINES ELEKTRISCHEN SPEICHERS

Country Status (5)

Country Link
EP (1) EP1902326A1 (ja)
JP (1) JP5495560B2 (ja)
KR (1) KR101077765B1 (ja)
DE (1) DE102005031254A1 (ja)
WO (1) WO2007003460A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118080A1 (ja) * 2010-03-23 2011-09-29 古河電気工業株式会社 電池内部状態推定装置および電池内部状態推定方法
FR3010797B1 (fr) * 2013-09-18 2015-10-02 Renault Sa Procede d'estimation du vieillissement d'une cellule de batterie d'accumulateurs
CN106133994B (zh) 2014-04-01 2019-06-18 古河电气工业株式会社 二次电池状态检测装置以及二次电池状态检测方法
JP6183283B2 (ja) * 2014-04-23 2017-08-23 株式会社デンソー 車両用二次電池の等価回路のパラメータ推定装置
DE102019219427A1 (de) * 2019-12-12 2021-06-17 Robert Bosch Gmbh Verfahren zum Überwachen eines Energiespeichers in einem Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137269A (en) * 1999-09-01 2000-10-24 Champlin; Keith S. Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery
US20020109504A1 (en) * 1999-09-01 2002-08-15 Champlin Keith S. Method and apparatus using a circuit model to evaluate cell/battery parameters
DE10301823A1 (de) * 2003-01-20 2004-07-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln der aus einem Energiespeicher entnehmbaren Ladung
DE10328721A1 (de) * 2003-06-25 2005-01-13 Robert Bosch Gmbh Verfahren zur Vorhersage einer Restlebensdauer eines elektrischen Energiespeichers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014737A1 (de) * 1989-05-12 1990-11-15 Fraunhofer Ges Forschung Verfahren zur bestimmung von physikalischen groessen von wiederaufladbaren elektrischen energiespeichern und vorrichtung zur durchfuehrung des verfahrens
JP2536257B2 (ja) * 1990-08-07 1996-09-18 新神戸電機株式会社 据置用鉛蓄電池の寿命判定方法
JPH05103429A (ja) * 1991-10-02 1993-04-23 Toshiba Corp 電源制御方式
JPH0772225A (ja) * 1993-09-03 1995-03-17 Nippon Soken Inc バッテリの寿命判定装置
JPH11194157A (ja) * 1998-01-05 1999-07-21 Nikon Corp 電池種類識別装置
DE19959019A1 (de) * 1999-12-08 2001-06-13 Bosch Gmbh Robert Verfahren zur Zustandserkennung eines Energiespeichers
DE10328055A1 (de) 2003-01-30 2004-08-12 Robert Bosch Gmbh Zustandsgrößen- und Parameterschätzer mit mehreren Teilmodellen für einen elektrischen Energiespeicher
JP2005010032A (ja) * 2003-06-19 2005-01-13 Hitachi Maxell Ltd 電池残量検出方法およびその方法を用いた小型電気機器並びに電池パック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137269A (en) * 1999-09-01 2000-10-24 Champlin; Keith S. Method and apparatus for electronically evaluating the internal temperature of an electrochemical cell or battery
US20020109504A1 (en) * 1999-09-01 2002-08-15 Champlin Keith S. Method and apparatus using a circuit model to evaluate cell/battery parameters
DE10301823A1 (de) * 2003-01-20 2004-07-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln der aus einem Energiespeicher entnehmbaren Ladung
DE10328721A1 (de) * 2003-06-25 2005-01-13 Robert Bosch Gmbh Verfahren zur Vorhersage einer Restlebensdauer eines elektrischen Energiespeichers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007003460A1 *

Also Published As

Publication number Publication date
JP2009510390A (ja) 2009-03-12
KR101077765B1 (ko) 2011-10-27
JP5495560B2 (ja) 2014-05-21
WO2007003460A1 (de) 2007-01-11
DE102005031254A1 (de) 2007-01-18
KR20080033237A (ko) 2008-04-16

Similar Documents

Publication Publication Date Title
DE102013208048B4 (de) Batterieladezustandsbeobachter
EP1150131B1 (de) Verfahren zur Ermittlung des Ladezustands und der Belastbarkeit eines elektrischen Akkumulators
DE102009045526A1 (de) Verfahren zur Initialisierung und des Betriebs eines Batteriemanagementsystems
DE102013112533A1 (de) Plug-In Ladungskapazitätsschätzungsverfahren für Lithium-Eisenphosphatbatterien
DE102012010486B4 (de) Verfahren und Vorrichtung zum Feststellen der tatsächlichen Kapazität einer Batterie
WO2013159979A1 (de) Verfahren und vorrichtung zum bestimmen eines ladezustands einer batterie und batterie
DE102012200414A1 (de) Verfahren und Vorrichtung zu einer Bestimmung eines Ladezustands eines elektrischen Energiespeichers
DE102019211913A1 (de) Verfahren zur Bestimmung eines Alterungszustandes einer Batterie sowie Steuergerät und Fahrzeug
DE102012010487B4 (de) Verfahren und Vorrichtung zum Feststellen der tatsächlichen Kapazität einer Batterie
EP1902326A1 (de) VERFAHREN ZUR ERKENNUNG VORGEBBARER GRÖßEN EINES ELEKTRISCHEN SPEICHERS
DE102010019128B4 (de) Kapazitätsbestimmung automotiver Batterien
DE102017200548B4 (de) Verfahren zur Ermittlung einer aktuellen Kennlinie für einen ein Kraftfahrzeug versorgenden elektrochemischen Energiespeicher, Kraftfahrzeug und Server
WO2020002012A1 (de) Verfahren zum abschätzen eines zustandes eines elektrischen energiespeichersystems sowie system zum ermitteln einer verbleibenden kapazität eines elektrischen energiespeichersystems
DE102011005769B4 (de) Verfahren zum Ermitteln eines Ladezustandes einer elektrischen Energiespeichervorrichtung und elektrische Energiespeichervorrichtung
DE112008003377B4 (de) Batterie-Lernsystem
WO2019072488A1 (de) Energiespeichereinrichtung sowie vorrichtung und verfahren zur bestimmung einer kapazität einer energiespeichereinrichtung
DE102012022458A1 (de) Verfahren und System zum Überwachen eines Energiespeichers sowie ein elektrisch angetriebenes Kraftfahrzeug mit einer derartigen Energiespeicherüberwachung
DE102015211598A1 (de) Verfahren zum Betreiben eines Batteriemanagementsystems
DE102013214292B4 (de) Ladezustandserkennung elektrochemischer Speicher
DE102016121630B4 (de) Verfahren und vorrichtung zur zustandsüberwachung einer starterbatterie eines kraftfahrzeugs
DE102009054547B4 (de) Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie
DE102016222320A1 (de) Batterieeinheit, Batteriesystem und Verfahren zum Betrieb einer Batterieeinheit und/oder eines Batteriesystems
EP3866300A1 (de) Verfahren zur bestimmung des alterungszustandes mindestens einer elektrischen energiespeichereinheit
DE102020201506A1 (de) Verfahren zur Ladezustandsermittlung einer elektrischen Energiespeichereinheit
DE102019201968A1 (de) Batterieeinheit und Verfahren zum Betrieb einer Batterieeinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20150629