EP1902268B1 - Wärmetausher - Google Patents

Wärmetausher Download PDF

Info

Publication number
EP1902268B1
EP1902268B1 EP06753323A EP06753323A EP1902268B1 EP 1902268 B1 EP1902268 B1 EP 1902268B1 EP 06753323 A EP06753323 A EP 06753323A EP 06753323 A EP06753323 A EP 06753323A EP 1902268 B1 EP1902268 B1 EP 1902268B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
primary
valve
flow path
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06753323A
Other languages
English (en)
French (fr)
Other versions
EP1902268A1 (de
Inventor
Urh Hudoklin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss AS
Original Assignee
Danfoss AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss AS filed Critical Danfoss AS
Publication of EP1902268A1 publication Critical patent/EP1902268A1/de
Application granted granted Critical
Publication of EP1902268B1 publication Critical patent/EP1902268B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/005Arrangements for preventing direct contact between different heat-exchange media

Definitions

  • the invention relates to a heat exchanger with a housing having a primary inlet port, a primary outlet port, a secondary inlet port and a secondary outlet port, wherein between the primary inlet port and the primary outlet port a primary primary side flow path and between the secondary inlet port and the secondary outlet port a secondary flow path of a secondary side is arranged, wherein the primary flow path with the secondary flow path is in heat-transmitting connection and the heat exchanger has at least one control auxiliary device which is arranged in the primary flow path and in the secondary flow path.
  • Such a heat exchanger is for example off EP 608 195 B1 known.
  • a temperature sensor is integrated and measures both the temperature in the primary and secondary flow path.
  • the temperature sensor is located in a cylindrical tube and is in communication with a valve outside the housing.
  • Heat exchangers are used to transfer thermal energy from a primary medium to a secondary medium without mixing the two media.
  • the first medium water of a district heating system and the second medium water in drinking water quality.
  • at least one medium may be gas.
  • auxiliary control devices such as, for example, sensors, which are required for the operation of the heat exchanger, are integrated in the heat exchanger.
  • the invention has the object to improve a heat exchanger constructive.
  • control auxiliary device is passed through a gap which is arranged between the primary flow path and the secondary flow path.
  • the transition regions, and thus the interfaces between the primary flow path and the secondary flow path, are isolated from one another by the primary flow path and the secondary flow path each adjoining the gap.
  • the gap is then between the primary and the secondary side of the heat exchanger.
  • the primary and secondary flow paths are spaced apart in this part of the heat exchanger.
  • the control auxiliary device is thereby guided through the intermediate space and is thus simultaneously arranged in three areas, namely in the intermediate space and in the areas to the right and left of the intermediate space.
  • Control aids are here, for example used for controlling or regulating the heat exchanger and act, for example, mechanically or thermally.
  • a monitoring sensor can be arranged, which detects an entry of the fluid into the intermediate space. It can then be initiated further measures that prevent greater leakage, such as shutting off the inlet and outlet lines.
  • the gap communicates with an environment of the housing.
  • the gap may have a small volume.
  • the volume of the gap can then be designed only for small amounts of leakage, as in case of failure, fluid can be passed on to the outside.
  • the heat exchanger is not significantly larger by the gap than a heat exchanger without this gap.
  • fluid enters the gap it may, for example, evaporate due to its heat and through the adjacent heated primary and secondary sides. It For example, leaks occur when the fluid in the primary line rises to higher temperatures than intended. The fluid then expands due to the elevated temperature and requires more space. At a weak point, such as a seal, the fluid tries to escape. It gives the fluid with the arrangement of the intermediate space a predetermined breaking point.
  • the intermediate space absorbs the fluid and at the same time reduces the overpressure caused by the fluid.
  • the intermediate area relieves the remaining areas of the heat exchanger by the gap is in communication with the environment of the housing, so that an overpressure can escape. Although some fluid is then lost, but there is no longer any danger that other areas of the heat exchanger are affected by a pressure increase.
  • the gap is at least partially bounded by the housing.
  • the housing thus encloses at least a portion of the primary and a portion of the secondary flow path and the space.
  • the gap may be bounded by the walls of the primary and secondary flow paths on its other walls, which are not formed by the housing. It is therefore provided without a lot of material, the gap.
  • the intermediate space has at least one opening which is arranged in the housing.
  • the intermediate space thus directly adjoins the housing and has at least one opening which connects the intermediate space with the environment to the outside. There are thus no channels necessary, which could hinder the drainage or evaporation of leaked fluid.
  • control auxiliary device is a first valve tappet of a first valve.
  • the first valve is thus a cartridge valve, since it is at least partially disposed within the heat exchanger. On This way one achieves a compact design of the heat exchanger.
  • the first valve tappet is arranged simultaneously in at least one actuation position in the primary and secondary flow paths as well as in the intermediate region.
  • the first valve is arranged in the region of the secondary inlet port.
  • the valve is inserted, for example, at the secondary inlet port from the outside into the housing of the heat exchanger and connected against falling out by a screw connection to the housing.
  • the first valve is thus easily replaceable and sufficiently fixed at a resulting overpressure of the fluid.
  • the first valve is thermally stressed, since on the secondary side of the heat exchanger, the fluid is heated by the fluid of the primary side and the fluid at the secondary inlet port has a lower temperature than the secondary outlet port.
  • the primary inlet port comprises a first valve seat of the first valve. It is thus possible to control the inflow of the fluid in the primary inlet port with the first valve. This is particularly easy when the primary inlet port and the secondary outlet port are opposed and the ports are on a straight line connection.
  • the first valve seat is fixed to the housing arranged in the primary inlet port and seals at the same time when the first valve is closed, the primary inlet port.
  • a first valve member of the first valve which cooperates with the valve seat is conveniently flowable through the primary inlet port.
  • the first valve has a diaphragm which contacts fluid of the secondary flow path.
  • a membrane reacts almost inertia to set pressure changes in the secondary Inlet port. Accordingly, the first valve has a short reaction time.
  • the first valve stem with the membrane is actuated. It thus uses the almost inertia-free response of the membrane for the valve lifter. Thus, one can influence the fluid flow in the primary flow path without delay in dependence on the fluid flow in the secondary flow path.
  • control auxiliary device is a temperature sensor.
  • the control auxiliary device is a temperature sensor.
  • the control auxiliary device is a temperature sensor.
  • the temperature of the fluid inside the heat exchanger You then have the opportunity to make the heat exchanger safer due to a measured temperature. This happens, for example, by monitoring a fluid temperature in the heat exchanger. At too high a temperature of the fluid, measures are taken to protect a user from burns. Also, the room conditions of the heat exchanger is effectively used by an integrated temperature sensor inside the housing.
  • the temperature sensor communicates with the gap via a fluid path.
  • the temperature sensor may, for example, use the gap as reference point for temperature measurement.
  • the temperature sensor may extend into the gap during a thermal expansion. In this way, no additional space is needed in a warming and prevents a pressure increase due to a material expansion of the temperature sensor.
  • the gap can also serve to equalize the pressure.
  • the temperature sensor comprises a bellows, wherein the interior of the bellows is delimited from a sensor space and the interior the bellows communicates with the gap.
  • the bellows is a moving part of the temperature sensor that changes in geometry due to temperature changes.
  • the geometry of the movable bellows is effected solely by the temperature of an expandable material in the sensor space.
  • the sensor space has no connection to another room and is closed.
  • the temperature sensor is in communication with a second valve stem of a second valve.
  • the temperature sensor can thus act directly on a second valve.
  • the second valve lifter is at least partially disposed within the housing. This ensures that the movement space of the second valve stem is independent of external geometries of the second valve.
  • the second valve is arranged in the region of the primary outlet port.
  • the primary side fluid has a lower temperature than the primary inlet port.
  • the thermal load of the second valve is kept so low. If the primary outlet port is arranged opposite to the secondary outlet port, then it is possible in a simple manner to actuate the second valve as a function of the measured temperature in the secondary connection region.
  • the second valve has a return spring which presses a valve element against a second valve seat, thereby closing the primary outlet port.
  • the return spring causes a counterforce to the force generated by the inflowing fluid of the primary flow path to the valve element. If the counterforce of the return spring is overcome, then the second valve is in the open position.
  • the opposing force of the return spring is adjustable, so that you can adjust the second valve to different operating conditions.
  • the heat exchanger comprises heat exchanger plates, wherein in a first region the primary and secondary flow paths are arranged parallel to one another and in a second region the primary and secondary flow paths are arranged diagonally to one another.
  • the flow paths it is possible to simultaneously operate an integrated temperature sensor, a first and a second valve, which are each arranged at least partially within the housing.
  • the primary inlet port is arranged opposite the secondary inlet port and at the same time the primary outlet port is arranged opposite the secondary outlet port.
  • the higher the number of heat exchanger plates the more heat the heat exchanger can deliver at the same time. This is for example advantageous if the heat exchanger is provided for a space heating system.
  • Fig. 1 schematically shows a sectional view of a heat exchanger 1 with a housing 2 having a primary inlet port 3, a primary outlet port 4, a secondary inlet port 5 and a secondary outlet port 6. Between the primary inlet port 3 and the primary outlet port 4, a primary flow path 7 of a primary side 8 and between the secondary inlet port 5 and the secondary outlet port 6, a secondary flow path 9 of a secondary side 10 is arranged.
  • the flow paths 7,9 are only partially visible. The flow direction is shown by arrows 11.
  • the primary side fluid 8 enters at the primary inlet port 3 and exits at the primary outlet port 4.
  • the secondary side fluid 10 enters the secondary inlet port 5 and the secondary outlet port 6 accordingly.
  • the fluid of the primary side 8 gives off heat to the fluid of the secondary side 10, so that the fluid of the secondary side 10 is heated. Consequently, the fluid of the primary side 8 at the primary inlet port 3 is warmer than at the primary outlet port 4. The fluid of the secondary side 10 is colder at the secondary inlet port 5 than at the secondary outlet port 6.
  • the heat exchanger 1 in Fig. 1 has a first region 12, a second region 13 and a third region 14.
  • the first region 12 extends from the side of the housing 2 to the primary outlet port 4 and the secondary inlet port 5 to the third region 14.
  • the second region 13 extends from the side of the housing 2 to the primary inlet port 3 and the secondary outlet port 6 to the third region 14.
  • a first valve stem 15 extends from the secondary flow path 9 in the first region 12 through the third region 14 into the primary flow path 7 in the second region 13.
  • the first valve stem 15 is part of a first valve 16 located at the secondary inlet port 5 is arranged and extends partially into the interior of the housing 2.
  • the first valve 16 is a cartridge valve having a diaphragm 17 acting on the first valve lifter 15.
  • the first valve 16 is also operable from the outside, for example by a coupling to the primary inlet port 3 or to the secondary outlet port 6 is made, which acts on an actuator of the first valve 16.
  • the first valve lifter 15 in Fig. 1 has on the opposite side of the secondary inlet port 5, a first valve element 18.
  • the first valve member 18 cooperates with a first valve seat 19 disposed in the primary inlet port 3.
  • the primary and secondary inlet ports 3,5 are disposed opposite to the housing 2 so that the first valve lifter 15 is axially movably supported on a straight line connecting the primary and secondary inlet ports 3,5.
  • the third region 14 in the housing 2 of the heat exchanger 1 has a gap 20 which partially receives the valve stem 15.
  • seals 21 are used in each case.
  • the seals 21 simultaneously guide the first valve lifter 15, so that no further bearing on the openings of the boundaries of the areas 12,13,14 are necessary.
  • the intermediate space 20 in the third region 14 has direct access to the surroundings of the housing 2.
  • the intermediate space 20 has an opening 22 which at the same time is an opening in the housing 2.
  • the primary flow path 7 is opened to some degree by the action of the membrane 17. If one of the seals 21 leaks during operation, the fluid flows into the intermediate space 20 and evaporates there due to the existing high temperatures in the intermediate space 20 or emerges from the opening 22. This prevents fluid of the primary or secondary side 8,10 mixed with fluid of the secondary or primary side 10,8 and thereby, for example, contamination of a fluid is formed.
  • the gap 20 also prevents that from the primary side 8 to the secondary side 10 or vice versa, a pressure is transmitted in case of failure.
  • the primary side 8 and the secondary side 10 are thus decoupled from one another and do not influence each other in the event of a leak due to spaced boundary walls 23, 24 of the first area 12 and second area 13 with the third area 14 therebetween.
  • Fig. 2 is a schematic sectional view of another heat exchanger 25 with an integrated temperature sensor 26 is shown.
  • the temperature sensor 26 extends in the axial direction from the primary flow path 7 in the first region 12 via the gap 20 in the third region 14 in the secondary flow path 9 in the second region 13 of the heat exchanger 25.
  • the temperature sensor 26 has a bellows 27 which in its axial Extension is changeable and includes a gas.
  • the temperature sensor has a sensor chamber 28, which has an expansible medium, which is in thermal communication with a measuring point 29 of the temperature sensor and reacts to temperature changes in the region of the secondary outlet port 6.
  • the measuring point 29 extends into the secondary outlet port 6 and measures there the temperature of the fluid of the secondary side 10th
  • the sensor space 28 of the temperature sensor 26 is closed and acts on the outer surface of the bellows 27.
  • the interior of the bellows 27 communicates via a fluid path with the gap 20 of the third area 14, which in turn communicates outwardly via the opening 22.
  • the temperature sensor 26 is prevented from being affected by the temperature of the primary flow path 7. Upon heating of the primary flow path 7 in the first region 12, the pressure inside the bellows 27 would increase without further measures.
  • the primary outlet port 4 On the opposite side of the secondary outlet port 6 in Fig. 2 the primary outlet port 4 is arranged, which has the second valve 30 with a second valve tappet 31.
  • the second valve lifter 31 is connected to the temperature sensor 26 at a first axial end and to a return spring 32 at a second axial end.
  • a second valve element 33 is arranged in the region of the primary outlet port 4, which cooperates with a second valve seat 34 of the second valve 29.
  • the second valve 29 is in the closed position when a restoring force of the return spring 32 is greater than a counterforce of the temperature sensor 26. In the closed position of the second valve 30, the fluid flow through the primary side 8 of the heat exchanger 25 is interrupted.
  • the primary outlet port 4 is controllable in dependence on the temperature of the fluid in the secondary outlet port 6.
  • the second valve 30 at the primary outlet port 4 and the temperature sensor 26 inside the housing 2 By the opposite arrangement of the primary outlet port 4 and secondary outlet port 6 with the second valve 30 at the primary outlet port 4 and the temperature sensor 26 inside the housing 2, a quick reaction in the primary outlet port 4 is possible.
  • the heat exchanger 25 is thereby reliable and reacts almost instantaneously to excessive temperatures of the fluid at the secondary outlet port. 6
  • Fig. 3 shows a schematic view of another heat exchanger 35 with a plurality of heat exchanger plates 36 within the housing 2.
  • the heat exchanger plates 36 are each arranged in the first region 12 and the second region 13, wherein in Fig. 3 the first region 12 is arranged axially to the right of the third region 14 and the second region 13 is arranged axially to the left of the third region 14.
  • Adjacent primary and secondary flow paths 7, 9 run parallel to one another in the first region 12 and diagonally to one another in the second region 13.
  • the gap 20 is arranged.
  • the primary and secondary flow paths run 7.9 parallel to each other, but approximately at right angles to the primary and secondary flow paths 7.9 in the first and in the second region 12,13.
  • Fig. 3 shows a schematic view of another heat exchanger 35 with a plurality of heat exchanger plates 36 within the housing 2.
  • the heat exchanger plates 36 are each arranged in the first region 12 and the second region 13, wherein in Fig. 3 the first region 12 is arranged axially to the right of
  • the primary and secondary flow paths 7, 9 extend vertically in the first and second regions 12, 13 and horizontally in the third region 14.
  • Heat exchanger plates 36 of the primary side 8, which are flowed through with fluid of the primary side 8, are alternately arranged with heat exchanger plates 36 of the secondary side 10, in which fluid of the secondary side 10 flows.
  • In the first region 12 of the primary outlet port 4 and the secondary inlet port 5 are arranged on the housing 2.
  • In the second region 13 of the primary inlet port 3 and the secondary outlet port 6 are arranged on the housing 2.
  • the heat exchanger 35 in Fig. 3 can as before in the Fig. 1 and 2 be described described.
  • the first valve 16 is arranged spatially between the primary inlet port 3 and the secondary inlet port 5.
  • the temperature sensor 26 is disposed between the secondary outlet port 6 and the primary outlet port 4, the temperature sensor 26 acting on the second valve 30 at the primary outlet port 4. This shows Fig. 4 ,
  • FIG. 4 another embodiment of a heat exchanger 37 is shown.
  • the heat exchanger 37 is a combination of the heat exchanger 1 Fig. 1 and the heat exchanger 25 off Fig. 2 with the arrangement of the heat exchanger plates 36 and the flow paths 7,9 after Fig. 3 ,
  • the heat exchanger 37 thus has both a temperature control or regulation as well as a pressure control or regulation. Whether there is a control or regulation, depends on the activation of the first and the second valve 16, 30 from the outside. Preferably, one uses a scheme.
  • the first valve 16 is designed here as a proportional valve. Between the first region 12 and the second region 13, cylinders 38 are arranged, which space the first region 12 and the second region 13 from one another. This results in the third region 14 with the intermediate space 20, which is in communication with the environment of the housing 2 outside the heat exchanger 37.
  • the primary flow path 7 is opened to some degree.
  • the heat exchanger 37 reacts almost without inertia to changes in the secondary inlet port 5 while changing the inflow on the primary side 8. If a too high temperature measured at the measuring point 29 of the temperature sensor 26 during operation, the temperature sensor 26 acts by the change of its bellows 27th due to an expansion of an expandable material within the sensor space 28 to the second valve 30.
  • the second valve 30 is throttled in such a case or completely closed. In this way, excessive temperatures are avoided in the removal of the fluid on the secondary side 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Temperature-Responsive Valves (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Switches With Compound Operations (AREA)
  • Mechanical Operated Clutches (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Description

  • Die Erfindung betrifft einen Wärmetauscher mit einem Gehäuse, das einen primären Einlaßanschluß, einen primären Auslaßanschluß, einen sekundären Einlaßanschluß und einen sekundären Auslaßanschluß aufweist, wobei zwischen dem primären Einlaßanschluß und dem primären Auslaßanschluß ein primärer Strömungspfad einer Primärseite und zwischen dem sekundären Einlaßanschluß und dem sekundären Auslaßanschluß ein sekundärer Strömungspfad einer Sekundärseite angeordnet ist, wobei der primäre Strömungspfad mit dem sekundären Strömungspfad in wärmeübertragender Verbindung steht und der Wärmetauscher mindestens eine Steuerhilfseinrichtung aufweist, die im primären Strömungspfad und im sekundären Strömungspfad angeordnet ist.
  • Ein derartiger Wärmetauscher ist beispielsweise aus EP 608 195 B1 bekannt. Innerhalb eines Gehäuses des bekannten Wärmetauschers ist ein Temperatursensor integriert und mißt sowohl die Temperatur im primären als auch sekundären Strömungspfad. Der Temperatursensor befindet sich dabei in einem zylinderförmigen Rohr und steht mit einem Ventil außerhalb des Gehäuses in Verbindung.
  • Wärmetauscher werden eingesetzt, um thermische Energie von einem primären Medium auf ein sekundäres Medium zu übertragen, ohne daß sich die beiden Medien mischen. Hierbei sind beispielsweise das erste Medium Wasser eines Fernwärmesystems und das zweite Medium Wasser in Trinkwasserqualität. Auch kann mindestens ein Medium Gas sein. Zur Reduzierung der Abmessungen des Wärmetauschers werden Steuerhilfseinrichtungen, wie beispielsweise Sensoren, die zum Betrieb des Wärmetauschers benötigt werden, in dem Wärmetauscher integriert.
  • Hierdurch werden jedoch Schwachstellen im Inneren des Wärmetauschers geschaffen. Sind in einem Wärmetauscher Steuerhilfseinrichtungen, wie Sensoren integriert, die gleichzeitig in zwei voneinander getrennten Strömungspfaden angeordnet, so entstehen Schnittstellen an den Durchbrechungen von einem Strömungspfad zum anderen Strömungspfad. Es besteht dadurch die Möglichkeit, daß die beiden Medien miteinander in Kontakt kommen und sich ungewollt vermischen. Dies geschieht beispielsweise, wenn eine der Schnittstellen undicht wird.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Wärmetauscher konstruktiv zu verbessern.
  • Diese Aufgabe wird bei einem Wärmetauscher der eingangs genannten Art dadurch gelöst, daß die Steuerhilfseinrichtung durch einen Zwischenraum hindurchgeführt ist, der zwischen dem primären Strömungspfad und dem sekundären Strömungspfad angeordnet ist.
  • Die Übergangsbereiche und somit die Schnittstellen zwischen dem primären Strömungspfad und dem sekundären Strömungspfad werden voneinander isoliert, indem der primäre Strömungspfad und der sekundäre Strömungspfad jeweils an den Zwischenraum angrenzen. Der Zwischenraum befindet sich dann zwischen der Primär- und der Sekundärseite des Wärmetauschers. Dies gilt zumindest für den Teil des Wärmetauschers, in dem die Steuerhilfseinrichtung im primären Strömungspfad und im sekundären Strömungspfad angeordnet ist. Der primäre und der sekundäre Strömungspfad sind in diesem Teil des Wärmetauschers voneinander beabstandet. Die Steuerhilfseinrichtung wird dabei durch den Zwischenraum hindurchgeführt und ist somit gleichzeitig in drei Bereichen angeordnet, nämlich im Zwischenraum und in den Bereichen rechts und links des Zwischenraums. Steuerhilfseinrichtungen werden hierbei beispielsweise zum Steuern oder Regeln des Wärmetauschers verwendet und wirken z.B. mechanisch oder thermisch. Auch sind elektrische Kabel denkbar, die zu einer Vorrichtung innerhalb des Wärmetauschers geführt werden. Sollte eine Dichtung zwischen dem primären Strömungspfad und dem Zwischenraum oder zwischen dem sekundären Strömungspfad und dem Zwischenraum undicht werden, so dient der Zwischenraum als Auffangort für Leckagen. Man fängt demnach Fluid, das den primären oder sekundären Strömungspfad ungewollt verläßt, an einem definierten Ort auf. Auf diese Weise werden größere Schäden am Wärmetauscher verhindert. Auch wird durch den Zwischenraum sichergestellt, daß nicht die Fluide der Primär- und Sekundärseite miteinander in Kontakt kommen. Es ist nämlich unwahrscheinlich, daß die Schnittstelle zwischen dem primären Strömungspfad und dem Zwischenraum und die Schnittstelle zwischen dem sekundären Strömungspfad und dem Zwischenraum zeitgleich undicht werden. Durch eine Auffangmöglichkeit von Leckagen im Zwischenraum wird der Betrieb des Wärmetauschers sicherer und zuverlässiger. In dem Zwischenraum kann beispielsweise ein Überwachungssensor angeordnet werden, der einen Eintritt des Fluids in den Zwischenraum feststellt. Es können daraufhin weitere Maßnahmen eingeleitet werden, die eine größere Leckage verhindern, beispielsweise das Absperren der Zu- und Ablaufleitungen.
  • Es ist besonders bevorzugt, daß der Zwischenraum mit einer Umgebung des Gehäuses in Verbindung steht. Auf diese Weise kann der Zwischenraum ein geringes Volumen aufweisen. Das Volumen des Zwischenraums kann dann nur für geringe Leckagemengen ausgelegt werden, da im Fehlerfall Fluid weiter nach außen geleitet werden kann. Der Wärmetauscher wird durch den Zwischenraum nicht wesentlich größer als ein Wärmetauscher ohne diesen Zwischenraum. Wenn in den Zwischenraum Fluid eindringt, so kann dieses beispielsweise aufgrund seiner Wärme und durch die angrenzende erwärmte Primär- und Sekundärseite verdampfen. Es kommt beispielsweise zu Leckagen, wenn das Fluid in der Primärleitung auf höhere Temperaturen ansteigt als vorgesehen. Das Fluid dehnt sich dann aufgrund der erhöhten Temperatur aus und benötigt mehr Raum. An einer Schwachstelle, wie beispielsweise einer Dichtung, versucht das Fluid zu entweichen. Man gibt dem Fluid mit der Anordnung des Zwischenraums eine Sollbruchstelle vor. Der Zwischenraum nimmt das Fluid auf und baut gleichzeitig den durch das Fluid hervorgerufenen Überdruck ab. Der Zwischenbereich entlastet die übrigen Bereiche des Wärmetauschers, indem der Zwischenraum mit der Umgebung des Gehäuses in Verbindung steht, so daß ein Überdruck entweichen kann. Es geht dann zwar etwas Fluid verloren, jedoch besteht keine Gefahr mehr, daß andere Bereiche des Wärmetauschers von einem Druckanstieg betroffen sind.
  • Bevorzugterweise ist der Zwischenraum zumindest teilweise durch das Gehäuse begrenzt. Das Gehäuse umhüllt somit zumindest ein Teil des primären und ein Teil des sekundären Strömungspfads und den Zwischenraum. Der Zwischenraum kann beispielsweise an seinen anderen Wänden, die nicht vom Gehäuse gebildet werden, durch die Wände des primären und des sekundären Strömungspfads begrenzt werden. Es wird daher ohne großen Materialaufwand der Zwischenraum bereitgestellt.
  • Es ist besonders bevorzugt, daß der Zwischenraum mindestens eine Öffnung aufweist, die im Gehäuse angeordnet ist. Der Zwischenraum grenzt demnach direkt an das Gehäuse und weist mindestens eine Öffnung auf, die den Zwischenraum mit der Umgebung nach außen verbindet. Es sind somit keine Kanäle notwendig, die den Abfluß oder das Verdampfen des leckgewordenen Fluids behindern könnten.
  • Es ist bevorzugt, daß die Steuerhilfseinrichtung ein erster Ventilstößel eines ersten Ventils ist. Das erste Ventil ist somit ein Einbauventil, da es zumindest teilweise innerhalb des Wärmetauschers angeordnet ist. Auf diese Weise erzielt man eine kompakte Bauweise des Wärmetauschers. Der erste Ventilstößel ist hierbei in mindestens einer Betätigungsstellung gleichzeitig im primären und sekundären Strömungspfad sowie im Zwischenbereich angeordnet.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung ist das erste Ventil im Bereich des sekundären Einlaßanschlusses angeordnet. Das Ventil ist beispielsweise am sekundären Einlaßanschluß von außen in das Gehäuse des Wärmetauschers eingesetzt und gegen das Herausfallen durch eine Verschraubung mit dem Gehäuse verbunden. Das erste Ventil ist somit leicht austauschbar und bei einem entstehenden Überdruck des Fluids ausreichend fixiert. Auch wird das erste Ventil thermisch gering belastet, da auf der Sekundärseite des Wärmetauschers das Fluid durch das Fluid der Primärseite erhitzt wird und das Fluid am sekundären Einlaßanschluß eine geringere Temperatur als am sekundären Auslaßanschluß aufweist.
  • Es ist bevorzugt, daß der primäre Einlaßanschluß einen ersten Ventilsitz des ersten Ventils aufweist. Es ist somit möglich, mit dem ersten Ventil den Zufluß des Fluids im primären Einlaßanschluß zu steuern. Dies ist besonders einfach, wenn der primäre Einlaßanschluß und der sekundäre Auslaßanschluß gegenüberliegend angeordnet sind und die Anschlüsse auf einer geradlinigen Verbindung liegen. Beispielsweise ist der erste Ventilsitz gehäusefest im primären Einlaßanschluß angeordnet und dichtet gleichzeitig bei verschlossenem erstem Ventil den primären Einlaßanschluß ab. Ein erstes Ventilelement des ersten Ventils, das mit dem Ventilsitz zusammenwirkt ist praktischerweise durch den primären Einlaßanschluß hindurch anströmbar.
  • Zweckmäßigerweise weist das erste Ventil eine Membran auf, die mit Fluid des sekundären Strömungspfads in Kontakt kommt. Eine Membran reagiert nahezu trägheitslos auf eingestellte Druckänderungen in dem sekundären Einlaßanschluß. Das erste Ventil weist demnach eine geringe Reaktionszeit auf.
  • Vorzugsweise ist der erste Ventilstößel mit der Membran betätigbar. Man nutzt somit die nahezu trägheitlose Reaktion der Membran auch für den Ventilstößel. So kann man verzögerungsfrei den Fluidstrom in dem primären Strömungspfad beeinflussen in Abhängigkeit des Fluidstroms in dem sekundären Strömungspfad.
  • Bevorzugterweise ist die Steuerhilfseinrichtung ein Temperatursensor. Zum sicheren Betrieb des Wärmetauschers ist es vorteilhaft, auch die Temperatur des Fluids im Inneren des Wärmetauschers zu messen. Man hat dann die Möglichkeit, aufgrund einer gemessenen Temperatur den Wärmetauscher sicherer zu gestalten. Dies geschieht beispielsweise, indem man eine Fluidtemperatur im Wärmetauscher überwacht. Bei einer zu hohen Temperatur des Fluids werden Maßnahmen eingeleitet, um einen Benutzer vor Verbrennungen zu schützen. Auch wird durch einen integrierten Temperatursensor im Inneren des Gehäuses die Raumverhältnisse des Wärmetauschers effektiv genutzt.
  • Vorzugsweise steht der Temperatursensor mit dem Zwischenraum über einen Fluidpfad in Verbindung. Der Temperatursensor kann beispielsweise den Zwischenraum als Referenzstelle zur Temperaturmessung verwenden. Auch kann sich der Temperatursensor bei einer thermischen Ausdehnung in den Zwischenraum hinein erstrecken. Auf diese Weise wird kein zusätzlicher Raum bei einer Erwärmung benötigt und ein Druckanstieg aufgrund einer Materialausdehnung des Temperatursensors verhindert. Der Zwischenraum kann auch zum Druckausgleich dienen.
  • Es ist vorgesehen, daß der Temperatursensor einen Balg aufweist, wobei das Innere des Balgs von einem Sensorraum abgegrenzt ist und das Innere des Balgs mit dem Zwischenraum in Verbindung steht. Der Balg ist ein bewegliches Teil des Temperatursensors, der sich aufgrund von Temperaturänderungen in seiner Geometrie ändert. Durch die Verbindung des Inneren des Balgs mit dem Zwischenraum wird die Geometrie des bewegbaren Balgs ausschließlich von der Temperatur eines expansionsfähigen Materials im Sensorraum bewirkt. Der Sensorraum hat im Gegensatz zum Inneren des Balgs keine Verbindung in einen weiteren Raum und ist abgeschlossen. Mit dieser Ausgestaltung kann die Messung mit dem Temperatursensor von einem Einfluß des primären oder des sekundären Strömungspfads unabhängig gestaltet werden, obwohl der Temperatursensor gleichzeitig in beiden Strömungspfaden angeordnet ist und diese Strömungspfade gewöhnlicherweise unterschiedliche Temperaturen aufweisen.
  • Es ist besonders bevorzugt, daß der Temperatursensor mit einem zweiten Ventilstößel eines zweiten Ventils in Verbindung steht. Der Temperatursensor kann somit direkt auf ein zweites Ventil wirken. Das zweite Ventilstößel ist zumindest teilweise innerhalb des Gehäuses angeordnet. Hierdurch wird erreicht, daß der Bewegungsraum des zweiten Ventilstößels unabhängig von äußeren Geometrien des zweiten Ventils ist.
  • Es ist vorgesehen, daß das zweite Ventil im Bereich des primären Auslaßanschlusses angeordnet ist. Im primären Auslaßanschluß hat das Fluid der Primärseite eine niedrigere Temperatur als im primären Einlaßanschluß. Die thermische Belastung des zweiten Ventils wird so gering gehalten. Ist der primäre Auslaßanschluß gegenüberliegend zum sekundären Auslaßanschluß angeordnet, so ist es auf einfache Weise möglich, in Abhängigkeit der gemessenen Temperatur im sekundären Anschlußbereich das zweite Ventil zu betätigen.
  • Bevorzugterweise weist das zweite Ventil eine Rückstellfeder auf, die ein Ventilelement gegen einen zweiten Ventilsitz drückt und dabei den primären Auslaßanschluß verschließt. Die Rückstellfeder bewirkt eine Gegenkraft zu der Kraft, die durch das anströmende Fluid des primären Strömungspfades auf das Ventilelement entsteht. Wenn die Gegenkraft der Rückstellfeder überwunden wird, dann befindet sich das zweite Ventil in Öffnungsstellung. Die Gegenkraft der Rückstellfeder ist einstellbar, so daß man das zweite Ventil an unterschiedliche Ansprechbedingungen anpassen kann.
  • Es ist besonders bevorzugt, daß der Wärmetauscher Wärmetauscherplatten aufweist, wobei in einem ersten Bereich die primären und sekundären Strömungspfade parallel zueinander angeordnet sind und in einem zweiten Bereich die primären und sekundären Strömungspfade diagonal zueinander angeordnet sind. Bei dieser Anordnung der Strömungspfade ist es möglich, gleichzeitig einen integrierten Temperatursensor, ein erstes und ein zweites Ventil zu betreiben, die jeweils zumindest teilweise innerhalb des Gehäuses angeordnet sind. Hierzu ist vorgesehen, daß der primäre Einlaßanschluß gegenüber dem sekundären Einlaßanschluß angeordnet ist und gleichzeitig der primäre Auslaßanschluß gegenüber dem sekundären Auslaßanschluß angeordnet ist. Je höher die Anzahl der Wärmetauscherplatten, desto mehr Wärme kann der Wärmetauscher zeitgleich abgeben. Dies ist beispielsweise von Vorteil, wenn der Wärmetauscher für eine Raumheizungsanlage vorgesehen ist.
  • Die Erfindung wird im folgenden anhand von bevorzugten Ausführungsbeispielen in Verbindung mit der Zeichnung näher beschrieben. Hierin zeigen:
  • Fig. 1
    eine schematische Schnittansicht eines Wärmetauschers mit einem ersten Ventil,
    Fig. 2
    eine schematische Schnittansicht eines Wärmetauschers mit einem integrierten Temperatursensor,
    Fig. 3
    eine schematische Ansicht eines Wärmetauschers mit mehreren Wärmetauscherplatten und
    Fig. 4
    ein Ausführungsbeispiel in Schnittansicht eines Wärmetauschers mit einem ersten Ventil und einem integriertem Temperatursensor, der mit einem zweiten Ventil zusammenwirkt.
  • Fig. 1 zeigt schematisch eine Schnittansicht eines Wärmetauschers 1 mit einem Gehäuse 2, das einen primären Einlaßanschluß 3, einen primären Auslaßanschluß 4, einen sekundären Einlaßanschluß 5 und einen sekundären Auslaßanschluß 6 aufweist. Zwischen dem primären Einlaßanschluß 3 und dem primären Auslaßanschluß 4 ist ein primärer Strömungspfad 7 einer Primärseite 8 und zwischen dem sekundären Einlaßanschluß 5 und dem sekundären Auslaßanschluß 6 ein sekundärer Strömungspfad 9 einer Sekundärseite 10 angeordnet. In der Schnittansicht der Fig. 1 sind die Strömungspfade 7,9 nur teilweise sichtbar. Die Durchströmungsrichtung ist durch Pfeile 11 dargestellt. Das Fluid der Primärseite 8 tritt am primären Einlaßanschluß 3 ein und am primären Auslaßanschluß 4 aus. Das Fluid der Sekundärseite 10 tritt entsprechend am sekundären Einlaßanschluß 5 ein und am sekundären Auslaßanschluß 6 aus. Im Inneren des Wärmetauschers 1 gibt das Fluid der Primärseite 8 Wärme an das Fluid der Sekundärseite 10 ab, so daß das Fluid der Sekundärseite 10 erwärmt wird. Folglich ist das Fluid der Primärseite 8 am primären Einlaßanschluß 3 wärmer als am primären Auslaßanschluß 4. Das Fluid der Sekundärseite 10 ist am sekundären Einlaßanschluß 5 kälter als am sekundären Auslaßanschluß 6.
  • Der Wärmetauscher 1 in Fig. 1 weist einen ersten Bereich 12, einen zweiten Bereich 13 und einen dritten Bereich 14 auf. Der erste Bereich 12 erstreckt sich von der Seite des Gehäuses 2 mit dem primären Auslaßanschluß 4 und dem sekundären Einlaßanschluß 5 bis zum dritten Bereich 14. Der zweite Bereich 13 erstreckt sich von der Seite des Gehäuses 2 mit dem primären Einlaßanschluß 3 und dem sekundären Auslaßanschluß 6 bis zum dritten Bereich 14. Ein erster Ventilstößel 15 erstreckt sich vom sekundären Strömungspfad 9 im ersten Bereich 12 über den dritten Bereich 14 in den primären Strömungspfad 7 im zweiten Bereich 13. Der erste Ventilstößel 15 ist Teil eines ersten Ventils 16, das am sekundären Einlaßanschluß 5 angeordnet ist und sich teilweise ins Innere des Gehäuses 2 erstreckt. Das erste Ventil 16 ist ein Einbauventil, das eine Membran 17 aufweist, die auf den ersten Ventilstößel 15 wirkt. Das erste Ventil 16 ist außerdem von außen betätigbar, indem beispielsweise eine Kopplung zum primären Einlaßanschluß 3 oder zum sekundären Auslaßanschluß 6 hergestellt wird, die auf eine Betätigungsvorrichtung des ersten Ventils 16 wirkt.
  • Der erste Ventilstößel 15 in Fig. 1 weist an der dem sekundärem Einlaßanschluß 5 gegenüberliegenden Seite ein erstes Ventilelement 18 auf. Das erste Ventilelement 18 wirkt mit einem ersten Ventilsitz 19 zusammen, der in dem primären Einlaßanschluß 3 angeordnet ist. Der primäre und der sekundäre Einlaßanschluß 3,5 sind gegenüberliegend am Gehäuse 2 angeordnet, so daß der erste Ventilstößel 15 auf einer geraden Verbindungslinie zwischen primärem und sekundärem Einlaßanschluß 3,5 axial bewegbar gelagert ist.
  • Der dritte Bereich 14 im Gehäuse 2 des Wärmetauschers 1 weist einen Zwischenraum 20 auf, der den Ventilstößel 15 teilweise aufnimmt. Zur Abdichtung der Primärseite 8 mit dem primären Strömungspfad 7 gegenüber dem Zwischenraum 20 und der Sekundärseite 10 mit dem sekundären Strömungspfad 9 gegenüber dem Zwischenraum 20 werden jeweils Dichtungen 21 verwendet. Die Dichtungen 21 führen gleichzeitig den ersten Ventilstößel 15, so daß keine weiteren Lager an den Durchbrechungen der Begrenzungen der Bereiche 12,13,14 notwendig sind. Der Zwischenraum 20 im dritten Bereich 14 hat direkten Zugang zur Umgebung des Gehäuses 2. Hierzu weist der Zwischenraum 20 eine Öffnung 22 auf, die gleichzeitig eine Durchbrechung des Gehäuses 2 ist.
  • Wenn Fluid im sekundären Strömungspfad 9 fließt, dann wird der primäre Strömungspfad 7 zu einem gewissen Grad durch die Wirkung der Membran 17 geöffnet. Wird im Laufe des Betriebs eine der Dichtungen 21 undicht, so fließt das Fluid in den Zwischenraum 20 und verdunstet dort aufgrund der vorhandenen hohen Temperaturen im Zwischenraum 20 oder tritt aus der Öffnung 22 heraus. Hierdurch wird verhindert, daß sich Fluid der Primär- oder Sekundärseite 8,10 mit Fluid der Sekundär- oder Primär seite 10,8 vermischt und dadurch beispielsweise eine Verunreinigung des einen Fluids entsteht. Der Zwischenraum 20 verhindert auch, daß von der Primärseite 8 auf die Sekundärseite 10 oder umgekehrt ein Druck im Fehlerfall übertragen wird. Die Primärseite 8 und die Sekundärseite 10 sind somit voneinander entkoppelt und beeinflussen sich bei einer Undichtigkeit durch beabstandete Begrenzungswände 23, 24 des ersten Bereichs 12 und zweiten Bereichs 13 mit dem dazwischenliegenden dritten Bereich 14 nicht.
  • In Fig. 2 ist eine schematische Schnittansicht eines weiteren Wärmetauschers 25 mit einem integrierten Temperatursensor 26 dargestellt. Der Temperatursensor 26 erstreckt sich in axialer Richtung vom primären Strömungspfad 7 im ersten Bereich 12 über den Zwischenraum 20 im dritten Bereich 14 in den sekundären Strömungspfad 9 im zweiten Bereich 13 des Wärmetauschers 25. Der Temperatursensor 26 weist einen Balg 27 auf, der in seiner axialen Erstreckung veränderbar ist und ein Gas einschließt. Der Temperatursensor weist einen Sensorraum 28 auf, der ein expansionsfähiges Medium aufweist, das mit einer Meßstelle 29 des Temperatursensors in thermischer Verbindung steht und auf Temperaturänderungen im Bereich des sekundären Auslaßanschlusses 6 reagiert. Die Meßstelle 29 erstreckt in den sekundären Auslaßanschluß 6 hinein und mißt dort die Temperatur des Fluids der Sekundärseite 10.
  • Der Sensorraum 28 des Temperatursensors 26 ist abgeschlossen und wirkt auf die äußere Oberfläche des Balgs 27. Das Innere des Balgs 27 steht über einen Fluidpfad mit dem Zwischenraum 20 des dritten Bereichs 14 in Verbindung, der wiederum nach außen über die Öffnung 22 eine Verbindung aufweist. Mit diesen Verbindungen vom Inneren des Balgs 27 bis zur Umgebung des Gehäuses 2 wird verhindert, daß der Temperatursensor 26 durch die Temperatur des primären Strömungspfads 7 beeinflußt wird. Bei einer Erwärmung des primären Strömungspfads 7 im ersten Bereich 12 würde ohne weitere Maßnahmen der Druck im Inneren des Balgs 27 ansteigen.
  • Wäre das Innere des Balgs 27 abgeschlossen, so würde expansionsfähiges Material, hier ein Gas, im Inneren des Balgs 27 einen Druck aufbauen, der die Geometrie des Balgs 27 beeinflußt und ebenfalls auf ein zweites Ventil 30 wirken würde. Dies ist unerwünscht und wird durch die Verbindung mit dem Zwischenraum 20 und durch die weitere Verbindung in die Umgebung verhindert. Der entstehende Druckanstieg im Inneren des Balgs 27 wird vermieden, indem das vorhandene Gas im Inneren des Balgs 27 ungehindert expandieren kann. So ist sichergestellt, daß die Geometrie des Balgs 27 nur von der Temperatur des expansionsfähigen Materials im Sensorraum 28 beeinflußt wird und die Temperaturmessung präzise ist.
  • Auf der gegenüberliegenden Seite des sekundären Auslaßanschlusses 6 in Fig. 2 ist der primäre Auslaßanschluß 4 angeordnet, der das zweite Ventil 30 mit einem zweiten Ventilstößel 31 aufweist. Der zweite Ventilstößel 31 ist mit dem Temperatursensor 26 an einem ersten axialen Ende und mit einer Rückstellfeder 32 an einem zweiten axialen Ende verbunden. An dem zweiten Ventilstößel 31 ist ein zweites Ventilelement 33 im Bereich des primären Auslaßanschlusses 4 angeordnet, das mit einem zweiten Ventilsitz 34 des zweiten Ventils 29 zusammenwirkt. Das zweite Ventil 29 befindet sich in Schließstellung, wenn eine Rückstellkraft der Rückstellfeder 32 größer ist als eine Gegenkraft des Temperatursensors 26. In Schließstellung des zweiten Ventils 30 wird der Fluidstrom durch die Primärseite 8 des Wärmetauschers 25 unterbrochen.
  • Mit dem Wärmetauscher 25 in Fig. 2 ist der primäre Auslaßanschluß 4 in Abhängigkeit der Temperatur des Fluids in dem sekundären Auslaßanschluß 6 steuerbar. Durch die gegenüberliegende Anordnung von primärem Auslaßanschluß 4 und sekundärem Auslaßanschluß 6 mit dem zweiten Ventil 30 am primären Auslaßanschluß 4 und dem Temperatursensor 26 im Inneren des Gehäuses 2 ist eine schnelle Reaktion im primären Auslaßanschluß 4 möglich. Der Wärmetauscher 25 wird hierdurch zuverlässig und reagiert nahezu verzögerungsfrei auf zu hohe Temperaturen des Fluids am sekundären Auslaßanschluß 6.
  • Fig. 3 zeigt eine schematische Ansicht eines weiteren Wärmetauschers 35 mit mehreren Wärmetauscherplatten 36 innerhalb des Gehäuses 2. Die Wärmetauscherplatten 36 sind jeweils im ersten Bereich 12 und im zweiten Bereich 13 angeordnet, wobei in Fig. 3 der erste Bereich 12 axial rechts von dem dritten Bereich 14 und der zweite Bereich 13 axial links vom dritten Bereich 14 angeordnet ist. Benachbarte primäre und sekundäre Strömungspfade 7,9 verlaufen im ersten Bereich 12 parallel zueinander und im zweiten Bereich 13 diagonal zueinander. Im dritten Bereich 14 ist der Zwischenraum 20 angeordnet. Dort verlaufen die primären und sekundären Strömungspfade 7,9 parallel zueinander, jedoch etwa rechtwinklig zu den primären und sekundären Strömungspfaden 7,9 im ersten und im zweiten Bereich 12,13. In Fig. 3 verlaufen die primären und sekundären Strömungspfade 7,9 im ersten und im zweiten Bereich 12,13 vertikal und im dritten Bereich 14 horizontal. Wärmetauscherplatten 36 der Primärseite 8, die mit Fluid der Primärseite 8 durchströmt werden, sind abwechselnd mit Wärmetauscherplatten 36 der Sekundärseite 10, in denen Fluid der Sekundärseite 10 strömt, angeordnet. Im ersten Bereich 12 sind der primäre Auslaßanschluß 4 und der sekundäre Einlaßanschluß 5 am Gehäuse 2 angeordnet. Im zweiten Bereich 13 sind der primäre Einlaßanschluß 3 und der sekundäre Auslaßanschluß 6 am Gehäuse 2 angeordnet. Der Wärmetauscher 35 in Fig. 3 kann wie zuvor in den Fig. 1 und 2 beschrieben ausgebildet sein.
  • Mit der Anordnung nach Figur 3 ist es auch möglich, gleichzeitig die Steuerhilfseinrichtungen des Wärmetauschers 1 und des Wärmetauschers 25 zu integrieren. Hierbei ist das erste Ventil 16 räumlich zwischen dem primären Einlaßanschluß 3 und dem sekundären Einlaßanschluß 5 angeordnet. Gleichzeitig ist der Temperatursensor 26 zwischen dem sekundärem Auslaßanschluß 6 und dem primären Auslaßanschluß 4 angeordnet, wobei der Temperatursensor 26 auf das zweite Ventil 30 am primären Auslaßanschluß 4 wirkt. Dies zeigt Fig. 4.
  • In Fig. 4 ist ein weiteres Ausführungsbeispiel eines Wärmetauschers 37 dargestellt. Der Wärmetauscher 37 ist eine Kombination des Wärmetauschers 1 aus Fig. 1 und des Wärmetauschers 25 aus Fig. 2 mit der Anordnung der Wärmetauscherplatten 36 und der Strömungspfade 7,9 nach Fig. 3. Der Wärmetauscher 37 weist somit sowohl eine Temperatursteuerung oder -regelung als auch eine Drucksteuerung oder -regelung auf. Ob eine Steuerung oder Regelung vorliegt, hängt von der Ansteuerung des ersten und des zweiten Ventils 16, 30 von außen ab. Bevorzugerweise verwendet man eine Regelung.
  • In Fig. 4 ist das erste Ventil 16 hier als Proportionalventil ausgebildet. Zwischen dem ersten Bereich 12 und dem zweiten Bereich 13 sind Zylinder 38 angeordnet, die den ersten Bereich 12 und den zweiten Bereich 13 voneinander beabstanden. Hierdurch entsteht der dritte Bereich 14 mit dem Zwischenraum 20, der mit der Umgebung des Gehäuses 2 außerhalb des Wärmetauschers 37 in Verbindung steht.
  • Wenn Fluid im sekundären Strömungspfad 9 fließt, dann wird aufgrund der Kraftwirkung des strömenden Fluids auf die Membran 17 in dem ersten Ventil 16 der primäre Strömungspfad 7 zu einem gewissen Grad geöffnet. Der Wärmetauscher 37 reagiert nahezu trägheitslos auf Veränderungen im sekundären Einlaßanschluß 5 bei gleichzeitiger Veränderung des Zuflusses auf der Primärseite 8. Wird während des Betriebs eine zu hohe Temperatur an der Meßstelle 29 des Temperatursensors 26 gemessen, so wirkt der Temperatursensor 26 durch die Veränderung seines Balgs 27 aufgrund einer Expansion eines expansionsfähigen Materials innerhalb des Sensorraums 28 auf das zweite Ventil 30. Das zweite Ventil 30 wird in einem solchen Fall gedrosselt oder ganz geschlossen. Auf diese Weise werden überhöhte Temperaturen bei der Entnahme des Fluids auf der Sekundärseite 10 vermieden.

Claims (16)

  1. Wärmetauscher mit einem Gehäuse, das einen primären Einlaßanschluß, einen primären Auslaßanschluß, einen sekundären Einlaßanschluß und einen sekundären Auslaßanschluß aufweist, wobei zwischen dem primären Einlaßanschluß und dem primären Auslaßanschluß ein primärer Strömungspfad einer Primärseite und zwischen dem sekundären Einlaßanschluß und dem sekundären Auslaßanschluß ein sekundärer Strömungspfad einer Sekundärseite angeordnet ist, wobei der primäre Strömungspfad mit dem sekundären Strömungspfad in wärmeübertragender Verbindung steht und der Wärmetauscher mindestens eine Steuerhilfseinrichtung aufweist, die im primären Strömungspfad und im sekundären Strömungspfad angeordnet ist, dadurch gekennzeichnet, daß die Steuerhilfseinrichtung durch einen Zwischenraum (20) hindurchgeführt ist, der zwischen dem primären Strömungspfad (7) und dem sekundären Strömungspfad (9) angeordnet ist.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß der Zwischenraum (20) mit einer Umgebung des Gehäuses (2) in Verbindung steht.
  3. Wärmetauscher nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß der Zwischenraum (20) zumindest teilweise durch das Gehäuse (2) begrenzt ist.
  4. Wärmetauscher nach einem der Ansprüche 2 bis 3 dadurch gekennzeichnet, daß der Zwischenraum (20) mindestens eine Öffnung (22) aufweist, die im Gehäuse (2) angeordnet ist.
  5. Wärmetauscher nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Steuerhilfseinrichtung ein erster Ventilstößel (15) eines ersten Ventils (16) ist.
  6. Wärmetauscher nach Anspruch 5, dadurch gekennzeichnet, daß das erste Ventil (16) im Bereich des sekundären Einlaßanschlusses (5) angeordnet ist.
  7. Wärmetauscher nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß der primäre Einlaßanschluß (3) einen ersten Ventilsitz (19) des ersten Ventils (16) aufweist.
  8. Wärmetauscher nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß das erste Ventil (16) eine Membran (17) aufweist, die mit Fluid des sekundären Strömungspfads (9) in Kontakt kommt.
  9. Wärmetauscher nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß der erste Ventilstößel (15) mit der Membran (17) betätigbar ist.
  10. Wärmetauscher einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Steuerhilfseinrichtung ein Temperatursensor (26) ist.
  11. Wärmetauscher nach Anspruch 10, dadurch gekennzeichnet, daß der Temperatursensor (26) mit dem Zwischenraum (20) über einen Fluidpfad in Verbindung steht.
  12. Wärmetauscher nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß der Temperatursensor (26) einen Balg (27) aufweist, wobei das Innere des Balgs (27) von einem Sensorraum (28) abgegrenzt ist und das Innere des Balgs (27) mit dem Zwischenraum (20) in Verbindung steht.
  13. Wärmetauscher nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß der Temperatursensor (26) mit einem zweiten Ventilstößel (31) eines zweiten Ventils (30) in Verbindung steht.
  14. Wärmetauscher nach Anspruch 13, dadurch gekennzeichnet, daß das zweite Ventil (30) im Bereich des primären Auslaßanschlusses (4) angeordnet ist.
  15. Wärmetauscher nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß zweite Ventil (30) eine Rückstellfeder (32) aufweist, die ein Ventilelement (33) gegen einen zweiten Ventilsitz (34) drückt und dabei den primären Auslaßanschluß (4) verschließt.
  16. Wärmetauscher nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Wärmetauscher (1,25,35,37) Wärmetauscherplatten (36) aufweist, wobei in einem ersten Bereich (12) die primären und sekundären Strömungspfade (7,9) parallel zueinander angeordnet sind und in einem zweiten Bereich (13) die primären und sekundären Strömungspfade (7,9) diagonal zueinander angeordnet sind.
EP06753323A 2005-07-02 2006-06-30 Wärmetausher Not-in-force EP1902268B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031026A DE102005031026B3 (de) 2005-07-02 2005-07-02 Wärmetauscher
PCT/DK2006/000386 WO2007003193A1 (de) 2005-07-02 2006-06-30 Wärmetausher

Publications (2)

Publication Number Publication Date
EP1902268A1 EP1902268A1 (de) 2008-03-26
EP1902268B1 true EP1902268B1 (de) 2009-04-22

Family

ID=37004332

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06753323A Not-in-force EP1902268B1 (de) 2005-07-02 2006-06-30 Wärmetausher

Country Status (7)

Country Link
EP (1) EP1902268B1 (de)
CN (1) CN101258377B (de)
AT (1) ATE429624T1 (de)
DE (2) DE102005031026B3 (de)
DK (1) DK1902268T3 (de)
RU (1) RU2363904C1 (de)
WO (1) WO2007003193A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504761B1 (de) * 2007-01-25 2008-10-15 Herz Armaturen Gmbh Vorrichtung zur regelung der temperatur von brauchwasser
SE533810C2 (sv) * 2009-06-04 2011-01-25 Alfa Laval Corp Ab Plattvärmeväxlare med temperatursensor för flödesstyrning
IT1397911B1 (it) * 2010-01-28 2013-02-04 Alfa Laval Corp Ab Sistema di distribuzione del fluido refrigerante in un dispositivo di scambio termico
ES2700399T3 (es) 2012-06-14 2019-02-15 Alfa Laval Corp Ab Intercambiador de calor de placas
EP2980520B1 (de) * 2013-03-29 2019-02-20 Hisaka Works, Ltd. Plattenwärmetauscher
JP5918904B2 (ja) * 2013-03-29 2016-05-18 株式会社日阪製作所 プレート式熱交換器
WO2014155839A1 (ja) * 2013-03-29 2014-10-02 株式会社日阪製作所 プレート式熱交換器
DE102022116997A1 (de) 2022-07-07 2024-01-18 Mahle International Gmbh Wärmeübertrager mit gesteuertem Druckverlust

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2509030A1 (fr) * 1981-07-03 1983-01-07 Damois Pierre Echangeur de chaleur a detection de fuites
DK9300044U4 (da) * 1993-01-21 1994-05-27 Tarm H S As Pladevarmeveksler og varmevekslersystem med pladevarmeveksler
DE19501467C2 (de) * 1995-01-19 1999-12-02 Email Cover R Scholz Gmbh Sicherheitswärmeaustauscher in Rohr- und Plattenbauweise mit Überwachung interner Dichtigkeit
SE521916C2 (sv) * 1997-02-25 2003-12-16 Ep Technology Ab Plattvärmeväxlare med läckageutsläpp
NL1007523C2 (nl) * 1997-11-12 1999-05-17 Coram International B V Ophanginrichting.
SE518475C2 (sv) * 2001-02-20 2002-10-15 Alfa Laval Ab Plattvärmeväxlare med sensoranordning
US7147037B2 (en) * 2003-10-23 2006-12-12 Siemens Power Generation, Inc. Leak detector for mixed heat exchangers

Also Published As

Publication number Publication date
ATE429624T1 (de) 2009-05-15
CN101258377A (zh) 2008-09-03
DE502006003550D1 (en) 2009-06-04
EP1902268A1 (de) 2008-03-26
DE102005031026B3 (de) 2007-04-12
RU2363904C1 (ru) 2009-08-10
DK1902268T3 (da) 2009-08-10
WO2007003193A1 (de) 2007-01-11
CN101258377B (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
EP1902268B1 (de) Wärmetausher
EP1926942B1 (de) Wärmetauscher
DE112016004901T5 (de) Mehrstufiges Bypass-Ventil
DE60107258T2 (de) Thermostatisches mischventil
EP2321604A1 (de) Plattenwärmetauscher
DE60015185T2 (de) Wärmetauscheranordnung und verfahren zum steuern eines fluidums durch eine waermetauscheranordnung
EP1789747B1 (de) Wärmetauscher
CH714273A1 (de) Selbsttätiges Dreiwegventil zum Anschluss eines Ausdehnungsgefässes in einem Fernwärmenetz und ein Fernwärmenetz mit einem solchen Ventil.
DE102014007475B4 (de) Ventilanordnung zur gesteuerten Druckentlastung fluidgefüllter Leitungen unter erhöhten Sicherheitsanforderungen
DE2930276C2 (de) Thermostatisch geregeltes Mischventil
EP2217985A1 (de) Thermostatventilaktuator
EP3563207B1 (de) Regelarmatur zur regelung des differenzdruckes und/oder des volumenstromes
EP2122258B1 (de) Vorrichtung zur regelung der temperatur von brauchwasser
DE102018217596B4 (de) Aufbaukonzept für Integration und Anströmung eines thermischen Aktors
WO2018082960A1 (de) Thermostat für einen getriebeölkreislauf und getriebeölkreislauf
DE102013214117A1 (de) Thermostat und Komponente eines Ölkreislaufs
WO2005078370A1 (de) Wärmeübertrager mit beinhalteter messmedienkammer
EP2655943B1 (de) Ventil, insbesondere heizkörperventil
DE1425632A1 (de) Waehlventil
EP1129455B1 (de) Reaktordruckbehälter und verfahren zum temperaturausgleich in einem reaktordruckbehälter
AT231022B (de) Druckabhängig arbeitendes Steuergerät für elektrische Durchlauferhitzer
AT408689B (de) Vorrichtung zum steuern eines wärmetauschers
DE102016005771B4 (de) Ventilvorrichtung für ein Kraftfahrzeug und zugehöriges Kraftfahrzeug
DE643168C (de) Thermostat mit einem auf Volumenaenderung der Heizfluessigkeit ansprechenden Kontaktthermometer
EP4231112A1 (de) Thermostatkartusche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006003550

Country of ref document: DE

Date of ref document: 20090604

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090822

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090822

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: DANFOSS A/S

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

26N No opposition filed

Effective date: 20100125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090723

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130612

Year of fee payment: 8

Ref country code: DK

Payment date: 20130611

Year of fee payment: 8

Ref country code: CZ

Payment date: 20130523

Year of fee payment: 8

Ref country code: GB

Payment date: 20130626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20130524

Year of fee payment: 8

Ref country code: IT

Payment date: 20130514

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130608

Year of fee payment: 8

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 429624

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140630

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630