EP1898941A2 - Formulation a liberation controlee pour le traitement de maladies liees au virus de la hepatite c - Google Patents
Formulation a liberation controlee pour le traitement de maladies liees au virus de la hepatite cInfo
- Publication number
- EP1898941A2 EP1898941A2 EP06760559A EP06760559A EP1898941A2 EP 1898941 A2 EP1898941 A2 EP 1898941A2 EP 06760559 A EP06760559 A EP 06760559A EP 06760559 A EP06760559 A EP 06760559A EP 1898941 A2 EP1898941 A2 EP 1898941A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- aryl
- cycloalkyl
- heteroaryl
- heterocyclyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to controlled-release dosage formulations that are useful for treating a wide variety of diseases or disorders associated with hepatitis C virus by inhibiting HCV protease (for example HCV NS3/NS4a serine protease), and/or diseases or disorders associated with cathepsin activity and inhibiting cathepsin activity.
- HCV protease for example HCV NS3/NS4a serine protease
- cathepsin activity for example HCV NS3/NS4a serine protease
- HCV has been implicated in cirrhosis of the liver and in induction of hepatocellular carcinoma.
- the prognosis for patients suffering from HCV infection is currently poor.
- HCV infection is more difficult to treat than other forms of hepatitis due to the lack of immunity or remission associated with HCV infection.
- Current data indicates a less than 50% survival rate at four years post cirrhosis diagnosis.
- Patients diagnosed with localized resectable hepatocellular carcinoma have a five- year survival rate of 10-30%, whereas those with localized unresectable hepatocellular carcinoma have a five-year survival rate of less than 1%.
- Hepatitis C virus is a (+)-sense single-stranded RNA virus that has been implicated as the major causative agent in non-A, non-B hepatitis (NANBH), particularly in blood-associated NANBH (BB-NANBH)(see, International Patent Application Publication No. WO 89/04669 and European Patent Application
- NANBH is to be distinguished from other types of viral- induced liver disease, such as hepatitis A virus (HAV), hepatitis B virus (HBV), delta hepatitis virus (HDV), cytomegalovirus (CMV) and Epstein-Barr virus (EBV), as well as from other forms of liver disease such as alcoholism and primary biliar cirrhosis.
- HCV hepatitis A virus
- HBV hepatitis B virus
- HDV delta hepatitis virus
- CMV cytomegalovirus
- EBV Epstein-Barr virus
- This approximately 3000 amino acid polyprotein contains, from the amino terminus to the carboxy terminus, a nucleocapsid protein (C), envelope proteins (E1 and E2) and several non-structural proteins (NS1 , 2, 3, 4a, 5a and 5b).
- NS3 is an approximately 68 kda protein, encoded by approximately 1893 nucleotides of the HCV genome, and has two distinct domains: (a) a serine protease domain consisting of approximately 200 of the N-terminal amino acids; and (b) an RNA- dependent ATPase domain at the C-terminus of the protein.
- the NS3 protease is considered a member of the chymotrypsin family because of similarities in protein sequence, overall three-dimensional structure and mechanism of catalysis.
- Other chymotrypsin-like enzymes are elastase, factor Xa, thrombin, trypsin, plasmin, urokinase, tPA and PSA.
- the HCV NS3 serine protease is responsible for proteolysis of the polypeptide (polyprotein) at the NS3/NS4a, NS4a/NS4b, NS4b/NS5a and NS5a/NS5b junctions and is thus responsible for generating four viral proteins during viral replication. This has made the HCV NS3 serine protease an attractive target for antiviral chemotherapy.
- NS4a protein an approximately 6 kda polypeptide
- NS3/NS4a serine protease activity of NS3 It has been determined that the NS4a protein, an approximately 6 kda polypeptide, is a co-factor for the serine protease activity of NS3.
- Autocleavage of the NS3/NS4a junction by the NS3/NS4a serine protease occurs intramolecularly (Le., cis) while the other cleavage sites are processed intermolecularly (i.e., trans).
- NS3/NS4a junction contains a threonine at P1 and a serine at PT.
- the Cys ⁇ Thr substitution at NS3/NS4a is postulated to account for the requirement of cis rather than trans processing at this junction. See, axL., Pizzi et al. (1994) Proc. Natl. Acad. Sci (USA) _91_:888-892, Failla et al.
- NS3/NS4a cleavage site is also more tolerant of mutagenesis than the other sites. See, e ⁇ , Kollykhalov et al. (1994) J. Virol. 68:7525-7533. It has also been found that acidic residues in the region upstream of the cleavage site are required for efficient cleavage. See, e ⁇ Komoda et al. (1994) J. Virol. 68:7351-7357. lnhibitors of HCV protease that have been reported include antioxidants (see, International Patent Application Publication No. WO 98/14181), certain peptides and peptide analogs (see, International Patent Application Publication No.
- Cathepsins belong to the papain superfamily of lysosomal cysteine proteases. Cathepsins are involved in the normal proteolysis and turnover of target proteins and tissues as well as in initiating proteolytic cascades by proenzyme activation and in participating in MHC class Il molecule expression.
- cathepsins have been shown to be abundantly expressed in cancer cells, including breast, lung, prostate, glioblastoma and head/neck cancer cells, (Kos et al. (1998) Oncol. Rep., 5:1349-1361 ; Yan et al. (1998) Biol. Chem., 379:113-123; Mort et al. (1997) Int. J Biochem. Cell Biol., 29: 715-720; Friedrick et al. (1999) Eur. J Cancer, 35:138-144) and are associated with poor treatment outcome of patients with breast cancer, lung cancer, brain tumor and head/neck cancer. Kos et al, supra. Additionally, aberrant expression of cathepsin is evident in several inflammatory disease states, including rheumatoid arthritis and osteoarthritis. Keyszer (1995) Arthritis Rheum., 38:976-984.
- Cathepsin K is a member of the family of enzymes which are part of the papain superfamily of cysteine proteases. Cathepsins B, H, L, N and S have been described in the literature. Recently, cathepsin K polypeptide and the cDNA encoding such polypeptide were disclosed in U.S. Pat. No. 5, 501 ,969 (called cathepsin O therein). Cathepsin K has been recently expressed, purified, and characterized. Bossard, M. J., et al., (1996) J Biol. Chem . 271 , 12517-12524; Drake, F. H., et al., (1996) J. Biol. Chem . 271 , 12511-12516; Bromme, D., et al., (1996) J. Biol. Chem . 271 , 2126-2132.
- Cathepsin K has been variously denoted as cathepsin O, cathepsin X or cathepsin O2 in the literature.
- the designation cathepsin K is considered to be the more appropriate one (name assigned by Nomenclature Committee of the International Union of Biochemistry and Molecular Biology).
- Cathepsins of the papain superfamily of cysteine proteases function in the normal physiological process of protein degradation in animals, including humans, e.g., in the degradation of connective tissue.
- elevated levels of these enzymes in the body can result in pathological conditions leading to disease.
- cathepsins have been implicated in various disease states, including but not limited to, infections by Pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei brucei, and Crithidia fusiculata; as well as in schistosomiasis malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and the like.
- Bone is composed of a protein matrix in which spindle- or plate- shaped crystals of hydroxyapatite are incorporated.
- Type I Collagen represents the major structural protein of bone comprising approximately 90% of the structural protein. The remaining 10% of matrix is composed of a number of non-collagenous proteins, including osteocalcin, proteoglycans, osteopontin, osteonectin, thrombospondin, fibronectin, and bone sialoprotein.
- Skeletal bone undergoes remodeling at discrete foci throughout life. These foci, or remodeling units, undergo a cycle consisting of a bone resorption phase followed by a phase of bone replacement.
- Bone resorption is carried out by osteoclasts, which are multinuclear cells of hematopoietic lineage.
- osteoclasts which are multinuclear cells of hematopoietic lineage.
- the normal balance between bone resorption and formation is disrupted, and there is a net loss of bone at each cycle.
- this leads to weakening of the bone and may result in increased fracture risk with minimal trauma.
- the abundant selective expression of cathepsin K in osteoclasts strongly suggests that this enzyme is essential for bone resorption.
- cathepsin K may provide an effective treatment for diseases of excessive bone loss, including, but not limited to, osteoporosis, gingival diseases such as gingivitis and periodontitis, Paget's disease, hypercalcemia of malignancy, and metabolic bone disease.
- Cathepsin K levels have also been demonstrated to be elevated in chondroclasts of osteoarthritic synovium.
- selective inhibition of cathepsin K may also be useful for treating diseases of excessive cartilage or matrix degradation, including, but not limited to, osteoarthritis and rheumatoid arthritis.
- Metastatic neoplastic cells also typically express high levels of proteolytic enzymes that degrade the surrounding matrix.
- cathepsin K may also be useful for treating certain neoplastic diseases.
- Cathepsin L has been shown to be an important protein mediating the malignancy of gliomas and it has been suggested that its inhibition may diminish their invasion and lead to increased tumor cell apoptosis by reducing apoptotic threshold.
- Cathepsins therefore are attractive targets for the discovery of novel chemotherapeutics and methods of treatment effective against a variety of diseases. There is a need for compounds useful in the inhibition of cathepsin activity and in the treatment of these disorders.
- the present invention provides a controlled-release dosage formulation for modulating the activity of Hepatitis C virus (HCV) protease in a subject, comprising at least one HCV protease inhibitor and a controlled-release carrier to control the release of the at least one HCV protease inhibitor, comprising administering to said subject an effective amount of at least one HCV protease inhibitor compound of various structural formulae set forth below.
- HCV protease inhibitor compounds disclosed herein can also be cathepsin inhibitors.
- the present invention further provides a method for modulating the activity of Hepatitis C virus (HCV) protease in a subject, wherein the method comprises administering to a subject in need of such treatment a dosage form containing at least one HCV protease inhibitor in a pharmaceutically effective amount thereof through a controlled-release formulation of at least one HCV protease inhibitor compound of various structural formulae set forth below.
- HCV protease inhibitor or cathepsin inhibitor is a compound of structural Formula I
- Y is selected from the group consisting of the following moieties: alkyi, alkyl-aryl, heteroalkyl, heteroaryl, aryl-heteroaryl, alkyl-heteroaryl, cycloalkyl, alkyloxy, alkyl- aryloxy, aryloxy, heteroaryloxy, heterocycloalkyloxy, cycloalkyloxy, alkylamino, arylamino, alkyl-arylamino, arylamino, heteroarylamino, cycloalkylamino and heterocycloalkylamino, with the proviso that Y maybe optionally substituted with X 11 or X 12 ;
- X 11 is alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl, aryl, alkylaryl, arylalkyl, heteroaryl, alkylheteroaryl, or
- X 12 is hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, arylsulfonamido, carboxy, carbalkoxy, carboxamido, alkoxycarbonylamino, alkoxycarbonyloxy, alkylureido, arylureido, halogen, cyano, or nitro, with the proviso that said alkyl, alkoxy, and aryl may be additionally optionally substituted with moieties independently selected from X 12 ;
- R 1 is COR 5 or B(OR) 2 , wherein R 5 is H 1 OH, OR 8 , NR 9 R 10 , CF 3 , C 2 F 5 , C 3 F 7 , CF 2 R 6 , R 6 , or COR 7
- R 5 , R 11 , R 12 , R 13 , and R' are independently selected from the group consisting of H, alkyl, aryl, heteroalkyl, heteroaryl, cycloalkyl, alkyl-aryl, alkyl-heteroaryl, aryl-alkyl and heteroaralkyl;
- Z is selected from O, N, CH or CR
- Q maybe present or absent, and when Q is present, Q is CH, N, P, (CH 2 ) P , (CHR) P , (CRR') p , O, NR, S, or SO 2 ; and when Q is absent, M may be present or absent; when Q and M are absent, A is directly linked to L;
- A is O, CH 2 , (CHR) p , (CHR-CHR') p , (CRR') p , NR, S, SO 2 or a bond;
- E is CH, N, CR, or a double bond towards A, L or G;
- G may be present or absent, and when G is present, G is (CH 2 ) P , (CHR) p , or (CRR') P ; and when G is absent, J is present and E is directly connected to the carbon atom in Formula I as G is linked to;
- J maybe present or absent, and when J is present, J is (CH 2 ) P , (CHR) p , or (CRR') P ,
- M may be present or absent, and when M is present, M is O, NR, S, SO 2 , (CH 2 ) p , (CHR) p (CHR-CHR')p, or (CRR') p ; p is a number from 0 to 6; and
- R, R', R 2 , R 3 and R 4 are independently selected from the group consisting of H; C 1 - Cio alkyl; C 2 -Ci 0 alkenyl; C 3 -C 8 cycloalkyl; C 3 -C 8 heterocycloalkyl, alkoxy, aryloxy, alkylthio, arylthio, amino, amido, ester, carboxylic acid, carbamate, urea, ketone, aldehyde, cyano, nitro, halogen; (cycloalkyl)alkyl and (heterocycloalkyl)alkyl, wherein said cycloalkyl is made of three to eight carbon atoms, and zero to six oxygen, nitrogen, sulfur, or phosphorus atoms, and said alkyl is of one to six carbon atoms; aryl; heteroaryl; alkyl-aryl; and alkyl-heteroaryl; wherein said alkyl, heteroalkyl, al
- the inhibitor is a compound of Formula II:
- Formula Il or a pharmaceutically acceptable salt, solvate or ester thereof wherein: Z is O, NH or NR 12; X is alkylsulfonyl, heterocyciylsulfonyl, heterocyclylalkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, alkylcarbonyl, heterocyclylcarbonyl, heterocyclylalkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, alkoxycarbonyl, heterocyclyloxycarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, alkyaminocarbonyl, heterocyclylaminocarbonyl, arylaminocarbonyl, or heteroarylaminocarbonyl moiety, with the proviso that X may be additionally optionally substituted with R or R ; X 1 is H; Ci-C 4 straight chain alkyl; Ci-C 4 branched alkyl or ;
- R is hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, arylsulfonamido, carboxy, carbalkoxy, carboxamido, alkoxycarbonylamino, alkoxycarbonyloxy, alkylureido, arylureido, halogen, cyano, or nitro moiety, with the proviso that the alkyl, alkoxy, and aryl may
- P1a, P1 b, P2, P3, P4, P5, and P6 are independently: H; C1-C10 straight or branched chain alkyl; C2-C10 straight or branched chain alkenyl;
- heterocyclylalkyl moieties may be optionally substituted with R , and further wherein said P1a and P1b may optionally be joined to each other to form a spirocyclic or spiroheterocyclic ring, with said spirocyclic or spiroheterocyclic ring containing zero to six oxygen, nitrogen, sulfur, or phosphorus atoms, and may be
- P1 1 is H, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl, aryl, aryl-alkyl, heteroaryl, or heteroaryl-alkyl; with the proviso that said P1 1 may
- the inhibitor is a compound of Formula III
- G, J and Y may be the same or different and are independently selected from the group consisting of the moieties: H, alkyl, alkyl-aryl, heteroalkyl, heteroaryl, aryl- heteroaryl, alkyl-heteroaryl, cycloalkyl, alkyloxy, alkyl-aryloxy, aryloxy, heteroaryloxy, heterocycloalkyloxy, cycloalkyloxy, alkylamino, arylamino, alkyl-arylamino, arylamino, heteroarylamino, cycloalkylamino and heterocycloalkylamino, with the proviso that Y maybe additionally optionally substituted with X 11 or X 12 ;
- X 11 is selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl, aryl, alkylaryl, arylalkyl, heteroaryl, alkylheteroaryl, or heteroarylalkyl moiety, with the proviso that X 11 may be additionally optionally substituted with X 12 ;
- X 12 is hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, arylsulfonamido, carboxy, carbalkoxy, carboxamido, aikoxycarbonylamino, alkoxycarbonyloxy, alkylureido, arylureido, halogen, cyano, or nitro, with the proviso that said alkyl, alkoxy, and aryl may be additionally optionally substituted with moieties independently selected from X 12 ;
- R 1 is COR 5 or B(OR)2, wherein R 5 is selected from the group consisting of H, OH, OR 8 , NR 9 R 10 , CF 3 , C 2 F 5 , C 3 F 7 , CF 2 R 6 , R 6 and COR 7 wherein R 7 is selected from the group consisting of H, OH, OR 8 , CHR 9 R 10 , and NR 9 R 10 , wherein R 6 , R 8 , R 9 and R 10 may be the same or different and are independently selected from the group consisting of H, alkyl, aryl, heteroalkyl, heteroaryl, cycloalkyl, cycloalkyl, arylalkyl, heteroarylalkyl, CH(R 1 ')COOR 11 ,CH(R 1 ')CONR 12 R 13 ,CH(R 1 ')CONHCH(R 2 ')COOR 11 , CH(R il )CONHCH(R 2 ')CONR 12 R 13 ,
- R 1 ', R 2 ', R 3 ', R 4 ', R 5 ', R 11 , R 12 , R 13 , and R' may be the same or different and are independently selected from a group consisting of H, alkyl, aryl, heteroalkyl, heteroaryl, cycloalkyl, alkyl-aryl, alkyl-heteroaryl, aryl-alkyl and heteroaralkyl; Z is selected from O, N, or CH;
- R, R', R , R and R are independently selected from the group consisting of H; C1- C10 alkyl; C2-C10 alkenyl; C3-C8 cycloalkyl; C3-C8 heterocycloalkyl, alkoxy, aryloxy, alkylthio, arylthio, amino, amido, ester, carboxylic acid, carbamate, urea, ketone, aldehyde, cyano, nitro; oxygen, nitrogen, sulfur, or phosphorus atoms (with said oxygen, nitrogen, sulfur, or phosphorus atoms numbering zero to six); (cycloalkyl)alkyl and (heterocycloalkyl)alkyl, wherein said cycloalkyl is made of three to eight carbon atoms, and zero to six oxygen, nitrogen, sulfur, or phosphorus atoms, and said alkyl is of one to six carbon atoms; aryl; heteroaryl; alkyl-aryl; and alky
- Y is selected from the group consisting of the following moieties: alkyl, alkyl-aryl, heteroalkyl, heteroaryl, aryl-heteroaryl, alkyl-heteroaryl, cycloalkyl, alkyloxy, alkyl- aryloxy, aryloxy, heteroaryloxy, heterocycloalkyloxy, cycloalkyloxy, alkylamino, arylamino, alkyl-arylamino, arylamino, heteroarylamino, cycloalkylamino and heterocycloalkylamino, with the proviso that Y maybe optionally substituted with X 11 or X 12 ;
- X 11 is alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl, aryl, alkylaryl, arylalkyl, heteroaryl, alkylheteroaryl, or heteroarylalkyl, with the proviso that X may be additionally optionally substituted with X 12 ;
- X 12 is hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, arylsulfonamido, carboxyl, carbalkoxy, carboxamido, alkoxycarbonylamino, alkoxycarbonyloxy, alkylureido, arylureido, halogen, cyano, or nitro, with the proviso that said alkyl, alkoxy, and aryl may be additionally optionally substituted with moieties independently selected from X 12 ;
- R 1 is selected from the following structures:
- R 11 denotes optional substituents, with each of said substituents being independently selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cycloalkyl, alkyl- aryl, heteroalkyl, heteroaryl, aryl-heteroaryl, alkyl-heteroaryl, alkyloxy, alkyl-aryloxy, aryloxy, heteroaryloxy, heterocycloalkyloxy, cycloalkyloxy, alkylamino, arylamino, alkyl-arylamino, arylamino, heteroarylamino, cycloalkylamino, heterocycloalkylamino, hydroxy, thio, alkylthio, arylthio, amino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, aryl
- Q may be present or absent, and when Q is present, Q is CH, N, P, (CH 2 ) P , (CHR) P , (CRR')p , O, N(R), S, or S(O 2 ); and when Q is absent, M may be present or absent; when Q and M are absent, A is directly linked to L; A is O, CH 2 , (CHR) p , (CHR-CHR 1 ) p , (CRR') p , N(R), S, S(O 2 ) or a bond; E is CH, N, CR, or a double bond towards A, L or G;
- G may be present or absent, and when G is present, G is (CH 2 ) P , (CHR) p , or (CRR') P ; and when G is absent, J is present and E is directly connected to the carbon atom in Formula I as G is linked to; J may be present or absent, and when J is present, J is (CH 2 ) P , (CHR) p , or (CRR') P , S(O 2 ), NH, N(R) or O; and when J is absent, G is present and E is directly linked to N shown in Formula I as linked to J; L may be present or absent, and when L is present, L is CH, C(R), O, S or N(R); and when L is absent, then M may be present or absent; and if M is present with L being absent, then M is directly and independently linked to E, and J is directly and independently linked to E; M may be present or absent, and when M is present, M is O, N(R), S, S(O 2 ), (CH
- R, R', R 2 , R 3 and R 4 can be the same or different, each being independently selected from the group consisting of H; C 1 -C 10 alkyl; C2-C10 alkenyl; C 3 -C 8 cycloalkyl; C3-C8 heterocycloalkyl, alkoxy, aryloxy, alkylthio, arylthio, amino, amido, ester, carboxylic acid, carbamate, urea, ketone, aldehyde, cyano, nitro, halogen, (cycloalkyl )alkyl and (heterocycloalkyl)alkyl, wherein said cycloalkyl is made of three to eight carbon atoms, and zero to six oxygen, nitrogen, sulfur, or phosphorus atoms, and said alkyl is of one to six carbon atoms; aryl; heteroaryl; alkyl-aryl; and alkyl-heteroaryl; wherein said alkyl, heteroal
- R 1 is -C(O)R 5 or -B(OR) 2 ;
- R 5 is H, -OH, -OR 8 , -NR 9 R 10 , -C(O)OR 8 , -C(O)NR 9 R 10 , -CF 3 , -C 2 F 5 , C 3 F 7 , -
- R 7 is H, -OH, -OR 8 ,or -CHR 9 R 10 ;
- R 6 , R 8 , R 9 and R 10 are independently selected from the group consisting of H: alkyl, alkenyl, aryl, heteroalkyl, heteroaryl, cycloalkyl, arylalkyl, heteroarylalkyl, R 14 , - CH(R r )CH(R r )C(O)OR 11 ,[CH(R 1' )]pC(O)OR 11 ,-[CH(R 1' )] p C(O)NR 12 R 13 ,-[CH(R 1' )] pS(O 2 )R 1 V[CH(R 1' )]pC(O)R 11 , -[CH(R 1 ⁇ pS(O 2 )NR 12 R 13 , CH(R 1> )C(O)N(H)CH(R 2' )(R'), CH(R 1' )CH(R r )C(O)NR 12 R 13 , -CH(R 1'
- R 1' , R 2' , R 3' , R 4' , R 5" , R 11 , R 12 and R 13 can be the same or different, each being independently selected from the group consisting of: H, halogen, alkyl, aryl, heteroalkyl, heteroaryl, cycloalkyl, alkoxy, aryloxy, alkenyl, alkynyl, alkyl-aryl, alkyl- heteroaryl, heterocyclo
- R 14 is present or not and if present is selected from the group consisting of: H, alkyl, aryl, heteroalkyl, heteroaryl, cycloalkyl, alkyl-aryl, allyl, alkyl-heteroaryl, alkoxy, aryl- alkyl, alkenyl, alkynyl and heteroaralkyl; (5) R and R' are present or not and if present can be the same or different, each being independently selected from the group consisting of: H, OH, C-i-C-io alkyl, C2- C 10 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 heterocycloalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylamino, arylamino, amino, amido, arylthioamino, arylcarbonylamino, arylaminocarboxy, alkylaminocarboxy, hetero
- M' is H, alkyl, heteroalkyl, aryl, heteroaryl, cycloalkyl, arylalkyl, heterocyclyl or an amino acid side chain; or L' and M' are linked together to form a ring structure wherein the portion of structural Formula 1 represented by
- J is present or absent, and when J is present, J is (CH 2 ) P , (CHR-CHR') P , (CHR) P , (CRR')p, S(O 2 ), N(H), N(R) or O; when J is absent and G is present, L is directly linked to the nitrogen atom marked position 2; p is a number from 0 to 6; L is present or absent, and when L is present, L is C(H) or C(R); when L is absent, M is present or absent; if M is present with L being absent, then M is directly and independently linked to E, and J is directly and independently linked to E;
- G is present or absent, and when G is present, G is (CH 2 ) P , (CHR) P , (CHR- CHR')p or (CRR') P ; when G is absent, J is present and E is directly connected to the carbon atom marked position 1 ;
- M is (i) either directly linked to A or (ii) an independent substituent on L, said independent substituent bing selected from -OR, -CH(R)(R'), S(O) 0-2 R or -NRR' or (iii) absent;
- A is either directly linked to L, or A is an independent substituent on E, said independent substituent bing selected from -OR, -CH(R)(R'), S(O) 0-2 R or -NRR' or A is absent;
- A is present or absent and if present A is O, O(R), (CH 2 ) P> (CHR) P , (CHR-CHR') P , (CRR')p, N(R), NRR', S, S(O 2 ), -OR, CH(R)(R') or NRR'; or A is linked to M to form an alicyclic, aliphatic or heteroalicyclic bridge;
- M is present or absent, and when M is present, M is halogen, O, OR, N(R), S, S(O 2 ), (CH 2 ) P , (CHR)p (CHR-CHR') p , or (CRR') P ; or M is linked to A to form an alicyclic, aliphatic or heteroalicyclic bridge;
- Z is represented by the structural Formula 3:
- Y is selected from the group consisting of: H, aryl, alkyl, alkyl- aryl, heteroalkyl, heteroaryl, aryl-heteroaryl, alkyl-heteroaryl, cycloalkyl, alkyloxy, alkyl-aryloxy, aryloxy, heteroaryloxy, heterocycloalkyloxy, heteroalkyl-heteroaryl, heteroalkyl-heterocycloalkyl, cycloalkyloxy, alkylamino, arylamino, alkyl-arylamino, arylamino, heteroarylamino, cycloalkylamino and heterocycioalkylamino, and Y is unsubstituted or optionally substituted with one or two substituents which are the same or different and are independently selected from X 11 or X 12 ;
- X 11 is alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl, aryl, alkylaryl, arylalkyl, heteroaryl, alkylheteroaryl, or heteroarylalkyl, and X is unsubstituted or optionally substituted with one or more of X 12 moieties which are the same or different and are independently selected; X 12 is hydroxy, alkoxy, alkyl, alkenyl, alkynyl, aryl, aryloxy, thio, alkylthio, arylthio, amino, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, arylsulfonamido, carboxy, carbalkoxy, carboxamido, alkylcarbonyl, ary
- R 31 is H, hydroxyl, aryl, alkyl, alkyl-aryl, heteroalkyl, heteroaryl, aryl-heteroaryl, alkylheteroaryl, cycloalkyl, alkyloxy, alkyl-aryloxy, aryloxy, heteroaryloxy, heterocycloalkyloxy, heteroalkyl-heteroaryl, cycloalkyloxy, alkylamino, arylamino, alkyl-arylamino, arylamino, heteroarylamino, cycloalkylamino or heterocycioalkylamino, and R 31 is unsubstituted or optionally substituted with one or two substituents which are the same or different and are independently selected from X 13 or X 14 ;
- X 13 is alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl, aryl, alkylaryl, arylalkyl, heteroaryl, alkylheteroaryl, or
- X 14 is hydroxy, alkoxy, alkyl, alkenyl, alkynyl, aryl, aryloxy, thio, alkylthio, arylthio, amino, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, arylsulfonamido, carboxy, carbalkoxy, carboxamido, alkylcarbonyl, arylcarbonyl, heteroalkylcarbonyl, heteroarylcarbonyl, cycloalkylsulfonamido, heteroaryl- cycloalkylsulfonamido, heteroarylsulfonamido, alkoxycarbonylamino, alkoxycarbonyloxy,
- Formula 4 wherein in Formula 4, a is 2, 3, 4, 5, 6, 7, 8 or 9; b, c, d, e and f are 0, 1 , 2, 3, 4 or 5; A is C, N, S or O; R 29 and R 29 are independently present or absent and if present can be the same or different, each being independently one or two substituents independently selected from the group consisting of: H, halo, alkyl, aryl, cycloalkyl, cycloalkylamino, cycloalkylaminocarbonyl, cyano, hydroxy, alkoxy, alkylthio, amino, -NH(alkyl), - NH(cycloalkyl), -N(alkyl) 2 , carboxyl, C(O)O-alkyl, heteroaryl, aralkyl, alkylaryl, aralkenyl, heteroaralkyl, alkylheteroaryl, heteroaralkenyl, hydroxyalkyl, aryloxy,
- R 29 and R 29 are linked together such that the combination is an aliphatic or heteroaliphatic chain of 0 to 6 carbons;
- R 30 is present or absent and if present is one or two substituents independently selected from the group consisting of: H, alkyl, aryl, heteroaryl and cylcoalkyl; (10) D is represented by structural Formula 5:
- R 32 , R 33 and R 34 are present or absent and if present are independently one or two substituents independently selected from the group consisting of: H, halo, alkyl, aryl, cycloalkyl, cycloalkylamino, spiroalkyl, cycloalkylaminocarbonyl, cyano, hydroxy, alkoxy, alkylthio, amino, -NH(alkyl), - NH(cycloalkyl), -N(alkyl) 2 , carboxyl, -C(O)O-alkyl, heteroaryl, aralkyl, alkylaryl, aralkenyl, heteroaralkyl, alkylheteroaryl, heteroaralkenyl, hydroxyalkyl, aryloxy, aralkoxy, acyl, aroyl, nitro, aryloxycarbonyl, aralkoxycarbonyl, alkylsulfonyl
- R 32 and R 34 are linked together such that the combination forms a portion of a cycloalkyl group; g is 1 , 2, 3, 4, 5, 6, 7, 8 or 9; h, i, j, k, I and m are 0, 1 , 2, 3, 4 or 5; and A is C, N, S or O, (11 ) provided that when structural Formula 2:
- the inhibitor is a compound of Formula Vl
- Formula Vl or a pharmaceutically acceptable salt, solvate or ester of said compound wherein: Cap and P' are independently H, alkyl, alkyl-aryl, heteroalkyl, heteroaryl, aryl- heteroaryl, alkyl-heteroaryl, cycloalkyl, alkyloxy, alkyl-aryloxy, aryloxy, heteroaryloxy, heterocyclyloxy, cycloalkyloxy, amino, alkylamino, arylamino, alkyl-arylamino, arylamino, heteroarylamino, cycloalkylamino, carboxyalkylamino, arlylalkyloxy or heterocyclylamino, wherein each of said alkyl, alkyl-aryl, heteroalkyl, heteroaryl, aryl- heteroaryl, alkyl-heteroaryl, cycloalkyl, alkyloxy, alkyl-aryloxy, aryloxy, heteroaryloxy, hetero
- X 1 is alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl, aryl, alkylaryl, arylalkyl, arylheteroaryl, heteroaryl, heterocyclylamino, alkylheteroaryl, or heteroarylalkyl, and X can be unsubstituted or optionally independently substituted with one or more of X 2 moieties which can be the same or different and are independently selected;
- X 2 is hydroxy, alkyl, aryl, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, alkylsulfonamido, arylsulfonamido, carboxy, carbalkoxy, carboxamido, alkoxycarbonylamino, alkoxycarbonyloxy, alkylureido, arylureido, halogen, cyano, keto, ester or nitro, wherein each of said alkyl, alkoxy, and aryl can be unsubstituted or optionally independently substituted with one or more moieties which can be the same or different and are independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl-alkyl, heterocyclyl, heterocyclylalkyl
- A is present or absent and if present A is -O-, -O(R) CH 2 -, -(CHR) P -, -(CHR- CHR')p-, (CRR') p , N(R), NRR', S, or S(O 2 ), and when Q is absent, A is -OR, - CH(R)(R') or -NRR' ; and when A is absent, either Q and E are connected by a bond or Q is an independent substituent on M;
- E is present or absent and if present E is CH, N, C(R);
- G may be present or absent, and when G is present, G is (CH 2 ) P , (CH R) p , or (CRR') P ; when G is absent, J is present and E is directly connected to the carbon atom marked position 1 ;
- J may be present or absent, and when J is present, J is (CH 2 ) P , (CHR-CHR') P , (CHR)p, (CRR') P , S(O 2 ), N(H), N(R) or O; when J is absent and G is present, L is directly linked to the nitrogen atom marked position 2; L may be present or absent, and when L is present, L is CH, N, or CR; when
- L is absent, M is present or absent; if M is present with L being absent, then M is directly and independently linked to E, and J is directly and independently linked to E;
- M may be present or absent, and when M is present, M is O, N(R), S, S(O 2 ), (CH 2 ) P , (CH R)p , (CH R-CH R') p , or (CRR') P ; p is a number from 0 to 6;
- R, R' and R 3 can be the same or different, each being independently selected from the group consisting of: H, Ci-C 10 alkyl, C 2 -Ci 0 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 heterocyclyl, alkoxy, aryloxy, alkylthio, arylthio, amino, amido, arylthioamino, arylcarbonylamino, arylaminocarboxy, alkylaminocarboxy, heteroalkyl, heteroalkenyl, alkenyl, alkynyl, aryl-alkyl, heteroarylalkyl, ester, carboxylic acid, carbamate, urea, ketone, aldehyde, cyano, nitro, halogen, (cycloalkyl)alkyl, aryl, heteroaryl, alkyl-aryl, alkylheteroaryl, alkyl-heteroaryl and (
- R and R 1 in (CRR') can be linked together such that the combination forms a cycloalkyl or heterocyclyl moiety; and R 1 is N(R) or O.
- the inhibitor is a compound of Formula VII
- Formula VII or a pharmaceutically acceptable salt, solvate or ester thereof, wherein, M is O, N(H), or CH 2 ; n is 0-4;
- R 1 is -OR 6 , -NR 6 R 7 or ; where R 6 and R 7 can be the same or different, each being independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, hydroxyl, amino, arylamino and alkylamino; R 4 and R 5 can be the same or different, each being independently selected from the group consisting of H, alkyl, aryl and cycloalkyl; or alternatively R 4 and R 5 together
- k 0 to 2;
- X is selected from the group consisting of:
- R 3 is selected from the group consisting of: aryl, heterocyclyl, heteroaryl,
- the R 8 moieties can be the same or different, each R 8 being independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, hydroxyl, amino, arylamino, alkylamino, dialkylamino, halo, alkylthio, arylthio and alkyloxy.
- the inhibitor is a compound of Formula VIII:
- R 6 and R 7 can be the same or different, each being independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, hydroxyl, amino, arylamino and alkylamino;
- Pi is selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl haloalkyl;
- P 3 is selected from the group consisting of alkyl, cycloalkyl, aryl and cycloalkyl fused with aryl;
- R 4 and R 5 can be the same or different, each being independently selected from the group consisting of H, alkyl, aryl and cycloalkyl; or alternatively R 4 and R 5 together
- k 0 to 2;
- X is selected from the group consisting of:
- R 3 is selected from the group consisting of: aryl, heterocyclyl, heteroaryl,
- the R 8 moieties can be the same or different, each R 8 being independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, hydroxyl, amino, arylamino, alkylamino, dialkylamino, halo, alkylthio, arylthio and alkyloxy.
- the inhibitor is a compound of Formula IX:
- Formula IX or a pharmaceutically acceptable salt, solvate or ester thereof, wherein, M is O, N(H), or CH 2 ; n is 0-4;
- R 1 is -OR 6 , -NR 6 R 7 or ; where R 6 and R 7 can be the same or different, each being independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, heteroalkyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, hydroxyl, amino, arylamino and alkylamino; R 4 and R 5 can be the same or different, each being independently selected from the group consisting of H, alkyl, aryl and cycloalkyl; or alternatively R 4 and R 5 together
- k 0 to 2;
- X is selected from the group consisting of:
- R 3 is selected from the group consisting of: aryl, heterocyclyl, heteroaryl,
- the R 8 moieties can be the same or different, each R 8 being independently selected from the group consisting of hydrogen, alkyl, heteroalkyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, hydroxyl, amino, arylamino, alkylamino, dialkylamino, halo, alkylthio, arylthio and alkyloxy.
- the inhibitor is a compound of Formula X:
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl;
- a and M can be the same or different, each being independently selected from R, OR, NHR, NRR', SR, SO 2 R, and halo; or A and M are connected to each other such that the moiety:
- Formula I forms either a three, four, six, seven or eight-membered cycloalkyl, a four to eight-membered heterocyclyl, a six to ten-membered aryl, or a five to ten-membered heteroaryl;
- E is C(H) or C(R);
- L is C(H), C(R), CH 2 C(R), or C(R)CH 2 ;
- R, R', R 2 , and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, cycloalkyl-, heteroalkyl-, heterocyclyl-, aryl-, heteroaryl-, (cycloalkyl)alkyl-, (heterocyclyl)alkyl-, aryl-alkyl-, and heteroaryl-alkyl-; or alternately R and R' in NRR' are connected to each other such that NRR' forms a four to eight-membered heterocyclyl; and Y is selected from the following moieties: wherein G is NH or O; and R 15 , R 16 , R 17 and R 18 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, hetero
- the inhibitor is a compound of Formula Xl:
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl;
- a and M can be the same or different, each being independently selected from R,
- Formula I forms either a three, four, six, seven or eight-membered cycloalkyl, a four to eight-membered heterocyclyl, a six to ten-membered aryl, or a five to ten-membered heteroaryl;
- E is C(H) or C(R);
- L is C(H), C(R), CH 2 C(R), or C(R)CH 2 ;
- R, R", R 2 , and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, cycloalkyl-, heteroalkyl-, heterocyclyl-, aryl-, heteroaryl-, (cycloalkyl)alkyl-, (heterocyclyl)alkyl-, aryl-alkyl-, and heteroaryl-alkyl-; or alternately R and R' in NRR' are connected to each other such that NR 9 R 10 forms a four to eight-membered heterocyclyl;
- Y is selected from the following moieties: where u is a number 0-6;
- X is selected from O, NR 15 , NC(O)R 16 , S, S(O) and SO 2 ;
- G is NH or O;
- R 15 , R 16 , R 17 , R 18 , R 19 , Ti, T 2 , T 3 and T 4 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, or alternately, R 17 and R 18 are connected to each other to form a three to eight-membered cycloalkyl or heterocyclyl; wherein each of said alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of: hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, amido, alkylamino, aryla
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl;
- a and M can be the same or different, each being independently selected from R,
- Formula I forms either a three, four, six, seven or eight-membered cycloalkyl, a four to eight-membered heterocyclyl, a six to ten-membered aryl, or a five to ten-membered heteroaryl;
- E is C(H) or C(R);
- L is C(H), C(R), CH 2 C(R), or C(R)CH 2 ;
- R, R', R 2 , and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, cycloalkyl-, heteroalkyl-, heterocyclyl-, aryl-, heteroaryl-, (cycloalkyl)alkyl-, (heterocyclyl)alkyl-, aryl-alkyl-, and heteroaryl-alkyl-; or alternately R and R' in NRR' are connected to each other such that NRR' forms a four to eight-membered heterocyclyl; and Y is selected from the following moieties:
- R 15 , R 16 , R 17 , R 18 , and R 19 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, or alternately, (i) either R 15 and R 16 are connected to each other to form a four to eight-membered cyclic structure, or R 15 and R 19 are connected to each other to form a four to eight-membered cyclic structure, and (ii) likewise, independently, R 17 and R 18 are connected to each other to form a three to eight-membered cycloalkyl or heterocyclyl; wherein each of said alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl can be unsubstitute
- the inhibitor is a compound of Formula XIII:
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl;
- a and M can be the same or different, each being independently selected from R, OR, NHR, NRR', SR, SO 2 R, and halo; or A and M are connected to each other (in other words, A-E-L-M taken together) such that the moiety:
- Formula I forms either a three, four, six, seven or eight-membered cycloalkyl, a four to eight-membered heterocyclyl, a six to ten-membered aryl, or a five to ten-membered heteroaryl;
- E is C(H) or C(R);
- L is C(H), C(R), CH 2 C(R), or C(R)CH 2 ;
- R, R', R 2 , and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, cycloalkyl-, heteroalkyl-, heterocyclyl-, aryl-, heteroaryl-, (cycloalkyl)alkyl-, (heterocyclyl)alkyl-, aryl-alkyl-, and heteroaryl-alkyl-; or alternately R and R' in NRR' are connected to each other such that NRR' forms a four to eight-membered heterocyclyl; and Y is selected from the following moieties: wherein G is NH or O, and R 15 , R 16 , R 17 , R 18 , R 19 and R 20 can be the same or different, each being independently selected from the group consisting of H, CrCi 0 alkyl, CrC 10 heteroalkyl, C 2 -C 10 alkenyl, C 2 -C
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl;
- a and M can be the same or different, each being independently selected from R, OR, NHR, NRR', SR, SO 2 R, and halo; or A and M are connected to each other such that the moiety:
- Formula I forms either a three, four, six, seven or eight-membered cycloalkyl, a four to eight-membered heterocyclyl, a six to ten-membered aryl, or a five to ten-membered heteroaryl;
- E is C(H) or C(R);
- L is C(H), C(R), CH 2 C(R), or C(R)CH 2 ;
- R, R', R 2 , and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, or alternately R and R' in NRR' are connected to each other such that NRR' forms a four to eight-membered heterocyclyl; and Y is selected from the following moieties:
- R 15 , R 16 , R 17 and R 18 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, or alternately, (i) R 15 and R 16 are connected to each other to form a four to eight-membered cyclic structure, and (ii) likewise, independently R 17 and R 18 are connected to each other to form a three to eight-membered cycloalkyl or heterocyclyl; wherein each of said alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of: hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, aryh heteroalkyl-, heteroaryl-, cycloalkyl-, cycloalkyl-, arylalkyl-, and heteroarylalkyl;
- E and J can be the same or different, each being independently selected from the group consisting of R, OR, NHR, NRR 7 , SR, halo, and S(O 2 )R, or E and J can be directly connected to each other to form either a three to eight-membered cycloalkyl, or a three to eight-membered heterocyclyl moiety;
- Z is N(H), N(R), or O, with the proviso that when Z is O, G is present or absent and if
- Y is selected from the group consisting of:
- A O, NH R, R 7 , R 2 , R 3 , R 4 and R 5 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, cycloalkyl-, heteroalkyl-, heterocyclyl-, aryl-, heteroaryl-, (cycloalkyl)alkyl-, (heterocyclyl)alkyl-, aryl-alkyl-, and heteroaryl-alkyl-, wherein each of said heteroalkyl, heteroaryl and heterocyclyl independently has one to six oxygen, nitrogen, sulfur, or phosphorus atoms; wherein each of said alkyl, heteroalkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl moieties can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of alkyl, alkeny
- the inhibitor is a compound of Formula XVI:
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl, or alternately R 9 and R 10 in NR 9 R 10 are connected to each other such that NR 9 R 10 forms a four to eight-membered heterocyclyl, and likewise independently alternately R 9 and R 10 in CHR 9 R 10 are connected to each other such that CHR 9 R 10 forms a four to eight-membered cycloalkyl;
- R 2 and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl; Y is selected from the following moieties:
- G is NH or O; and R 1 1 5 ⁇ , D R1 1 6 b , ⁇ R1 1 7', D R1 i 8 a , D R1 1 9 9 , D R2'0 u , D R2 ⁇ 1 1 , D R2 ⁇ 2, D R2 ⁇ 3, D R2 ⁇ 4 4 and
- R ,25 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, or alternately (i) R 17 and R 18 are independently connected to each other to form a three to eight- membered cycloalkyl or heterocyclyl; (ii) likewise independently R 15 and R 19 are connected to each other to form a four to eight-membered heterocyclyl; (iii) likewise independently R 15 and R 16 are connected to each other to form a four to eight- membered heterocyclyl; (iv) likewise independently R 15 and R 20 are connected to each other to form a four to eight-membered heterocyclyl; (v) likewise independently
- R 5 22 and R 3 23 are connected to each other to form a three to eight-membered cycloalkyl or a four to eight-membered heterocyclyl; and (vi) likewise independently
- R ⁇ 24 and R ,25 are connected to each other to form a three to eight-membered cycloalkyl or a four to eight-membered heterocyclyl; wherein each of said alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, amido, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, sulfonamido, alkyl, aryl, heteroaryl, alkylsulfonamido, arylsulfonamido, keto, carboxy, carbalkoxy, carboxamido, alkoxycarbonylamino, alkoxycarbonyloxy, alkylureido, aryl
- the inhibitor is a compound of Formula XVII:
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl;
- a and M can be the same or different, each being independently selected from R, OR, NHR, NRR 1 , SR, SO 2 R, and halo; or A and M are connected to each other such that the moiety:
- R, R', R 2 , and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, cycloalkyl-, heteroalkyl-, heterocyclyl-, aryl-, heteroaryl-, (cycloalkyl)alkyl-, (heterocyclyl)alkyl-, aryl-alkyl-, and heteroaryl-alkyl-; or alternately R and R' in NRR' are connected to each other such that NRR' forms a
- Y 30 is selected from
- u is a number 0-1 ;
- X is selected from O, NR 15 , NC(O)R 16 , S, S(O) and SO 2 ;
- G is NH or O; and
- R 15 , R 16 , R 17 , R 18 , R 19 , T 1 , T 2 , and T 3 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, or alternately, R 17 and R 18 are connected to each other to form a three to eight-membered cycloalkyl or heterocyclyl; wherein each of said alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of
- the inhibitor is a compound of Formula XVIII:
- R 8 is selected from the group consisting of alkyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, heteroarylalkyl- , and heterocyclylalkyl
- R 9 is selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl and cycloalkyl
- a and M can be the same or different, each being independently selected from R, OR, N(H)R, N(RR'), SR, S(O 2 )R, and halo; or A and M are connected to each other (in other words, A-E-L-M taken together) such that the moiety:
- R and R' can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, cycloalkyl-, heteroalkyl-, heterocyclyl-, aryl-, heteroaryl-, (cycloalkyl)alkyl-, (heterocyclyl)alkyl-, aryl-alkyl-, and heteroaryl- alkyl-; or alternately R and R' in N(RR') are connected to each other such that N(RR') forms a four to
- Y is selected from the following moieties:
- R 15 , R 16 , R 17 , R 18 , R 19 and R 20 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, aikynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, or alternately (i) R 17 and R 18 are independently connected to each other to form a three to eight-membered cycloalkyl or heterocyclyl; (ii) likewise independently R 15 and R 19 are connected to each other to form a four to eight-membered heterocyclyl; (iii) likewise independently R 15 and R 16 are connected to each other to form a four to eight-membered heterocyclyl; and
- R 15 and R 20 are connected to each other to form a four to eight-membered heterocyclyl; wherein each of said alkyl, aryl, heteroaryl, cycloalkyl, spiro-linked cycloalkyl, and heterocyclyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, amido, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, sulfonamido, alkyl, alkenyl, aryl, heteroaryl, alkylsulfonamido, arylsulfonamido, keto, carboxy, carbalkoxy, carboxamido, alkoxycarbonylamino, alkoxycarbonyloxy, alkylureid
- the inhibitor is a compound of Formula XIX:
- R 1 is H, OR 8 , NR 9 R 10 , or CHR 9 R 10 , wherein R 8 , R 9 and R 10 can be the same or different, each being independently selected from the group consisting of H, alkyl-, alkenyl-, alkynyl-, aryl-, heteroalkyl-, heteroaryl-, cycloalkyl-, heterocyclyl-, arylalkyl-, and heteroarylalkyl, or alternately R 9 and R 10 in NR 9 R 10 are connected to each other such that NR 9 R 10 forms a four to eight-membered heterocyclyl, and likewise independently alternately R 9 and R 10 in CHR 9 R 10 are connected to each other such that CHR 9 R 10 forms a four to eight-membered cycloalkyl;
- R 2 and R 3 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl; Y is selected from the following moieties:
- R 15 , R 16 , R 17 , R 18 , R 19 , R 20 and R 21 can be the same or different, each being independently selected from the group consisting of H, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, cycloalkyl, heterocyclyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyl, or alternately (i) R 17 and R 18 are independently connected to each other to form a three to eight-membered cycloalkyl or heterocyclyl; (ii) likewise independently R 15 and R 19 are connected to each other to form a four to eight-membered heterocyclyl; (iii) likewise independently R 15 and
- R 16 are connected to each other to form a four to eight-membered heterocyclyl; and (iv) likewise independently R 15 and R 20 are connected to each other to form a four to eight-membered heterocyclyl; wherein each of said alkyl, aryl, heteroaryl, cycloalkyl or heterocyclyl can be unsubstituted or optionally independently substituted with one or more moieties selected from the group consisting of hydroxy, alkoxy, aryloxy, thio, alkylthio, arylthio, amino, amido, alkylamino, arylamino, alkylsulfonyl, arylsulfonyl, sulfonamido, alkyl, aryl, heteroaryl, alkylsulfonamido, arylsulfonamido, keto, carboxy, carbalkoxy, carboxamido, alkoxycarbonylamino, alkoxycarbonyloxy,
- the inhibitor is a compound of Formula XX
- Formula (XX) or a pharmaceutically acceptable salt, solvate or ester thereof wherein: a is 0 or 1 ; b is 0 or 1 ; Y is H or Ci -6 alkyl;
- B is H, an acyl derivative of formula R 7 -C(O)- or a sulfonyl of formula R 7 -SO2 wherein
- R7 is (i) C
- R 2 is CH2-R20, NH-R 2 O, 0-R 2 O or S-R 2 O, wherein R 20 is a saturated or unsaturated C 3-7 cycloalkyl or C 4- -I 0 (alkyl cycloalkyl) being optionally mono-, di- or tri-substituted with R 2 - I , or R2 0 is a C 6 or do aryl or 67.16 aralkyl optionally mono-, di- or tri- substituted with R21, or R2 0 is Het or (lower alkyl)-Het optionally mono-, di- or tri- substituted with R 21 , wherein each R 2 -] is independently Ci_ 6 alkyl; C 1-6 alkoxy; amino optionally mono- or di-substituted with C 1-6 alkyl; sulfonyl; NO 2 ; OH; SH; halo; haloalkyl; amido optionally mono-substituted with Ci
- the terms P6, P5, P4, P3, P2 and P1 denote the respective amino acid moieties as is conventionally known to those skilled in the art.
- the inhibitor is a compound of Formula XXI
- Ci -6 alkanoyl hydroxy; hydroxyalkyl; halo; haloalkyl; nitro; cyano; cyanoalkyl; amino optionally substituted with Ci -6 alkyl; amido; or (lower alkyl)amide; or
- B is an acyl derivative of formula R 4 -C(O)-; a carboxyl of formula R 4 -O-C(O)-; an amide of formula R 4 -N(R 5 )-C(O)-; a thioamide of formula R 4 -N(R 5 )-C(S)-; or a sulfonyl of formula R 4 -SO2 wherein
- R 4 is (i) C- 1 - 10 alkyl optionally substituted with carboxyl, C- ⁇ -6 alkanoyl, hydroxy, C-i- 6 alkoxy, amino optionally mono- or di-substituted with Ci. 6 alkyl, amido, or (lower alkyl) amide;
- Ci -6 alkyl or (v) Het or (lower alkyl)-Het, both optionally substituted with Ci -6 alkyl, hydroxy, amido, (lower alkyl) amide, or amino optionally mono- or di-substituted with Ci -6 alkyl;
- R 5 is H or Ci .6 alkyl; with the proviso that when R 4 is an amide or a thioamide, R 4 is not (ii) a cycloalkoxy; Y is H or C 1-6 alkyl;
- R 3 is C 1 - 8 alkyl, C 3-7 cycloalkyl, or C 4 - 10 alkylcycloalkyl, all optionally substituted with hydroxy, Ci -6 alkoxy, Ci -6 thioalkyl, amido, (lower alkyl)amido, C 6 or C 10 aryl, or C 7-I6 aralkyl;
- R2 is CH2-R20, NH-R20, O-R20 or S-R20.
- R20 is a saturated or unsaturated C 3-7 cycloalkyl or C 4 . 10 (alkylcycloalkyl), all of which being optionally mono-, di- or tri- substituted with R 2 i, or R 20 is a C 6 or C 1 0 aryl or C 7-I4 aralkyl, all optionally mono-, di- or tri-substituted with R21, or R 2O is Het or (lower alkyl)-Het, both optionally mono-, di- or tri- substituted with
- each R 2 i is independently Ci -6 alkyl; Ci -6 alkoxy; lower thioalkyl; sulfonyl; NO 2 ; OH; SH; halo; haloalkyl; amino optionally mono- or di- substituted with Ci -6 alkyl, C 6 or Ci 0 aryl, C 7 _i 4 aralkyl, Het or (lower alkyl)-Het; amido optionally mono-substituted with Ci -6 alkyl, C 6 or Ci 0 aryl, C 7-14 aralkyl, Het or (lower alkyl)-Het; carboxyl; carboxy(lower alkyl); C 6 or C-io aryl, C 7 - 14 aralkyl or Het, said aryl, aralkyl or Het being optionally substituted with R 22 ; wherein R22 is Ci -6 alkyl; 0 3 .
- Ci -6 alkoxy amino optionally mono- or di-substituted with C 1-6 alkyl; sulfonyl; (lower alkyl)sulfonyl; NO 2 ; OH; SH; halo; haloalkyl; carboxyl; amide; (lower alkyl)amide; or Het optionally substituted with Ci -6 alkyl;
- R1 is H; C 1-6 alkyl, C 3-7 cycloalkyl, C 2-6 alkenyl, or C 2-6 alkynyl, all optionally substituted with halogen.
- the inhibitor is a compound of Formula XXII
- W is CH or N
- R 21 is H, halo, C 1-6 alkyl, C 3-6 cycloalkyl, Ci -6 haloalkyl, Ci -6 alkoxy, C 3-6 cycloalkoxy, hydroxy, or N(R 23 ) 2 , wherein each R 23 is independently H, Ci -6 alkyl or C 3-6 cycloalkyl;
- R 22 is H, halo, Ci -6 alkyl, C 3-6 cycloalkyl, C 1-6 haloalkyl, Ci -6 thioalkyl, C-i- 6 alkoxy, C 3-6 cycloalkoxy, C 2-7 alkoxyalkyl, C 3-6 cycloalkyl, C 6 or io aryl or Het, wherein Het is a five-, six-, or seven-membered saturated or unsaturated heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur; said cycloalkyl, aryl or Het being substituted with R 24 , wherein R 24 is H, halo, Ci -6 alkyl, C 3-6 cycloalkyl, C 1-6 alkoxy, C 3-6 cycloalkoxy, NO 2 , N(R 25 ) 2 , NH-C(O)-R 25 or NH-C(O)-NH-R 25 , wherein each R 25 is independently:
- D is a 5 to 10-atom saturated or unsaturated alkylene chain optionally containing one to three heteroatoms independently selected from: O, S, or N-R 41 , wherein R 41 is H, Ci -6 alkyl, C 3-6 cycloalkyl or -C(O)-R 42 , wherein R 42 is Ci -6 alkyl, C 3-6 cycloalkyl or C 6 or 1 0 aryl; R 4 is H or from one to three substituents at any carbon atom of said chain D, said substituent independently selected from the group consisting of: Ci -6 alkyl, Ci -6 haloalkyl, Ci -6 alkoxy, hydroxy, halo, amino, oxo, thio and C 1-6 thioalkyl, and A is an amide of formula -C(O)-NH-R 5 , wherein R 5 is selected from the group consisting of: Ci -8 alkyl, C 3-6 cycloalkyl, C 6 or io ary
- R 0 is a bond or difluoromethylene
- R 1 is hydrogen, optionally substituted aliphatic group, optionally substituted cyclic group or optionally substituted aromatic group;
- R 2 and R 9 are each independently optionally substituted aliphatic group, optionally substituted cyclic group or optionally substituted aromatic group;
- R3, R5 and R7 are each independently: optionally substituted (1 , 1- or 1 ,2-)cycloalkylene; or optionally substituted (1 ,1- or 1 ,2-) heterocyclylene; or methylene or ethylene), substituted with one substituent selected from the group consisting of an optionally substituted aliphatic group, an optionally substituted cyclic group or an optionally substituted aromatic group, and wherein the methylene or ethylene is further optionally substituted with an aliphatic group substituent; or;
- R4, R 6, R8 and R 10 are each independently hydrogen or optionally substituted aliphatic group; substituted monocyclic azaheterocyclyl or optionally substituted multicyclic azaheterocyclyl, or optionally substituted multicyclic azaheterocyclenyl wherein the unsaturatation is in the ring distal to the ring bearing the R 9 -L-(N(R 8 )-R 7 - C(O)-) n N(R 6 )-R 5 -C(O)-N moiety and to which the -C(O)-N (R 4 )-R 3 -C(O)C(O)N R 2 R 1 moiety is attached; L is -C(O)-, -OC(O)-, -NR 10 C(O)-, -S(O) 2 -, or - NR 10 S(O) 2 -; and n is O or 1 , provided
- R 9 is optionally substituted aliphatic; or at least one of R 3 , R 5 and R 7 is ethylene, substituted with one substituent selected from the group consisting of an optionally substituted aliphatic group, an optionally substituted cyclic group or an optionally substituted aromatic group and wherein the ethylene is further optionally substituted with an aliphatic group substituent; or R 4 is optionally substituted aliphatic.
- the inhibitor is a compound of Formula (XXIV)
- each R 1 is hydroxy, alkoxy, or aryloxy, or each R 1 is an oxygen atom and together with the boron, to which they are each bound, form a 5-7 membered ring, wherein the ring atoms are carbon, nitrogen, or oxygen;
- each R 2 is independently hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heteroaryl, or heteroaralkyl, or two R 2 groups, which are bound to the same nitrogen atom, form together with that nitrogen atom, a 5-7 membered monocyclic heterocyclic ring system; wherein any R 2 carbon atom is optionally substituted with J;
- J is alkyl, aryl, aralkyl, alkoxy, aryloxy, aralkoxy, cycloalkyl, cycloalkoxy, heterocyclyl, heterocyclyloxy, heterocyclylalkyl, keto, hydroxy, amino, alkylamino, alkanoylamino, aroylamino, aralkanoylamino, carboxy, carboxyalkyl, carboxamidoalkyl, halo, cyano, nitro, formyl, acyl, sulfonyl, or sulfonamido and is optionally substituted with 1-3 J 1 groups;
- J 1 is alkyl, aryl, aralkyl, alkoxy, aryloxy, heterocyclyl, heterocyclyloxy, keto, hydroxy, amino, alkanoylamino, aroylamino, carboxy, carboxyalkyl, carboxamidoaikyl, halo, cyano, nitro, formyl, sulfonyl, or sulfonamido;
- L is alkyl, alkenyl, or alkynyl, wherein any hydrogen is optionally substituted with halogen, and wherein any hydrogen or halogen atom bound to any terminal carbon atom is optionally substituted with sulfhydryl or hydroxy;
- a 1 is a bond
- R 4 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaralkyl, carboxyalkyl, or carboxamidoalkyl, and is optionally substituted with 1- 3 J groups;
- R 5 and R 6 are independently hydrogen, alkyl, alkenyl, aryl, aralkyl, aralkenyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroaralkyl, and is optionally substituted with 1-3 J groups;
- X is a bond, -C(H)(R7)-, -0-, - S-, or -N(R8)-;
- R 7 is hydrogen, alkyl, alkenyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroaralkyl, and is optionally substititued with 1-3 J groups;
- R 8 is hydrogen alkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaralkyl, aralkanoyl, heterocyclanoyl, heteroaralkanoyl, -C(O)R 14 , -SO2R 14 , or carboxamido, and is optionally substititued with 1-3 J groups; or R 8 and Z, together with the atoms to which they are bound, form a nitrogen containing mono- or bicyclic ring system optionally substituted with 1-3 J groups; R 14 is alkyl, aryl, aralkyl, heterocyclyl, heterocyclyalkyl, heteroaryl, or heteroaralkyl;
- Y is a bond, -CH 2 -, -C(O)-, -C(O)C(O)-, - S(O)-, -S(O) 2 -, or -S(O)(NR 7 )-, wherein R 7 is as defined above;
- Z is alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaralkyl, -OR 2 , or -N(R 2 ) 2 , wherein any carbon atom is optionally substituted with J, wherein R 2 is as defined above;
- a 2 is a bond
- R 9 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaralkyl, carboxyalkyl, or carboxamidoalkyl, and is optionally substituted with 1- 3 J groups;
- M is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, or heteroaralkyl, optionally substituted by 1-3 J groups, wherein any alkyl carbon atom may be replaced by a heteroatom;
- V is a bond, -CH 2 -, -C(H)(R 11 )-, -0-, -S-, or -N(R 11 )-;
- R 11 is hydrogen or Ci_ 3 alkyl;
- K is a bond, -0-, -S-, -C(O)-, -S(O)-, -S(O) 2 -, or -S(O)(NR 11 )-, wherein R 11 is as defined above;
- T is -R 12 , -alkyl-R 12 , -alkenyl-R 12 , - alkynyl-R 12 , -OR 12 , -N(R 12 )2, -C(O)R 12 , -
- R 12 is hydrogen, aryl, heteroaryl, cycloalkyl, heterocyclyl, cycloalkylidenyl, or heterocycloalkylidenyl, and is optionally substituted with 1-3 J groups, or a first R 12 and a second R 12 , together with the nitrogen to which they are bound, form a mono- or bicyclic ring system optionally substituted by 1-3 J groups;
- R 10 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaralkyl, carboxyalkyl, or carboxamidoalkyl, and is optionally substituted with 1- 3 hydrogens J groups;
- R 15 is alkyl, cycloalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaralkyl, carboxyalkyl, or carboxamidoalkyl, and is optionally substituted with 1- 3 J groups;
- R 16 is hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl.
- the inhibitor is a compound of Formula XXV
- E represents CHO or B(OH) 2 ;
- R 1 represents lower alkyl, halo-lower alkyl, cyano-lower alkyl, lower alkylthio- lower alkyl, aryl-Iower alkylthio-lower alkyl, aryl-lower alkyl, heteroaryllower alkyl, lower alkenyl or lower alkynyl;
- R 2 represents lower alkyl, hydroxy-lower alkyl, carboxylower alkyl, aryl- lower alkyl, aminocarbonyl-lower alkyl or lower cycloalkyl-lower alkyl;
- R 3 represents hydrogen or lower alkyl; or R 2 and R 3 together represent di- or trimethylene optionally substituted by hydroxy;
- R 4 represents lower alkyl, hydroxy-lower alkyl, lower cycloalkyl-lower alkyl, carboxy-lower alkyl, aryllower alkyl, lower alkylthio-lower alkyl, cyano-lower alkylthio- lower alkyl, aryl-lower alkylthio-lower alkyl, lower alkenyl, aryl or lower cycloalkyl;
- R 5 represents lower alkyl, hydroxy-lower alkyl, lower alkylthio-lower aikyl, aryl- lower alkyl, aryl-lower alkylthio-lower alkyl, cyano-lower alkylthio-lower alkyl or lower cycloalkyl;
- R 6 represents hydrogen or lower alkyl
- R 7 represent lower alkyl, hydroxydower alkyl, carboxylower alkyl, aryl-iower alkyl, lower cycloalkyl-lower alkyl or lower cycloalkyl;
- R 8 represents lower alkyl, hydroxy-lower alkyl, carboxylower alkyl or aryl-lower alkyl;
- R 9 represents lower alkylcarbonyl, carboxy-lower alkylcarbonyl, arylcarbonyl, lower alkylsulphonyl, arylsulphonyl, lower alkoxycarbonyl or aryl-lower alkoxycarbonyl.
- the inhibitor is a compound of Formula XXVI
- B is an acyl derivative of formula Rn-C(O)- wherein Rn is CI-10 alkyl optionally substituted with carboxyl; or R 11 is C 6 or Cio aryl or C 7-I6 aralkyl optionally substituted with a Ci- 6 alkyl; a is 0 or 1 ;
- R 6 when present, is carboxy(lower)alkyl; b is O or i ;
- R 2 is C 1 - 10 alkyl or C 3-7 cycloalkyl optionally substituted with carboxyl; C 6 or C 10 aryl; or C 7-16 aralkyl; or W is a group of formula:
- X is CH or N
- FV is C 3-4 alkylene that joins X to form a 5- or 6-membered ring, said ring optionally substituted with OH; SH; NH2; carboxyl; R 12 ; ORi 2 , SR 12 , NHR t2 or NR12R12' wherein R 12 and R 12 ' are independently: cyclic C 3-16 alkyl or acyclic C 1-16 alkyl or cyclic C 3 .
- alkenyl or acyclic C 2-16 alkenyl said alkyl or alkenyl optionally substituted with NH 2 , OH, SH, halo, or carboxyl; said alkyl or alkenyl optionally containing at least one heteroatom selected independently from the group consisting of: 0, S, and N; or
- R12 and R 12 ' are independently C 6 or C 10 aryl or C7- 1 6 aralkyl optionally substituted with C 1-6 alkyl, NH 2 , OH, SH, halo, carboxyl or carboxy(lower)alkyl; said aryl or aralkyl optionally containing at least one heteroatom selected independently from the group consisting of: 0, S, and N; said cyclic alkyl, cyclic alkenyl, aryl or aralkyl being optionally fused with a second 5-, 6-, or 7-membered ring to form a cyclic system or heterocycle, said second ring being optionally substituted with NH 2 .
- Q is a group of the formula:
- Z is CH or N; X is 0 or S; Ri is H, C- I-6 alkyl or Ci -6 alkenyl both optionally substituted with thio or halo; and when Z is CH, then R 13 is H; CF 3 ; CF 2 CF 3 ; CH 2 -R 14 ; CH(F)-R 14 ; CF 2 -R 14 ; NR 14 R 14 '; S-R 14 ; or CO-NH-R 14 wherein R 14 and R 14 ' are independently hydrogen, cyclic C 3- io alkyl or acyclic C1.10 alkyl or cyclic C3-10 alkenyl or acyclic C2-10 alkenyl, said alkyl or alkenyl optionally substituted with NH 2 , OH, SH, halo or carboxyl; said alkyl or alkenyl optionally containing at least one heteroatom selected independently from the group consisting of: 0, S, and N; or Ri 4 and R 14 ' are independently
- aralkyl optionally substituted with C- ⁇ - 6 alkyl, NH 2 , OH, SH, halo, carboxyl or carboxy(lower)alkyl or substituted with a further C 3-7 cycloalkyl, C 6 or Ci 0 aryl, or heterocycle; said aryl or aralkyl optionally containing at least one heteroatom selected independently from the group consisting of: 0, S, and N; said cyclic alkyl, cyclic alkenyl, aryl or aralkyl being optionally fused with a second 5-, 6-, or 7-membered ring to form a cyclic system or heterocycle, said second ring being optionally substituted with NH 2 , OH, SH, halo, carboxyl or carboxy(lower)alkyl or substituted with a further C 3-7 cycloalkyl, C 6 or C 10 aryl, or heterocycle; said second ring optionally containing at least one heteroatom selected independently from the group
- Q is a phosphonate group of the formula:
- Ri 5 and Ri 6 are independently C 6-20 aryloxy; and Ri is as defined above.
- the compound is selected from the group consisting of:
- Methods of treating, preventing and/or ameliorating disorders associated with HCV in a subject comprising administering to a subject in need of such treatment an effective amount of at least one of the "inventive compounds" are also provided.
- Methods of treating and/or reducing the signs and/or symptoms associated with HCV in a subject comprising administering to a subject in need of such treatment an effective amount of at least one of the inventive compounds are also provided.
- Methods of treating a wide variety of diseases/disorders associated with cathepsin activity and/or for inhibiting cathepsin activity in a subject comprising administering to a subject in need of such treatment an effective amount of at least one of the inventive compounds also are provided.
- proliferative diseases such as cancer, autoimmune diseases, viral diseases, fungal diseases, neurological/neurodegenerative disorders, arthritis, inflammation, anti-proliferative (e.g., ocular retinopathy), neuronal, alopecia and cardiovascular disease.
- proliferative diseases such as cancer, autoimmune diseases, viral diseases, fungal diseases, neurological/neurodegenerative disorders, arthritis, inflammation, anti-proliferative (e.g., ocular retinopathy), neuronal, alopecia and cardiovascular disease.
- ocular retinopathy e.g., ocular retinopathy
- neuronal e.g., alopecia and cardiovascular disease.
- alopecia alopecia and cardiovascular disease.
- Another example of a disease that can be treated by the present compounds is an inflammatory disease, such as organ transplant rejection, graft v.
- Another example of a disease that can be treated by the present compounds is a cardiovascular disease.
- a disease that can be treated by the present compounds is a central nervous system disease, such as depression, cognitive function disease, neurodegenerative disease such as Parkinson's disease, senile dementia such as Alzheimer's disease, and psychosis of organic origin.
- a central nervous system disease such as depression, cognitive function disease, neurodegenerative disease such as Parkinson's disease, senile dementia such as Alzheimer's disease, and psychosis of organic origin.
- diseases characterized by bone loss such as osteoporosis
- gingival diseases such as gingivitis and periodontitis
- diseases characterized by excessive cartilage or matrix degradation such as osteoarthritis and rheumatoid arthritis.
- Fig. 1 is a graph of mean viral load measured over time with administration of various doses and regimens of a compound of Formula Ia;
- Fig. 2 is a box plot showing serum levels of a compound of Formula Ia measured on day 14 at various times when a compound of Formula Ia is administered twice per day (bid, left box) and when a compound of Formula Ia is administered three times per day (tid, right box).
- the present invention is directed to controlled-release dosage formulations and methods of treatment using the same.
- the formulations comprise at least one (one or more) compounds of Formulae I to XXVI as discussed above and a controlled-release carrier.
- Suitable compounds of formula I are disclosed in PCT International publication WO03/062265 published July 31 , 2003.
- Non-limiting examples of certain compounds disclosed in this publication include:
- the HCV protease inhibitor is selected from the group consisting of
- the HCV protease inhibitor is selected from the group consisting of the compound of Formula Ic and pharmaceutically acceptable salts or solvates thereof as a potent inhibitor of HCV NS3 serine protease.
- the chemical name of the compound of Formula Ic is (1 R,2S,5S)-N-[(1S)-3-amino-1- (cyclobutylmethyl)-2,3-dioxopropyl]-3-[(2S)-2-[[[(1 ,1- dimethylethyOaminoJcarbonyljaminol-S.S-dimethyl-i-oxobutyO-e. ⁇ -dimethyl-S- azabicyclo[3.1.0]hexane-2-carboxamide.
- Non-limiting examples of suitable compounds of formula Il and methods of making the same are disclosed in WO02/08256 and in U.S. Patent No. 6,800,434, at col. 5 through col. 247, incorporated herein by reference.
- Non-limiting examples of suitable compounds of formula III and methods of making the same are disclosed in International Patent Publication WO02/08187 and in U.S. Patent Publication 2002/0160962 at page 3, paragraph 22 through page 132, incorporated herein by reference.
- Non-limiting examples of suitable compounds of formula IV and methods of making the same are disclosed in International Patent Publication WO03/062228 and in U.S. Patent Publication 2003/0207861 at page 3, paragraph 25 through page 26, incorporated herein by reference.
- Non-limiting examples of certain compounds of formula VII disclosed in U.S. Patent Application Ser. No. 10/993,394 are:
- Nonlimiting examples of certain compounds of formula VIII disclosed in U.S. Patent Application Ser. No. 10/993,394 are:
- Nonlimiting examples of certain compounds of formula IX disclosed in U.S. Patent Application Ser. No. 10/993,394 are: -148-
- Non-limiting examples of certain compounds disclosed in U.S. Patent Application Ser. No. 11/065,572 filed February 24, 2005 are:
- Non-limiting examples of certain compounds disclosed in U.S. Application Ser. No. 11/065,509 are:
- Non-limiting examples of certain compounds disclosed in U.S. Patent Application Ser. No. 11/065,647 are:
- Non-limiting examples of certain compounds disclosed in U.S. Patent Application Ser. No. 11/064,673 are:
- Non-limiting examples of certain compounds disclosed in U.S. Patent Application Ser. No. 11/007,910 are:
- Non-limiting examples of certain compounds disclosed in U.S. Patent Application Ser. No. 11/064,757 are:
- Non-limiting examples of certain compounds disclosed in U.S. Provisional Patent Application Ser. No. 60/605,234 are:
- Non-limiting examples of certain compounds disclosed in U.S. Provisional Patent Application Ser. No. 60/573,191 are:
- Isomers of the various compounds of the present invention are also contemplated as being part of this invention.
- the invention includes d and I isomers in both pure form and in admixture, including racemic mixtures.
- Isomers can be prepared using conventional techniques, either by reacting optically pure or optically enriched starting materials or by separating isomers of a compound of the present invention.
- Isomers may also include geometric isomers, e.g., when a double bond is present.
- the (+) isomers of the present compounds are preferred compounds of the present invention.
- structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms.
- compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are also within the scope of this invention.
- certain compounds of this invention may exist in alternative tautomeric forms. All such tautomeric forms of the present compounds are within the scope of the invention.
- the representation of either tautomer is meant to include the other. For example, both isomers (1 ) and (2) are contemplated:
- prodrugs and solvates of the compounds of the invention are also contemplated herein.
- a discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press.
- prodrug means a compound (e.g, a drug precursor) that is transformed in vivo to yield a compound of Formula (I) or a pharmaceutically acceptable salt, hydrate or solvate of the compound.
- the transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood.
- mechanisms e.g., by metabolic or chemical processes
- prodrugs are provided by T. Higuchi and W. Stella, "Prodrugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
- a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (Ci-C 8 )alkyl, (C- 2 -
- Ci 2 alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1- methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1- (alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1- (alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N- (alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N- (alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthaIidyl, 4- crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-(Ci-C2)alkylamino(C 2 -C 3 )alkyl (such
- a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as, for example, (Ci-C- 6 )alkanoyloxymethyl, 1-((Ci- C 6 )alkanoyloxy)ethyl, 1 -methyl-1 -((CrC 6 )alkanoyloxy)ethyl, (C 1 - C 6 )alkoxycarbonyloxymethyl, N-(Ci-C 6 )alkoxycarbonylaminomethyl, succinoyl, (C 1 - C ⁇ jalkanoyl, ⁇ -amino(Ci-C 4 )alkanyl, arylacyl and ⁇ -aminoacyl, or ⁇ -aminoacyl- ⁇ - aminoacyl, where each ⁇ -aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH) 2
- a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl, RO-carbonyl, NRR'-carbonyl where R and R' are each independently (Ci-C-io)alkyl, (C 3 -C 7 ) cycloalkyl, benzyl, or R- carbonyl is a natural ⁇ -aminoacyl or natural ⁇ -aminoacyl, — C(OH)C(O)OY 1 wherein Y 1 is H, (d-C ⁇ )alkyl or benzyl, — C(OY 2 )Y 3 wherein Y 2 is (C 1 -C 4 ) alkyl and Y 3 is (C 1 - C 6 )alkyl, carboxy (Ci-C 6 )alkyl, amino(C 1 -C 4 )alkyl or mono-N —
- R-carbonyl RO-carbonyl
- Solvate means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. "Hydrate” is a solvate wherein the solvent molecule is H 2 O. One or more compounds of the invention may also exist as, or optionally converted to, a solvate. Preparation of solvates is generally known.
- a typical, non-limiting, process involves dissolving a compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods.
- Analytical techniques such as, for example I. R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
- Effective amount or “therapeutically effective amount” is meant to describe an amount of a compound or a composition of the present invention effective in inhibiting HCV protease and/or cathepsins, and thus producing the desired therapeutic, ameliorative, inhibitory or preventative effect in a suitable subject.
- the compounds of the present invention can form salts that are also within the scope of this invention.
- Reference to a compound of the present invention herein is understood to include reference to salts, esters and solvates thereof, unless otherwise indicated.
- the term "salt(s)", as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases.
- zwitterions inner salts
- Salts of the compounds of the various formulae of the present invention may be formed, for example, by reacting a compound of the present invention with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
- Acids (and bases) which are generally considered suitable for the formation of pharmaceutically useful salts from basic (or acidic) pharmaceutical compounds are discussed, for example, by S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1 ) 1-19; P. Gould, International J.
- Exemplary acid addition salts include acetates, adipates, alginates, ascorbates, aspartates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, cyclopentanepropionates, digluconates, dodecylsulfates, ethanesulfonates, fumarates, glucoheptanoates, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrochlorides, hydrobromides, hydroiodides, 2-hydroxyethanesulfonates, lactates, maleates, methanesulfonates, methyl sulfates, 2-naphthalenesulfonates, nicotinates, nitrates, oxalates, pamoates, pectinates, persulfates, 3-
- Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, aluminum salts, zinc salts, salts with organic bases (for example, organic amines) such as benzathines, diethylamine, dicyclohexylamines, hydrabamines (formed with N.N-bis(dehydroabietyl) ethylenediamine), N-methyl-D- glucamines, N-methyl-D-glucamides, t-butyl amines, piperazine, phenylcyclohexylamine, choline, tromethamine, and salts with amino acids such as arginine, lysine and the like.
- organic bases for example, organic amines
- organic bases for example, organic amines
- benzathines diethylamine, dicyclohexylamines, hydrabamines (formed with N.N
- Basic nitrogen-containing groups may be quartemized with agents such as lower alkyl halides (e.g. methyl, ethyl, propyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, dibutyl, and diamyl sulfates), long chain halides (e.g. decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others. All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention. All acid and base salts, as well as esters and solvates, are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.
- lower alkyl halides e.g. methyl, ethyl, propyl
- esters of the present compounds include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n ⁇ propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted with, for example, halogen, Ci -4 alkyl, or C 1-4 alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); (4) phosphoric acid
- any alkyl moiety present in such esters preferably contains from 1 to 18 carbon atoms, particularly from 1 to 6 carbon atoms, more particularly from 1 to 4 carbon atoms.
- Any cycloalkyl moiety present in such esters preferably contains from 3 to 6 carbon atoms.
- Any aryl moiety present in such esters preferably comprises a phenyl group.
- the present invention provides controlled-release pharmaceutical formulations comprising the inventive peptides as an active ingredient and a controlled-release carrier. Because of their HCV inhibitory activity, such pharmaceutical compositions possess utility in treating hepatitis C and related disorders.
- Another embodiment of the invention discloses the use of the pharmaceutical formulations disclosed above for treatment of diseases such as, for example, hepatitis C and the like.
- the method comprises administering a therapeutically effective amount of the inventive pharmaceutical formulation to a patient having such a disease or diseases and in need of such a treatment.
- the pharmaceutical formulations of the present invention are suited for treatment of infection by any of the genotypes of HCV.
- HCV types and subtypes may differ in their antigenicity, level of viremia, severity of disease produced, and response to interferon therapy.
- Holland, J. et al. "Hepatitis C genotyping by direct sequencing of the product from the Roche Amplicor Test: methodology and application to a South Australian population," Pathology, 30:192-195, 1998).
- Simmonds, P. et al. Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region
- Virol., 74:2391-9, 1993 is widely used and classifies isolates into six major genotypes, 1 through 6, with two or more related subtypes, e.g., 1a, 1b. Additional genotypes 7-10 and 11 have been proposed, however the phylogenetic basis on which this classification is based has been questioned, and thus types 7, 8, 9 and 11 isolates have been reassigned as type 6, and type 10 isolates as type 3. (Lamballerie, X. et al., "Classification of hepatitis C variants in six major types based on analysis of the envelope 1 and nonstructural 5B genome regions and complete polyprotein sequences," J. Gen. Virol., 78:45-51 , 1997).
- the major genotypes have been defined as having sequence similarities of between 55 and 72% (mean 64.5%), and subtypes within types as having 75%-86% similarity (mean 80%) when sequenced in the NS-5 region. (Simmonds, P. et al., "Identification of genotypes of hepatitis C by sequence comparisons in the core, E1 and NS-5 regions," J. Gen. Virol., 75:1053-61 , 1994).
- the controlled-release formulations of the present invention can be useful for inhibiting cathepsin activity, for example for treating cancer and other cathepsin-associated disorders as discussed below.
- the compounds of the invention may be used for the treatment of HCV in humans in monotherapy mode or in a combination therapy (e.g., dual combination, triple combination etc.) mode such as, for example, in combination with antiviral and/or immunomodulatory agents.
- a combination therapy e.g., dual combination, triple combination etc.
- antiviral and/or immunomodulatory agents examples include Ribavirin (from Schering-Plough Corporation, Madison, New Jersey) and LevovirinTM (from ICN Pharmaceuticals, Costa Mesa, California), VP 50406TM (from Viropharma, Incorporated, Exton, Pennsylvania), ISIS 14803TM (from ISIS Pharmaceuticals, Carlsbad, California), HeptazymeTM (from Ribozyme Pharmaceuticals, Boulder, Colorado), VX 497TM (from Vertex Pharmaceuticals, Cambridge, Massachusetts), ThymosinTM (from SciClone Pharmaceuticals, San Mateo, California), MaxamineTM (Maxim Pharmaceuticals, San Diego, California), mycophenolate mofetil (from Hoffman-LaRoche, Nutley, New Jersey), interferon (such as, for example, interferon-alpha, PEG-interferon alpha conjugates) and the like.
- Ribavirin from Schering-Plough Corporation, Madison, New Jersey
- LevovirinTM from ICN Pharmaceuticals, Costa Mesa, California
- PEG-interferon alpha conjugates are interferon alpha molecules covalently attached to a PEG molecule.
- Illustrative PEG-interferon alpha conjugates include interferon alpha-2a (RoferonTM, from Hoffman La-Roche, Nutley, New Jersey) in the form of pegylated interferon alpha-2a (e.g., as sold under the trade name PegasysTM), interferon alpha-2b (IntronTM, from Schering-Plough Corporation) in the form of pegylated interferon alpha-2b (e.g., as sold under the trade name PEG-lntronTM), interferon alpha-2c (Berofor AlphaTM, from Boehringer Ingelheim, Ingelheim, Germany) or consensus interferon as defined by determination of a consensus sequence of naturally occurring interferon alphas (InfergenTM, from Amgen, Thousand Oaks, California).
- the HCV protease inhibitor can be administered in combination with interferon alpha, PEG-interferon alpha conjugates or consensus interferon concurrently or consecutively at recommended dosages for the duration of HCV treatment in accordance with the methods of the present invention.
- the commercially available forms of interferon alpha include interferon alpha 2a and interferon alpha 2b and also pegylated forms of both aforementioned interferon alphas.
- the recommended dosage of INTRON-A interferon alpha 2b (commercially available from Schering-Plough Corp.) as administered by subcutaneous injection at 3MIU(12 mcg)/0.5mL/TIW is for 24 weeks or 48 weeks for first time treatment.
- the recommended dosage of PEG-INTRON interferon alpha 2b pegylated (commercially available from Schering-Plough Corp.) as administered by subcutaneous injection at 1.5 mcg/kg/week, within a range of 40 to 150 meg/week, is for at least 24 weeks.
- the recommended dosage of ROFERON A inteferon alpha 2a (commercially available from Hoffmann-La Roche) as administered by subcutaneous or intramuscular injection at 3MIU(11.1 mcg/mL)A " IW is for at least 48 to 52 weeks, or alternatively 6MIU/TIW for 12 weeks followed by 3MIU/TIW for 36 weeks.
- the recommended dosage of PEGASUS interferon alpha 2a pegylated (commercially available from Hoffmann-La Roche) as administered by subcutaneous injection at 180mcg/1 ml_ or 180mcg/0.5mL is once a week for at least 24 weeks.
- the recommended dosage of INFERGEN interferon alphacon-1 (commercially available from Amgen) as administered by subcutaneous injection at 9mcg/TIW is for 24 weeks for first time treatment and up to 15 mcg/TIW for 24 weeks for non-responsive or relapse treatment.
- Ribavirin a synthetic nucleoside analogue with activity against a broad spectrum of viruses including HCV, can be included in combination with the interferon and the HCV protease inhibitor.
- the recommended dosage of ribavirin is in a range from 600 to 1400 mg per day for at least 24 weeks (commercially available as REBETOL ribavirin from Schering-Plough or COPEGUS ribavirin from Hoffmann-La Roche).
- the compounds of the invention can be used to treat cellular proliferation diseases.
- Such cellular proliferation disease states which can be treated by the compounds, compositions and methods provided herein include, but are not limited to, cancer (further discussed below), hyperplasia, cardiac hypertrophy, autoimmune diseases, fungal disorders, arthritis, graft rejection, inflammatory bowel disease, immune disorders, inflammation, cellular proliferation induced after medical procedures, including, but not limited to, surgery, angioplasty, and the like. Treatment includes inhibiting cellular proliferation.
- the cells may not be in a hyper- or hypoproliferation state (abnormal state) and still require treatment.
- the cells may be proliferating "normally", but proliferation enhancement may be desired.
- the invention herein includes application to cells or subjects afflicted or subject to impending affliction with any one of these disorders or states.
- cancers that may be treated by the compounds, compositions and methods of the invention include, but are not limited to: Cardiac: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma;
- Lung bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar) carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hamartoma, mesothelioma;
- Gastrointestinal esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (ductal adenocarcinoma, insulinoma, glucagonoma, gastrinoma, carcinoid tumors, vipoma), small bowel (adenocarcinoma, lymphoma, carcinoid tumors, Karposi's sarcoma, leiomyoma, hemangioma, lipoma, neurofibroma, fibroma), large bowel (adenocarcinoma, tubular adenoma, villous adenoma, hamartoma, leiomyoma);
- Genitourinary tract kidney (adenocarcinoma, Wilm's tumor (nephroblastoma), lymphoma, leukemia), bladder and urethra (squamous cell carcinoma, transitional cell carcinoma, adenocarcinoma), prostate (adenocarcinoma, sarcoma), testis (seminoma, teratoma, embryonal carcinoma, teratocarcinoma, choriocarcinoma, sarcoma, interstitial cell carcinoma, fibroma, fibroadenoma, adenomatoid tumors, lipoma); Liver: hepatoma (hepatocellular carcinoma), cholangiocarcinoma, hepatoblastoma, angiosarcoma, hepatocellular adenoma, hemangioma;
- Bone osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulum cell sarcoma), multiple myeloma, malignant giant cell tumor chordoma, osteochronfroma (osteocartilaginous exostoses), benign chondroma, chondroblastoma, chondromyxofibroma, osteoid osteoma and giant cell tumors;
- Nervous system skull (osteoma, hemangioma, granuloma, xanthoma, osteitis deformans), meninges (meningioma, meningiosarcoma, gliomatosis), brain
- astrocytoma medulloblastoma, glioma, ependymoma, germinoma (pinealoma), glioblastoma multiform, oligodendroglioma, schwannoma, retinoblastoma, congenital tumors), spinal cord neurofibroma, meningioma, glioma, sarcoma); Gvnecoloqical: uterus (endometrial carcinoma), cervix (cervical carcinoma, pre-tumor cervical dysplasia), ovaries (ovarian carcinoma (serous cystadenocarcinoma, mucinous cystadenocarcinoma, unclassified carcinoma), granulosa-thecal cell tumors, Sertoli-Leydig cell tumors, dysgerminoma, malignant teratoma), vulva (squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibro
- Hematologic blood (myeloid leukemia (acute and chronic), acute lymphoblastic leukemia, acute and chronic lymphocytic leukemia, myeloproliferative diseases, multiple myeloma, myelodysplastic syndrome), Hodgkin's disease, non-
- Hodgkin's lymphoma malignant lymphoma
- B-cell lymphoma T-cell lymphoma
- hairy cell lymphoma Burkett's lymphoma, promyelocytic leukemia
- Skin malignant melanoma, basal cell carcinoma, squamous cell carcinoma, Karposi's sarcoma, moles dysplastic nevi, lipoma, angioma, dermatofibroma, keloids, psoriasis;
- Adrenal glands neuroblastoma
- treatment of cancer includes treatment of cancerous cells, including cells afflicted by any one of the above-identified conditions.
- the compounds of the present invention may also be useful in the chemoprevention of cancer.
- Chemoprevention is defined as inhibiting the development of invasive cancer by either blocking the initiating mutagenic event or by blocking the progression of pre-malignant cells that have already suffered an insult or inhibiting tumor relapse.
- the compounds of the present invention may also be useful in inhibiting tumor angiogenesis and metastasis.
- the compounds of the present invention may also be useful as antifungal agents, by modulating the activity of the fungal members of the bimC kinesin subgroup, as is described in U.S. Patent 6,284,480.
- Th ⁇ present compounds are also useful in combination with one or more other known therapeutic agents and anti-cancer agents. Combinations of the present compounds with other anti-cancer or chemotherapeutic agents are within the scope of the invention. Examples of such agents can be found in Cancer Principles and Practice of Oncology by V.T. Devita and S. Hellman (editors), 6 th edition (February 15, 2001 ), Lippincott Williams & Wilkins Publishers.
- anti-cancer agents include, but are not limited to, the following: estrogen receptor modulators, androgen receptor modulators, retinoid receptor modulators, cytotoxic/cytostatic agents, antiproliferative agents, prenyl-protein transferase inhibitors, HMG-CoA reductase inhibitors and other angiogenesis inhibitors, inhibitors of cell proliferation and survival signaling, apoptosis inducing agents and agents that interfere with cell cycle checkpoints.
- the present compounds are also useful when co-administered with radiation therapy.
- estrogen receptor modulators refers to compounds that interfere with or inhibit the binding of estrogen to the receptor, regardless of mechanism.
- examples of estrogen receptor modulators include, but are not limited to, tamoxifen, raloxifene, idoxifene, LY353381 , LY117081 , toremifene, fulvestrant, 4-[7-(2,2- dimethyl-l-oxopropoxy-4-methyl-2-[4-[2-(1 -piperidinyl)ethoxy]phenyl]-2H-1 - benzopyran-3-yl]-phenyl-2,2-dimethylpropanoate, 4,4'-dihydroxybenzophenone-2,4- dinitrophenyl-ydrazone, aid SH646.
- androgen receptor modulators refers to compounds which interfere or inhibit the binding of androgens to the receptor, regardless of mechanism.
- examples of androgen receptor modulators include finasteride and other 5 ⁇ -reductase inhibitors, nilutamide, flutamide, bicalutamide, liarozole, and abiraterone acetate.
- retinoid receptor modulators refers to compounds which interfere or inhibit the binding of retinoids to the receptor, regardless of mechanism.
- retinoid receptor modulators include bexarotene, tretinoin, 13-cis- retinoic acid, 9-cis-retinoic acid, a difluoromethylomithine, ILX23-7553, trans-N-(4'- hydroxyphenyl) retinamide, and N-4-carboxyphenyl retinamide.
- cytotoxic/cytostatic agents refer to compounds which cause cell death or inhibit cell proliferation primarily by interfering directly with the cell's functioning or inhibit or interfere with cell mycosis, including alkylating agents, tumor necrosis factors, intercalators, hypoxia activatable compounds, microtubule inhibitors/microtubule-stabilizing agents, inhibitors of mitotic kinesins, inhibitors of kinases involved in mitotic progression, antimetabolites; biological response modifiers; hormonal/anti-hormonal therapeutic agents, haematopoietic growth factors, monoclonal antibody targeted therapeutic agents, monoclonal antibody therapeutics, topoisomerase inhibitors, proteasome inhibitors and ubiquitin ligase inhibitors.
- cytotoxic agents include, but are not limited to, sertenef, cachectin, ifosfamide, tasonermin, lonidamine, carboplatin, altretamine, prednimustine, dibromodulcitol, ranimustine, fotemustine, nedaplatin, oxaliplatin, temozolomide (TEMODARTM from Schering-Plough Corporation, Kenilworth, New Jersey), cyclophosphamide, heptaplatin, estramustine, improsulfan tosilate, trofosfamide, nimustine, dibrospidium chloride, pumitepa, lobaplatin, satraplatin, profiromycin, cisplatin, doxorubicin, irofulven, dexifosfamide, cis-aminedichloro(2- methyl-pyridine)platinum, benzylguanine, glufo
- hypoxia activatable compound is tirapazamine.
- proteasome inhibitors include, but are not limited to, lactacystin and bortezomib.
- microtubule inhibitors/microtubule-stabilising agents include paclitaxel, vindesine sulfate, 3',4'-didehydro-4'-deoxy-8'-norvincaleukoblastine, docetaxel, rhizoxin, dolastatin, mivobulin isethionate, auristatin, cemadotin, RPR109881 , BMS184476, vinflunine, cryptophycin, 2,3,4,5,6 ⁇ pentafluoro-N-(3- fluoro-4-methoxyphenyl) benzene sulfonamide, anhydrovinblastine, N,N-dimethyl-L- valyl-L-valyl-N-methyl-L-valyl-L-prolyl-
- topoisomerase inhibitors are topotecan, hycaptamine, irinotecan, rubitecan, 6-ethoxypropionyl-3',4'-O-exo-benzylidene-chartreusin, 9- methoxy-N,N-dimethyl-5-nitropyrazolo[3,4,5-kl]acridine-2-(6H) propanamine, 1 - amino-9-ethyl-5-fluoro-2,3-dihydro-9-hydroxy-4-methyl-1 H,12H- benzo[de]pyrano[3',4':b,7]-indolizino[1 ,2b]quinoline-10,13(9H,15H)dione, lurtotecan, 7-[2-(N-isopropylamino) ethyl]-(20S)camptothecin, BNP1350, BNPH 100, BN80915, BN80942, etoposide phosphat
- thymidilate synthase inhibitors such as 5-fluorouracil.
- inhibitors of mitotic kinesins include, but are not limited to, inhibitors of KSP, inhibitors of MKLP1 , inhibitors of CENP-E, inhibitors of MCAK, inhibitors of Kif14, inhibitors of MphospM and inhibitors of Rab6-KIFL
- inhibitors of kinases involved in mitotic progression include, but are not limited to, inhibitors of aurora kinase, inhibitors of Polo-like kinases (PLK) (in particular inhibitors of PLK-1), inhibitors of bub-1 and inhibitors of bub-R1.
- PLK Polo-like kinases
- antiproliferative agents includes antisense RNA and DNA oligonucleotides such as G3139, ODN698, RVASKRAS, GEM231 , and INX3001 , and antimetabolites such as enocitabine, carmofur, tegafur, pentostatin, doxifluridine, trimetrexate, fludarabine, capecitabine, galocitabine, cytarabine ocfosfate, fosteabine sodium hydrate, raltitrexed, paltitrexid, emitefur, tiazofurin, decitabine, nolatrexed, pemetrexed, nelzarabine, 2'-deoxy-2'-methylidenecytidine, 2'-fluoromethylene-2'- deoxycytidine, N-[5-(2,3-dihydro-benzofuryl)sulfonyl]-N'-(3,4-dichlor
- monoclonal antibody targeted therapeutic agents include those therapeutic agents which have cytotoxic agents or radioisotopes attached to a cancer cell specific or target cell specific monoclonal antibody. Examples include Bexxar. Examples of monoclonal antibody therapeutics useful for treating cancer include Erbitux (Cetuximab).
- HMG-CoA reductase inhibitors refers to inhibitors of 3-hydroxy- 3-methylglutaryl-CoA reductase.
- HMG-CoA reductase inhibitors include but are not limited to lovastatin, simvastatin (ZOCOR ® ), pravastatin (PRAVACHOL ® ), fluvastatin and atorvastatin (LIPITOR ® ; see U.S. Patents 5,273,995, 4,681 ,893, 5,489,691 and 5,342,952).
- lovastatin simvastatin
- ZOCOR ® pravastatin
- PRAVACHOL ® pravastatin
- fluvastatin and atorvastatin LIPITOR ® ; see U.S. Patents 5,273,995, 4,681 ,893, 5,489,691 and 5,342,952).
- the structural formulas of these and additional HMG-CoA reductase inhibitors that may be used in the instant methods
- HMG-CoA reductase inhibitor as used herein includes all pharmaceutically acceptable lactone and open-acid forms (i.e., where the lactone ring is opened to form the free acid) as well as salt and ester forms of compounds which have HMG-CoA reductase inhibitory activity, and therefore the use of such salts, esters, open acid and lactone forms is included in the scope of this invention.
- prenyl-protein transferase inhibitor refers to a compound which inhibits any one or any combination of the prenyl-protein transferase enzymes, including famesyl-protein transferase (FPTase), geranylgeranyl-protein transferase type I (GGPTase-l), and geranylgeranyl-protein transferase type-ll (GGPTase-ll, also called Rab GGPTase).
- FPTase famesyl-protein transferase
- GGPTase-l geranylgeranyl-protein transferase type I
- GGPTase-ll also called Rab GGPTase
- prenyl-protein transferase inhibitors can be found in the following publications and patents: WO 96/30343, WO 97/18813, WO 97/21701 , WO 97/23478, WO 97/38665, WO 98/28980, WO 98/29119, WO 95/32987, U.S. Patents 5,420,245, 5,523,430, 5,532,359, 5,510,510, 5,589,485, 5,602,098, European Patent Publ. 0 618 221 , European Patent Publ. 0 675 112, European Patent Publ. 0 604181 , European Patent Publ.
- farnesyl protein transferase inhibitors examples include SARASARTM(4-[2- [4-[(11 R)-3,10-dibromo-8-ch!oro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1 ,2-b]pyridin- 11-yl-]-1-piperidinyl]-2-oxoehtyl]-1-piperidinecarboxamide from Schering-Plough Corporation, Kenilworth, New Jersey), tipifamib (Zamestra ® or R115777 from Janssen Pharmaceuticals), L778.123 (a farnesyl protein transferase inhibitor from Merck & Company, Whitehouse Station, New Jersey), BMS 214662 (a farnesyl protein transferase inhibitor from Bristol-Myers Squibb Pharmaceuticals, Princeton, New Jersey).
- angiogenesis inhibitors refers to compounds that inhibit the formation of new blood vessels, regardless of mechanism.
- angiogenesis inhibitors include, but are not limited to, tyrosine kinase inhibitors, such as inhibitors of the tyrosine kinase receptors Flt-1 (VEGFR1) and Flk-1/KDR (VEGFR2), inhibitors of epidermal-derived, fibroblast-derived, or platelet derived growth factors, MMP (matrix metalloprotease) inhibitors, integrin blockers, interferon- a (for example lntron and Peg-lntron), interleukin-12, pentosan polysulfate, cyclooxygenase inhibitors, including nonsteroidal anti-inflammatories (NSAIDs) like aspirin and ibuprofen as well as selective cyclooxygenase-2 inhibitors like celecoxib and rofecoxib (PNAS, Vol.
- NSAIDs nonsteroidal anti-inflammator
- steroidal anti-inflammatories such as corticosteroids, mineralocorticoids, dexamethasone, prednisone, prednisolone, methylpred, betamethasone), carboxyamidotriazole, combretastatin A-4, squalamine, 6-O-chloroacetyl-carbonyl)-fumagillol, thalidomide, angiostatin, troponin- 1 , angiotensin Il antagonists (see Fernandez et al., J. Lab. Clin. Med.
- VEGF vascular endothelial growth factor
- Other therapeutic agents that modulate or inhibit angiogenesis and may also be used in combination with the compounds of the instant invention include agents that modulate or inhibit the coagulation and fibrinolysis systems (see review in CHn. Chem. La. Med. 38:679-692 (2000)). Examples of such agents that modulate or inhibit the coagulation and fibrinolysis pathways include, but are not limited to, heparin (see Thromb. Haemost.
- TAFIa active thrombin activatable fibrinolysis inhibitor
- agents that interfere with cell cycle checkpoints refers to compounds that inhibit protein kinases that transduce cell cycle checkpoint signals, thereby sensitizing the cancer cell to DNA damaging agents.
- agents include inhibitors of ATR, ATM, the Chk1 and Chk2 kinases and cdk and cdc kinase inhibitors and are specifically exemplified by 7-hydroxystaurosporin, flavopiridol, CYC202 (Cyclacel) and BMS-387032.
- inhibitors of cell proliferation and survival signaling pathway refers to agents that inhibit cell surface receptors and signal transduction cascades downstream of those surface receptors.
- agents include inhibitors of EGFR (for example gefitinib and erlotinib), antibodies to EGFR (for example C225), inhibitors of
- ERB-2 for example trastuzumab
- inhibitors of IGFR for example trastuzumab
- inhibitors of cytokine receptors for example MET
- inhibitors of PI3K for example LY294002
- serine/threonine kinases including but not limited to inhibitors of Akt such as described in WO
- inhibitors of mTOR for example Wyeth CCI-779
- inhibitors of C- abl kinase for example GLEEVECTM, Novartis Pharmaceuticals.
- Such agents include small molecule inhibitor compounds and antibody antagonists.
- apoptosis inducing agents includes activators of TNF receptor family members (including the TRAIL receptors).
- NSAID D's which are selective COX-2 inhibitors are defined as those which possess a specificity for inhibiting COX-2 over COX-1 of at least 100 fold as measured by the ratio of IC50 for
- COX-2 that are particularly useful in the instant method of treatment are: 3-phenyl-4-
- angiogenesis inhibitors include, but are not limited to, endostatin, ukrain, ranpimase, IM862, 5-methoxy ⁇ 4-[2-methyl-3-(3-methyl-2- butenyl)oxiranyl]-1 -oxaspiro[2,5]oct-6-yl(chloroacetyl)carbamate, acetyldinanaline, 5- amino-1 -[[3,5-dichloro-4-(4-chlorobenzoyl)phenyl]methyl]-1 H-1 ,2,3-triazole-4- carboxamide, CM101 , squalamine, combretastatin, RPI4610, NX31838, sulfated mannopentaose phosphate, 7,7-(carbonyl-bis[imino-N-methyl-4,2- pyrrolocarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino]-bis-(1 ,
- integrin blockers refers to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the ⁇ v p 3 integrin, to compounds which selectively antagonize, inhibit or counteract binding of a physiological ligand to the ⁇ v ⁇ s integrin, to compounds which antagonize, inhibit or counteract binding of a physiological ligand to both the ⁇ v ⁇ 3 integrin and the ⁇ v ⁇ s integrin, and to compounds which antagonize, inhibit or counteract the activity of the particular integrin(s) expressed on capillary endothelial cells.
- the term also refers to antagonists of the ⁇ v ⁇ 6, ⁇ v ⁇ s, oti ⁇ i, ⁇ 2 ⁇ i, ⁇ 5 ⁇ i, ⁇ 6 ⁇ i and ⁇ 6 ⁇ 4 integrins.
- the term also refers to antagonists of any combination of ⁇ v ⁇ 3, ⁇ v ⁇ s, ⁇ v ⁇ 6. ⁇ v ⁇ s > oti ⁇ i, ⁇ 2 ⁇ i, ⁇ 5 ⁇ i, ⁇ 6 ⁇ i and ⁇ 4 integrins.
- tyrosine kinase inhibitors include N-(trifluoromethylphenyl)- 5-methylisoxazol-4-carboxamide, 3-[(2,4-dimethylpyrrol-5- yl)methylidenyl)indolin-2- one,17-(allylamino)-17-demethoxygeldanamycin, 4-(3-chloro-4-fluorophenylamino)- 7-methoxy-6-[3-(4-morpholinyl)propoxyl]quinazoline, N-(3-ethynylphenyl)-6,7-bis(2- methoxyethoxy)-4-quinazolinamine, BIBX1382, 2,3,9, 10, 11 ,12-hexahydro-10- (hydroxymethyO-IO-hydroxy- ⁇ -methyl- ⁇ . ⁇ -epoxy-I H-diindoloti ⁇ .S-fg ⁇ ' ⁇ M'- kl]pyrrolo[3,4-
- Combinations with compounds other than anti-cancer compounds are also encompassed in the instant methods.
- combinations of the present compounds with PPAR- ⁇ (i.e., PPAR-gamma) agonists and PPAR- ⁇ (i.e., PPAR- delta) agonists are useful in the treatment of certain malingnancies.
- PPAR- ⁇ and PPAR- ⁇ are the nuclear peroxisome proliferator-activated receptors ⁇ and ⁇ .
- the expression of PPAR- ⁇ on endothelial cells and its involvement in angiogenesis has been reported in the literature (see J. Cardiovasc. Pharmacol. 1998; 31 :909-913; J. Biol. Chem. 1999;274:9116-9121 ; Invest.
- PPAR- ⁇ agonists and PPAR- ⁇ / ⁇ agonists include, but are not limited to, thiazolidinediones (such as DRF2725, CS-011 , troglitazone, rosiglitazone, and pioglitazone), fenofibrate, gemfibrozil, clofibrate, GW2570, SB219994, AR-H039242, JTT-501 , MCC-555, GW2331 , GW409544, NN2344, KRP297, NP0110, DRF4158, NN622, GI262570, PNU182716, DRF552926, 2-[(5,7-dipropyl-3-trifluoromethyl-1 ,2- benzisoxazol-6-yl)oxy]-2-methylpropionic acid, and 2(R)-7-(3-(2-chloro ⁇ 4-(4- fluorophenoxy) phenoxy)propoxy)-2-methyl
- useful anti-cancer (also known as anti-neoplastic) agents that can be used in combination with the present compounds include, but are not limited, to Uracil mustard, Chlormethine, Ifosfamide, Melphalan, Chlorambucil, Pipobroman, Triethylenemelamine, Triethylenethiophosphoramine, Busulfan, Carmustine, Lomustine, Streptozocin, dacarbazine, Floxuridine, Cytarabine, 6-Mercaptopurine, 6-Thioguanine, Fludarabine phosphate, oxaliplatin, leucovirin, oxaliplatin (ELOXATINTM from Sanofi-Synthelabo Pharmaeuticals, France), Pentostatine, Vinblastine, Vincristine, Vindesine, Bleomycin, Dactinomycin, Daunorubicin, Doxorubicin, Epirubicin, Idarubicin, Mithramycin, Deoxycoformycin, Mitomycin
- Another embodiment of the present invention is the use of the present compounds in combination with gene therapy for the treatment of cancer.
- Gene therapy can be used to deliver any tumor suppressing gene. Examples of such genes include, but are not limited to, p53, which can be delivered via recombinant virus-mediated gene transfer (see U.S.
- Patent 6,069,134 for example, a uPA/uPAR antagonist ("Adenovirus-Mediated Delivery of a uPA/uPAR Antagonist Suppresses Angiogenesis-Dependent Tumor Growth and Dissemination in Mice," Gene Therapy, August 1998;5(8):1105-13), and interferon gamma (J Immunol 2000;164:217-222).
- the present compounds can also be administered in combination with one or more inhibitor of inherent multidrug resistance (MDR), in particular MDR associated with high levels of expression of transporter proteins.
- MDR inhibitors include inhibitors of p-glycoprotein (P-gp), such as LY335979, XR9576, OC144-093, R101922, VX853 and PSC833 (valspodar).
- the present compounds can also be employed in conjunction with one or more anti-emetic agents to treat nausea or emesis, including acute, delayed, late- phase, and anticipatory emesis, which may result from the use of a compound of the present invention, alone or with radiation therapy.
- a compound of the present invention may be used in conjunction with one or more other anti-emetic agents, especially neurokinin-1 receptor antagonists, 5HT3 receptor, antagonists, such as ondansetron, granisetron, tropisetron, and zatisetron, GABAB receptor agonists, such as baclofen, a corticosteroid such as Decadron (dexamethasone), Kenalog, Aristocort, Nasalide, Preferid, Benecorten or those as described in U.S.
- neurokinin-1 receptor antagonists especially 5HT3 receptor, antagonists, such as ondansetron, granisetron, tropisetron, and zatisetron, GABAB receptor agonists, such as baclofen, a corticosteroid such as Decadron (dexamethasone), Kenalog, Aristocort, Nasalide, Preferid, Benecorten or those as described in U.S.
- an antidopaminergic such as the phenothiazines (for example prochlorperazine, fluphenazine, thioridazine and mesoridazine), metoclopramide or dronabinol.
- an anti-emesis agent selected from a neurokinin-1 receptor antagonist, a 5HT3 receptor antagonist and a corticosteroid is administered as an adjuvant for the treatment or prevention of emesis that may result upon administration of the present compounds.
- neurokinin-1 receptor antagonists that can be used in conjunction with the present compounds are described in U.S. Patents 5,162,339, 5,232,929, 5,242,930, 5,373,003, 5,387,595, 5,459,270, 5,494,926, 5,496,833, 5,637,699, and 5,719,147, content of which are incorporated herein by reference.
- the neurokinin-1 receptor antagonist for use in conjunction with the compounds of the present invention is selected from: 2-(R)-(1-(R)-(3,5- bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)-4-(3-(5-oxo-1 H,4H-1,2,4- triazolo)methyl)morpholine, or a pharmaceutically acceptable salt thereof, which is described in U.S. Patent 5,719,147.
- a compound of the present invention may also be administered with one or more immunologic-enhancing drug, such as for example, levamisole, isoprinosine and Zadaxin.
- the present invention encompasses the use of the present compounds (for example, for treating or preventing cellular proliferative diseases) in combination with a second compound selected from: an estrogen receptor modulator, an androgen receptor modulator, retinoid receptor modulator, a cytotoxic/cytostatic agent, an antiproliferative agent, a prenyl-protein transferase inhibitor, an HMG-CoA reductase inhibitor, an angiogenesis inhibitor, a PPAR- ⁇ agonist, a PPAR- ⁇ agonist, an inhibitor of inherent multidrug resistance, an anti-emetic agent, an immunologic- enhancing drug, an inhibitor of cell proliferation and survival signaling, an agent that interfers with a cell cycle checkpoint, and an apoptosis inducing agent.
- a second compound selected from: an estrogen receptor modulator, an androgen receptor modulator, retinoid receptor modulator, a cytotoxic/cytostatic agent, an antiproliferative agent, a prenyl-protein transferas
- the present invention emcompasses the composition and use of the present compounds in combination with a second compound selected from: a cytostatic agent, a cytotoxic agent, taxanes, a topoisomerase Il inhibitor, a topoisomerase I inhibitor, a tubulin interacting agent, hormonal agent, a thymidilate synthase inhibitors, anti-metabolites, an alkylating agent, a farnesyl protein transferase inhibitor, a signal transduction inhibitor, an EGFR kinase inhibitor, an antibody to EGFR, a C-abl kinase inhibitor, hormonal therapy combinations, and aromatase combinations.
- a second compound selected from: a cytostatic agent, a cytotoxic agent, taxanes, a topoisomerase Il inhibitor, a topoisomerase I inhibitor, a tubulin interacting agent, hormonal agent, a thymidilate synthase inhibitors, anti-metabolites, an alkylating agent, a farnes
- treating cancer refers to administration to a mammal afflicted with a cancerous condition and refers to an effect that alleviates the cancerous condition by killing the cancerous cells, but also to an effect that results in the inhibition of growth and/or metastasis of the cancer.
- the angiogenesis inhibitor to be used as the second compound is selected from a tyrosine kinase inhibitor, an inhibitor of epidermal- derived growth factor, an inhibitor of fibroblast-derived growth factor, an inhibitor of platelet derived growth factor, an MW (matrix metalloprotease) inhibitor, an integrin blocker, interferon- ⁇ , interleukin-12, pentosan polysulfate, a cyclooxygenase inhibitor, carboxyamidotriazole, combretastatin A-4, squalamine, 6-(O- chloroacetylcarbonyl) ⁇ fumagillol, thalidomide, angiostatin, troponin-1 , or an antibody to VEGF.
- the estrogen receptor modulator is tamoxifen or raloxifene.
- Also included in the present invention is a method of treating cancer comprising administering a therapeutically effective amount of at least one compound of the present invention in combination with radiation therapy and at least one compound selected from: an estrogen receptor modulator, an androgen receptor modulator, retinoid receptor modulator, a cytotoxic/cytostatic agent, an antiproliferative agent, a prenyl-protein transferase inhibitor, an HMG-CoA reductase inhibitor, an angiogenesis inhibitor, a PPAR- ⁇ agonist, a PPAR- ⁇ agonist, an inhibitor of inherent multidrug resistance, an anti-emetic agent, an immunologic-enhancing drag, an inhibitor of cell proliferation and survival signaling, an agent that interfers with a cell cycle checkpoint, and an apoptosis inducing agent.
- an estrogen receptor modulator an androgen receptor modulator, retinoid receptor modulator, a cytotoxic/cytostatic agent, an antiproliferative agent, a prenyl-protein transferase inhibitor,
- Yet another embodiment of the invention is a method of treating cancer comprising administering a therapeutically effective amount of at least one compound of the present invention in combination with paclitaxel or trastuzumab.
- the present invention also includes a pharmaceutical composition useful for treating or preventing the various disease states mentioned herein cellular proliferation diseases (such as cancer, hyperplasia, cardiac hypertrophy, autoimmune diseases, fungal disorders, arthritis, graft rejection, inflammatory bowel disease, immune disorders, inflammation, and cellular proliferation induced after medical procedures) that comprises a therapeutically effective amount of at least one compound of the present invention and at least one compound selected from: an estrogen receptor modulator, an androgen receptor modulator, a retinoid receptor modulator, a cytotoxic/cytostatic agent, an antiproliferative agent, a prenyl-protein transferase inhibitor, an HMG-CoA reductase inhibitor, an angiogenesis inhibitor, a PPAR- ⁇ agonist, a PPAR- ⁇ agonist, an inhibitor of cell proliferation and survival signaling, an agent that interfers with a cell cycle checkpoint, and an apoptosis inducing agent.
- cellular proliferation diseases such as cancer, hyperplasia, cardiac hypertrophy,
- an embodiment of the present invention comprises administering: (a) a therapeutically effective amount of at least one compound of the present cathepsin inhibitors (e.g., a compound according to Formula I-XXVII) or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal antiinflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives (non-limiting examples include methotrexate, cyclosporin, FK506); steroids; PDE IV inhibitors, anti-TNF- ⁇ compounds, TNF-alpha-convertase inhibitors, cytokine inhibitors, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, p38 inhibitors, biological response modifiers; anti-inflammatory agents and therapeutics
- Another embodiment of the present invention is directed to a method of inhibiting or blocking T-cell mediated chemotaxis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of at least one compound of the present cathepsin inhibitors (e.g., a compound according to formula I-XXVII) or a pharmaceutically acceptable salt, solvate or ester thereof.
- a compound of the present cathepsin inhibitors e.g., a compound according to formula I-XXVII
- a pharmaceutically acceptable salt, solvate or ester thereof e.g., a compound according to formula I-XXVII
- Another embodiment of this invention is directed to a method of treating inflammatory bowel disease in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to the present cathepsin inhibitors or a pharmaceutically acceptable salt, solvate or ester thereof.
- Another embodiment of this invention is directed to a method of treating or preventing graft rejection in a patient in need of such treatment comprising administering to the patient a therapeutically effective amount of at least one compound according to the present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof.
- Another embodiment of this invention is directed to a method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to the present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: cyclosporine A, FK-506, FTY720, beta-lnterferon, rapamycin, mycophenolate, prednisolone, azathioprine, cyclophosphamide and an antilymphocyte globulin.
- Another embodiment of this invention is directed to a method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to the present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: beta-interferon, glatiramer acetate, glucocorticoids, methotrexate, azothioprine, mitoxantrone, VLA-4 inhibitors and/or CB2-selective inhibitors.
- Another embodiment of this invention is directed to a method of treating multiple sclerosis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to the present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: methotrexate, cyclosporin, leflunimide, sulfasalazine, /?-methasone, / ⁇ -interferon, glatiramer acetate, prednisone, etonercept, and infliximab.
- Another embodiment of this invention is directed to a method of treating rheumatoid arthritis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: (a) at least one compound according to the present cathepsin inhibitors or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: COX-2 inhibitors, COX inhibitors, immunosuppressives, steroids, PDE IV inhibitors, anti-TNF- ⁇ r compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors, caspase (ICE) inhibitors and other classes of compounds indicated for the treatment of rheumatoid arthritis.
- Another embodiment of this invention is directed to a method of treating psoriasis in a patient in need of such treatment the method comprising administering to the patient a therapeutically effective amount of: a) at least one compound according to present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one compound selected from the group consisting of: immunosuppressives, steroids, and anti-TNF- ⁇ compounds.
- Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of: inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, tuberculoid leprosy, type I diabetes, viral meningitis and tumors in a patient in need of such treatment, such method comprising administering to the patient an effective amount of at least one compound according to present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof.
- Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses, tuberculoid leprosy and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of at least one compound according to the present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof.
- Another embodiment of this invention is directed to a method of treating a disease selected from the group consisting of inflammatory disease, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, graft rejection, psoriasis, fixed drug eruptions, cutaneous delayed-type hypersensitivity responses and tuberculoid leprosy, type I diabetes, viral meningitis and cancer in a patient in need of such treatment, such method comprising administering to the patient an effective amount of (a) at least one compound according to the present cathepsin inhibitors, or a pharmaceutically acceptable salt, solvate or ester thereof concurrently or sequentially with (b) at least one medicament selected from the group consisting of: disease modifying antirheumatic drugs; nonsteroidal anti-inflammatory drugs; COX-2 selective inhibitors; COX-1 inhibitors; immunosuppressives; steroids; PDE IV inhibitors, anti-TNF- ⁇ compounds, MMP inhibitors, glucocorticoids, chemokine inhibitors, CB2-selective inhibitors
- the method further comprises administering to the subject in need one or more pharmacological or therapeutic agents or drugs such as cholesterol biosynthesis inhibitors and/or lipid-lowering agents discussed below.
- pharmacological or therapeutic agents or drugs such as cholesterol biosynthesis inhibitors and/or lipid-lowering agents discussed below.
- Non-limiting examples of cholesterol biosynthesis inhibitors for use in the compositions, therapeutic combinations and methods of the present invention include competitive inhibitors of HMG CoA reductase, the rate-limiting step in cholesterol biosynthesis, squalene synthase inhibitors, squalene epoxidase inhibitors and mixtures thereof.
- HMG CoA reductase inhibitors include statins such as lovastatin (for example MEVACOR® which is available from Merck & Co.), pravastatin (for example PRAVACHOL® which is available from Bristol Meyers Squibb), fluvastatin, simvastatin (for example ZOCOR® which is available from Merck & Co.), atorvastatin, cerivastatin, rosuvastatin, rivastatin (sodium 7-(4-fluorophenyl)-2,6-diisopropyl-5- methoxymethylpyridin-3-yl)-3,5-dihydroxy-6-heptanoate, CI-981 and pravastatin (such as NK-104 of Negma Kowa of Japan); HMG CoA synthetase inhibitors, for example L-659,699 ((E 1 E)-11-[3'R-(hydroxy-methyl)-4'-oxo-2'R
- the method of treatment comprises administering the present cathepsin inhibitors in combination with one or more cardiovascular agents and one or more cholesterol biosynthesis inhibitors.
- the method treatment of the present invention can further comprise administering nicotinic acid (niacin) and/or derivatives thereof coadministered with or in combination with the cardiovascular agent(s) and sterol absorption inhibitor(s) discussed above.
- nicotinic acid derivative means a compound comprising a pyridine-3-carboxylate structure or a pyrazine-2-carboxylate structure, including acid forms, salts, esters, zwitterions and tautomers, where available.
- nicotinic acid derivatives include niceritrol, nicofuranose and acipimox (5-methyl pyrazine-2-carboxylic acid 4-oxide). Nicotinic acid and its derivatives inhibit hepatic production of VLDL and its metabolite LDL and increases HDL and apo A-1 levels.
- An example of a suitable nicotinic acid product is NIASPAN® (niacin extended- release tablets) which are available from Kos.
- the method of treatment of the present invention can further comprise administering one or more AcylCoA: Cholesterol O- acyltransferase (“ACAT”) Inhibitors, which can reduce LDL and VLDL levels, coadministered with or in combination with the cardiovascular agent(s) and sterol absorption inhibitor(s) discussed above.
- ACAT is an enzyme responsible for esterifying excess intracellular cholesterol and may reduce the synthesis of VLDL, which is a product of cholesterol esterification, and overproduction of apo B-100- containing lipoproteins.
- Non-limiting examples of useful ACAT inhibitors include avasimibe ([[2,4,6- tris(1-methylethyl)phenyl]acetyl]sulfamic acid, 2,6-bis(1-methylethyl)phenyl ester, formerly known as CM 011), HL-004, lecimibide (DuP-128) and CL-277082 ( ⁇ /-(2,4- difluorophenyl)- ⁇ /-[[4-(2,2-dimethylpropyl)phenyl]methyl]- ⁇ /-heptylurea). See P.
- the method of treatment of the present invention can further comprise administering probucol or derivatives thereof (such as AGI-1067 and other derivatives disclosed in U.S. Patents Nos. 6,121 ,319 and 6,147,250), which can reduce LDL levels, coadministered with or in combination with the cardiovascular agent(s) and sterol absorption inhibitor(s) discussed above.
- probucol or derivatives thereof such as AGI-1067 and other derivatives disclosed in U.S. Patents Nos. 6,121 ,319 and 6,147,250
- the method of treatment of the present invention can further comprise administering fish oil, which contains Omega 3 fatty acids (3-PUFA), which can reduce VLDL and triglyceride levels, coadministered with or in combination with the cardiovascular agent(s) and sterol absorption inhibitor(s) discussed above.
- fish oil which contains Omega 3 fatty acids (3-PUFA)
- 3-PUFA Omega 3 fatty acids
- a total daily dosage of fish oil or Omega 3 fatty acids can range from about 1 to about 30 grams per day in single or 2-4 divided doses.
- the method of treatment of the present invention can further comprise administering natural water soluble fibers, such as psyllium, guar, oat and pectin, which can reduce cholesterol levels, coadministered with or in combination with the cardiovascular agent(s) and sterol absorption inhibitor(s) discussed above.
- natural water soluble fibers such as psyllium, guar, oat and pectin
- a total daily dosage of natural water soluble fibers can range from about 0.1 to about 10 grams per day in single or 2-4 divided doses.
- the method of treatment of the present invention can further comprise administering plant sterols, plant stanols and/or fatty acid esters of plant stanols, such as sitostanol ester used in BENECOL® margarine, which can reduce cholesterol levels, coadministered with or in combination with the cardiovascular agent(s) and sterol absorption inhibitor(s) discussed above.
- a total daily dosage of plant sterols, plant stanols and/or fatty acid esters of plant stanols can range from about 0.5 to about 20 grams per day in single or 2-4 divided doses.
- the method of treatment of the present invention can further comprise administering antioxidants, such as probucol, tocopherol, ascorbic acid, ⁇ -carotene and selenium, or vitamins such as vitamin Be or vitamin Bi 2 , coadministered with or in combination with the cardiovascular agent(s) and sterol absorption inhibitor(s) discussed above.
- antioxidants such as probucol, tocopherol, ascorbic acid, ⁇ -carotene and selenium
- vitamins such as vitamin Be or vitamin Bi 2
- a total daily dosage of antioxidants or vitamins can range from about 0.05 to about 10 grams per day in single or 2-4 divided doses.
- the method of treatment of the present invention can further comprise administering one or more bile acid sequestrants (insoluble anion exchange resins), coadministered with or in combination with the cardiovascular agents and sterol absorption inhibitor(s) discussed above.
- Bile acid sequestrants bind bile acids in the intestine, interrupting the enterohepatic circulation of bile acids and causing an increase in the faecal excretion of steroids.
- Use of bile acid sequestrants is desirable because of their non-systemic mode of action.
- Bile acid sequestrants can lower intrahepatic cholesterol and promote the synthesis of apo B/E (LDL) receptors which bind LDL from plasma to further reduce cholesterol levels in the blood.
- LDL apo B/E
- Non-limiting examples of suitable bile acid sequestrants include cholestyramine (a styrene-divinylbenzene copolymer containing quaternary ammonium cationic groups capable of binding bile acids, such as QUESTRAN® or QUESTRAN LIGHT® cholestyramine which are available from Bristol-Myers Squibb), colestipol (a copolymer of diethylenetriamine and 1-chloro-2,3- epoxypropane, such as COLESTID® tablets which are available from Pharmacia), colesevelam hydrochloride (such as WelChol® Tablets (poly(allylamine hydrochloride) cross-linked with epichlorohydrin and alkylated with 1-bromodecane and (6-bromohexyl)-trimethylammonium bromide) which are available from Sankyo), water soluble derivatives such as 3,3-ioene, N-(cycloalkyl) alkylamines and poliglus
- Suitable inorganic cholesterol sequestrants include bismuth salicylate plus montmorillonite clay, aluminum hydroxide and calcium carbonate antacids.
- methods of treatment can further comprise administering at least one (one or more) activators for peroxisome proliferator-activated receptors (PPAR). These activators act as agonists for the peroxisome proliferator-activated receptors.
- PPAR peroxisome proliferator-activated receptors
- PPAR ⁇ peroxisome proliferator-activated receptor alpha
- PPARp peroxisome proliferator-activated receptor gamma
- PPARJ peroxisome proliferator-activated receptor delta
- the PPARK receptor subtypes are involved in activating the program of adipocyte differentiation and are not involved in stimulating peroxisome proliferation in the liver.
- PPARcJ has been identified as being useful in increasing high density lipoprotein (HDL) levels in humans. See, e.g., WO 97/28149.
- PPAR ⁇ activator compounds are useful for, among other things, lowering triglycerides, moderately lowering LDL levels and increasing HDL levels.
- Useful examples of PPAR ⁇ activators include the fibrates discussed above.
- Non-limiting examples of PPARj/ activator include suitable derivatives of glitazones or thiazolidinediones, such as, troglitazone (such as REZULIN® troglitazone (-5-[[4-[3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2- yl)methoxy]phenyl] methyl]-2,4-thiazolidinedione) commercially available from Parke- Davis); rosiglitazone (such as AVAN Dl A® rosiglitazone maleate (-5-[[4-[2-(methyl-2- pyridinylamino)ethoxy] phenyl] methyl]-2,4-thiazolidinedione, (Z)
- troglitazone such as REZULIN® troglitazone (-5-[[4-[3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2
- pioglitazone hydrochloride (5-[[4-[2-(5-ethyl-2- pyridinyl) ⁇ thoxy]phenyl]methyl3-2,4-3 thiazolidinedione monohydrochloride) commercially available from Takeda Pharmaceuticals).
- thiazolidinediones include ciglitazone, englitazone, darglitazone and BRL 49653 as disclosed in WO 98/05331 which is incorporated herein by reference; PPARp activator compounds disclosed in WO 00/76488 which is incorporated herein by reference; and PPARy activator compounds disclosed in U.S. Patent No. 5,994,554 which is incorporated herein by reference.
- PPAR ⁇ activator compounds include certain acetylphenols as disclosed in U.S. Patent No. 5,859,051 which is incorporated herein by reference; certain quinoline phenyl compounds as disclosed in WO 99/20275 which is incorporated herein by reference; aryl compounds as disclosed by WO 99/38845 which is incorporated herein by reference; certain 1 ,4-disubstituted phenyl compounds as disclosed in WO 00/63161 ; certain aryl compounds as disclosed in WO 01/00579 which is incorporated herein by reference; benzoic acid compounds as disclosed in WO 01/12612 & WO 01/12187 which are incorporated herein by reference; and substituted 4-hydroxy-phenylalconic acid compounds as disclosed in WO 97/31907 which is incorporated herein by reference.
- PPARcJ compounds are useful for, among other things, lowering triglyceride levels or raising HDL levels.
- PPARJ activators include suitable thiazole and oxazole derivates, such as C.A.S. Registry No. 317318-32-4, as disclosed in WO 01/00603 which is incorporated herein by reference); certain fluoro, chloro or thio phenoxy phenylacetic acids as disclosed in WO 97/28149 which is incorporated herein by reference; suitable non- ⁇ -oxidizable fatty acid analogues as disclosed in U.S. Patent No. 5,093,365 which is incorporated herein by reference; and PPARJ compounds as disclosed in WO 99/04815 which is incorporated herein by reference.
- Non-limiting examples include certain substituted aryl compounds as disclosed in U.S. Patent No. 6,248,781 ; WO 00/23416; WO 00/23415; WO 00/23425; WO 00/23445; WO 00/23451 ; and WO 00/63153, all of which are incorporated herein by reference, are described as being useful PPAR ⁇ and/or PPAR/ activator compounds.
- PPAR ⁇ and/or PPARK activator compounds include activator compounds as disclosed in WO 97/25042 which is incorporated herein by reference; activator compounds as disclosed in WO 00/63190 which is incorporated herein by reference; activator compounds as disclosed in WO 01/21181 which is incorporated herein by reference; biaryl-oxa(thia)zole compounds as disclosed in WO 01/16120 which is incorporated herein by reference; compounds as disclosed in WO 00/63196 and WO 00/63209 which are incorporated herein by reference; substituted 5-aryl-2,4-thiazolidinediones compounds as disclosed in U.S. Patent No.
- PPAR activator compounds include substituted benzylthiazolidine-2,4-dione compounds as disclosed in WO 01/14349, WO 01/14350 and WO/01/04351 which are incorporated herein by reference; mercaptocarboxylic compounds as disclosed in WO 00/50392 which is incorporated herein by reference; ascofuranone compounds as disclosed in WO 00/53563 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46232 which is incorporated herein by reference; compounds as disclosed in WO 99/12534 which is incorporated herein by reference; benzene compounds as disclosed in WO 99/15520 which is incorporated herein by reference; o-anisamide compounds as disclosed in WO 01/21578 which is incorporated herein by reference; and PPAR activator compounds as disclosed in WO 01/40192 which is incorporated herein by reference.
- hormone replacement agents and compositions for hormone replacement therapy of the present invention include androgens, estrogens, progestins, their pharmaceutically acceptable salts and derivatives. Combinations of these agents and compositions are also useful.
- the cathepsin inhibitors of the present invention are useful in the treatment of central nervous system diseases such as depression, cognitive function diseases and neurodegenerative diseases such as Parkinson's disease, senile dementia as in Alzheimer's disease, and psychoses of organic origin.
- the cathepsin inhibitors of the present invention can improve motor-impairment due to neurodegenerative diseases such as Parkinson's disease.
- the other agents known to be useful in the treatment of Parkinson's disease which can be administered in combination with the cathepsin inhibitors of the present invention include: L-DOPA; dopaminergic agonists such as quinpirole, ropinirole, pramipexole, pergolide and bromocriptine; MAO-B inhibitors such as deprenyl and selegiline; DOPA decarboxylase inhibitors such as carbidopa and benserazide; and COMT inhibitors such as tolcapone and entacapone.
- a preferred dosage for the administration of a compound of the present invention is about 0.001 to 500 mg/kg of body weight/day of a compound of the present invention or a pharmaceutically acceptable salt or ester thereof.
- An especially preferred dosage is about 0.01 to 25 mg/kg of body weight/day of a compound of the present invention or a pharmaceutically acceptable salt or ester thereof.
- phrases "effective amount” and "therapeutically effective amount” mean that amount of a compound of the present invention, and other pharmacological or therapeutic agents described herein, that will elicit a biological or medical response of a tissue, a system, or a subject (e.g., animal or human) that is being sought by the administrator (such as a researcher, doctor or veterinarian) which includes alleviation of the symptoms of the condition or disease being treated and the prevention, slowing or halting of progression of one or more of the presently claimed diseases.
- the formulations or compositions, combinations and treatments of the present invention can be administered by any suitable means which produce contact of these compounds with the site of action in the body of, for example, a mammal or human.
- the weights indicated above refer to the weight of the acid equivalent or the base equivalent of the therapeutic compound derived from the salt.
- this invention includes combinations comprising an amount of at least one compound of the presently claimed methods or a pharmaceutically acceptable salt or ester thereof, and an amount of one or more additional therapeutic agents listed above (administered together or sequentially) wherein the amounts of the compounds/ treatments result in desired therapeutic effect.
- the therapeutic agents in the combination, or a pharmaceutical composition or compositions comprising the therapeutic agents may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like.
- the amounts of the various actives in such combination therapy may be different amounts (different dosage amounts) or same amounts (same dosage amounts).
- a compound of the present invention and an additional therapeutic agent may be present in fixed amounts (dosage amounts) in a single dosage unit (e.g., a capsule, a tablet and the like).
- combination products employ the compounds of this invention within the dosage range described herein and the other pharmaceutically active agent or treatment within its dosage range.
- Compounds of the present invention may also be administered sequentially with known therapeutic agents when a combination formulation is inappropriate.
- the invention is not limited in the sequence of administration; compounds of the present invention may be administered either prior to or after administration of the known therapeutic agent. Such techniques are within the skills of persons skilled in the art as well as attending physicians.
- the pharmacological properties of the compounds of this invention may be confirmed by a number of pharmacological assays for measuring HCV viral activity or cathepsin activity, such as are well know to those skilled in the art.
- compositions of the present invention comprise at least one compound of Formulae I to XXVI, as defined above, together with one or more acceptable controlled-release carriers, other adjuvants or vehicles thereof and optionally other therapeutic agents.
- Each carrier, adjuvant or vehicle must be acceptable in the sense of being compatible with the other ingredients of the composition and not injurious to the mammal in need of treatment.
- the compositions of the present invention are formulated with one or more controlled-release carriers to provide the rate controlled-release of any one or more of the components or active ingredients to optimize the therapeutic effects, i.e. HCV inhibitory activity and the like.
- Suitable dosage formulations for sustained release include, inter alia, layered tablets containing layers of varying disintegration rates or controlled release polymeric matrices impregnated with the active components and shaped in tablet form or capsules containing such impregnated or encapsulated porous polymeric matrices.
- Controlled-release is a term known in the medicinal art and is typically used interchangeably with delayed release, slow release, controlled availability, slow acting, extended release, and metered release. Controlled-release is generally defined as the release of an agent from a dosage formulation slowly over a period of time, such as over hours or days. In the present invention, controlled-release is further defined as administering a predetermined dose of at least one of the compounds of Formulae I to XXVI over a predetermined period of time.
- the present invention discloses dosage formulations and methods of using the same in which a predetermined dose of at least one of the compounds of Formulae I to XXVI is administered to maintain a suitable therapeutically efficacious trough level Cmin plasma concentration of said one compound throughout the dosing interval.
- the present invention discloses dosage formulations and methods of using the same in which a predetermined dose of at least one of the compounds of Formulae I to XXVI is administered to maintain the average Cmin plasma concentration of the at least one HCV protease inhibitor at or above about 10ng/ml.
- the average Cmin plasma concentration of the at least one protease inhibitor may be maintained at or above 50 ng/ml, 100ng/ml, 150ng/ml or 200ng, ml.
- Cmin is generally defined as the minimum concentration of drug in plasma to obtain a predetermined intensity of response.
- Cmin is a measure of the concentration of drug in blood/plasma and is typically quantified at a time when the drug concentration will be near its lowest level, i.e. before the next predetermined dose of the drug.
- the controlled-release dosage formulation and method are intended to treat, prevent, and/or ameliorate disorders associated with HCV.
- the controlled-release dosage formulation and method are further intended to treat and/or reduce the signs and/or symptoms associated with HCV.
- the rate of dissolution of the formulation can range suitably to generally allow the dissolution of from about 5 % of the drug in the first 6 hours to about 80% of the drug in the first 6 hours, preferably from about 20 % of the drug in the first 6 hours to about 50% of the drug in the first 6 hours.
- Dissolution can be determined according to standard USP procedures well known to those skilled in the art. A non-limiting example of a suitable procedure for determining dissolution is described in the following table:
- the controlled-release dosage formulation has at least one dosage unit, but may contain a plurality of dosage units, ranging from 2-100 dosage units.
- An oral dosage formulation may be provided, such as one of the following: tablets, capsules, or caplets.
- a transdermal treatment via a medicated patch may also be used as the controlled-release dosage formulation.
- the controlled-release dosage formulation contains from about 1 mg to about 3000mg of at least one HCV protease inhibitor from Formulae I to XXVI discussed herein.
- the dosage formulation may be administered once a day, twice a day, three times a day, four times a day, or more frequently.
- 400mg of the HCV protease inhibitor is administered three times a day.
- the dosing schedule may be at from about 100mg a day, 100mg twice a day, 200mg twice a day, 400mg twice a day, 600mg twice a day, or 600mg three times a day.
- the amount and frequency of administration of the formulations of the present invention will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated.
- a typical recommended daily dosage regimen for oral administration can range from about 50 mg/day to about 3000 mg/day, in two to four divided doses.
- the quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 1000 mg, or from about 50 mg to about 800 mg, or from about 50 mg to about 600 mg, or from about 50 mg to about 400 mg, or from about 50 mg to about 200 mg according to the particular application.
- the dosage formulation contains about 200 mg of the active compound.
- the controlled-release dosage formulation may be administered at a time of day to coincide with the circadian rhythm of the subject being treated. Circadian rhythms are endogenous oscillations that occur with a periodicity of about 24 hours, and are synchronized according to internal biologic clocks related to the sleep-wake cycle.
- the controlled-release dosage formulation thus may be administered in one or more discrete dosages over a twenty-four hour time interval in an asymmetric pattern as to dosage amount and/or timing of dosage, wherein the at least one HCV protease inhibitor is selected from the group consisting of compounds of Formulae I- XXVI, as described above.
- the one or more discrete dosages are adjusted in amount to provide a highest dose or doses at a time or times corresponding to the time interval when replication of the hepatitis-C virus is highest.
- Fig. 2 (right hand box) Plasma levels of the drug are highest in the morning, when measured 8 hours after the previous dose and before the morning dose is administered. Plasma levels 8 hours after the morning dose are much lower, suggesting that metabolism of the drug is faster during the day than at night.
- the one or more discrete dosages are adjusted in amount to provide a highest dose or doses at a time or times corresponding to the time interval when metabolism of the protease inhibitor is highest.
- the one or more discrete dosages is three doses, administered as one dose of 300 mg., one dose of 400 mg., and one dose of 500 mg., each dose administered every 8 hours, wherein the 500 mg. dose is administered at a time corresponding to the time interval of highest replication of the hepatitis-C virus and/or highest metabolism of the protease inhibitor.
- One skilled in the art can determine the appropriate number of doses and dose amounts without undue experimentation.
- the one or more discrete dosages is administered in equal dose amounts but staggered as to timing of administration, to accommodate fluctuations in viral load and/or drug metabolism. For example, if the total desired dose over 24 hours is 1200 mg., it can be administered as a 300 mg/dose, at 8 am, 12 noon, 4 pm, and 8 pm, with a 12-hour interval between the evening dose and the morning dose. This example is non- limiting, and one skilled in the art can easily determine the appropriate number of doses and the timing of administration.
- the one or more discrete dosages is at least three doses in equal amounts, administered at unequal time intervals in twenty-four hours.
- the time intervals of dosage are adjusted to provide administration of one or more doses at a time or times corresponding to the time interval of highest replication of the hepatitis-C virus, or they can be adjusted to provide administration of one or more doses at a time or times corresponding to the time interval of highest metabolism of the protease inhibitor.
- both the amount of dosage given over a 24-hour period and the timing of administration can be varied in an asymmetric pattern.
- the asymmetric pattern of dose amount or timing of dosage is adjusted to accommodate variations in viral replication and/or metabolism of the protease inhibitor influenced by the patient's circadian rhythm.
- the controlled-release dosage formulation may be administered concurrently or sequentially as combination therapy with at least one of an antiviral agent and/or at least one of an immunomodulatory agent that are different from the HCV protease inhibitors disclosed in Formulae I to XXVI.
- the different antiviral agent(s) and/or the immunomodulatory agent(s) may be contained within the controlled-release dosage formulation with the HCV protease inhibitors disclosed in Formulae I to XXVI.
- the controlled- release dosage formulation may contain at least one anti-cancer agent or may be administered concurrently or sequentially with at least one anti-cancer agent.
- the active ingredients will typically be administered in admixture with suitable carrier materials suitably selected with respect to the intended form of administration, i.e. oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices.
- suitable carrier materials suitably selected with respect to the intended form of administration, i.e. oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices.
- the active drug component may be combined with any oral non-toxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like.
- suitable binders, lubricants, disintegrating agents and coloring agents may also be incorporated in the mixture.
- Powders and tablets may be comprised of from about 5 to about 95 percent inventive composition.
- Suitable controlled-release carrier forms include general types now known or heretofore developed in the art. Examples include and are incorporated herein by reference, but are not limited to, hydrophilic polymers as disclosed in U.S. Patent Application Publication No. 2004/0156899, multi-layer release beads as disclosed in U.S. Patent No. 6,673,367, controlled-release beads as disclosed in U.S. Patent No. 6,770,295, coated tablets as disclosed in U.S. Patent Nos. 4,990,535 and 5,100,675, matrix core tablets as disclosed in U.S. Patent No. 5,314,697, bilayer tablets as disclosed in WO 01/45676, controlled-release beads as disclosed in U.S. Patent No. 6,630,162, and osmotic dosage formulations as disclosed in U.S. Patent Nos. 4,777,049, 4,851 ,229, and 5,178,867.
- the controlled-release carrier is a swellable polymer.
- the swellable polymer is a biocompatible or bioerodible, hydrophilic polymer, preferably a cellulosic polymer.
- the term "hydrophilic” is generally defined in terms of a partition coefficient P, which is the ratio of the equilibrium concentration of a compound in an organic phase to that in an aqueous phase.
- a hydrophilic compound has a P value less than 1.0, typically less than about 0.5, where P is the partition coefficient of the compound between octanol and water. Hydrophilic polymeric carriers are thus compatible with aqueous fluids such as those present in the human body.
- polymer refers to a molecule containing a plurality of covalently attached monomer units, and includes branched, dendrimeric and star polymers as well as linear polymers.
- the term also includes both homopolymers and copolymers, e.g., random copolymers, block copolymers and graft copolymers, as well as uncrosslinked polymers and slightly to moderately to substantially crosslinked polymers.
- swellable and “bioerodible” are used to refer to the preferred polymers herein, with “swellable” polymers being those that are capable of absorbing water and physically swelling as a result, with the extent to which a polymer can swell being determined by the degree of crosslinking, and “bioerodible” or “erodible” polymers referring to polymers that slowly dissolve and/or gradually hydrolyze in an aqueous fluid, and/or that physically erodes as a result of movement within the stomach or gastrointestinal tract.
- Polymers suitable for use in the present invention are those that both swell upon absorption of gastric fluid and gradually erode over a time period of hours. Erosion initiates simultaneously with the swelling process, upon contact of the surface of the dosage formulation with gastric fluid. Erosion reflects the dissolution of the polymer beyond the polymer gel-solution interface where the polymer has become sufficiently dilute that it can be transported away from the dosage formulation by diffusion or convection. This may also depend on the hydrodynamic and mechanical forces present in the gastrointestinal tract during the digestive process. While swelling and erosion occur at the same time, it is preferred herein that drug release should be erosion-controlled, meaning that the selected polymer should be such that complete drug release occurs primarily as a result of erosion rather than swelling and dissolution. However, swelling should take place at a rate that is sufficiently fast to allow the tablet to be retained in the stomach. At minimum, for an erosional gastric retentive dosage formulation, there should be an extended period during which the dosage formulation maintains its size before it is diminished by erosion.
- Suitable polymers for use in the present dosage formulations may be linear, branched, dendrimeric, or star polymers, and include synthetic hydrophilic polymers as well as semi-synthetic and naturally occurring hydrophilic polymers.
- the polymers may be homopolymers or copolymers, if copolymers, either random copolymers, block copolymers or graft copolymers.
- Synthetic hydrophilic polymers useful herein include, but are not limited to: polyalkylene oxides, particularly poly(ethylene oxide), polyethylene glycol and poly(ethylene oxide)-poly(propylene oxide) copolymers; cellulosic polymers; acrylic acid and methacrylic acid polymers, copolymers and esters thereof, preferably formed from acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and copolymers thereof, with each other or with additional acrylate species such as aminoethyl acrylate; maleic anhydride copolymers; polymaleic acid; poly(acrylamides) such as polyacrylamide per se, poly(methacrylamide), poly(dimethylacrylamide), and poly(N-isopropyl-acrylamide); poly(olefinic alcohol) such as polyvinyl alcohol); poly(N-vinyl lactams) such as polyvinyl pyrrolidone
- cellulosic polymer is used herein to denote a linear polymer of anhydroglucose.
- Cellulosic polymers that can be used advantageously in the present dosage formulations include, without limitation, hydroxymethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, hydroxypropyl methylcellulose, methylcellulose, ethylcellulose, cellulose acetate, cellulose acetate phthalate, cellulose acetate trimellitate, hydroxypropyl methylcellulose phthalate, hydroxypropylcellulose phthalate, cellulose hexahydrophthalate, cellulose acetate hexahydrophthalate, carboxymethylcellulose, carboxymethylcellulose sodium, and microcrystalline cellulose.
- Preferred cellulosic polymers are alkyl-substituted cellulosic polymers that ultimately dissolve in the Gl tract in a predictably delayed manner.
- Preferred alkyl-substituted cellulose derivatives are those substituted with alkyl groups of 1 to 3 carbon atoms each. Examples are methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, and carboxymethylcellulose and mixtures thereof.
- one class of preferred alkyl-substituted celluloses includes those whose viscosity is within the range of about 50 to about 110,000 centipoise as a 2% aqueous solution at 2O 0 C.
- Another class includes those whose viscosity is within the range of about 800 to about 6,000 centipoise as a 1 % aqueous solution at 2O 0 C.
- Particularly preferred alkyl-substituted celluloses are hydroxyethylcellulose and hydroxypropylmethylcellulose.
- a presently preferred hydroxyethylcellulose is NATRASOL ® 250HX NF (National Formulary), available from Aqualon Company, Wilmington, Del., USA.
- Suitable polymers also include naturally occurring hydrophilic polymers such as, by way of example, proteins such as collagen, fibronectin, albumins, globulins, fibrinogen, fibrin and thrombin; aminated polysaccharides, particularly the glycosaminoglycans, e.g., hyaluronic acid, chitin, chondroitin sulfate A, B, or C, keratin sulfate, keratosulfate and heparin; guar gum; xanthan gum; carageenan; alginates; pectin; and activated polysaccharides such as dextran and starches.
- proteins such as collagen, fibronectin, albumins, globulins, fibrinogen, fibrin and thrombin
- aminated polysaccharides particularly the glycosaminoglycans, e.g., hyaluronic acid, chitin, chondroitin
- the polymer may include biodegradable segments and blocks, either distributed throughout the polymer's molecular structure or present as a single block, as in a block copolymer.
- Biodegradable segments are those that degrade so as to break covalent bonds.
- biodegradable segments are segments that are hydrolyzed in the presence of water.
- Biodegradable segments may be composed of small molecular segments such as ester linkages, anhydride linkages, ortho ester linkages, ortho carbonate linkages, amide linkages, phosphonate linkages, etc.
- Any polymer or polymers of the matrix may also be crosslinked, with the degree of crosslinking directly affecting the rate of polymer swelling as well as the erosion rate. That is, a polymer having a higher degree of crosslinking will exhibit less swelling and slower erosion than a polymer having a lower degree of crosslinking.
- Crosslinked polymers may be prepared using the above-mentioned exemplary polymers using conventional crosslinking procedures (e.g., chemical crosslinking with an added crosslinking agent, photolytically induced crosslinking, etc.), or the polymers may be obtained commercially in crosslinked form.
- the water-swellable polymers can be used individually or in combination. Certain combinations will often provide a more controlled release of the drug than their components when used individually. Examples include, but are not limited to, the following: a cellulosic polymer combined with a gum, such as hydroxyethylcellulose or hydroxypropylcellulose combined with xanthan gum; a polyalkylene oxide combined with a gum, such as poly(ethylene oxide) combined with xanthan gum; and a polyalkylene oxide combined with a cellulosic polymer, such as poly(ethylene oxide) combined with hydroxyethylcellulose or hydroxypropylcellulose.
- a cellulosic polymer combined with a gum such as hydroxyethylcellulose or hydroxypropylcellulose
- a polyalkylene oxide combined with a gum such as poly(ethylene oxide) combined with xanthan gum
- a polyalkylene oxide combined with a cellulosic polymer such as poly(ethylene oxide) combined with hydroxyethyl
- Combinations of different poly(ethylene oxide)s are also contemplated, with polymers of different molecular weights contributing to different dosage formulation characteristics.
- a very high molecular weight poly(ethylene oxide) such as Polyox ® 303 (with a number average molecular weight of 7 million) or Polyox ® Coag (with a number average molecular weight of 5 million) may be used to significantly enhance diffusion relative to disintegration release by providing high swelling as well as tablet integrity.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Virology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Abstract
L'invention concerne des formulations pharmaceutiques à libération contrôlée qui contiennent au moins un composé de formule (I) à (XXVI), un excipient à libération contrôlée ainsi que des méthodes de traitement faisant intervenir ces formulations.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68686105P | 2005-06-02 | 2005-06-02 | |
PCT/US2006/020969 WO2006130607A2 (fr) | 2005-06-02 | 2006-05-31 | Formulation a liberation controlee |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1898941A2 true EP1898941A2 (fr) | 2008-03-19 |
Family
ID=37482224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06760559A Withdrawn EP1898941A2 (fr) | 2005-06-02 | 2006-05-31 | Formulation a liberation controlee pour le traitement de maladies liees au virus de la hepatite c |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1898941A2 (fr) |
JP (1) | JP2008545748A (fr) |
AU (1) | AU2006252623A1 (fr) |
CA (1) | CA2611145A1 (fr) |
NZ (1) | NZ563369A (fr) |
WO (1) | WO2006130607A2 (fr) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY140680A (en) | 2002-05-20 | 2010-01-15 | Bristol Myers Squibb Co | Hepatitis c virus inhibitors |
EP2049474B1 (fr) | 2006-07-11 | 2015-11-04 | Bristol-Myers Squibb Company | Inhibiteurs du virus de l'hépatite c |
US8343477B2 (en) | 2006-11-01 | 2013-01-01 | Bristol-Myers Squibb Company | Inhibitors of hepatitis C virus |
US7772180B2 (en) | 2006-11-09 | 2010-08-10 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7763584B2 (en) | 2006-11-16 | 2010-07-27 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7888464B2 (en) | 2006-11-16 | 2011-02-15 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8003604B2 (en) | 2006-11-16 | 2011-08-23 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US20090111757A1 (en) * | 2007-10-25 | 2009-04-30 | Taigen Biotechnology Co., Ltd. | Hcv protease inhibitors |
US8202996B2 (en) | 2007-12-21 | 2012-06-19 | Bristol-Myers Squibb Company | Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N- ((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide |
AU2008340261C1 (en) | 2007-12-21 | 2015-12-10 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
NZ586231A (en) | 2007-12-21 | 2012-12-21 | Avila Therapeutics Inc | HCV protease inhibitors comprising a functionalised proline derivative |
US8293705B2 (en) | 2007-12-21 | 2012-10-23 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
US8309685B2 (en) | 2007-12-21 | 2012-11-13 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US8163921B2 (en) | 2008-04-16 | 2012-04-24 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8044023B2 (en) | 2008-05-29 | 2011-10-25 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US7964560B2 (en) | 2008-05-29 | 2011-06-21 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
AR072991A1 (es) * | 2008-08-07 | 2010-10-06 | Schering Corp | Formulaciones farmaceuticas de un inhibidor de la enzima proteasa de hcv en una dispersion molecular solida |
US8188137B2 (en) | 2008-08-15 | 2012-05-29 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
US8207341B2 (en) | 2008-09-04 | 2012-06-26 | Bristol-Myers Squibb Company | Process or synthesizing substituted isoquinolines |
UY32099A (es) | 2008-09-11 | 2010-04-30 | Enanta Pharm Inc | Inhibidores macrocíclicos de serina proteasas de hepatitis c |
US8044087B2 (en) | 2008-09-29 | 2011-10-25 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8563505B2 (en) | 2008-09-29 | 2013-10-22 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8283310B2 (en) | 2008-12-15 | 2012-10-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US8232246B2 (en) | 2009-06-30 | 2012-07-31 | Abbott Laboratories | Anti-viral compounds |
SI2477980T1 (sl) | 2009-09-15 | 2017-01-31 | Taigen Biotechnology Co., Ltd. | Inhibitorji HCV proteaze |
CA2822556A1 (fr) | 2010-12-30 | 2012-07-05 | Enanta Pharmaceuticals, Inc | Inhibiteurs macrocycliques de serine protease d'hepatite c |
CN103380132B (zh) | 2010-12-30 | 2016-08-31 | 益安药业 | 菲啶大环丙型肝炎丝氨酸蛋白酶抑制剂 |
US8957203B2 (en) | 2011-05-05 | 2015-02-17 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
US10201584B1 (en) | 2011-05-17 | 2019-02-12 | Abbvie Inc. | Compositions and methods for treating HCV |
US8691757B2 (en) | 2011-06-15 | 2014-04-08 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
EA025560B1 (ru) | 2012-10-19 | 2017-01-30 | Бристол-Майерс Сквибб Компани | Ингибиторы вируса гепатита с |
US9643999B2 (en) | 2012-11-02 | 2017-05-09 | Bristol-Myers Squibb Company | Hepatitis C virus inhibitors |
WO2014070964A1 (fr) | 2012-11-02 | 2014-05-08 | Bristol-Myers Squibb Company | Inhibiteurs du virus de l'hépatite c |
WO2014071007A1 (fr) | 2012-11-02 | 2014-05-08 | Bristol-Myers Squibb Company | Inhibiteurs du virus de l'hépatite c |
EP2914614B1 (fr) | 2012-11-05 | 2017-08-16 | Bristol-Myers Squibb Company | Inhibiteurs du virus de l'hépatite c |
WO2014137869A1 (fr) | 2013-03-07 | 2014-09-12 | Bristol-Myers Squibb Company | Inhibiteurs du virus de l'hépatite c |
CN103387510B (zh) * | 2013-08-08 | 2015-09-09 | 苏州永健生物医药有限公司 | 一种β-氨基-alpha-羟基环丁基丁酰胺盐酸盐的合成方法 |
WO2015103490A1 (fr) | 2014-01-03 | 2015-07-09 | Abbvie, Inc. | Formes galéniques antivirales solides |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7244721B2 (en) * | 2000-07-21 | 2007-07-17 | Schering Corporation | Peptides as NS3-serine protease inhibitors of hepatitis C virus |
DK1385870T3 (da) * | 2000-07-21 | 2010-07-05 | Schering Corp | Peptider som inhibitorer af NS3-serinprotease fra hepatitis C-virus |
WO2003062228A1 (fr) * | 2002-01-23 | 2003-07-31 | Schering Corporation | Composes de proline utilises en tant qu'inhibiteurs de la serine protease ns3 dans le traitement d'une infection par le virus de l'hepatite c |
WO2004113272A1 (fr) * | 2003-06-17 | 2004-12-29 | Schering Corporation | Procede et intermediaires de preparation de 3-(amino)-3-cyclobutylmethyl-2-hydroxy-propionamide ou leurs sels |
CN101823965B (zh) * | 2003-06-17 | 2012-12-19 | 默沙东公司 | 制备(1r,2s,5s)-6,6-二甲基-3-氮杂双环[3,1,0]己烷-2-羧酸酯或其盐的方法和中间体 |
CN1867579A (zh) * | 2003-08-26 | 2006-11-22 | 先灵公司 | 丙肝病毒的新的肽模拟物ns3-丝氨酸蛋白酶抑制剂 |
EP1730165A1 (fr) * | 2004-02-27 | 2006-12-13 | Schering Corporation | Inhibiteurs de la protease ns3 du virus de l'hepatite c |
CA2557301A1 (fr) * | 2004-02-27 | 2005-09-15 | Schering Corporation | Groupes cyclobutenedione contenant des composes servant d'inhibiteurs a la serine protease ns3 du virus de l'hepatite c |
CA2557495C (fr) * | 2004-02-27 | 2014-04-15 | Schering Corporation | Composes soufres en tant qu'inhibiteurs de la protease serine ns3 du virus de l'hepatite c |
ES2349328T3 (es) * | 2004-02-27 | 2010-12-30 | Schering Corporation | Nuevos compuestos como inhibidores de la serina proteasa ns3 del virus de la hepatitis c. |
CA2557247A1 (fr) * | 2004-02-27 | 2005-09-22 | Schering Corporation | Nouveaux composes en tant qu'inhibiteurs de la protease serine ns3 du virus de l'hepatite c |
US7173057B2 (en) * | 2004-02-27 | 2007-02-06 | Schering Corporation | Ketoamides with cyclic P4'S as inhibitors of NS3 protease of hepatitis C virus |
JP2008511633A (ja) * | 2004-08-27 | 2008-04-17 | シェーリング コーポレイション | C型肝炎ウィルスns3セリンプロテアーゼの阻害因子としてのアシルスルホンアミド化合物 |
-
2006
- 2006-05-31 CA CA002611145A patent/CA2611145A1/fr not_active Abandoned
- 2006-05-31 AU AU2006252623A patent/AU2006252623A1/en not_active Abandoned
- 2006-05-31 JP JP2008514780A patent/JP2008545748A/ja active Pending
- 2006-05-31 EP EP06760559A patent/EP1898941A2/fr not_active Withdrawn
- 2006-05-31 WO PCT/US2006/020969 patent/WO2006130607A2/fr active Application Filing
- 2006-05-31 NZ NZ563369A patent/NZ563369A/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO2006130607A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2006130607A2 (fr) | 2006-12-07 |
JP2008545748A (ja) | 2008-12-18 |
AU2006252623A1 (en) | 2006-12-07 |
WO2006130607A3 (fr) | 2007-09-13 |
NZ563369A (en) | 2011-03-31 |
CA2611145A1 (fr) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8119602B2 (en) | Administration of HCV protease inhibitors in combination with food to improve bioavailability | |
US20060276406A1 (en) | Methods of treating hepatitis C virus | |
US20060275366A1 (en) | Controlled-release formulation | |
US20070237818A1 (en) | Controlled-release formulation of HCV protease inhibitor and methods using the same | |
EP1898941A2 (fr) | Formulation a liberation controlee pour le traitement de maladies liees au virus de la hepatite c | |
US20060287248A1 (en) | Asymmetric dosing methods | |
US20060276404A1 (en) | Medicaments and methods combining a HCV protease inhibitor and an AKR competitor | |
US20060276407A1 (en) | Methods of treating hepatitis C virus | |
CA2647158C (fr) | Combinaisons d'un ou plusieurs inhibiteurs de la protease du vhc et d'un ou plusieurs inhibiteurs de cyp3a4, et methodes de traitement associees | |
US20070021351A1 (en) | Liver/plasma concentration ratio for dosing hepatitis C virus protease inhibitor | |
US20070274951A1 (en) | Combinations comprising HCV protease inhibitor(s) and HCV polymerase inhibitor(s), and methods of treatment related thereto | |
US20070207949A1 (en) | Medicaments and methods combining a HCV protease inhibitor and an AKR competitor | |
US20070232527A1 (en) | Medicaments and methods combining a HCV protease inhibitor and an AKR competitor | |
US20060252698A1 (en) | Compounds for inhibiting cathepsin activity | |
US7772178B2 (en) | Pharmaceutical formulations and methods of treatment using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071231 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17Q | First examination report despatched |
Effective date: 20080317 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090818 |