EP1895144B1 - Gasleck-Diagnose - Google Patents

Gasleck-Diagnose Download PDF

Info

Publication number
EP1895144B1
EP1895144B1 EP20060120073 EP06120073A EP1895144B1 EP 1895144 B1 EP1895144 B1 EP 1895144B1 EP 20060120073 EP20060120073 EP 20060120073 EP 06120073 A EP06120073 A EP 06120073A EP 1895144 B1 EP1895144 B1 EP 1895144B1
Authority
EP
European Patent Office
Prior art keywords
pump
gas
performance
tank assembly
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060120073
Other languages
English (en)
French (fr)
Other versions
EP1895144A1 (de
Inventor
Olof Lindgarde
Krister Johansson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP08105249.0A priority Critical patent/EP1998037B1/de
Priority to EP20060120073 priority patent/EP1895144B1/de
Priority to DE200660013630 priority patent/DE602006013630D1/de
Publication of EP1895144A1 publication Critical patent/EP1895144A1/de
Application granted granted Critical
Publication of EP1895144B1 publication Critical patent/EP1895144B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0818Judging failure of purge control system having means for pressurising the evaporative emission space

Definitions

  • the present relation relates to a method for estimating a leakage area in a vehicle tank assembly according to the preamble of claim 1 and to a method of estimating a performance from a plurality of pump assemblies and/or at least one pump assembly at different time periods according to the preamble of claim 25.
  • Vehicles for example cars, are generally equipped with at least one vehicle tank assembly comprising a tank adapted for storing a fluid, for example fuel for powering the vehicle. Furthermore, the vehicle tank assembly generally comprises a connector by which a content of the tank may be supplied to a receiving part of the vehicle. If the tank is adapted for storing fuel, an internal combustion engine of the vehicle is generally supplied with the fuel through the aforementioned connector.
  • the fluid stored in the tank may be volatile, hence a leak in the vehicle tank assembly at a location above the actual fluid level may result in that evaporated fluid may exit the tank assembly and enter the surrounding atmosphere. If the evaporated fluid comprises noxious particles, such as hydrocarbons, the evaporated fluid may be harmful both to the environment in the vicinity of the vehicle tank assembly, as well as to the global environment.
  • the leakage test can be performed with equipment provided with the vehicle itself, i.e. a leakage test can be performed without having to visit a service facility or similar.
  • Prior art teaches the use of several leakage testing methods, but they generally require a large amount of measurement test results and generally only determine if a leakage is present or not, based on comparing the test results with empirically obtained reference values.
  • the initial gas volume of the vehicle tank assembly being the total volume of the tank assembly minus the volume of the liquid stored within the tank assembly, has to be known prior to performing a leakage test. Determining the initial gas volume requires additional metering devices which may be required to provide results with an accuracy which is similar to the accuracy of the rest of the leakage test equipment. As such, a regular tank gauge may not be sufficiently accurate and thus there may be a need for introducing additional expensive metering devices in the vehicle tank assembly.
  • US 2005/0044937 discloses fuel vapor leakage check module has a canister port which is provided so that the port can be opened to the air and is connected to the interior of a fuel tank through a canister for absorbing fuel vapor produced in the fuel tank.
  • a pump depressurizes or pressurizes the interior of the fuel tank through the canister port.
  • a connecting passage which is coaxially provided in the canister port, is connected to the canister port. The connecting passage is depressurized or pressurized by the pump.
  • a standard orifice is coaxially provided in the connecting passage and reduces the passage area of the connecting passage.
  • US 6,082,189 discloses that a tank venting system is evacuated by the negative pressure prevailing in the intake pipe of the internal combustion engine.
  • a regression calculation based on a physical model which simulates the pressure variation in the event of a leak in the tank venting system, on the basis of a gas mass flow flowing through an opening, supplies a parameter which describes the curve variation of the pressure during the test for gassing out fuel and during the diagnosis.
  • the parameter contains the information about the leak area and takes into account external influences that interfere with the signal evaluation.
  • US 2004/0226347 discloses a fuel system with a pressure-sensitive monitor accumulates multiple pressure-related sample points and estimates the general trend of pressure change in a fuel system over time, thereby detecting the presence or absence of a fuel vapor leak in the fuel system.
  • EP 1 510 804 discloses a method for diagnosing a leakage in a vessel, which vessel is provided with an electric pump for pressurising the vessel, a sensor for measuring a drive current used for driving the pump and generating a current signal, an electronic control unit for sampling, storing and analysing said drive current signal.
  • US 2002/0011094 discloses a method and sensor or sensor subsystem permit improved evaporative leak detection in an automotive fuel system.
  • the sensor or sensor subsystem computes temperature-compensated pressure values, thereby eliminating or reducing false positive or other adverse results triggered by temperature changes in the fuel tank.
  • the temperature-compensated pressure measurement is then available for drawing an inference regarding the existence of a leak with reduced or eliminated false detection arising as a result of temperature fluctuations.
  • a first object of the invention is to provide a leakage testing method, wherein the area of a leakage is estimated.
  • a second object of the invention is to provide a leakage testing method, in which the initial gas volume of the vehicle tank assembly does not need to be known.
  • a third object of the invention is to provide a leakage testing method, which may be performed under a plurality of different testing conditions, for example at different temperatures and/or different degrees of fullness of liquid in the tank assembly.
  • a fourth object of the invention is to provide a leakage testing method, in which additional disturbances of the measurements, for instance induced by additional components of the tank assembly, such as a canister, may be easily accounted for.
  • At least one of the aforementioned objects is achieved by a method for estimating a leakage area in a vehicle tank assembly as set out in appended claim 1.
  • the invention relates to a method for estimating a leakage area in a vehicle tank assembly.
  • the tank assembly comprises a tank, a gas pump in fluid communication with the rest of the tank assembly and means for determining a pressure in the tank assembly and a gas mass flow through the gas pump.
  • the method comprises the step of varying the pressure in the tank assembly by applying the gas mass flow through the gas pump during an area estimation time period.
  • the method further comprises the steps of:
  • a leakage area may be unambiguously estimated. Furthermore, since the estimation is performed on the basis of an instantaneous gas flow relation for a plurality of time instants, a reliable estimate of the leakage area may be obtained.
  • a further embodiment of the inventive method further comprises the feature that the estimation of the leakage area is executed by arranging the instantaneous gas mass flow relations of the gas in an equations system and determining the leakage area by utilizing a least-squares method.
  • a least-squares method is an efficient method of estimating a parameter in an over-determined equations system. Furthermore, the average square error of the area estimate is minimized when utilizing the least-squares method.
  • Another embodiment of the inventive method further comprises the aspect that the arrangement of the gas mass flow relation of the gas is solved by utilizing a recursive least-squares method.
  • Utilizing a recursive least-squares method results in a leakage area estimation method which requires a minimum of stored data. As such, if the method is implemented on e.g. an electronic control unit, a need of memory capacity of the control unit is kept to a minimum.
  • Another embodiment of the inventive method further includes each instantaneous gas mass flow relation being an equality based on an ideal gas law.
  • the ideal gas law is in many applications a reasonably good approximation of the condition of the gas within the tank assembly, while still being sufficiently simple in order to be used for implementing a relatively simple leakage area estimation method.
  • a first side of the equality comprises a first entity minus a second entity, wherein
  • the leakage flow is determined by a leakage measure, wherein the leakage measure is a product of: the unknown leakage area and the value of a leakage function, wherein the leakage function is a function of at least the pressure in the tank assembly.
  • Another embodiment of the inventive method further includes the leakage function further being a function of the pressure of a medium surrounding the tank assembly and/or the temperature of the gas in the tank assembly and/or a temperature of the surrounding medium. Incorporating any of the above mentioned entities in the estimate of the leakage function may result in an enhanced estimate of the leakage area.
  • a second side of the equality comprises a third entity, wherein
  • a further embodiment of the inventive method further includes the second side of the equality comprising a fourth entity, subtracted from said third entity, wherein
  • the aforementioned change in volume is modelled as a function of at least the gas temperature and pressure in the tank assembly.
  • an estimate of the change in volume may be obtained without any need of directly measuring changes in dimensions of the tank assembly.
  • Yet another embodiment of the inventive method comprises the feature that the tank assembly comprises a canister in fluid communication with the tank, where a fifth entity is added to the first side of the equality, wherein
  • a sixth entity is added to the first side of the equality, wherein
  • a further embodiment of the inventive method further requires that the gas temperature in the tank assembly is assumed to be constant throughout the area estimation time period. This assumption simplifies the analysis in the leakage area estimation method and also significantly reduces the need of temperature measurements in the tank assembly.
  • the gas pump is supplied with electrical power, wherein each of the change in pressure and the gas mass flow through the gas pump, respectively, is estimated by a performance function of an applied pump electrical current, each performance function having a set of performance coefficients.
  • a further embodiment of the inventive method further comprises the feature that each of the performance functions is estimated by an affine performance function.
  • An affine performance function comprises few parameters and fitting data to an affine function may be performed by utilizing one of a plurality conventional techniques, such as a linear regression method.
  • the performance coefficients of each of the affine performance functions are dependent on at least a voltage supplied to the gas pump. Since the voltage may vary between different tank assemblies, for example between tank assemblies in different vehicles, and the electrical power supplied to the gas pump is proportional to the voltage, the estimate of the performance of a gas pump is enhanced if the voltage is taken into account.
  • a further embodiment of the inventive method stipulates that the tank assembly comprises a reference opening and a gas valve for controlling the gas mass flow, the valve being operable to guide the gas mass flow at least either through the reference opening or to the tank assembly, wherein the performance coefficients of the performance functions are established by a coefficient estimation method comprising the step of operating the valve in order to guide the flow through the reference opening and determining a corresponding pump reference electrical current and determining the performance coefficients of each of the performance functions depending on the corresponding pump reference electrical current.
  • Another embodiment of the inventive method includes the performance coefficients of the performance functions being established by a coefficient estimation method comprising the step of operating the valve in order to guide the flow to the tank assembly and determining an initial corresponding pump minimum electrical current, and determining the performance coefficients of each of the performance functions dependent on the corresponding pump minimum electrical current. Utilizing the aforementioned method will further enhance the opinion of the condition of the specific gas pump and the information concerning the pump minimum electrical current may thus preferably be used when determining the performance coefficient by quantitatively using the acquired knowledge regarding the pump minimum electrical current.
  • the invention further relates to a method for testing leakage in a vehicle tank assembly, wherein the leakage testing method comprises the step of estimating a leakage area according to any of the aforementioned inventive methods.
  • the leakage testing method of the invention instead of comparing a measured state of the gas within the tank assembly to empirically obtained reference states and further, from the result of the comparison determining whether a leakage with at least a predetermined area is present or not, the leakage testing method of the invention instead first determines an estimate of the leakage area.
  • Another embodiment of the inventive leakage testing method further comprises the step of comparing the estimated leakage area to a predetermined threshold value.
  • a predetermined threshold value For example the guidelines for a maximum allowable leakage area in a tank assembly change due to e.g. legal requirements, the method of the invention has only to be updated by introducing a new threshold value instead of having to generate a new set of empirically obtained reference data.
  • a further embodiment of the inventive leakage testing method further comprises the step of transmitting a warning signal if the estimated leakage area exceeds the predetermined threshold value and/or the step of transmitting an acceptance signal if the estimated leakage area is lower than the predetermined threshold value.
  • the invention further relates to a computer program product, comprising a computer program containing computer program code executable in a computer or a processor to implement at least one of the steps of any of the aforementioned methods.
  • the product is stored on a computer-readable medium or a carrier wave.
  • the invention further relates to an electronic control unit comprising the aforementioned computer program product.
  • the electronic control unit is further arranged to execute a previously disclosed leakage area estimation method and/or a leakage testing method
  • the invention further relates to a vehicle, comprising the aforementioned electronic control.
  • a fifth object of the invention is to provide a method for estimating a performance of a pump assembly as a function of the applied pump electrical current, wherein differences between different pumps of the same model and/or aging of a pump are accounted for.
  • This fifth object is achieved by a performance estimating function defined in the attached claim.
  • the invention further relates to a method of estimating a performance from a plurality of pump assemblies and/or at least one pump assembly at different time periods.
  • Each pump assembly comprises a gas pump, wherein the performance is indicative of at least a gas mass flow through the gas pump.
  • each pump assembly comprises a reference opening and a gas valve for controlling the gas mass flow, the valve being operable to guide the gas mass flow at least either through the reference opening or through an outlet opening.
  • the gas pump is supplied with electrical power.
  • the method comprises the steps of:
  • a further embodiment of the inventive performance testing method further comprises the step of estimating each of the performance functions by an affine performance function.
  • Another embodiment of the inventive performance testing method further comprises the step of estimating the coefficients to each of the affine performance functions by utilizing a least-squares method.
  • a further embodiment of the inventive performance testing method further comprises the step of estimating the coefficients to each of the affine performance functions by utilizing a recursive least-squares method.
  • the pump assembly forms a part of a vehicle tank assembly, the pump assembly being in fluid communication with the rest of the tank assembly and the pump assembly performance comprises a resulting change in pressure in the tank assembly.
  • an output comprising the gas mass flow through the pump, from a pump assembly may be estimated.
  • a method of estimating the output, based on the performance coefficient function comprises the steps of:
  • the output estimated may preferably comprise a change in pressure in a tank assembly if such a tank assembly is in fluid communication with the pump assembly.
  • Fig. 1 illustrates a vehicle tank assembly 10 on which at least the leakage area estimation method of the invention may preferably be applied.
  • the tank assembly 10 comprises a tank 12 which is adapted to store a liquid 14, such as fuel. Due to e.g. improper handling of the vehicle tank assembly, the tank assembly 10, above a liquid level 16, may be provided with a leakage opening 18 having a leakage area A leak . It has been observed that one frequent location of the leakage opening 18 is in the vicinity of a filler cap 22. Thus, evaporated liquid from the stored liquid 14 may exit the tank assembly 10 and enter the surrounding atmosphere.
  • the tank assembly 10 optionally comprises a canister 24 in fluid communication with the tank 12. Furthermore, the tank assembly preferably comprises a gas pump 26. However, in some implementations of the tank assembly 10 on which the method of the invention is preferably applied, the gas pump 26 may preferably be replaced by other gas pressurising means, for example a gas tank having an initial gas pressure which is different than the initial pressure in the rest of the tank assembly 10. The gas pump 26 is preferably adapted to provide a gas mass flow into, or out of, the tank assembly 10. The tank assembly 10 preferably comprises metering means for determining e.g. a pressure in the tank assembly. In the tank assembly 10 illustrated in Fig.
  • the metering means comprises a pressure gauge 30 within the tank assembly 10, but the metering means may be constituted by other gauges, and in some implementations of the tank assembly 10, additional physical properties may preferably be measured, such as a gas mass flow through the gas pump and the temperature within and/or outside of the tank assembly 10.
  • the invention relates to a method for estimating the leakage area in a vehicle tank assembly 10 by varying the pressure in the tank assembly by applying the gas mass flow through the gas pump 26 during an area estimation time period.
  • the method further comprises the steps of establishing an instantaneous gas mass flow relation of the gas in the tank assembly 10 in which relation the leakage area A leak is an unknown parameter.
  • the aforesaid establishment is performed for each of a plurality of time instants during the area estimation time period, hence a plurality of gas mass flow relations are obtained.
  • the method further comprises the step of estimating the leakage area A leak by utilizing the instantaneous gas mass flow relations.
  • the method of the invention may be carried out by either increasing or decreasing the pressure within the tank assembly 10.
  • the gas pumped by utilizing the gas pump 26 is preferably air.
  • estimation of the leakage area A leak is executed by arranging the instantaneous gas mass flow relation of the gas in an equations system and determining the leakage area A leak by utilizing a least-squares method.
  • the arrangement of the gas mass flow relation of the gas is solved by utilizing a recursive least-squares method.
  • each of the instantaneous gas mass flow relation is an equality based on an ideal gas law.
  • a first side of the equality comprises a first entity minus a second entity.
  • the first entity comprises a product of: a change of pressure ⁇ p in the tank assembly 10 from the start of the area estimation time period to the time instant t , and the initial gas volume V 0 of the tank assembly 10.
  • the second entity comprises a product of: the accumulated leakage flow q leak through the leakage 18 multiplied by a temperature T of the gas in the tank assembly during a time period from the start of the area estimation time period t 0 to the time instant t ; and the specific gas constant r of the gas, wherein in which leakage flow q leak , the leakage area A leak is an unknown parameter.
  • a second side of the equality may comprise a third entity, wherein the third entity comprises a product of: the accumulated gas mass flow q pump from the gas pump 26 multiplied by the temperature T of the gas in the tank assembly 10 during a time period from the start of the area estimation time period to to the time instant t and the specific gas constant r of the gas.
  • the second side of the equality comprises a term which relates to a change in volume of the tank assembly 10.
  • the change in volume may be considered, such that the second side of the equality may comprise a fourth entity, subtracted from said third entity, wherein the fourth entity comprises a product of: the pressure p in the tank assembly 10 at the time instant t and a change in volume ⁇ V of the tank assembly from the start of the area estimation time period to to the time instant t .
  • the abovementioned volume change function may be empirically determined, for instance obtained by pressurizing the tank system for a plurality of different pressures and temperatures and measuring the change in volume.
  • the change in volume for a plurality of different pressures and temperatures may be obtained by structural analyzes, such as FE analyses, of the tank system. Irrespective of how the change in volume as a function of pressure and temperature has been determined, i.e. by experiments or analyses, the results are preferably tabulated and stored in a storage unit.
  • the change in volume for an actual pressure and temperature may be obtained by utilizing an interpolation method on the aforementioned tabulated data.
  • Eq. 12 a gas equality which is valid for a time instant during the area estimation time period, wherein t ⁇ [ t 0 t end ].
  • the parameter ⁇ comprising the sought leakage area A leak
  • the parameter ⁇ can be determined using conventional techniques, such as a least-squares method.
  • a recursive least-squares method is used.
  • a fifth entity is added to the first side of the equality, wherein the fifth entity comprises a product of: an accumulated gas mass flow q canister from the canister 24 multiplied by the temperature T of the gas in the tank assembly 10 during a time period from the start of the area estimation time period t 0 to the time instant t ; and the specific gas constant r of the gas.
  • a sixth entity is added to the first side of the equality, wherein the sixth entity is representative of a pressure change due to evaporation of the liquid and/or dewing of the gas in the tank assembly during a time period from the start of the area estimation time period t 0 to the time instant t .
  • the pressure change is formulated as an additional gas mass flow q evapor .
  • the gas pump 26 of the tank assembly 10 is generally supplied with electrical power.
  • each of the change in pressure ⁇ p and the gas mass flow q pump through the gas pump 26, respectively is in one preferred embodiment of the inventive method estimated by a performance function of an applied pump electrical current I .
  • Each performance function has a set of performance coefficients.
  • gas mass flow q pump is used as an example in the description of the performance estimation portion of the preferred embodiment of the method of the invention. It should however be realized that the description is equally valid for the change in pressure ⁇ p .
  • each, of the performance functions is estimated by an affine performance function.
  • the electrical power is supplied to the gas pump 26 at a predetermined voltage U .
  • the performance of the gas pump 26 may differ for separate voltages U applied.
  • the pump assembly 34 comprises a reference opening 36 and a valve 38 for controlling the gas mass flow q pump .
  • the valve 38 is operable to guide the gas mass flow q pump at least either through the reference opening 36 or to an outlet opening 40 which outlet opening 40 may be in fluid communication with the tank assembly 10.
  • the pump assembly 34 of Fig. 2 further comprises an inlet opening 42 which in some implementations of the pump assembly 34 may be in fluid communication with the surrounding atmosphere.
  • the cross-sectional area of the reference opening 36 is preferably relatively small and is preferably less than 0.5 mm 2 , more preferably less than 0.2 mm 2 .
  • the reference opening 36 may be a cylindrical opening having a diameter of 0.5 mm.
  • the performance coefficients of the performance functions are established by a coefficient estimation method comprising the step of operating the valve 38 in order to guide the gas mass flow q pump through the reference opening 36 and determining a corresponding pump reference electrical current I ref and determining the performance coefficients of each of the performance functions depending on the corresponding pump reference electrical current I ref .
  • the performance estimation may be even further refined by a coefficient estimation method which comprises the step of operating the valve 38 in order to guide the flow q pump to the tank assembly 10 and determining an initial corresponding pump minimum electrical current I min , and determining the performance coefficients of each of the performance functions depending on the corresponding pump minimum electrical current I min .
  • a leakage area A leak may be estimated by utilizing the leakage estimation method and then comparing the estimated leakage area A leak to a predetermined threshold value.
  • the leakage testing method further comprises the step of transmitting a warning signal if the estimated leakage area A leak exceeds the predetermined threshold value and/or the step of transmitting an acceptance signal if the estimated leakage area A leak is lower than the predetermined threshold value.
  • the leakage estimation method and/or the leakage testing method may preferably be implemented in a computer program product.
  • a computer program product may comprise a computer program containing computer program code executable in a computer or a processor to implement at least one of the steps of a aforementioned methods.
  • the computer program product may preferably be stored on a computer-readable medium or a carrier wave.
  • the computer program product may preferably be stored in an electronic control unit (ECU) 32 and the ECU 32 may preferably be located within a vehicle, which vehicle comprises the vehicle tank assembly 10.
  • ECU electronice control unit
  • the method comprises the steps of, for each of a plurality of pump assemblies 34 and/or at least one pump assembly 34 at different time periods:
  • Fig. 3 illustrates the electrical current I applied to the gas pump 26 as a function of time, the pump electrical current I being denoted by lines 44.
  • the pump electrical current I being denoted by lines 44.
  • the valve 38 of the pump assembly 34 may preferably be further operated so that the gas mass flow q pump is guided out of the pump assembly 34. If the initial pressure out of the pump assembly 34 is significantly equal to the pressure at the inlet 42, a pressure difference between the inlet and outlet 42, 40 is substantially zero, resulting in a minimum of applied electrical current / to the pump, as indicated by area C in Fig. 3 .
  • This illustrates additional steps of a further embodiment of the estimation method which comprises the steps of operating the valve 38 in order to guide the flow q pump out of the pump assembly 34 and determining an initial corresponding pump minimum electrical current I min and generating the performance coefficient function, which is dependent on at least the pump minimum electrical current I min .
  • the pump electrical current / may remain at the minimum level or increase with time.
  • An increase in pump electrical current may indicate that the pump assembly is in fluid communication with a closed system, for example a tank assembly 10.
  • the performance coefficients of the affine performance function are preferably estimated by utilizing a least-squares method, more preferably a recursive least-squares method.
  • the aforementioned pump assembly 34 may preferably form a part of a vehicle tank assembly 10, wherein the pump assembly 34 is in fluid communication with the rest of the tank assembly 10. Then, an additional performance of the pump assembly 10 may be a resulting change in pressure ⁇ p in the tank assembly 10 when the pump 26 of the pump assembly 34 is operated.
  • the performance coefficient functions may preferably be used when estimating the output of a pump assembly. However, since this technique has been previously described with respect to the leakage area estimation methods, it will not be further detailed here.
  • gas mass flow relation used in the aforementioned leakage area estimation method could take into account the compressibility of the gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)

Claims (30)

  1. Verfahren zum Schätzen eines Leckbereichs (Aleak) in einer Fahrzeugtankanordnung (10), wobei die Tankanordnung (10) einen Tank (12), eine Gaspumpe (26), die mit dem Rest der Tankanordnung (10) in einer Fluidkommunikation steht, und Mittel (30), um einen Druck (p) in der Tankanordnung (10) und einen Gasmassendurchfluss (qpump) durch die Gaspumpe (26) zu bestimmen, umfasst, wobei das Verfahren die folgenden Schritte umfasst:
    - Verändern des Drucks (p) in der Tankanordnung (10) durch Anwenden des Gasmassendurchflusses (qpump) durch die Gaspumpe (26) während einer Bereichsschätzungs-Zeitperiode;
    dadurch gekennzeichnet, dass das Verfahren die folgenden Schritte umfasst:
    - für jeden von mehreren Zeitpunkten während der Bereichsschätzungs-Zeitperiode Bilden einer momentanen Gasmassendurchfluss-Beziehung des Gases in der Tankanordnung (10), wobei in dieser Beziehung der Leckbereich (Aleak) ein unbekannter Parameter ist; und
    - Schätzen des Leckbereichs (Aleak) durch Verwenden der momentanen Gasmassendurchfluss-Beziehungen.
  2. Verfahren nach Anspruch 1, wobei die Schätzung des Leckbereichs (Aleak) durch Anordnen der momentanen Gasmassendurchfluss-Beziehungen des Gases in einem Gleichungssystem und durch Bestimmen des Leckbereichs (Aleak) durch Verwenden eines Verfahrens der kleinsten Quadrate ausgeführt wird.
  3. Verfahren nach Anspruch 2, wobei die Anordnung der Gasmassendurchfluss-Beziehung des Gases unter Verwendung eines rekursiven Verfahrens der kleinsten Quadrate gelöst wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei jede der momentanen Gasmassendurchfluss-Beziehungen eine Gleichheit ist, die auf einem Gesetz idealer Gase basiert.
  5. Verfahren nach Anspruch 4, wobei eine erste Seite der Gleichheit eine erste Entität minus einer zweiten Entität enthält, wobei
    - die erste Entität ein Produkt enthält aus: einer Druckänderung (Δp) in der Tankanordnung (10) vom Beginn (t0) der Bereichsschätzungs-Zeitperiode zu dem Zeitpunkt (t), und aus dem anfänglichen Gasvolumen (V0) der Tankanordnung (10);
    - die zweite Entität ein Produkt enthält aus: dem akkumulierten Leckdurchfluss (qpump) durch das Leck (18) multipliziert mit einer Temperatur (T) des Gases in der Tankanordnung (10) während einer Zeitperiode vom Beginn (t0) der Bereichsschätzungs-Zeitperiode zu dem Zeitpunkt (t); und aus einer spezifischen Gaskonstante (r) des Gases, wobei in dem Leckdurchfluss (qleak) der Leckbereich (Aleak) ein unbekannter Parameter ist.
  6. Verfahren nach Anspruch 5, wobei der Leckdurchfluss (qleak) durch ein Leckmaß bestimmt wird, wobei das Leckmaß ein Produkt ist aus: dem unbekannten Leckbereich (Aleak) und dem Wert einer Leckfunktion (fleak), wobei die Leckfunktion (fleak) eine Funktion zumindest des Drucks (p) in der Tankanordnung (10) ist.
  7. Verfahren nach Anspruch 6, wobei die Leckfunktion (fleak) ferner eine Funktion des Drucks eines die Tankanordnung (10) umgebenden Mediums und/oder der Temperatur (T) des Gases in der Tankanordnung (10) und/oder einer Temperatur des umgebenden Mediums ist.
  8. Verfahren nach einem der Ansprüche 5 bis 7, wobei:
    - eine zweite Seite der Gleichheit eine dritte Entität enthält, wobei
    • die dritte Entität ein Produkt enthält aus: einem akkumulierten Gasmassendurchfluss (qpump) von der Gaspumpe (26) multipliziert mit der Temperatur (T) des Gases in der Tankanordnung (10) während einer Zeitperiode vom Beginn (t0) der Bereichsschätzungs-Zeitperiode zu dem Zeitpunkt (t); und aus der spezifischen Gaskonstante (r) des Gases.
  9. Verfahren nach Anspruch 8, wobei:
    - die zweite Seite der Gleichheit ferner eine vierte Entität enthält, die von der dritten Entität subtrahiert wird, wobei
    • die vierte Entität ein Produkt enthält aus: dem Druck (p) in der Tankanordnung (10) zum Zeitpunkt (t) und aus einer Volumenänderung (ΔV) in der Tankanordnung (10) vom Beginn (t0) der Bereichsschätzungs-Zeitperiode zu dem Zeitpunkt (t).
  10. Verfahren nach Anspruch 9, wobei die Volumenänderung (ΔV) als eine Funktion wenigstens der Gastemperatur (T) und des Drucks (p) in der Tankanordnung (10) modelliert wird.
  11. Verfahren nach einem der Ansprüche 5 bis 10, wobei die Tankanordnung (10) ferner einen Kanister (24) umfasst, der mit dem Tank (12) in einer Fluidkommunikation steht, wobei zu der ersten Seite der Gleichheit eine fünfte Entität addiert wird, wobei
    - die fünfte Entität ein Produkt enthält aus: dem akkumulierten Gasmassendurchfluss (qcanister) von dem Kanister (24) multipliziert mit der Temperatur (T) des Gases in der Tankanordnung (10) während einer Zeitperiode vom Beginn (t0) der Bereichsschätzungs-Zeitperiode zu dem Zeitpunkt (t) und aus der spezifischen Gaskonstante (r) des Gases.
  12. Verfahren nach einem der Ansprüche 5 bis 11, wobei zu der ersten Seite der Gleichheit eine sechste Entität addiert wird, wobei
    - die sechste Entität eine Druckänderung aufgrund der Verdampfung einer Flüssigkeit (14) und/oder eines Tauens des Gases in der Tankanordnung (10) während einer Zeitperiode vom Beginn (t0) der Bereichsschätzungs-Zeitperiode zu dem Zeitpunkt (t) repräsentiert.
  13. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Gastemperatur (7) in der Tankanordnung (10) während der gesamten Bereichsschätzungs-Zeitperiode als konstant angenommen wird.
  14. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Gaspumpe (26) mit elektrischer Leistung versorgt wird, wobei die Druckänderung (Δp) und der Gasmassendurchfluss (qpump) durch die Gaspumpe (26) jeweils durch eine Leistungsfunktion eines an die Pumpe angelegten elektrischen Stroms (I) geschätzt werden, wobei jede Leistungsfunktion eine Menge von Leistungskoeffizienten besitzt.
  15. Verfahren nach Anspruch 14, wobei jede der Leistungsfunktionen durch eine affine Leistungsfunktion geschätzt wird.
  16. Verfahren nach Anspruch 14 oder 15, wobei die Leistungskoeffizienten jede der affinen Leistungsfunktionen zumindest von einer elektrischen Spannung (U) der Pumpe, die an die Gaspumpe (26) angelegt wird, abhängen.
  17. Verfahren nach einem der Ansprüche 14 bis 16, wobei die Tankanordnung (10) eine Referenzöffnung (36) und ein Gasventil (38) zum Steuern des Gasmassendurchflusses (qpump) umfasst, wobei das Ventil (38) betreibbar ist, um den Gasmassendurchfluss (26) wenigstens entweder durch die Referenzöffnung (36) oder zu der Tankanordnung (10) zu führen, wobei die Leistungskoeffizienten der Leistungsfunktionen durch ein Koeffizientenschätzverfahren gebildet werden, das den Schritt des Betreibens des Ventils (38), um den Durchfluss (qpump) durch die Referenzöffnung (36) zu führen, und des Bestimmens eines entsprechenden elektrischen Referenzstroms (Iref) der Pumpe und des Bestimmens der Leistungskoeffizienten jeder der Leistungsfunktionen in Abhängigkeit von dem entsprechenden elektrischen Referenzstrom (Iref) der Pumpe umfasst.
  18. Verfahren nach einem der Ansprüche 14 bis 17, wobei die Leistungskoeffizienten der Leistungsfunktionen durch ein Koeffizientenschätzverfahren gebildet werden, das den Schritt des Betreibens des Ventils (38), um den Durchfluss (qpump) zu der Tankanordnung (10) zu führen und um einen anfänglichen entsprechenden minimalen elektrischen Strom (Imin) der Pumpe zu bestimmen, und des Bestimmens der Leistungskoeffizienten jeder der Leistungsfunktionen in Abhängigkeit von dem entsprechenden minimalen elektrischen Strom (Imin) der Pumpe umfasst.
  19. Verfahren zum Testen eines Lecks in einer Fahrzeugtankanordnung, wobei das Lecktestverfahren die Schritte des Schätzens eines Leckbereichs (Aleak) nach einem der vorhergehenden Ansprüche umfasst.
  20. Lecktestverfahren nach Anspruch 19, das ferner den Schritt des Vergleichens des geschätzten Leckbereichs (Aleak) mit einem vorgegebenen Schwellenwert umfasst.
  21. Lecktestverfahren nach Anspruch 20, das ferner den Schritt des Sendens eines Warnsignals, falls der geschätzte Leckbereich (Aleak) den vorgegebenen Schwellenwert übersteigt, und/oder den Schritt des Sendens eines Akzeptanzsignals, falls der geschätzte Leckbereich kleiner als der vorgegebene Schwellenwert ist, umfasst.
  22. Computerprogrammprodukt, dadurch gekennzeichnet, dass es ein Computerprogramm umfasst, das Computerprogrammcode enthält, der in einem Computer oder einem Prozessor ausführbar ist, um sämtliche Schritte eines Verfahrens nach einem der Ansprüche 1-21 zu implementieren, wobei das Produkt auf einem computerlesbaren Medium oder einer Trägerwelle gespeichert ist.
  23. Elektronische Steuereinheit (32), dadurch gekennzeichnet, dass sie ein Computerprogrammprodukt nach Anspruch 22 enthält und dazu ausgelegt ist, ein Leckbereich-Schätzverfahren nach einem der Ansprüche 1-18 und/oder ein Lecktestverfahren nach einem der Ansprüche 19-21 auszuführen.
  24. Fahrzeug, dadurch gekennzeichnet, dass es eine elektronische Steuereinheit (32) nach Anspruch 23 enthält.
  25. Verfahren nach einem der Ansprüche 17-18, wobei das Verfahren ferner einen Schritt des Bestimmens der Leistungskoeffizienten für die Druckänderung (Δp) und des Gasmassendurchflusses (qpump) durch Analysieren mehrerer Pumpenanordnungen (34) und/oder wenigstens einer Pumpenanordnung (34) in verschiedenen Zeitperioden umfasst, wobei jede Pumpenanordnung (34) einen Teil einer Fahrzeugtankanordnung (10) bildet und eine Gaspumpe (26) enthält, wobei jede Pumpenanordnung (34) die Referenzöffnung (36) und das Gasventil (38) umfasst, um den Gasmassendurchfluss (qpump) zu steuern, wobei das Ventil (38) betreibbar ist, um den Gasmassendurchfluss (qpump) wenigstens entweder durch die Referenzöffnung (36) oder durch eine Auslassöffnung (40) zu führen,
    dadurch gekennzeichnet, dass das Verfahren die folgenden Schritte umfasst:
    - für jede der mehreren Pumpenanordnung (34) und/oder der wenigstens einen Pumpenanordnung (34) in verschiedenen Zeitperioden:
    • Messen der Leistung für mehrere eingegebene elektrische Ströme (I) der Pumpe;
    • Schätzen der Leistung durch die eingegebenen elektrischen Ströme (I) der Pumpe und dadurch Bestimmen von Leistungskoeffizienten für eine Leistungsfunktion;
    • Betreiben des Ventils (38), um den Durchfluss (qpump) durch die Referenzöffnung (36) zu führen, und Bestimmen des entsprechenden elektrischen Referenzstroms (Iref) der Pumpe;
    - für jeden Leistungskoeffizienten Erzeugen einer Leistungskoeffizientenfunktion, die zumindest von dem elektrischen Referenzstrom (Iref) der Pumpe abhängt.
  26. Verfahren nach Anspruch 25, wobei das Verfahren ferner die folgenden Schritte umfasst:
    - für jede der mehreren Pumpenanordnungen (34) und/oder die wenigstens eine Pumpenanordnung (34) in verschiedenen Zeitperioden:
    • Betreiben des Ventils (38), um den Durchfluss (qpump) durch die Auslassöffnung (40) zu führen, und Bestimmen eines entsprechenden anfänglichen minimalen elektrischen Stroms (Imin) der Pumpe;
    - für jeden Leistungskoeffizienten Erzeugen einer Leistungskoeffizientenfunktion, die zumindest von dem minimalen elektrischen Strom (Imin) der Pumpe abhängt.
  27. Verfahren nach Anspruch 25 oder 26, wobei das Verfahren ferner die folgenden Schritte umfasst:
    - für jede der mehreren Pumpenanordnungen (34) und/oder die wenigstens eine Pumpenanordnung (34) in verschiedenen Zeitperioden:
    • Bestimmen einer elektrischen Spannung (U) der Pumpe;
    - für jeden Leistungskoeffizienten Erzeugen einer Leistungskoeffizientenfunktion, die zumindest von der elektrischen Spannung (U) der Pumpe abhängt.
  28. Verfahren nach einem der Ansprüche 25 bis 27, wobei das Verfahren ferner den folgenden Schritt umfasst:
    - Schätzen jeder der Leistungsfunktionen durch eine affine Leistungsfunktion.
  29. Verfahren nach Anspruch 28, wobei das Verfahren ferner den folgenden Schritt umfasst:
    - Schätzen der Koeffizienten für jede der affinen Leistungsfunktionen durch Verwenden eines Verfahrens der kleinsten Quadrate.
  30. Verfahren nach Anspruch 29, wobei das Verfahren ferner den folgenden Schritt umfasst:
    - Schätzen der Koeffizienten für jede der affinen Leistungsfunktionen durch Verwenden eines rekursiven Verfahrens der kleinsten Quadrate.
EP20060120073 2006-09-04 2006-09-04 Gasleck-Diagnose Expired - Fee Related EP1895144B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08105249.0A EP1998037B1 (de) 2006-09-04 2006-09-04 Diagnose von Gasaustritt
EP20060120073 EP1895144B1 (de) 2006-09-04 2006-09-04 Gasleck-Diagnose
DE200660013630 DE602006013630D1 (de) 2006-09-04 2006-09-04 Gasleck-Diagnose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060120073 EP1895144B1 (de) 2006-09-04 2006-09-04 Gasleck-Diagnose

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP08105249.0A Division EP1998037B1 (de) 2006-09-04 2006-09-04 Diagnose von Gasaustritt
EP08105249.0 Division-Into 2008-09-05

Publications (2)

Publication Number Publication Date
EP1895144A1 EP1895144A1 (de) 2008-03-05
EP1895144B1 true EP1895144B1 (de) 2010-04-14

Family

ID=37836610

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08105249.0A Not-in-force EP1998037B1 (de) 2006-09-04 2006-09-04 Diagnose von Gasaustritt
EP20060120073 Expired - Fee Related EP1895144B1 (de) 2006-09-04 2006-09-04 Gasleck-Diagnose

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08105249.0A Not-in-force EP1998037B1 (de) 2006-09-04 2006-09-04 Diagnose von Gasaustritt

Country Status (2)

Country Link
EP (2) EP1998037B1 (de)
DE (1) DE602006013630D1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021128688B3 (de) * 2021-11-04 2022-11-24 Eagle Actuator Components Gmbh & Co. Kg Modul zur Erfassung einer Leckage einer Anordnung und Verfahren zur Erfassung einer Leckage einer Anordnung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19713085C2 (de) * 1997-03-27 2003-06-12 Siemens Ag Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
US7194893B2 (en) * 1997-10-02 2007-03-27 Siemens Canada Limited Temperature correction method and subsystem for automotive evaporative leak detection systems
US5974861A (en) * 1997-10-31 1999-11-02 Siemens Canada Limited Vapor leak detection module having a shared electromagnet coil for operating both pump and vent valve
US6301955B1 (en) * 1999-01-27 2001-10-16 Siemens Canada Limited Driver circuit for fuel vapor leak detection system
US6216674B1 (en) * 2000-02-22 2001-04-17 Jaguar Cars Limited Fuel system vapor integrity testing with temperature compensation
JP3919059B2 (ja) * 2000-06-14 2007-05-23 スズキ株式会社 内燃機関の空燃比制御装置
JP3876722B2 (ja) * 2001-06-28 2007-02-07 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
DE10204132B4 (de) * 2002-02-01 2012-03-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dichtheitsprüfung eines Behältnisses
DE10209483B4 (de) * 2002-03-05 2006-07-06 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage und Tankentlüftungsanlagen bei Kraftfahrzeugen
JP2004232521A (ja) * 2003-01-29 2004-08-19 Denso Corp 蒸発燃料処理装置のリークチェック装置
JP4117839B2 (ja) * 2003-04-23 2008-07-16 株式会社デンソー エバポガスパージシステムのリーク診断装置
US6880383B2 (en) * 2003-05-14 2005-04-19 General Motors Corporation Apparatus and method for fuel vapor leak detection
JP3923473B2 (ja) * 2003-05-21 2007-05-30 本田技研工業株式会社 蒸発燃料処理装置の故障診断装置
EP1643115A4 (de) * 2003-06-30 2010-07-14 Hitachi Ltd Vorrichtung und verfahren zur diagnose eines verdampfungslecks und steuervorrichtung für verbrennungsmotor
US7137288B2 (en) * 2003-08-25 2006-11-21 Denso Corporation Fuel vapor leak check module
DE60312851T2 (de) * 2003-08-28 2007-12-06 Ford Global Technologies, LLC, Dearborn Verfahren und Vorrichtung zur Leckdiagnose in einem Behälter

Also Published As

Publication number Publication date
EP1998037A3 (de) 2013-05-29
DE602006013630D1 (de) 2010-05-27
EP1998037A2 (de) 2008-12-03
EP1998037B1 (de) 2014-12-10
EP1895144A1 (de) 2008-03-05

Similar Documents

Publication Publication Date Title
CN107152354B (zh) 一种车辆燃油蒸发系统泄漏诊断装置及其诊断方法
US5379638A (en) Method and device for detecting the fluid level in a tank
JP5432986B2 (ja) タンクシステム内の漏れの検出のための方法
US6164123A (en) Fuel system leak detection
EP2666997A1 (de) Verfahren zur Erkennung des Vorhandensein oder Nichtvorhandensein eines Lecks in einem Kraftstoffsystem
US6082189A (en) Method of checking the operational functionality of a tank venting system for a motor vehicle
US6845652B2 (en) Method and device for diagnosing tank leaks using a reference measuring method
JPH07158520A (ja) 蒸発性パージ流量モニタリングシステム
US20030061864A1 (en) Engine off natural vacuum leakage check for onboard diagnostics
US6065335A (en) Method for detecting the fill level quantity of a tank system
US6283098B1 (en) Fuel system leak detection
US20180245545A1 (en) Fuel volatility sensor system
US5265577A (en) Method and arrangement for checking the operability of a tank-venting system
US7036354B2 (en) Trouble diagnostics apparatus for fuel treatment system
US8943878B2 (en) Method and device for detecting the blockage of a gasoline vapor filter purge valve
EP1130247B1 (de) An Bord installierte Diagnosevorrichtung für das Brennstoffsystem eines Fahrzeugs
US20080196482A1 (en) Method and Apparatus For Detecting Tank Leaks
US6880383B2 (en) Apparatus and method for fuel vapor leak detection
EP1895144B1 (de) Gasleck-Diagnose
US11118958B2 (en) System for determining a filling level in a fuel tank
US6216674B1 (en) Fuel system vapor integrity testing with temperature compensation
US20130118234A1 (en) Apparatus for measuring air amount of engine oil and method using the same
EP1510804B1 (de) Verfahren und Vorrichtung zur Leckdiagnose in einem Behälter
CN116067588A (zh) 用于检测装置泄漏的模块
EP2666998A1 (de) Verfahren und System zur schnellen Erkennung des Nichtvorhandenseins eines Lecks in einem Kraftstoffsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080905

AKX Designation fees paid

Designated state(s): DE GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006013630

Country of ref document: DE

Date of ref document: 20100527

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110117

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20111020 AND 20111025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006013630

Country of ref document: DE

Representative=s name: LOUIS, POEHLAU, LOHRENTZ, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006013630

Country of ref document: DE

Representative=s name: LOUIS, POEHLAU, LOHRENTZ, DE

Effective date: 20120208

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006013630

Country of ref document: DE

Owner name: VOLVO CAR CORPORATION, SE

Free format text: FORMER OWNER: FORD GLOBAL TECHNOLOGIES, LLC, DEARBORN, MICH., US

Effective date: 20120208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150917

Year of fee payment: 10

Ref country code: DE

Payment date: 20150915

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150924

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006013630

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160905

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160904

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401