EP1888203A1 - Filterschlauch - Google Patents

Filterschlauch

Info

Publication number
EP1888203A1
EP1888203A1 EP06761921A EP06761921A EP1888203A1 EP 1888203 A1 EP1888203 A1 EP 1888203A1 EP 06761921 A EP06761921 A EP 06761921A EP 06761921 A EP06761921 A EP 06761921A EP 1888203 A1 EP1888203 A1 EP 1888203A1
Authority
EP
European Patent Office
Prior art keywords
filter
hose according
filter body
nonwoven fabric
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06761921A
Other languages
English (en)
French (fr)
Inventor
Mike Koschak
Sebastian Junqueras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Publication of EP1888203A1 publication Critical patent/EP1888203A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/58Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0216Bicomponent or multicomponent fibres

Definitions

  • the invention relates to a filter hose for bag filter systems, comprising a tubular filter body which is closed at one end face and at the other end face has a receptacle for attachment in the bag filter system.
  • Bag filter systems are well known. Bag filter systems are often used to clean dusty gases in power plants. In a bag filter system are several
  • Filter hoses combined.
  • the filter bags are mounted on a support body, which is located on the clean gas side.
  • the dust is retained on the outside of the hose and the purified gas passes from the interior of the filter bag into the clean gas side.
  • Filter hoses can be cleaned by applying pressure surges on the clean gas side. Due to the pressure surge, the filter cake adhering to the filter bag is released and falls into a dust collecting container on the raw gas side.
  • Filter hoses are often made of needle felt. Needle felt is inexpensive and has a low pressure drop. It is disadvantageous that the Needlefelt has production-related penetration points that increase the permeability to particles.
  • the invention has for its object to provide a filter bag having an improved separation efficiency.
  • the filter body is formed of a thermally bonded nonwoven fabric.
  • Thermally bonded nonwovens have a small pore size by materially connected, partially melted fibers. As a result, a high separation efficiency is achieved even for small particles.
  • the nonwoven fabric has a small thickness and the filtration is due to the small pores on the surface of the filter body. This is advantageous over needle felts, in which a depth filtration takes place within the nonwoven fabric. The particles stick to the surface and can be cleaned more easily. The cleaning is further improved by the smooth surface of the nonwoven fabric, which results from melting processes. Additional coatings are not required, so that the nonwoven fabric can be provided inexpensively.
  • the thermal consolidation results in a nonwoven fabric with a high strength, so that nonwovens with a basis weight of less than 500 g / m 2 can be used for filter bags.
  • the nonwoven fabric may be formed from a fiber blend of high and low melting fibers, which fibers may be bonded together by a melt process.
  • the melting process is conducted at a temperature lower than that
  • Melting temperature of the refractory fibers and is greater than or equal to the melting temperature of the low-melting fibers.
  • the fibers of the nonwoven fabric may include polyolefin fibers or polyester fibers.
  • the polyester fibers may be formed from polyethylene terephthalate or polybutylene terephthalate.
  • the provision of fibers of polyolefins or polyesters allows fixation with other fibers in the nonwoven fabric. It is conceivable that a taullierillieres polyethylene fiber material is thermally fixed with low-melting polyolefin fibers or polyesters. In the thermal fixation, however, only the binder fibers are melted and modified with regard to their surface condition, wherein the pulp material is not affected by the thermal fixing process and structural fibers.
  • the nonwoven fabric can be solidified over its entire surface.
  • the full-surface solidification can be done for example in a heating calender. This results in cost complete equipment of the nonwoven fabric with the advantageous properties of the thermally bonded nonwoven fabric.
  • the solidification point by point.
  • the nonwoven fabric may comprise fused bicomponent fibers.
  • a component has a lower melting temperature than the other fibers.
  • one component comprises polyethylene and the other polypropylene.
  • a nonwoven fabric is realized in which a fiber also acts as a binder fiber and structural fiber.
  • the core of the bicomponent fiber consists of a highly stable and melting at a higher temperature material such as polypropylene, wherein the sheath could melt from polyethylene at a very low temperature.
  • bicomponent fibers for thermal fixation of fiber blends are particularly suitable, since they can produce a bond with the fiber material even at very low melting temperatures and act as structural fibers after the connection. In this process, only the mantle surface of the bicomponent fibers is melted, whereby the bicomponent fibers form a composite with the fiber material.
  • the nonwoven fabric can be grooved.
  • the filter surface of the filter body increases and there is an improved extensibility of the filter body in the radial direction, which improves the Abinstituts .
  • By grooving the filter body is dimensionally stable, especially in the axial direction.
  • the filter body may have three-dimensional structures.
  • the structures may additionally or instead of the grooving be introduced into the filter body. Possible structures are, for example, raised or recessed pimples or waves.
  • the structures can be permanently introduced into the filter body by deep drawing. The structure increases the filter surface and the flexibility of the filter body.
  • the nonwoven fabric may have a coating.
  • the coating may be formed by nanofibers whose fiber diameter is less than 1 ⁇ m or by a PTFE coating. This coating increases again the separation efficiency of the filter.
  • Other possible coatings can be applied to the filter body by plasma treatments or dip coatings.
  • the filter body can be hydrophilic / hydrophobic and / or oleophilic / oleophobic.
  • Another coating forms the vapor deposition of the filter body with metallic material. By steaming the filter body is antistatic and the risk of fire drops. Another antistatic finish is achieved by incorporating metal filaments or printed carbon structures.
  • salts such as boron salts, the filter body can be additionally equipped with low flammability.
  • the filter body may have a longitudinal seam, which is closed by a material fit.
  • the filter body can be easily and inexpensively made of web material. Cohesive connections can be made gas-tight by simple means.
  • the seam can be welded. Welding is easy and inexpensive.
  • the seam can be closed by means of ultrasonic welding. In this method, no auxiliaries are required and the seam is sealed gas-tight.
  • An end face can be closed by a cover made of needle felt.
  • the closed end face lies in the direction of flow on the raw gas side and is thus exposed to increased abrasion by fast flowing particles.
  • the needle felt cover prevents premature wear of the filter body.
  • the cover may have a ring, the outer peripheral side on
  • Filter body is arranged and having an inner peripheral side arranged on the filter body lid having a cylindrical portion which is arranged opposite the ring, wherein the ring, filter body and portion are sewn together. This results in a particularly stable and secure attachment of the cover on the filter body.
  • the cover has a lot of material, which prevents premature wear.
  • the recording can be formed by a snap ring.
  • a snap ring is a secure and quick-release attachment.
  • the snap ring may have a sheath of needle felt, wherein the sheath is sewn to the filter body. As a result, the snap ring is protected from damage.
  • FIGS. show, in each case schematically:
  • Fig. 1 shows a filter tube according to the invention
  • Fig. 2 is a bag filter system.
  • Figure 1 shows a filter hose 1 for bag filter systems 2.
  • Filter tube 1 is formed from a tubular filter body 3, which consists of a thermally bonded nonwoven fabric.
  • the nonwoven fabric is thermally bonded over the entire surface and comprises bicomponent fibers.
  • the bicomponent fibers have a core of high-melting polypropylene and a sheath of low-melting polyethylene.
  • the filter body 3 has a longitudinal seam 7, which is closed by means of ultrasonic welding material fit and gas-tight.
  • the filter body 3 is additionally grooved in the axial direction. On an end face 4 of the filter body 3 is closed by a cover 8 made of needle felt.
  • the cover 8 consists of a ring 9 which is arranged on the outer circumference of the filter body 3 and from an inner peripheral side of the filter body 3 arranged cover 10, which has a cylindrical portion 11 which is arranged opposite the ring 9. Ring 9, filter body 3 and section 11 are sewn together.
  • a receptacle 6 is arranged for attachment in the bag filter system 2, which is formed by a snap ring.
  • the receptacle 6 has a sheath 12 made of needle felt, which is sewn to the filter body 3.
  • FIG. 2 shows a bag filter system 2 for stationary dedusting installations in power plants in which filter bags 1 according to FIG. 1 are mounted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Abstract

Filterschlauch (1 ) für Schlauchfilteranlagen (2), umfassend einen schlauchförmigen Filterkörper (3), der an einer Stirnseite (4) verschlossen ist und an der anderen Stirnseite (5) eine Aufnahme (6) zur Befestigung in der Schlauchfilteranlage (2) aufweist, wobei der Filterkörper (3) aus einem thermisch verfestigten Vliesstoff gebildet ist.

Description

Anmelderin: Carl Freudenberg KG, 69469 Weinheim
Filterschlauch
Beschreibung Technisches Gebiet
Die Erfindung betrifft einen Filterschlauch für Schlauchfilteranlagen, umfassend einen schlauchförmigen Filterkörper, der an einer Stirnseite verschlossen ist und an der anderen Stirnseite eine Aufnahme zur Befestigung in der Schlauchfilteranlage aufweist.
Stand der Technik
Derartige Filterschläuche und Schlauchfilteranlagen sind allgemein bekannt. Schlauchfilteranlagen werden häufig zur Reinigung von staubhaltigen Gasen in Kraftwerken eingesetzt. In einer Schlauchfilteranlage sind mehrere
Filterschläuche zusammengefasst. Dazu sind die Filterschläuche auf einen Stützkörper aufgespannt, der sich auf der Reingasseite befindet. Beim Durchströmen der Filterschläuche von außen nach innen wird der Staub auf der Außenseite des Schlauches zurückgehalten und das gereinigte Gas gelangt aus dem Inneren des Filterschlauches in die Reingasseite. Filterschläuche können durch Aufbringen von Druckstößen auf der Reingasseite abgereinigt werden. Durch den Druckstoß löst sich der an dem Filterschlauch haftende Filterkuchen und fällt in einen Staubsammelbehälter auf der Rohgasseite.
Filterschläuche sind häufig aus Nadelfilz gebildet. Nadelfilz ist kostengünstig und weist einen geringen Druckverlust auf. Dabei ist nachteilig, dass der Nadelfilz herstellungsbedingt Penetrationsstellen aufweist, die die Durchlässigkeit für Partikel erhöhen.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, einen Filterschlauch bereitzustellen, der eine verbesserte Abscheideleistung aufweist.
Diese Aufgabe wird mit den Merkmalen von Anspruch 1 gelöst. Auf vorteilhafte Ausgestaltungen nehmen die Unteransprüche Bezug.
Zur Lösung der Aufgabe ist der Filterkörper aus einem thermisch verfestigten Vliesstoff gebildet. Thermisch verfestigte Vliesstoffe weisen durch stoffschlüssig miteinander verbundene, teilweise aufgeschmolzene Fasern eine geringe Porengröße auf. Dadurch wird eine hohe Abscheideleistung auch für kleine Partikel erreicht. Der Vliesstoff weist eine geringe Dicke auf und die Filtration erfolgt aufgrund der kleine Poren an der Oberfläche des Filterkörpers. Dies ist vorteilhaft gegenüber Nadelfilzen, bei denen eine Tiefenfiltration innerhalb des Vliesstoffes erfolgt. Die Partikel bleiben an der Oberfläche haften und können leichter abgereinigt werden. Das Abreinigen wird durch die glatte Oberfläche des Vliesstoffes, die sich durch Schmelzprozesse ergibt, weiter verbessert. Zusätzliche Beschichtungen sind nicht erforderlich, so dass der Vliesstoff kostengünstig bereit gestellt werden kann. Durch die thermische Verfestigung ergibt sich ein Vliesstoff mit einer hohen Festigkeit, so dass Vliesstoffe mit einem Flächengewicht kleiner als 500 g/m2 für Filterschläuche verwendet werden können.
Der Vliesstoff kann aus einer Fasermischung aus hoch- und niedrigschmelzenden Fasern gebildet sein, wobei die Fasern durch einen Schmelzprozess miteinander verbunden sein können. Dabei wird der Schmelzprozess bei einer Temperatur geführt, die niedriger ist als die
Schmelztemperatur der hochschmelzenden Fasern und größer oder gleich der Schmelztemperatur der niedrigschmelzenden Fasern ist. Durch diese Art der Verbindung werden lediglich niedrigschmelzende Fasern angeschmolzen, so dass sie mit den hochschmelzenden Fasern eine feste Verbindung eingehen können. Dabei wird ausschließlich die Oberflächenstruktur der Fasern beeinträchtigt und die hochschmelzenden Fasern bleiben nahezu unbeeinträchtigt. Dabei dienen die niedrigschmelzenden Fasern als
Bindefasern, die hochschmelzenden Fasern als Strukturfasern. Die Fasern des Vliesstoffes können Polyolefinfasern oder Polyesterfasern umfassen. Die Polyesterfasern können dabei aus Polyethylenterephtalat oder Polybutylenterephtalat gebildet sein. Die Vorkehrung von Fasern aus Polyolefinen oder Polyestern ermöglicht eine Fixierung mit weiteren Fasern im Vliesstoff. Dabei ist denkbar, dass ein hochfibrilliertes Polyethylenfasermaterial mit niedrig schmelzenden Polyolefinfasern oder Polyestern thermisch fixiert wird. Bei der thermischen Fixierung werden jedoch ausschließlich die Bindefasern angeschmolzen und im Hinblick auf ihre Oberflächenbeschaffenheit modifiziert, wobei das Pulpmaterial durch den thermischen Fixierungsprozess sowie Strukturfasern nicht beeinträchtigt werden.
Der Vliesstoff kann vollflächig verfestigt sein. Das vollflächige Verfestigen kann beispielsweise in einem Heizkalander erfolgen. Dadurch erfolgt kostengünstig eine vollständige Ausrüstung des Vliesstoffes mit den vorteilhaften Eigenschaften des thermisch verfestigten Vliesstoffes. In anderen Ausgestaltungen erfolgt das Verfestigen punktweise.
Der Vliesstoff kann verschmolzene Bikomponentenfasern umfassen. Dabei weist eine Komponente eine niedrigere Schmelztemperatur als die anderen Fasern. Beispielsweise ist denkbar, dass eine Komponente Polyethylen und die andere Polypropylen umfasst. Durch diese Ausgestaltung ist ein Vliesstoff realisierbar, bei dem eine Faser zugleich als Bindefaser und Strukturfaser fungiert. Dabei ist insbesondere denkbar, dass beispielsweise der Kern der Bikomponentenfaser aus einem hochstabilen und bei einer höheren Temperatur schmelzenden Material wie Polypropylen besteht, wobei der Mantel aus Polyethylen bei einer sehr geringen Temperatur schmelzen könnte. Durch diese konkrete Ausgestaltung sind Bikomponentenfasern zur thermischen Fixierung von Fasermischungen besonders geeignet, da sie einen Verbund mit dem Fasermaterial schon bei sehr niedrigen Schmelztemperaturen herstellen können und nach der Verbindung als Strukturfasern fungieren. Bei diesem Prozess wird lediglich die Manteloberfläche der Bikomponentenfasern angeschmolzen, wodurch die Bikomponentenfasern einen Verbund mit dem Fasermaterial eingehen.
Der Vliesstoff kann rilliert sein. Dadurch vergrößert sich die Filterfläche des Filterkörpers und es ergibt sich eine verbesserte Dehnbarkeit des Filterkörpers in radialer Richtung, wodurch sich das Abreinigungsverhalten verbessert. Durch die Rillierung ist der Filterkörper formstabiler insbesondere in axialer Richtung.
Der Filterkörper kann dreidimensionale Strukturen aufweisen. Die Strukturen können zusätzlich oder statt der Rillierung in den Filterkörper eingebracht sein. Mögliche Strukturen sind beispielsweise erhabene oder vertiefte Noppen oder Wellen. Die Strukturen können mittels Tiefziehen dauerhaft in den Filterkörper eingebracht werden. Durch die Struktur erhöht sich die Filterfläche und die Flexibilität des Filterkörpers.
Der Vliesstoff kann eine Beschichtung aufweisen. Die Beschichtung kann durch Nanofasern, deren Faserdurchmesser kleiner als 1 μm ist oder durch eine PTFE-Beschichtung gebildet sein. Durch diese Beschichtung erhöht sich nochmals die Abscheideleistung des Filters. Andere mögliche Beschichtungen können durch Plasmabehandlungen oder Tauchbeschichtungen auf den Filterkörper aufgebracht werden. Je nach Ausführung kann der Filterkörper dabei hydrophil/hydrophob und/oder oleophil/oleophob ausgerüstet sein. Eine weitere Beschichtung bildet das Bedampfen des Filterkörpers mit metallischem Material. Durch das Bedampfen ist der Filterkörper antistatisch ausgerüstet und die Brandgefahr sinkt. Eine weitere antistatische Ausrüstung wird durch eingebrachte Metallfäden oder aufgedruckte Kohlenstoffstrukturen erreicht. Durch eine Beschichtung mit Salzen, beispielsweise Borsalzen, kann der Filterkörper zusätzlich schwerentflammbar ausgerüstet sein.
Der Filterkörper kann eine längsverlaufende Naht aufweisen, die stoffschlüssig verschlossen ist. Dadurch kann der Filterkörper einfach und kostengünstig aus Bahnware hergestellt werden. Stoffschlüssige Verbindungen können mit einfachen Mitteln gasdicht ausgeführt werden.
Die Naht kann verschweißt sein. Verschweißen ist einfach und kostengünstig. Dabei kann die Naht mittels Ultraschall-Schweißverfahren verschlossen werden. Bei diesem Verfahren sind keine Hilfsstoffe erforderlich und die Naht ist gasdicht verschlossen.
Eine Stirnseite kann durch eine Abdeckung aus Nadelfilz verschlossen sein. Die verschlossene Stirnseite liegt in der Anströmrichtung auf der Rohgasseite und ist dadurch einer erhöhten Abrasion durch schnelle strömende Partikel ausgesetzt. Die Abdeckung aus Nadelfilz verhindert einen vorzeitigen Verschleiß des Filterkörpers.
Die Abdeckung kann einen Ring aufweisen, der außenumfangsseitig am
Filterkörper angeordnet ist und einen innenumfangsseitig an dem Filterkörper angeordneten Deckel aufweisen, der einen zylinderförmigen Abschnitt aufweist, der dem Ring gegenüberliegend angeordnet ist, wobei Ring, Filterkörper und Abschnitt miteinander vernäht sind. Dadurch ergibt sich eine besonders stabile und sichere Befestigung der Abdeckung am Filterkörper. Die Abdeckung weist viel Material auf, welches vorzeitigen Verschleiß verhindert.
Die Aufnahme kann durch einen Schnappring gebildet sein. Ein Schnappring ist eine sichere und schnell lösbare Befestigung. Der Schnappring kann eine Ummantelung aus Nadelfilz aufweisen, wobei die Ummantelung mit dem Filterkörper vernäht ist. Dadurch ist der Schnappring vor Beschädigungen geschützt.
Kurzbeschreibung der Zeichnungen
Einige Ausführungsbeispiele werden nachfolgend anhand der Figuren näher erläutert. Diese zeigen, jeweils schematisch:
Fig. 1 einen erfindungsgemäßen Filterschlauch; Fig. 2 eine Schlauchfilteranlage.
Ausführung der Erfindung
Figur 1 zeigt einen Filterschlauch 1 für Schlauchfilteranlagen 2. Der
Filterschlauch 1 ist aus einem schlauchförmigen Filterkörper 3 gebildet, der aus einem thermisch verfestigten Vliesstoff besteht. Der Vliesstoff ist vollflächig thermisch verfestigt und umfasst Bikomponentenfasern. Die Bikomponentenfasern weisen einen Kern aus hochschmelzendem Polypropylen und einen Mantel aus niedrigschmelzenden Polyethylen auf. Der Filterkörper 3 weist eine längsverlaufende Naht 7 auf, die mittels Ultraschallschweißen stoffschlüssig und gasdicht verschlossen ist. Der Filterkörper 3 ist zusätzlich in Axialrichtung rilliert. An einer Stirnseite 4 ist der Filterkörper 3 durch eine Abdeckung 8 aus Nadelfilz verschlossen. Die Abdeckung 8 besteht aus einem Ring 9, der außenumfangsseitig am Filterkörper 3 angeordnet ist und aus einem innenumfangsseitig an dem Filterkörper 3 angeordneten Deckel 10, der einen zylinderförmigen Abschnitt 11 aufweist, der dem Ring 9 gegenüberliegend angeordnet ist. Ring 9, Filterkörper 3 und Abschnitt 11 sind miteinander vernäht. An der anderen Stirnseite 5 ist eine Aufnahme 6 zur Befestigung in der Schlauchfilteranlage 2 angeordnet, die durch einen Schnappring gebildet ist. Die Aufnahme 6 weist eine Ummantelung 12 aus Nadelfilz auf, die mit dem Filterkörper 3 vernäht ist. Figur 2 zeigt eine Schlauchfilteranlage 2 für stationäre Entstaubungsanlagen in Kraftwerken, in die Filterschläuche 1 gemäß Figur 1 montiert sind.

Claims

Patentansprüche
1. Filterschlauch (1) für Schlauchfilteranlagen (2), umfassend einen schlauchförmigen Filterkörper (3), der an einer Stirnseite (4) verschlossen ist und an der anderen Stirnseite (5) eine Aufnahme (6) zur
Befestigung in der Schlauchfilteranlage (2) aufweist, dadurch gekennzeichnet, dass der Filterkörper (3) aus einem thermisch verfestigten Vliesstoff gebildet ist.
2. Filterschlauch nach Anspruch 1 , dadurch gekennzeichnet, dass der Vliesstoff vollflächig verfestigt ist.
3. Filterschlauch nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Vliesstoff verschmolzene Bikomponentenfasern umfasst.
4. Filterschlauch nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Vliesstoff rilliert ist.
5. Filterschlauch nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Filterkörper (3) dreidimensionale Strukturen aufweist.
6. Filterschlauch nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Vliesstoff eine Beschichtung aufweist.
7. Filterschlauch nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Filterkörper (3) eine längsverlaufende Naht (7) aufweist, die stoffschlüssig verschlossen ist.
8. Filterschlauch nach Anspruch 7, dadurch gekennzeichnet, dass die Naht (7) verschweißt ist.
9. Filterschlauch nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die eine Stirnseite (4) durch eine Abdeckung (8) aus Nadelfilz verschlossen ist.
10. Filterschlauch nach Anspruch 9, dadurch gekennzeichnet, dass die Abdeckung (8) einen Ring (9) aufweist, der außenumfangsseitig am Filterkörper (3) angeordnet ist und innenumfangsseitig an dem Filterkörper (3) angeordneten Deckel (10), der einen zylinderförmigen Abschnitt (11) aufweist, der dem Ring (9) gegenüberliegend angeordnet ist, wobei Ring (9), Filterkörper (3) und Abschnitt (11) miteinander vernäht sind.
11. Filterschlauch nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Aufnahme (6) durch einen Schnappring gebildet ist.
12. Filterschlauch nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Aufnahme (6) eine Ummantelung (12) aus Nadelfilz aufweist, wobei die Ummantelung (12) mit dem Filterkörper (3) vernäht ist.
13. Verwendung des Filterschlauchs nach einem der vorherigen Ansprüche in einer stationären Entstaubungsanlage.
EP06761921A 2005-06-06 2006-05-20 Filterschlauch Withdrawn EP1888203A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005026156A DE102005026156A1 (de) 2005-06-06 2005-06-06 Filterschlauch
PCT/EP2006/004805 WO2006131199A1 (de) 2005-06-06 2006-05-20 Filterschlauch

Publications (1)

Publication Number Publication Date
EP1888203A1 true EP1888203A1 (de) 2008-02-20

Family

ID=36754206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06761921A Withdrawn EP1888203A1 (de) 2005-06-06 2006-05-20 Filterschlauch

Country Status (6)

Country Link
US (1) US20090199715A1 (de)
EP (1) EP1888203A1 (de)
KR (1) KR20070120129A (de)
CN (1) CN101189057A (de)
DE (1) DE102005026156A1 (de)
WO (1) WO2006131199A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014236A1 (de) 2006-03-28 2007-10-04 Irema-Filter Gmbh Plissierbares Vliesmaterial und Verfahren und Vorrichtung zur Herstellung derselben
US7837756B2 (en) * 2007-04-05 2010-11-23 Aaf-Mcquay Inc. Filter with ePTFE and method of forming
US8673040B2 (en) 2008-06-13 2014-03-18 Donaldson Company, Inc. Filter construction for use with air in-take for gas turbine and methods
DE102009002389A1 (de) * 2009-04-15 2010-10-21 BSH Bosch und Siemens Hausgeräte GmbH Kondensationstrockner mit einer Filtervorrichtung sowie Verfahren zu seinem Betrieb
DE102010052155A1 (de) 2010-11-22 2012-05-24 Irema-Filter Gmbh Luftfiltermedium mit zwei Wirkmechanismen
DE102013008402A1 (de) 2013-05-16 2014-11-20 Irema-Filter Gmbh Faservlies und Verfahren zur Herstellung desselben
EP2995360B1 (de) * 2014-09-12 2022-06-15 Carl Freudenberg KG Filterelement
EP3705166A1 (de) 2019-03-08 2020-09-09 Carl Freudenberg KG Filterschlauch in torusausführung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021607A1 (de) * 1990-07-06 1992-01-09 Klaus Schumann Filterelement
GB9027051D0 (en) * 1990-12-13 1991-02-06 Scapa Group Plc Improved filter element
DE9318673U1 (de) * 1993-12-07 1994-11-17 Deichmann, Jochen, 36179 Bebra Hohlzylindrisches Filterelement und damit hergestellte Filtereinheit
EP1074644A1 (de) * 1999-08-02 2001-02-07 Fiber Innovation Technology, Inc. Elastische Mehrkomponentenfasern und daraus hergestellte Flächengebilde
US20030192294A1 (en) * 2002-04-16 2003-10-16 Alan Smithies Filter medium
US20030208998A1 (en) * 2002-05-10 2003-11-13 U.F. Strainrite Corporation Filter bag and method of manufacture thereof
US20040128961A1 (en) * 2002-05-10 2004-07-08 U.F. Strainrite Corporation Filter bag and method of manufacture thereof
DE10225909B4 (de) * 2002-06-11 2005-08-04 Intensiv-Filter Gmbh & Co. Kg Verfahren zur Herstellung eines Rohrfilters durch Wickeln sowie Rohrfilter
ATE424991T1 (de) * 2002-10-22 2009-03-15 Polymer Group Inc Wasserstrahlverfestigte filtermedien mit verbesserter statischer ableitung und verfahren
EP1977884B1 (de) * 2006-01-25 2019-08-28 Asahi Kasei Kabushiki Kaisha Wärmebindbare beschichtete vliesfaser
US7485592B2 (en) * 2006-09-13 2009-02-03 E.I. Du Pont De Nemours And Company Bag filter comprising polyphenylene sulfide and acrylic fiber
ES2359769T3 (es) * 2007-03-23 2011-05-26 Solvay Advanced Polymers, L.L.C. Telas mejoradas.
DE102007023806A1 (de) * 2007-05-21 2008-11-27 Carl Freudenberg Kg Lagenverbund zur Verwendung in einem Luftfilter
US7819936B2 (en) * 2007-08-22 2010-10-26 E.I. Du Pont De Nemours And Company Filter felts and bag filters comprising blends of fibers derived from diamino diphenyl sulfone and heat resistant fibers
US8500883B2 (en) * 2008-07-18 2013-08-06 General Electric Company Apparatus and system for filtering air
US8021996B2 (en) * 2008-12-23 2011-09-20 Kimberly-Clark Worldwide, Inc. Nonwoven web and filter media containing partially split multicomponent fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006131199A1 *

Also Published As

Publication number Publication date
WO2006131199A1 (de) 2006-12-14
CN101189057A (zh) 2008-05-28
KR20070120129A (ko) 2007-12-21
US20090199715A1 (en) 2009-08-13
DE102005026156A1 (de) 2006-12-28

Similar Documents

Publication Publication Date Title
EP1888203A1 (de) Filterschlauch
EP2340098B1 (de) Filtermedium zur partikelfiltration
EP2004303B1 (de) Filterbeutel für einen staubsauger
EP0993854B1 (de) Luftfilter
EP1133342B1 (de) Mehrlagiges filterelement
EP1795248B1 (de) Staubsaugerbeutel
WO2010106087A1 (de) Filtermedium und filterelement
DE102012010307B4 (de) Mehrlagiges Filtermaterial zur Flüssigkeitsfiltration sowie daraus hergestelltes Filterelement
DE102007023806A1 (de) Lagenverbund zur Verwendung in einem Luftfilter
EP2911765B1 (de) Filtermaterial mit erhöhter standzeit und dieses filtermaterial enthaltendes filterelement
EP1035902A1 (de) Filterelement
EP2758149B1 (de) Filtermaterial
DE202007013215U1 (de) Getriebeölfilter mit abströmseitiger Meltblownlage
DE10332439B3 (de) Zweilagen-Synthetik Filterelement
WO2009106593A1 (de) Luftfilter mit sicherheitselement
DE102011111738A1 (de) Mehrlagiges Filtermaterial und daraus hergestelltes Filterelement
DE202007015994U1 (de) Luftfiltermedium
DE102008035934A1 (de) Filtermedium
DE102015015777A1 (de) Filtermedium und Filterelement mit einem Filtermedium
EP0564799A2 (de) Mehrschichtiges Filtermaterial
DE102018215358A1 (de) Filtermedium für die Fluidfiltration, Verfahren zur Herstellung eines Filtermediums und Fluidfilter
DE9218021U1 (de) Mehrschichtiges Filtermaterial
DE102008050264A1 (de) Filterelement mit abscheidungsstabilisierender Beschichtung
DE10039245C2 (de) Filtermedium
EP3721965A1 (de) Filtermedium mit vliesstoff als einlagiger faserverbund und verfahren zur herstellung eines solchen filtermediums

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110310

18W Application withdrawn

Effective date: 20110816

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

R18W Application withdrawn (corrected)

Effective date: 20110823