EP1887214A2 - Injector and corresponding operating method - Google Patents

Injector and corresponding operating method Download PDF

Info

Publication number
EP1887214A2
EP1887214A2 EP07110619A EP07110619A EP1887214A2 EP 1887214 A2 EP1887214 A2 EP 1887214A2 EP 07110619 A EP07110619 A EP 07110619A EP 07110619 A EP07110619 A EP 07110619A EP 1887214 A2 EP1887214 A2 EP 1887214A2
Authority
EP
European Patent Office
Prior art keywords
nozzle needle
stroke
injector
piezoelectric actuator
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07110619A
Other languages
German (de)
French (fr)
Other versions
EP1887214A3 (en
EP1887214B1 (en
Inventor
Peter Boehland
Sebastian Kanne
Godehard Nentwig
Michael Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1887214A2 publication Critical patent/EP1887214A2/en
Publication of EP1887214A3 publication Critical patent/EP1887214A3/en
Application granted granted Critical
Publication of EP1887214B1 publication Critical patent/EP1887214B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0059Arrangements of valve actuators
    • F02M63/0063Two or more actuators acting on a single valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0059Arrangements of valve actuators
    • F02M63/0066Combination of electromagnetic and piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/701Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger mechanical
    • F02M2200/702Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger mechanical with actuator and actuated element moving in different directions, e.g. in opposite directions

Definitions

  • the present invention relates to an injector for a fuel injection system of an internal combustion engine, in particular in a motor vehicle, having the features of the preamble of claim 1.
  • the invention also relates to an operating method for such an injector.
  • an injector which has an injector body with at least one injection hole.
  • a nozzle needle for controlling an injection of fuel through the at least one injection hole is arranged adjustable in stroke.
  • a piezoactuator for generating an actuator stroke is arranged in the injector body.
  • the nozzle needle In injectors, there is generally the problem that on the one hand, the nozzle needle must be driven with a relatively large force in their opening direction in order to lift them from their seat can. On the other hand, the nozzle needle must lift off its seat with a comparatively large needle stroke in order to reduce the effects of the so-called "seat throttling".
  • This seat throttling arises due to dynamic flow effects when the fuel has to flow through a narrow annular gap which forms with a small needle lift between the needle seat and a sealing tip arranged on the needle tip.
  • the large force required to open the nozzle needle can be relatively easy with the help the piezoelectric actuator are provided.
  • the coupler device is designed such that it translates the actuator stroke translated to the nozzle needle, so that the nozzle needle executes a needle stroke, which is larger by the respective translation factor than the Aktorhub.
  • the coupler comprises a stepped sleeve in which on the one hand an end portion of the nozzle needle is mounted with a needle cross-section stroke-adjustable and in the other hand, an end portion of the piezoelectric actuator is mounted with an actuator cross-section adjustable in height.
  • the two end portions define a coupler space in the stepped sleeve, wherein the Aktorquerites is greater than the needle cross-section, whereby the above-mentioned gear ratio is defined.
  • the injector according to the invention with the features of claim 1 has the advantage that for the opening process for lifting the nozzle needle from the needle seat very large forces can be introduced into the nozzle needle and that also to overcome the seat throttling the required opening stroke is also feasible, at the same time a compact design with a short piezoelectric actuator is achieved.
  • these advantages are realized in that in addition to the piezoelectric actuator, an electromagnetically operating linear drive is provided to lift the nozzle needle from its seat.
  • the piezoelectric actuator is used for generating the opening force required for lifting the nozzle needle from the needle seat, while the linear drive is used to realize the relatively large, required opening stroke.
  • the invention uses the knowledge that the opening force required for the stroke adjustment of the nozzle needle is significantly lower when the nozzle needle is first lifted from its needle seat.
  • This significantly lower opening force can be introduced by means of a comparatively compact linear actuator built into the nozzle needle, wherein readily the desired relatively large opening stroke is adjustable.
  • the invention thus provides for opening the nozzle needle two parallel-acting drive systems available that complement each other complementary to the needle stroke dependent opening force demand of the nozzle needle.
  • the required for lifting the nozzle needle from the needle seat, relatively large opening force is introduced substantially through the piezoelectric actuator in the nozzle needle, while required to achieve the relatively large needle lift, relatively small opening force is introduced by the linear drive in the nozzle needle.
  • the nozzle needle with the help of the large opening force of the piezoelectric actuator can be quickly lifted out of their seat and be adjusted comparatively quickly with the help of the linear drive to the required opening stroke.
  • FIG. 1 shows a highly simplified, schematic longitudinal section through an injector.
  • an injector 1 comprises an injector housing 2 which has at least one injection hole 3 through which fuel which is under injection pressure can be injected into an injection space 4.
  • the injector body 2 is shown here in one piece in a simplified manner, but it is customary to assemble the injector body 2 from a plurality of individual parts.
  • a needle section 5 of the injector body 2 adjoining the at least one injection hole 3 and an actuator section 6 of the injector body 2 remote from the at least one injection hole 3 can form separate components.
  • the injector body 2 contains a feed path 7, which supplies the at least one injection hole 3 fuel under injection pressure.
  • the injector 1 or the feed path 7 can be connected via a corresponding connecting line 8 to a high-pressure fuel line 9.
  • This high-pressure fuel line 9 as well as the injector 1 forms part of a fuel injection system, not shown in the other for an internal combustion engine, which is preferably arranged in a motor vehicle.
  • a plurality of injectors 1 are connected to a common high-pressure fuel line 9.
  • the injector 1 has a piezoactuator 10, which is arranged in the injector body 2 or in the actuator section 6, such that it can perform an actuator stroke parallel to a longitudinal center axis 11 of the injector 1 depending on its energization and de-current.
  • the piezoelectric actuator 10 is axially supported on the injector body 2 with an actuator foot 12 remote from the at least one injection hole 3.
  • This axial support, denoted by 13 simultaneously forms an effective seal of an actuator chamber 14 formed in the actuator section 6 with respect to a feed chamber 15 formed in the injector body 2.
  • the piezoelectric actuator 10 can be connected to a power supply protected against fuel by means of the feed chamber 15.
  • the actuator chamber 14 forms a component of the supply path 7 or is passed through the actuator chamber 14 of the feed path 7.
  • the injector 1 contains a nozzle needle 16, which is arranged so that it can be adjusted in terms of stroke and with the aid of which the injection of fuel through the at least one injection hole 3 can be controlled.
  • the nozzle needle 16 in a the at least one injection hole 3 facing the tip portion 17 has a sealing edge 18 which cooperates with a trained on the injector body 2 and the needle portion 5 needle seat 19.
  • nozzle needle 16 which cooperates with the needle seat 19 sealing edge 18 separates the at least one injection hole 3 of a needle chamber 20, which forms part of the Zugarpfads 7 and through which the feed path 7 is passed.
  • the injector 1 is also equipped with a coupling device 21, which is arranged in the injector body 2 and which allows a stroke transmission between the piezoelectric actuator 10 and the nozzle needle 16.
  • a coupling device 21 on the one hand with the Piezoelectric actuator 10 and on the other hand with the nozzle needle 16 in a suitable manner drive coupled.
  • the drive coupling between the coupler device 21 and the nozzle needle 16 is designed such that the nozzle needle 16 is capable of stroke adjustment relative to the coupler device 21.
  • the injector 1 is additionally equipped with an electromagnetically operating linear drive 22, by means of which the nozzle needle 16 can be driven in its stroke direction.
  • the linear drive 22 has, according to the preferred embodiment shown here, for example, an electromagnetically operating coil 23 which extends annularly and coaxially with the nozzle needle 16.
  • the linear drive 22 here has an armature 24 which can be driven by means of the electromagnetic forces of the coil 23 in the stroke direction of the nozzle needle 16.
  • the armature 24 preferably extends annularly and coaxially with the nozzle needle 16. While the coil 23 is stationarily arranged on the injector body 2, the armature 24 is arranged stationarily on the nozzle needle 16. Radial between coil 23 and armature 24, an annular gap 25 is provided.
  • a coil carrier 26, which carries the coil 23, can be defined for this purpose in a suitable manner on the injector body 2.
  • the coil carrier 26 may form an integral part of the injector body 2.
  • the nozzle needle 16 is mounted in the bobbin 26 adjustable in stroke.
  • a corresponding, radially formed between coil support 26 and nozzle needle 16 guide and / or storage is denoted by 27. Through this guide / storage 27, the feed path 7 can be passed.
  • the needle chamber 20 can communicate with the actuator chamber 14 in any other way so as to feed the feed path 7 past the linear drive 22 or through the linear drive 22.
  • the coil 23 is arranged together with the coil carrier 26 in the interior of the injector body 2, that is to say in the needle space 20.
  • the coil carrier 26 in the interior of the injector body 2, that is to say in the needle space 20.
  • other arrangements / positions for the coil 23 are conceivable, since a direct physical contact with the armature 24 is not required.
  • the armature 24 can be realized in different ways. In principle, it is possible to produce the nozzle needle 16 from a suitable anchor material, so that the nozzle needle 16 itself forms the armature 24. Alternatively, the armature 24 may also form an integral part of the nozzle needle 16. Likewise it is possible at one off several components assembled nozzle needle 16 to design one of these components as an anchor 24. Furthermore, the armature 24 may also be a separately manufactured component, which is attached in a suitable manner to the nozzle needle 16, for example by a welded connection.
  • the coupling device 21 has on its side facing the nozzle needle 16 a driver device 28 which is configured so that the coupler 21 can take the nozzle needle 16 by positive engagement at a stroke oriented in the opening direction of the nozzle needle 16.
  • the driver device 28 on a gripping contour 29 and cooperates with a remote from the at least one spray hole 3 end portion 30 of the nozzle needle 16.
  • the gripping contour 29 which is formed for example by a radially inwardly projecting annular step, engages behind the end portion 30, which has a complementary, hintergreifbare contour 31 for this purpose.
  • the gripping contour 31 is formed, for example, by a radially outwardly projecting from the end portion 30 collar.
  • the coupler 21 also has here a sleeve portion 32, on the nozzle needle 16 side facing.
  • the end portion 30 protrudes axially into this sleeve portion 32 and is arranged therein adjustable in stroke.
  • the sleeve portion 32 includes a free space 33, in which the end portion 30 is stroke-adjustable relative to the coupler 21.
  • a return spring 34 is arranged, with the aid of which the nozzle needle 16 is biased in its closing direction.
  • the return spring 34 thereby supports the contact between gripping contour 29 and tangible contour 31 within the driver device 28.
  • the return spring 34 is supported on the one hand on the nozzle needle 16 and on the other hand on the coupler device 21.
  • the coupling device 21 is drive-coupled to the piezoelectric actuator 10 on a side facing away from the nozzle needle 16 side via a piston-cylinder assembly 35.
  • the piston-cylinder arrangement 35 comprises a piston 36 and a cylinder 37, in which the piston 36 is mounted adjustable in height parallel to Aktorhub.
  • the piston 36 immersed with axial clearance 38 in the cylinder 37 a.
  • a further axial play 39 is present.
  • the piston-cylinder arrangement 35 enables a hydraulic coupling between the piezoelectric actuator 10 and the coupler device 21, wherein this hydraulic coupling substantially completes the actuator stroke unchanged transfers to the coupler 21, via the hydraulic volume enclosed in the cylinder 37 by the piston 36.
  • the piston-cylinder arrangement 35 makes it possible to compensate for play, manufacturing tolerances and thermal expansion effects.
  • the piston-cylinder arrangement 35 is specifically designed here so that the hydraulic coupling substantially no force or stroke translation realized so that the Aktorhub or the actuator force is transmitted unchanged to the coupler 21 and from there to the nozzle needle 16. Basically, however, embodiments with lower or translation in the hydraulic coupling of the piston-cylinder assembly 35 can be realized.
  • the piston 36 is formed by a piston section of the coupler device 21, which has this on a side facing away from the nozzle needle 16 side and which is also referred to below with 36.
  • the cylinder 37 is formed here by a cylindrical portion, which is also referred to below as 37 and which is formed either directly on the piezoelectric actuator 10 or on one of the nozzle needle 16 facing actuator head 40.
  • the injector 1 is still equipped with a closing compression spring 41 which drives the nozzle needle 16 in its closing direction.
  • the closing compression spring 41 is supported at one end via a collar 42 on the nozzle needle 16 and the other end on the piezoactuator 10 or on the actuator head 40.
  • the injector 1 operates as follows:
  • the nozzle needle 16 In an initial state shown in FIG. 1, the nozzle needle 16 is in its closed position, ie, the sealing edge 18 is seated in the needle seat 19 and separates the at least one injection hole 3 from the feed 7.
  • the piezoelectric actuator 10 is energized and has its in the direction of at least a spray hole 3 extended state. Accordingly, the piezoelectric actuator 10 in the injector 1 is pulled or operated inversely.
  • the linear drive 22 is de-energized or switched off. In the entire feed path 7, as well as in the free space 33 and in the volume enclosed between cylinder 37 and piston 36, the injection pressure prevails.
  • the nozzle needle 16 For performing an injection of fuel through the at least one injection hole 3, the nozzle needle 16 is driven to open.
  • the linear drive 22 is energized or turned on.
  • the piezoelectric actuator 10 flows away, it contracts and draws its actuator head 40 away from the at least one injection hole 3.
  • the coupler device 21 By means of the hydraulic coupling between the piezoelectric actuator 10 and the coupler device 21 realized with the aid of the piston-cylinder arrangement 35, the coupler device 21 also performs the actuator stroke virtually identically.
  • the driver 28 and the nozzle needle 16 performs the stroke of the coupler 21 and thus the stroke of the piezoelectric actuator 10 quasi identical. As a result, the nozzle needle 16 lifts off from the needle seat 19.
  • the piezoelectric actuator 10 can easily apply the necessary for lifting the nozzle needle 16 from the needle seat 19 large opening force and initiate the coupler device 21 in the nozzle needle 16.
  • the linear drive 22 can initiate supportive opening forces into the nozzle needle 16.
  • the electromagnetic forces acting on the armature 24 build up only gradually or with a time delay.
  • the linear drive 22 can initiate the opening force required for a further lifting of the nozzle needle 16 into the nozzle needle 16 as soon as the piezoactuator 10 has reached its maximum actuator stroke.
  • the opening forces introduced by the linear drive 22 into the nozzle needle 16 now drive the nozzle needle 16 further in its opening direction, ie away from the at least one injection hole 3. Since the piezoelectric actuator 10 and thus also the coupling device 21 have reached their end position, now the nozzle needle 16 moves relative to the coupler 21. As a result, the nozzle needle 16 lifts with its tangible contour 31 of the gripping contour 29 of the driver 28 from. Thus, the nozzle needle 16 can perform a Nadelhub for their opening, which is greater than the actuatable by the piezoelectric actuator 10 Aktorhub. As a result, the piezoelectric actuator 10 can build comparatively short in the stroke direction. Likewise, the linear drive 22 can build comparatively compact, since after lifting the nozzle needle 16 from the needle seat 19, which is realized by the Aktorhub, the nozzle needle 16 only has to be driven with a significantly lower opening force to perform the desired needle stroke.
  • the switching off of the piezoelectric actuator 10 and the switching on of the linear drive 22 may be coordinated so that the linear drive 22 is turned on at the same time as the piezoelectric actuator 10 is de-energized. In this case, it is possible, in particular, to utilize an electric charge stored in the tensioned or charged piezoactuator 10 for energizing the linear drive 22. The energy consumption of Injector 1 can be reduced. Likewise, it may be advantageous to turn on the linear drive 22 before the Entströming of the piezoelectric actuator 10, for example, to thereby postpone the field structure from time to time. The linear drive 22 can then initiate its opening force into the nozzle needle 16 faster when opening the nozzle needle 16.
  • the nozzle needle 16 is closed, that is retracted into the needle seat 19.
  • the linear drive 22 is turned off and the piezoelectric actuator 10 is energized.
  • the closing movement of the nozzle needle 16 is also assisted by the closing compression spring 41 and the restoring spring 34.
  • the linear drive 22 can be switched off in time before switching on the piezoelectric actuator 10, so as to initiate the field degradation.
  • the opening forces introduced by the linear drive 22 into the nozzle needle 16 can be reduced faster for the closing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The injector for a fuel injection system of an internal combustion engine comprises a nozzle needle (16) which is stroke-adjustable in an injector body (2) for controlling injection of fuel through at least one spray orifice (3). A piezoactuator (10) is arranged in the injector body for producing an actuator stroke, and a coupling device (21) is arranged in the body for stroke transmission between piezoactuator and nozzle needle. The nozzle needle is stroke-adjustable relative to the coupling device. An electromagnetic linear actuator (22) drives the nozzle needle in its stroke direction. An independent claim is included for a method for operating an injector in which for opening the nozzle needle the piezoactuator is deenergized and the linear actuator energized, and/or for closing the nozzle needle the piezoactuator is energized and the linear actuator deenergized.

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft einen Injektor für eine Kraftstoffeinspritzanlage einer Brennkraftmaschine, insbesondere in einem Kraftfahrzeug, mit den Merkmalen des Oberbegriffs des Anspruches 1. Die Erfindung betrifft außerdem ein Betriebsverfahren für einen derartigen Injektor.The present invention relates to an injector for a fuel injection system of an internal combustion engine, in particular in a motor vehicle, having the features of the preamble of claim 1. The invention also relates to an operating method for such an injector.

Aus der DE 10 2004 031 790 A1 ist ein Injektor bekannt, der einen Injektorkörper mit wenigstens einem Spritzloch aufweist. Im Injektorkörper ist eine Düsennadel zum Steuern einer Einspritzung von Kraftstoff durch das wenigstens eine Spritzloch hubverstellbar angeordnet. Desweiteren ist im Injektorkörper ein Piezoaktor zur Erzeugung eines Aktorhubs angeordnet. Mit Hilfe einer im Injektorkörper angeordneten Kopplereinrichtung erfolgt eine Hubübertragung zwischen Aktor und Düsennadel, wobei die Düsennadel relativ zur Kopplereinrichtung hubverstellbar angeordnet ist.From the DE 10 2004 031 790 A1 an injector is known, which has an injector body with at least one injection hole. In the injector body, a nozzle needle for controlling an injection of fuel through the at least one injection hole is arranged adjustable in stroke. Furthermore, a piezoactuator for generating an actuator stroke is arranged in the injector body. By means of a coupling device arranged in the injector body, a stroke transmission takes place between the actuator and the nozzle needle, wherein the nozzle needle is arranged so that it can be adjusted in terms of its stroke relative to the coupler device.

Bei Injektoren besteht allgemein das Problem, dass zum einen die Düsennadel mit relativ großer Kraft in ihrer Öffnungsrichtung angetrieben werden muss, um sie von ihrem Sitz abheben zu können. Zum anderen muss die Düsennadel mit einem vergleichsweise großen Nadelhub von ihrem Sitz abheben, um die Auswirkungen der sog. "Sitzdrosselung" zu reduzieren. Diese Sitzdrosselung entsteht aufgrund strömungsdynamischer Effekte, wenn der Kraftstoff einen engen Ringspalt durchströmen muss, der sich bei kleinem Nadelhub zwischen dem Nadelsitz und einer an der Nadelspitze angeordneten Dichtkante ausbildet. Die zum Öffnen der Düsennadel erforderliche große Kraft kann relativ einfach mit Hilfe des Piezoaktors bereit gestellt werden. Um den erforderlichen, relativ großen Nadelhub zur Vermeidung der Sitzdrosselung erzielen zu können, besteht die Möglichkeit, den Piezoaktor in der Hubrichtung relativ lang auszubilden, was jedoch aus Bauraumgründen regelmäßig zu vermeiden ist. Beim bekannten Injektor ist die Kopplereinrichtung so ausgestaltet, dass sie den Aktorhub übersetzt auf die Düsennadel überträgt, so dass die Düsennadel einen Nadelhub ausführt, der um den jeweiligen Übersetzungsfaktor größer ist als der Aktorhub. Erreicht wird dies beim bekannten Injektor dadurch, dass die Kopplereinrichtung eine Stufenhülse umfasst, in der einerseits ein Endabschnitt der Düsennadel mit einem Nadelquerschnitt hubverstellbar gelagert ist und in der andererseits ein Endabschnitt des Piezoaktors mit einem Aktorquerschnitt hubverstellbar gelagert ist. Die beiden Endabschnitte begrenzen in der Stufenhülse einen Kopplerraum, wobei der Aktorquerschnitt größer ist als der Nadelquerschnitt, wodurch das vorstehend genannte Übersetzungsverhältnis definiert ist. Dabei ist klar, dass die hier erreichte Hubübersetzung zwangsläufig mit einer dazu reziproken Kraftübersetzung einhergeht, so dass die an der Düsennadel angreifende Öffnungskraft entsprechend reduziert ist. Zur Erzielung kurzer Öffnungszeiten sind jedoch große Öffnungskräfte erforderlich.In injectors, there is generally the problem that on the one hand, the nozzle needle must be driven with a relatively large force in their opening direction in order to lift them from their seat can. On the other hand, the nozzle needle must lift off its seat with a comparatively large needle stroke in order to reduce the effects of the so-called "seat throttling". This seat throttling arises due to dynamic flow effects when the fuel has to flow through a narrow annular gap which forms with a small needle lift between the needle seat and a sealing tip arranged on the needle tip. The large force required to open the nozzle needle can be relatively easy with the help the piezoelectric actuator are provided. In order to achieve the required, relatively large needle lift to avoid seat throttling, it is possible to form the piezoelectric actuator in the stroke relatively long, but this is to be avoided regularly for reasons of space. In the known injector, the coupler device is designed such that it translates the actuator stroke translated to the nozzle needle, so that the nozzle needle executes a needle stroke, which is larger by the respective translation factor than the Aktorhub. This is achieved in the known injector characterized in that the coupler comprises a stepped sleeve in which on the one hand an end portion of the nozzle needle is mounted with a needle cross-section stroke-adjustable and in the other hand, an end portion of the piezoelectric actuator is mounted with an actuator cross-section adjustable in height. The two end portions define a coupler space in the stepped sleeve, wherein the Aktorquerschnitt is greater than the needle cross-section, whereby the above-mentioned gear ratio is defined. It is clear that the stroke translation achieved here inevitably goes hand in hand with a reciprocal force transmission, so that the force acting on the nozzle needle opening force is reduced accordingly. To achieve short opening times, however, large opening forces are required.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße Injektor mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, dass für den Öffnungsvorgang zum Abheben der Düsennadel vom Nadelsitz sehr große Kräfte in die Düsennadel eingeleitet werden können und dass außerdem zur Überwindung der Sitzdrosselung der hierzu erforderliche Öffnungshub ebenfalls realisierbar ist, wobei gleichzeitig eine kompakte Bauweise mit kurzem Piezoaktor erreicht wird. Bei der Erfindung werden diese Vorteile dadurch realisiert, dass zusätzlich zum Piezoaktor ein elektromagnetisch arbeitender Linearantrieb vorgesehen ist, um die Düsennadel aus ihrem Sitz auszuheben. Dabei wird der Piezoaktor zur Erzeugung der zum Abheben der Düsennadel vom Nadelsitz erforderlichen Öffnungskraft verwendet, während der Linearantrieb zur Realisierung des relativ großen, erforderlichen Öffnungshubs verwendet wird. Die Erfindung nutzt hierbei die Erkenntnis, dass die zur Hubverstellung der Düsennadel erforderliche Öffnungskraft deutlich niedriger ist, wenn die Düsennadel erst einmal von ihrem Nadelsitz abgehoben ist. Diese deutlich niedrigere Öffnungskraft kann mit Hilfe eines vergleichsweise kompakt bauenden Linearantriebs in die Düsennadel eingeleitet werden, wobei ohne weiteres der gewünschte relativ große Öffnungshub einstellbar ist.The injector according to the invention with the features of claim 1 has the advantage that for the opening process for lifting the nozzle needle from the needle seat very large forces can be introduced into the nozzle needle and that also to overcome the seat throttling the required opening stroke is also feasible, at the same time a compact design with a short piezoelectric actuator is achieved. In the invention, these advantages are realized in that in addition to the piezoelectric actuator, an electromagnetically operating linear drive is provided to lift the nozzle needle from its seat. In this case, the piezoelectric actuator is used for generating the opening force required for lifting the nozzle needle from the needle seat, while the linear drive is used to realize the relatively large, required opening stroke. The invention uses the knowledge that the opening force required for the stroke adjustment of the nozzle needle is significantly lower when the nozzle needle is first lifted from its needle seat. This significantly lower opening force can be introduced by means of a comparatively compact linear actuator built into the nozzle needle, wherein readily the desired relatively large opening stroke is adjustable.

Die Erfindung stellt somit zum Öffnen der Düsennadel zwei parallel wirkende Antriebssysteme zur Verfügung, die sich gegenseitig komplementär zu dem vom Nadelhub abhängigen Öffnungskraftbedarf der Düsennadel ergänzen. Die zum Abheben der Düsennadel vom Nadelsitz erforderliche, relativ große Öffnungskraft wird im wesentlichen durch den Piezoaktor in die Düsennadel eingeleitet, während die zur Erzielung des relativ großen Nadelhubs erforderliche, vergleichsweise kleine Öffnungskraft durch den Linearantrieb in die Düsennadel eingeleitet wird. Insgesamt kann beim erfindungsgemäßen Injektor somit die Düsennadel mit Hilfe der großen Öffnungskraft des Piezoaktors rasch aus ihrem Sitz ausgehoben werden und mit Hilfe des Linearantriebs vergleichsweise rasch bis zum erforderlichen Öffnungshub verstellt werden.The invention thus provides for opening the nozzle needle two parallel-acting drive systems available that complement each other complementary to the needle stroke dependent opening force demand of the nozzle needle. The required for lifting the nozzle needle from the needle seat, relatively large opening force is introduced substantially through the piezoelectric actuator in the nozzle needle, while required to achieve the relatively large needle lift, relatively small opening force is introduced by the linear drive in the nozzle needle. Overall, in the injector according to the invention thus the nozzle needle with the help of the large opening force of the piezoelectric actuator can be quickly lifted out of their seat and be adjusted comparatively quickly with the help of the linear drive to the required opening stroke.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus der Zeichnung und aus der zugehörigen Figurenbeschreibung anhand der Zeichnung.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawing and from the associated description of the figures with reference to the drawing.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert.Embodiments of the invention are illustrated in the drawings and will be explained in more detail below.

Die einzige Fig. 1 zeigt einen stark vereinfachten, schematisierten Längsschnitt durch einen Injektor.The only Fig. 1 shows a highly simplified, schematic longitudinal section through an injector.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Entsprechend Fig. 1 umfasst ein Injektor 1 ein Injektorgehäuse 2, das zumindest ein Spritzloch 3 aufweist, durch das unter Einspritzdruck stehender Kraftstoff in einen Einspritzraum 4 eindüsbar ist. Der Injektorkörper 2 ist hier vereinfacht einteilig dargestellt, es ist jedoch üblich, den Injektorkörper 2 aus mehreren Einzelteilen zusammenzubauen. Beispielsweise können ein an das wenigstens eine Spritzloch 3 anschließender Nadelabschnitt 5 des Injektorkörpers 2 und ein vom wenigstens einen Spritzloch 3 entfernter Aktorabschnitt 6 des Injektorkörpers 2 separate Bauteile bilden.According to FIG. 1, an injector 1 comprises an injector housing 2 which has at least one injection hole 3 through which fuel which is under injection pressure can be injected into an injection space 4. The injector body 2 is shown here in one piece in a simplified manner, but it is customary to assemble the injector body 2 from a plurality of individual parts. For example, a needle section 5 of the injector body 2 adjoining the at least one injection hole 3 and an actuator section 6 of the injector body 2 remote from the at least one injection hole 3 can form separate components.

Der Injektorkörper 2 enthält einen Zuführpfad 7, der dem wenigstens einen Spritzloch 3 unter Einspritzdruck stehenden Kraftstoff zuführt. Hierzu ist der Injektor 1 bzw. der Zuführpfad 7 über eine entsprechende Anschlussleitung 8 an eine Kraftstoffhochdruckleitung 9 anschließbar. Diese Kraftstoffhochdruckleitung 9 bildet ebenso wie der Injektor 1 einen Bestandteil einer im übrigen nicht dargestellten Kraftstoffeinspritzanlage für eine Brennkraftmaschine, die vorzugsweise in einem Kraftfahrzeug angeordnet ist. Bei einem Common-Rail-System sind mehrere Injektoren 1 an eine gemeinsame Kraftstoffhochdruckleitung 9 angeschlossen.The injector body 2 contains a feed path 7, which supplies the at least one injection hole 3 fuel under injection pressure. For this purpose, the injector 1 or the feed path 7 can be connected via a corresponding connecting line 8 to a high-pressure fuel line 9. This high-pressure fuel line 9 as well as the injector 1 forms part of a fuel injection system, not shown in the other for an internal combustion engine, which is preferably arranged in a motor vehicle. In a common rail system, a plurality of injectors 1 are connected to a common high-pressure fuel line 9.

Der Injektor 1 weist einen Piezoaktor 10 auf, der im Injektorkörper 2 bzw. in dessen Aktorabschnitt 6 angeordnet ist, derart, dass er darin in Abhängigkeit seiner Bestromung und Entstromung einen Aktorhub parallel zu einer Längsmittelachse 11 des Injektors 1 durchführen kann. Hierzu ist der Piezoaktor 10 mit einem vom wenigstens einen Spritzloch 3 entfernten Aktorfuß 12 am Injektorkörper 2 axial abgestützt. Diese mit 13 bezeichnete axiale Abstützung bildet gleichzeitig eine effektive Abdichtung eines im Aktorabschnitt 6 ausgebildeten Aktorraums 14 gegenüber einem im Injektorkörper 2 ausgebildeten Zuführraum 15. Durch den Zuführraum 15 ist der Piezoaktor 10 vor Kraftstoff geschützt an eine Stromversorgung anschließbar. Der Aktorraum 14 bildet dabei einen Bestandteil des Zuführpfads 7 bzw. ist durch den Aktorraum 14 der Zuführpfad 7 hindurchgeführt.The injector 1 has a piezoactuator 10, which is arranged in the injector body 2 or in the actuator section 6, such that it can perform an actuator stroke parallel to a longitudinal center axis 11 of the injector 1 depending on its energization and de-current. For this purpose, the piezoelectric actuator 10 is axially supported on the injector body 2 with an actuator foot 12 remote from the at least one injection hole 3. This axial support, denoted by 13, simultaneously forms an effective seal of an actuator chamber 14 formed in the actuator section 6 with respect to a feed chamber 15 formed in the injector body 2. The piezoelectric actuator 10 can be connected to a power supply protected against fuel by means of the feed chamber 15. The actuator chamber 14 forms a component of the supply path 7 or is passed through the actuator chamber 14 of the feed path 7.

Der Injektor 1 enthält im Injektorkörper 2 bzw. in dessen Nadelabschnitt 5 eine Düsennadel 16, die hubverstellbar angeordnet ist und mit deren Hilfe die Einspritzung von Kraftstoff durch das wenigstens eine Spritzloch 3 steuerbar ist. Hierzu weist die Düsennadel 16 in einem dem wenigstens einen Spritzloch 3 zugewandten Spitzenabschnitt 17 eine Dichtkante 18 auf, die mit einem am Injektorkörper 2 bzw. am Nadelabschnitt 5 ausgebildeten Nadelsitz 19 zusammenwirkt. Bei in ihren Sitz 19 eingefahrener Düsennadel 16 trennt die mit dem Nadelsitz 19 zusammenwirkende Dichtkante 18 das wenigstens eine Spritzloch 3 von einem Nadelraum 20, der einen Bestandteil des Zuführpfads 7 bildet bzw. durch den der Zuführpfad 7 hindurchgeführt ist.In the injector body 2 or in its needle section 5, the injector 1 contains a nozzle needle 16, which is arranged so that it can be adjusted in terms of stroke and with the aid of which the injection of fuel through the at least one injection hole 3 can be controlled. For this purpose, the nozzle needle 16 in a the at least one injection hole 3 facing the tip portion 17 has a sealing edge 18 which cooperates with a trained on the injector body 2 and the needle portion 5 needle seat 19. When retracted into its seat 19 nozzle needle 16 which cooperates with the needle seat 19 sealing edge 18 separates the at least one injection hole 3 of a needle chamber 20, which forms part of the Zuführpfads 7 and through which the feed path 7 is passed.

Der Injektor 1 ist außerdem mit einer Kopplereinrichtung 21 ausgestattet, die im Injektorkörper 2 angeordnet ist und die eine Hubübertragung zwischen dem Piezoaktor 10 und der Düsennadel 16 ermöglicht. Hierzu ist die Koppeleinrichtung 21 einerseits mit dem Piezoaktor 10 und andererseits mit der Düsennadel 16 auf geeignete Weise Antriebsgekoppelt. Gleichzeitig ist die Antriebskopplung zwischen Kopplereinrichtung 21 und Düsennadel 16 so ausgestaltet, dass die Düsennadel 16 relativ zur Kopplereinrichtung 21 hubverstellbar ist.The injector 1 is also equipped with a coupling device 21, which is arranged in the injector body 2 and which allows a stroke transmission between the piezoelectric actuator 10 and the nozzle needle 16. For this purpose, the coupling device 21 on the one hand with the Piezoelectric actuator 10 and on the other hand with the nozzle needle 16 in a suitable manner drive coupled. At the same time, the drive coupling between the coupler device 21 and the nozzle needle 16 is designed such that the nozzle needle 16 is capable of stroke adjustment relative to the coupler device 21.

Erfindungsgemäß ist der Injektor 1 zusätzlich mit einem elektromagnetisch arbeitenden Linearantrieb 22 ausgestattet, mit dessen Hilfe die Düsennadel 16 in ihrer Hubrichtung antreibbar ist. Der Linearantrieb 22 weist entsprechend der hier gezeigten, bevorzugten Ausführungsform beispielsweise eine elektromagnetisch arbeitende Spule 23 auf, die sich ringförmig und koaxial zur Düsennadel 16 erstreckt. Desweiteren weist der Linearantrieb 22 hier einen Anker 24 auf, der mittels der elektromagnetischen Kräfte der Spule 23 in der Hubrichtung der Düsennadel 16 antreibbar ist. Vorzugsweise erstreckt sich der Anker 24 ringförmig und koaxial zur Düsennadel 16. Während die Spule 23 ortsfest am Injektorkörper 2 angeordnet ist, ist der Anker 24 ortsfest an der Düsennadel 16 angeordnet. Radial zwischen Spule 23 und Anker 24 ist ein Ringspalt 25 vorgesehen.According to the invention, the injector 1 is additionally equipped with an electromagnetically operating linear drive 22, by means of which the nozzle needle 16 can be driven in its stroke direction. The linear drive 22 has, according to the preferred embodiment shown here, for example, an electromagnetically operating coil 23 which extends annularly and coaxially with the nozzle needle 16. Furthermore, the linear drive 22 here has an armature 24 which can be driven by means of the electromagnetic forces of the coil 23 in the stroke direction of the nozzle needle 16. The armature 24 preferably extends annularly and coaxially with the nozzle needle 16. While the coil 23 is stationarily arranged on the injector body 2, the armature 24 is arranged stationarily on the nozzle needle 16. Radial between coil 23 and armature 24, an annular gap 25 is provided.

Ein Spulenträger 26, der die Spule 23 trägt, kann hierzu auf geeignete Weise am Injektorkörper 2 festgelegt sein. Insbesondere kann der Spulenträger 26 einen integralen Bestandteil des Injektorkörpers 2 bilden. Im Beispiel ist die Düsennadel 16 im Spulenkörper 26 hubverstellbar gelagert. Eine entsprechende, radial zwischen Spulenträger 26 und Düsennadel 16 ausgebildete Führung und/oder Lagerung ist mit 27 bezeichnet. Durch diese Führung/Lagerung 27 kann der Zuführpfad 7 hindurchgeführt sein. Grundsätzlich kann jedoch der Nadelraum 20 auf beliebige andere Art und Weise mit dem Aktorraum 14 kommunizieren, um so den Zuführpfad 7 am Linearantrieb 22 vorbei bzw. durch den Linearantrieb 22 hindurch zuführen.A coil carrier 26, which carries the coil 23, can be defined for this purpose in a suitable manner on the injector body 2. In particular, the coil carrier 26 may form an integral part of the injector body 2. In the example, the nozzle needle 16 is mounted in the bobbin 26 adjustable in stroke. A corresponding, radially formed between coil support 26 and nozzle needle 16 guide and / or storage is denoted by 27. Through this guide / storage 27, the feed path 7 can be passed. In principle, however, the needle chamber 20 can communicate with the actuator chamber 14 in any other way so as to feed the feed path 7 past the linear drive 22 or through the linear drive 22.

Die Spule 23 ist im gezeigten Beispiel zusammen mit dem Spulenträger 26 im Inneren des Injektorkörpers 2, also im Nadelraum 20 angeordnet. Ebenso sind grundsätzlich auch andere Anordnungen/Positionierungen für die Spule 23 denkbar, da ein direkter körperlicher Kontakt mit dem Anker 24 nicht erforderlich ist.In the example shown, the coil 23 is arranged together with the coil carrier 26 in the interior of the injector body 2, that is to say in the needle space 20. Likewise, in principle, other arrangements / positions for the coil 23 are conceivable, since a direct physical contact with the armature 24 is not required.

Auch der Anker 24 kann auf unterschiedliche Weise realisiert werden. Grundsätzlich ist es möglich, die Düsennadel 16 aus einem geeigneten Ankerwerkstoff herzustellen, so dass die Düsennadel 16 selbst den Anker 24 bildet. Alternativ kann der Anker 24 auch einen integralen Bestandteil der Düsennadel 16 bilden. Ebenso ist es möglich, bei einer aus mehreren Bestandteilen zusammengebauten Düsennadel 16 einen dieser Bestandteile als Anker 24 auszugestalten. Desweiteren kann der Anker 24 auch ein separat hergestelltes Bauteil sein, das auf geeignete Weise an die Düsennadel 16 angebaut ist, z.B. durch eine Schweißverbindung.Also, the armature 24 can be realized in different ways. In principle, it is possible to produce the nozzle needle 16 from a suitable anchor material, so that the nozzle needle 16 itself forms the armature 24. Alternatively, the armature 24 may also form an integral part of the nozzle needle 16. Likewise it is possible at one off several components assembled nozzle needle 16 to design one of these components as an anchor 24. Furthermore, the armature 24 may also be a separately manufactured component, which is attached in a suitable manner to the nozzle needle 16, for example by a welded connection.

Die Kopplereinrichtung 21 weist an ihrer der Düsennadel 16 zugewandten Seite eine Mitnehmereinrichtung 28 auf, die so ausgestaltet ist, dass die Kopplereinrichtung 21 bei einem in der Öffnungsrichtung der Düsennadel 16 orientierten Hub die Düsennadel 16 durch Formschluss mitnehmen kann. Hierzu weist die Mitnehmereinrichtung 28 eine Greifkontur 29 auf und wirkt mit einem vom wenigstens einen Spritzloch 3 entfernten Endabschnitt 30 der Düsennadel 16 zusammen. Die Greifkontur 29, die beispielsweise durch eine radial nach innen vorspringende Ringstufe gebildet ist, hintergreift dabei den Endabschnitt 30, der hierzu eine komplementäre, hintergreifbare Kontur 31 aufweist. Die hintergreifbare Kontur 31 ist beispielsweise durch einen vom Endabschnitt 30 radial nach außen vorspringenden Kragen gebildet.The coupling device 21 has on its side facing the nozzle needle 16 a driver device 28 which is configured so that the coupler 21 can take the nozzle needle 16 by positive engagement at a stroke oriented in the opening direction of the nozzle needle 16. For this purpose, the driver device 28 on a gripping contour 29 and cooperates with a remote from the at least one spray hole 3 end portion 30 of the nozzle needle 16. The gripping contour 29, which is formed for example by a radially inwardly projecting annular step, engages behind the end portion 30, which has a complementary, hintergreifbare contour 31 for this purpose. The gripping contour 31 is formed, for example, by a radially outwardly projecting from the end portion 30 collar.

Die Kopplereinrichtung 21 weist hier außerdem einen Hülsenabschnitt 32 auf, und zwar an der der Düsennadel 16 zugewandten Seite. Der Endabschnitt 30 ragt in diesen Hülsenabschnitt 32 axial hinein und ist darin hubverstellbar angeordnet. Hierzu enthält der Hülsenabschnitt 32 einen Freiraum 33, in dem der Endabschnitt 30 relativ zur Kopplereinrichtung 21 hubverstellbar ist. In diesem Freiraum 33 ist eine Rückstellfeder 34 angeordnet, mit deren Hilfe die Düsennadel 16 in ihre Schließrichtung vorgespannt ist. Die Rückstellfeder 34 unterstützt dadurch den Kontakt zwischen Greifkontur 29 und greifbarer Kontur 31 innerhalb der Mitnehmereinrichtung 28. Die Rückstellfeder 34 ist dabei einerseits an der Düsennadel 16 und andererseits an der Kopplereinrichtung 21 abgestützt.The coupler 21 also has here a sleeve portion 32, on the nozzle needle 16 side facing. The end portion 30 protrudes axially into this sleeve portion 32 and is arranged therein adjustable in stroke. For this purpose, the sleeve portion 32 includes a free space 33, in which the end portion 30 is stroke-adjustable relative to the coupler 21. In this free space 33, a return spring 34 is arranged, with the aid of which the nozzle needle 16 is biased in its closing direction. The return spring 34 thereby supports the contact between gripping contour 29 and tangible contour 31 within the driver device 28. The return spring 34 is supported on the one hand on the nozzle needle 16 and on the other hand on the coupler device 21.

Desweiteren ist die Kopplereinrichtung 21 an einer von der Düsennadel 16 abgewandten Seite über eine Kolben-Zylinder-Anordnung 35 mit dem Piezoaktor 10 antriebsgekoppelt. Die Kolben-Zylinder-Anordnung 35 umfasst einen Kolben 36 und einen Zylinder 37, in dem der Kolben 36 parallel zum Aktorhub hubverstellbar gelagert ist. Dabei taucht der Kolben 36 mit Axialspiel 38 in den Zylinder 37 ein. Desweiteren ist vorzugsweise auch zwischen dem Piezoaktor 10 und der Kopplereinrichtung 21 außerhalb der Kolben-Zylinder-Anordnung 35 ein weiteres Axialspiel 39 vorhanden. Die Kolben-Zylinder-Anordnung 35 ermöglicht eine hydraulische Kopplung zwischen Piezoaktor 10 und Kopplereinrichtung 21 wobei diese hydraulische Kopplung den Aktorhub im wesentlichen unverändert auf die Kopplereinrichtung 21 überträgt, und zwar über das im Zylinder 37 durch den Kolben 36 eingeschlossene Hydraulikvolumen. Die Kolben-Zylinder-Anordnung 35 ermöglicht dabei einen Ausgleich von Spiel, von Herstellungstoleranzen und von thermischen Ausdehnungseffekten. Die Kolben-Zylinder-Anordnung 35 ist hier gezielt so ausgestaltet, dass die hydraulische Kopplung im wesentlichen keine Kraft- oder Hubübersetzung realisiert, so dass der Aktorhub bzw. die Aktorkraft unverändert auf die Kopplereinrichtung 21 und von dieser auf die Düsennadel 16 übertragen wird. Grundsätzlich sind jedoch auch Ausführungsformen mit Unter- oder Übersetzung in der hydraulischen Kopplung der Kolben-Zylinder-Anordnung 35 realisierbar.Furthermore, the coupling device 21 is drive-coupled to the piezoelectric actuator 10 on a side facing away from the nozzle needle 16 side via a piston-cylinder assembly 35. The piston-cylinder arrangement 35 comprises a piston 36 and a cylinder 37, in which the piston 36 is mounted adjustable in height parallel to Aktorhub. In this case, the piston 36 immersed with axial clearance 38 in the cylinder 37 a. Furthermore, preferably between the piezoelectric actuator 10 and the coupler 21 outside of the piston-cylinder assembly 35, a further axial play 39 is present. The piston-cylinder arrangement 35 enables a hydraulic coupling between the piezoelectric actuator 10 and the coupler device 21, wherein this hydraulic coupling substantially completes the actuator stroke unchanged transfers to the coupler 21, via the hydraulic volume enclosed in the cylinder 37 by the piston 36. The piston-cylinder arrangement 35 makes it possible to compensate for play, manufacturing tolerances and thermal expansion effects. The piston-cylinder arrangement 35 is specifically designed here so that the hydraulic coupling substantially no force or stroke translation realized so that the Aktorhub or the actuator force is transmitted unchanged to the coupler 21 and from there to the nozzle needle 16. Basically, however, embodiments with lower or translation in the hydraulic coupling of the piston-cylinder assembly 35 can be realized.

Im gezeigten Beispiel ist der Kolben 36 durch einen Kolbenabschnitt der Kopplereinrichtung 21 gebildet, den dieser an einer von der Düsennadel 16 abgewandten Seite aufweist und der im folgenden ebenfalls mit 36 bezeichnet wird. Im Unterschied dazu ist der Zylinder 37 hier durch einen Zylinderabschnitt gebildet, der im folgenden ebenfalls mit 37 bezeichnet wird und der entweder unmittelbar am Piezoaktor 10 oder an einem der Düsennadel 16 zugewandten Aktorkopf 40 ausgebildet ist.In the example shown, the piston 36 is formed by a piston section of the coupler device 21, which has this on a side facing away from the nozzle needle 16 side and which is also referred to below with 36. In contrast, the cylinder 37 is formed here by a cylindrical portion, which is also referred to below as 37 and which is formed either directly on the piezoelectric actuator 10 or on one of the nozzle needle 16 facing actuator head 40.

Darüber hinaus ist der Injektor 1 noch mit einer Schließdruckfeder 41 ausgestattet, welche die Düsennadel 16 in deren Schließrichtung antreibt. Hierzu stützt sich die Schließdruckfeder 41 einenends über einen Bund 42 an der Düsennadel 16 und anderenends am Piezoaktor 10 bzw. am Aktorkopf 40 ab.In addition, the injector 1 is still equipped with a closing compression spring 41 which drives the nozzle needle 16 in its closing direction. For this purpose, the closing compression spring 41 is supported at one end via a collar 42 on the nozzle needle 16 and the other end on the piezoactuator 10 or on the actuator head 40.

Der erfindungsgemäße Injektor 1 arbeitet wie folgt:The injector 1 according to the invention operates as follows:

In einem in der Fig. 1 gezeigten Ausgangszustand befindet sich die Düsennadel 16 in ihrer Schließstellung, d.h., die Dichtkante 18 sitzt im Nadelsitz 19 und trennt das wenigstens eine Spritzloch 3 vom Zuführpfad 7. Der Piezoaktor 10 ist bestromt und weist seinen in Richtung des wenigstens einen Spritzlochs 3 ausgedehnten Zustand auf. Dementsprechend wird der Piezoaktor 10 im Injektor 1 ziehend bzw. invers betrieben. Der Linearantrieb 22 ist unbestromt bzw. ausgeschaltet. Im gesamten Zuführpfad 7, sowie im Freiraum 33 und in dem zwischen Zylinder 37 und Kolben 36 eingeschlossenen Volumen herrscht der Einspritzdruck.In an initial state shown in FIG. 1, the nozzle needle 16 is in its closed position, ie, the sealing edge 18 is seated in the needle seat 19 and separates the at least one injection hole 3 from the feed 7. The piezoelectric actuator 10 is energized and has its in the direction of at least a spray hole 3 extended state. Accordingly, the piezoelectric actuator 10 in the injector 1 is pulled or operated inversely. The linear drive 22 is de-energized or switched off. In the entire feed path 7, as well as in the free space 33 and in the volume enclosed between cylinder 37 and piston 36, the injection pressure prevails.

Zum Durchführen einer Einspritzung von Kraftstoff durch das wenigstens eine Spritzloch 3 wird die Düsennadel 16 zum Öffnen angesteuert. Hierzu wird der Piezoaktor 10 entstromt. Außerdem wird der Linearantrieb 22 bestromt bzw. eingeschaltet. Beim Entstromen des Piezoaktors 10 zieht sich dieser zusammen und zieht dabei seinen Aktorkopf 40 vom wenigstens einen Spritzloch 3 weg. Über die mit Hilfe der Kolben-Zylinder-Anordnung 35 realisierte hydraulische Kopplung zwischen Piezoaktor 10 und Kopplereinrichtung 21 führt auch die Kopplereinrichtung 21 den Aktorhub quasi identisch aus. Über die Mitnehmereinrichtung 28 führt auch die Düsennadel 16 den Hub der Kopplereinrichtung 21 und somit der Hub des Piezoaktors 10 quasi identisch aus. In der Folge hebt die Düsennadel 16 vom Nadelsitz 19 ab. Dabei kann der Piezoaktor 10 die zum Abheben der Düsennadel 16 vom Nadelsitz 19 erforderliche große Öffnungskraft ohne weiteres aufbringen und über die Kopplereinrichtung 21 in die Düsennadel 16 einleiten. Der Linearantrieb 22 kann dabei bereits unterstützende Öffnungskräfte in die Düsennadel 16 einleiten. Allerdings bauen sich die am Anker 24 angreifenden elektromagnetischen Kräfte aufgrund der Impedanz der Spule 23 nur allmählich bzw. zeitlich verzögert auf. Bei einer entsprechenden Abstimmung zwischen Einschaltzeitpunkt des Linearantriebs 22 und Ausschaltzeitpunkt des Piezoaktors 10 kann der Linearantrieb 22 die zu einem weiteren Anheben der Düsennadel 16 erforderliche Öffnungskraft in die Düsennadel 16 einleiten, sobald der Piezoaktor 10 seinen maximalen Aktorhub erreicht hat. Die mit dem Linearantrieb 22 in die Düsennadel 16 eingeleiteten Öffnungskräfte treiben nun die Düsennadel 16 weiter in ihrer Öffnungsrichtung, also weg vom wenigstens einen Spritzloch 3 an. Da der Piezoaktor 10 und somit auch die Kopplereinrichtung 21 ihre Endstellung erreicht haben, bewegt sich nun die Düsennadel 16 relativ zur Kopplereinrichtung 21. In der Folge hebt die Düsennadel 16 mit ihrer hintergreifbaren Kontur 31 von der Greifkontur 29 der Mitnehmereinrichtung 28 ab. Somit kann die Düsennadel 16 für ihre Öffnung einen Nadelhub durchführen, der größer ist als der vom Piezoaktor 10 durchführbare Aktorhub. Hierdurch kann der Piezoaktor 10 in der Hubrichtung vergleichsweise kurz bauen. Ebenso kann der Linearantrieb 22 vergleichsweise kompakt bauen, da nach dem Abheben der Düsennadel 16 vom Nadelsitz 19, was durch den Aktorhub realisiert wird, die Düsennadel 16 nur noch mit einer deutlich geringeren Öffnungskraft angetrieben werden muss, um den gewünschten Nadelhub durchzuführen.For performing an injection of fuel through the at least one injection hole 3, the nozzle needle 16 is driven to open. For this purpose, the piezoelectric actuator 10th de-energized. In addition, the linear drive 22 is energized or turned on. When the piezoelectric actuator 10 flows away, it contracts and draws its actuator head 40 away from the at least one injection hole 3. By means of the hydraulic coupling between the piezoelectric actuator 10 and the coupler device 21 realized with the aid of the piston-cylinder arrangement 35, the coupler device 21 also performs the actuator stroke virtually identically. About the driver 28 and the nozzle needle 16 performs the stroke of the coupler 21 and thus the stroke of the piezoelectric actuator 10 quasi identical. As a result, the nozzle needle 16 lifts off from the needle seat 19. In this case, the piezoelectric actuator 10 can easily apply the necessary for lifting the nozzle needle 16 from the needle seat 19 large opening force and initiate the coupler device 21 in the nozzle needle 16. The linear drive 22 can initiate supportive opening forces into the nozzle needle 16. However, due to the impedance of the coil 23, the electromagnetic forces acting on the armature 24 build up only gradually or with a time delay. With a corresponding adjustment between the switch-on time of the linear drive 22 and switch-off time of the piezoactuator 10, the linear drive 22 can initiate the opening force required for a further lifting of the nozzle needle 16 into the nozzle needle 16 as soon as the piezoactuator 10 has reached its maximum actuator stroke. The opening forces introduced by the linear drive 22 into the nozzle needle 16 now drive the nozzle needle 16 further in its opening direction, ie away from the at least one injection hole 3. Since the piezoelectric actuator 10 and thus also the coupling device 21 have reached their end position, now the nozzle needle 16 moves relative to the coupler 21. As a result, the nozzle needle 16 lifts with its tangible contour 31 of the gripping contour 29 of the driver 28 from. Thus, the nozzle needle 16 can perform a Nadelhub for their opening, which is greater than the actuatable by the piezoelectric actuator 10 Aktorhub. As a result, the piezoelectric actuator 10 can build comparatively short in the stroke direction. Likewise, the linear drive 22 can build comparatively compact, since after lifting the nozzle needle 16 from the needle seat 19, which is realized by the Aktorhub, the nozzle needle 16 only has to be driven with a significantly lower opening force to perform the desired needle stroke.

Das Ausschalten des Piezoaktors 10 und das Einschalten des Linearantriebs 22 können so aufeinander abgestimmt sein, dass der Linearantrieb 22 zum gleichen Zeitpunkt eingeschaltet wird wie der Piezoaktor 10 entstromt wird. Dabei ist es insbesondere möglich, eine im gespannten oder aufgeladenen Piezoaktor 10 gespeicherte elektrische Ladung für die Bestromung des Linearantriebs 22 auszunutzen. Der Energieverbrauch des Injektors 1 kann dadurch reduziert werden. Ebenso kann es vorteilhaft sein, den Linearantrieb 22 bereits vor dem Entstromen des Piezoaktors 10 einzuschalten, beispielsweise um dadurch den Feldaufbau zeitlich nach vom zu verschieben. Der Linearantrieb 22 kann dann beim Öffnen der Düsennadel 16 schneller seine Öffnungskraft in die Düsennadel 16 einleiten.The switching off of the piezoelectric actuator 10 and the switching on of the linear drive 22 may be coordinated so that the linear drive 22 is turned on at the same time as the piezoelectric actuator 10 is de-energized. In this case, it is possible, in particular, to utilize an electric charge stored in the tensioned or charged piezoactuator 10 for energizing the linear drive 22. The energy consumption of Injector 1 can be reduced. Likewise, it may be advantageous to turn on the linear drive 22 before the Entströming of the piezoelectric actuator 10, for example, to thereby postpone the field structure from time to time. The linear drive 22 can then initiate its opening force into the nozzle needle 16 faster when opening the nozzle needle 16.

Zum Beenden des Einspritzvorgangs wird die Düsennadel 16 geschlossen, also in den Nadelsitz 19 eingefahren. Hierzu wird der Linearantrieb 22 ausgeschaltet und der Piezoaktor 10 bestromt. Unterstützt wird die Schließbewegung der Düsennadel 16 außerdem durch die Schließdruckfeder 41 und die Rückstellfeder 34. Auch hier kann es zweckmäßig sein, den Linearantrieb 22 genau zu dem Zeitpunkt auszuschalten, zu dem der Piezoaktor 10 eingeschaltet wird. Insbesondere ist es dann möglich, die im Linearantrieb 22, bzw. in dessen Spule 23, gespeicherte elektrische Ladung zur Bestromung des Piezoaktors 10 zu nutzen. Alternativ kann auch der Linearantrieb 22 zeitlich vor dem Einschalten des Piezoaktors 10 ausgeschaltet werden, um so den Feldabbau einzuleiten. In der Folge können für den Schließvorgang die vom Linearantrieb 22 in die Düsennadel 16 eingeleiteten Öffnungskräfte schneller abgebaut werden. Ebenso ist grundsätzlich denkbar, die Bestromung des Linearantriebs 22 für den Schließvorgang der Düsennadel 16 umzupolen, so dass der Linearantrieb 22 die Düsennadel 16 in deren Schließrichtung antreibt.To end the injection process, the nozzle needle 16 is closed, that is retracted into the needle seat 19. For this purpose, the linear drive 22 is turned off and the piezoelectric actuator 10 is energized. The closing movement of the nozzle needle 16 is also assisted by the closing compression spring 41 and the restoring spring 34. Here, too, it may be expedient to switch off the linear drive 22 precisely at the point in time at which the piezoactuator 10 is switched on. In particular, it is then possible to use the electrical charge stored in the linear drive 22, or in its coil 23, to energize the piezoactuator 10. Alternatively, the linear drive 22 can be switched off in time before switching on the piezoelectric actuator 10, so as to initiate the field degradation. As a result, the opening forces introduced by the linear drive 22 into the nozzle needle 16 can be reduced faster for the closing process. Likewise, it is conceivable in principle to change over the energization of the linear drive 22 for the closing operation of the nozzle needle 16, so that the linear drive 22 drives the nozzle needle 16 in its closing direction.

Claims (10)

Injektor für eine Kraftstoffeinspritzanlage einer Brennkraftmaschine, insbesondere in einem Kraftfahrzeug, - mit einem Injektorkörper (2), der wenigstens ein Spritzloch (3) aufweist, - mit einer im Injektorkörper (2) hubverstellbar angeordneten Düsennadel (16) zum Steuern einer Einspritzung von Kraftstoff durch das wenigstens eine Spritzloch (3), - mit einem im Injektorkörper (2) angeordneten Piezoaktor (10) zur Erzeugung eines Aktorhubs, - mit einer im Injektorkörper (2) angeordneten Kopplereinrichtung (21) zur Hubübertragung zwischen Piezoaktor (10) und Düsennadel (16), - wobei die Düsennadel (16) relativ zur Kopplereinrichtung (21) hubverstellbar angeordnet ist, dadurch gekennzeichnet,
dass ein elektromagnetischer Linearantrieb (22) zum Antreiben der Düsennadel (16) in deren Hubrichtung vorgesehen ist.
Injector for a fuel injection system of an internal combustion engine, in particular in a motor vehicle, with an injector body (2) having at least one injection hole (3), with a jet needle (16) arranged to be adjustable in stroke in the injector body (2) for controlling an injection of fuel through the at least one spray hole (3), with a piezoelectric actuator (10) arranged in the injector body (2) for generating an actuator stroke, with a coupling device (21) arranged in the injector body (2) for stroke transmission between the piezoactuator (10) and the nozzle needle (16), - wherein the nozzle needle (16) relative to the coupler device (21) is arranged adjustable in stroke, characterized,
that an electromagnetic linear drive (22) for driving the nozzle needle (16) is provided in the stroke direction.
Injektor nach Anspruch 1,
dadurch gekennzeichnet,
dass der Linearantrieb (22) eine relativ zum Injektorkörper (2) ortsfeste elektromagnetische Spule (23) und einen relativ zur Düsennadel (16) ortsfesten Anker (24) aufweist.
Injector according to claim 1,
characterized,
in that the linear drive (22) has an electromagnetic coil (23) fixed relative to the injector body (2) and an armature (24) which is stationary relative to the nozzle needle (16).
Injektor nach Anspruch 2,
dadurch gekennzeichnet,
dass die Spule (23) im Injektorkörper (2) angeordnet ist.
Injector according to claim 2,
characterized,
that the coil (23) in the injector body (2) is arranged.
Injektor nach Anspruch 2 oder 3,
dadurch gekennzeichnet, - dass der Anker (24) in die Düsennadel (16) integriert ist, oder - dass ein Bestandteil der Düsennadel (16) als Anker (24) ausgestaltet ist, oder - dass der Anker (24) an die Düsennadel (16) angebaut ist, oder - dass die Düsennadel (16) selbst den Anker (24) bildet.
Injector according to claim 2 or 3,
characterized, - That the armature (24) is integrated in the nozzle needle (16), or - That a part of the nozzle needle (16) is designed as an anchor (24), or - That the armature (24) is attached to the nozzle needle (16), or - That the nozzle needle (16) itself forms the armature (24).
Injektor nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass die Kopplereinrichtung (21) eine Mitnehmereinrichtung (28) aufweist, die mit einer Greifkontur (29) die Düsennadel (16) an einem vom wenigstens einen Spritzloch (3) entfernten Endabschnitt (30) hintergreift.
Injector according to one of claims 1 to 4,
characterized,
in that the coupler device (21) has a driver device (28) which engages with a gripping contour (29) behind the nozzle needle (16) at an end section (30) remote from the at least one injection hole (3).
Injektor nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass die Kopplereinrichtung (21) einen der Düsennadel (16) zugewandten Hülsenabschnitt (32) aufweist, in dem ein vom wenigstens einen Spritzloch (3) entfernter Endabschnitt (30) der Düsennadel (16) hubverstellbar angeordnet ist.
Injector according to one of claims 1 to 5,
characterized,
in that the coupling device (21) has a sleeve section (32) facing the nozzle needle (16), in which an end section (30) of the nozzle needle (16) remote from the at least one injection hole (3) is arranged to be adjustable in stroke.
Injektor nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass die Kopplereinrichtung (21) über eine Kolben-Zylinder-Anordnung (35) mit dem Piezoaktor (10) antriebsgekoppelt ist, wobei der Kolben (36) in den Zylinder (37) mit Axialspiel (38) parallel zum Aktorhub eintaucht.
Injector according to one of claims 1 to 6,
characterized,
in that the coupler device (21) is drive-coupled to the piezoactuator (10) via a piston-cylinder arrangement (35), wherein the piston (36) dips into the cylinder (37) with axial play (38) parallel to the actuator stroke.
Injektor nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die Kopplereinrichtung (21) einen von der Düsennadel (16) abgewandten Kolbenabschnitt (36) aufweist, der in einem am Piezoaktor (10) ausgebildeten Zylinderabschnitt (37) hubverstellbar gelagert ist.
Injector according to one of claims 1 to 7,
characterized,
in that the coupler device (21) has a piston section (36) facing away from the nozzle needle (16), which is mounted in a stroke-adjustable manner in a cylinder section (37) formed on the piezoelectric actuator (10).
Verfahren zum Betreiben eines Injektors (1) nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, - dass zum Öffnen der Düsennadel (16) der Piezoaktor (10) entstromt und gleichzeitig oder vorher der Linearantrieb (22) bestromt wird, und/oder - dass zum Schließen der Düsennadel (16) der Piezoaktor (10) bestromt und der Linearantrieb (22) entstromt wird.
Method for operating an injector (1) according to one of claims 1 to 8,
characterized, - That for opening the nozzle needle (16) of the piezoelectric actuator (10) de-energized and at the same time or before the linear drive (22) is energized, and / or - That for closing the nozzle needle (16) of the piezoelectric actuator (10) is energized and the linear drive (22) is de-energized.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet, - dass beim Entstromen des Piezoaktors (10) eine darin gespeicherte elektrische Ladung dem Linearantrieb (22) zu dessen Bestromung zugeführt wird, und/oder - dass beim Entstromen des Linearantriebs (22) eine darin gespeicherte elektrische Ladung dem Piezoaktor (10) zu dessen Bestromung zugeführt wird.
Method according to claim 9,
characterized, - That when discharging the piezoelectric actuator (10) stored therein electrical charge is supplied to the linear drive (22) for its energization, and / or - That when discharging the linear drive (22) stored therein electrical charge is supplied to the piezoelectric actuator (10) for its energization.
EP07110619.9A 2006-08-07 2007-06-20 Injector and corresponding operating method Expired - Fee Related EP1887214B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610036781 DE102006036781A1 (en) 2006-08-07 2006-08-07 Injector and associated operating method

Publications (3)

Publication Number Publication Date
EP1887214A2 true EP1887214A2 (en) 2008-02-13
EP1887214A3 EP1887214A3 (en) 2009-04-29
EP1887214B1 EP1887214B1 (en) 2016-03-16

Family

ID=38662725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07110619.9A Expired - Fee Related EP1887214B1 (en) 2006-08-07 2007-06-20 Injector and corresponding operating method

Country Status (2)

Country Link
EP (1) EP1887214B1 (en)
DE (1) DE102006036781A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256384A3 (en) * 2009-05-28 2014-07-16 Robert Bosch GmbH Throttling valve for fluid and/or gaseous substances
EP2369165A3 (en) * 2010-03-26 2017-06-14 Robert Bosch GmbH Fuel injector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031790A1 (en) 2004-07-01 2006-01-26 Robert Bosch Gmbh Common rail injector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3724217A1 (en) * 1987-07-22 1989-02-02 Pierburg Gmbh Solenoid-operated fuel injection valve and method for controlling the fuel injection of an internal combustion engine
DE19954802A1 (en) * 1999-11-13 2001-05-17 Bosch Gmbh Robert Fuel injector
DE10317149A1 (en) * 2003-04-14 2004-10-28 Robert Bosch Gmbh Fuel injection valve for direct injection of fuel into combustion chamber of internal combustion engine, has spring biasing valve pin part comprising piezoelectric, electrostrictive or magnetostrictive element
DE102004035280A1 (en) * 2004-07-21 2006-03-16 Robert Bosch Gmbh Fuel injector with direct multi-stage injection valve element control
DE202004011603U1 (en) * 2004-07-23 2005-05-19 Dualon International S.A. Actuator device for a fuel injection system
DE102004042592A1 (en) * 2004-07-26 2006-03-23 Robert Bosch Gmbh Fuel injector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031790A1 (en) 2004-07-01 2006-01-26 Robert Bosch Gmbh Common rail injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256384A3 (en) * 2009-05-28 2014-07-16 Robert Bosch GmbH Throttling valve for fluid and/or gaseous substances
EP2369165A3 (en) * 2010-03-26 2017-06-14 Robert Bosch GmbH Fuel injector

Also Published As

Publication number Publication date
EP1887214A3 (en) 2009-04-29
DE102006036781A1 (en) 2008-02-14
EP1887214B1 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
EP1693564B1 (en) Fuel injector with direct needle control for an internal combustion engine
EP1831539B1 (en) Fuel injector with direct control of the injection valve body
DE102012222043A1 (en) Fuel injector for injecting fuel into combustion chamber of internal combustion engine, has coupler piston whose active faces limit hydraulic coupler in axial direction
EP2462335B1 (en) Device for high-pressure fuel injection
EP1908952A2 (en) Injector for a fuel injection system
EP1682769B1 (en) Fuel injector with a multipart, directly controlled injection valve element
EP1703119B1 (en) Fuel injection nozzle
EP1887214B1 (en) Injector and corresponding operating method
DE102012222127A1 (en) Fuel injector for injecting fuel into combustion chamber of internal combustion engine, has hydraulic coupler that is comprised of pair of coupler piston for separating two couplers
DE102005020366A1 (en) Injector for motor vehicle internal combustion engine fuel system has nozzle with axially slidable piston connected to needle via connecting volume
EP1703118B1 (en) Injector nozzle
WO2006029937A1 (en) Control valve for an injection nozzle of an internal combustion engine
EP1908953B1 (en) Fuel injection device
EP1276983B1 (en) Valve for controlling liquids
DE102007009167A1 (en) Multi-way valve
DE102006038536A1 (en) Injector for fuel injection system of internal combustion engine, particularly in motor vehicle, has injector body with two spraying holes, where nozzle needle regulates fuel injection through one spraying hole
EP2204570B1 (en) Fuel injector
DE102009002528A1 (en) fuel injector
EP2136067A1 (en) Fuel injector
EP2246553B1 (en) Fuel injector
DE102006035983A1 (en) Fuel Injector for internal-combustion engine in motor vehicle, has stop formed between nozzle needles, where one of nozzle needles comes in attachment with other nozzle needle through stop during preset control stroke
EP1898083B1 (en) Injector for a fuel injection system
DE102017201803A1 (en) Electromagnetically actuated inlet valve and high-pressure pump with inlet valve
EP2022976A1 (en) Injector
DE102004057246A1 (en) fuel Injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20091029

17Q First examination report despatched

Effective date: 20091130

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014626

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014626

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190625

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007014626

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101