EP1886166A1 - Method for measurement of air speed by doppler radar - Google Patents

Method for measurement of air speed by doppler radar

Info

Publication number
EP1886166A1
EP1886166A1 EP06755534A EP06755534A EP1886166A1 EP 1886166 A1 EP1886166 A1 EP 1886166A1 EP 06755534 A EP06755534 A EP 06755534A EP 06755534 A EP06755534 A EP 06755534A EP 1886166 A1 EP1886166 A1 EP 1886166A1
Authority
EP
European Patent Office
Prior art keywords
speed
calculate
nyquist
rates
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06755534A
Other languages
German (de)
French (fr)
Inventor
Pierre Tabary
Laurent Perier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METEO-FRANCE
METEO FRANCE
Original Assignee
METEO-FRANCE
METEO FRANCE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METEO-FRANCE, METEO FRANCE filed Critical METEO-FRANCE
Publication of EP1886166A1 publication Critical patent/EP1886166A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/22Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency
    • G01S13/227Systems for measuring distance only using transmission of interrupted, pulse modulated waves using irregular pulse repetition frequency with repetitive trains of uniform pulse sequences, each sequence having a different pulse repetition frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/53Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/951Radar or analogous systems specially adapted for specific applications for meteorological use ground based
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to "a method of measuring the air velocity in a region of the atmosphere.
  • the radar transmits sinusoidal wave trains or pulses which are returned to the radar by particles suspended in the air; if the air has a movement causing the particles to move away from or towards the radar, the pulses returned to the radar have a phase shift with respect to the pulses emitted, an offset which makes it possible to calculate the radial velocity of the particles relative to the radar and therefore the speed of the air that carries them.
  • the speed can thus be determined without ambiguity if the real speed of the particles is within a so-called Nyquist interval depending on the rate of emission of the pulses (also called emission frequency).
  • the calculated velocity is equal to the actual velocity modulo the width of the Nyquist interval.
  • drawbacks in particular a strong solicitation of the transmitter, a significant consumption of the latter and a reduction in the range of the radar.
  • a method for measuring the air velocity in a Doppler zone of the atmosphere by means of a radar comprising the steps of:
  • each pulse is emitted at a rate different from that of subsequent pulses.
  • the Nyquist interval is obtained by combining the three emission rates so that the Nyquist interval is relatively wide. The pulses at the three emission rates are emitted successively to the same zone of the atmosphere, which limits the imprecision of the process.
  • the calculation of the velocity V of the air comprises the phases of:
  • the method comprises a step of determining the rates
  • V neq ppcm (p, r) * V n i
  • This mode of determination is relatively simple, reliable and fast.
  • the method comprises the step to assign to the speeds V 1 ', V 2 ' and V 3 ', before their use in the calculations, a noise corresponding to the noise specific to the radar and to the usual atmospheric conditions in the measuring zone and the step of folding the speeds V 1 ', V 2 ' and V 3 'and noisy in the intervals [-Vm, Vm] / [-V n2 , V 112 ] and [-V n3 , V n3 ] to obtain the speeds V 1 ', V 2 'and V 3 ' used later in the calculations.
  • FIG. 1 is a block diagram illustrating the general course of the process of the invention
  • FIG. 2 is a block diagram illustrating the progress of the frequency determination step according to the invention
  • FIG. 3 is a diagram illustrating the emission of pulses over time.
  • the method according to the invention is implemented by means of a Doppler radar capable of emitting pulses of pulses by changing the transmission rate between each pulse. .
  • the method of the invention starts with the step of emitting gusts of three pulses 1, 2, 3 at different rates F 1 , F 2 , F 3 (the duration t1 separating the pulses 1 and 2 is different from the duration t2 separating the pulses 2 and 3 and the duration t3 separating the pulse 3 from a burst of the pulse 1 of the following burst is also different from the times t1 and t2, see Figure 3).
  • step 40 for determining the velocities V 1 , V 2 , V 3 of the air from the pulses received in return from the pulses 1, 2, 3 of each burst.
  • the speed V of the air is then calculated from the speeds V 1 , V 2 , V 3 determined for the pulses received in return for each burst (step 50).
  • step 60 the average quadratic differences obtained for all the values of k are compared with each other and the speed V te st corresponding to the smallest mean square deviation is selected as the speed V of the air (step 60).
  • the step 10 for determining the rates Fi, F 2 , F 3 is detailed in FIG. 2 and begins with a phase 11 for determining pairs of parameter ratios p / q and r / s which will be used to define the rates F 2 , F 3 according to Fi.
  • constraints are imposed in the choice of the parameters p, q, r, s:
  • q and s are greater than p and r respectively, p / q is greater than r / s,
  • r is greater than s / 2.
  • the parameters p and r are advantageously greater than q / 2 and s / 2 respectively, to prevent the rates F 2 and F 3 are much lower than the rate F 1 , which may cause wear magnetron radar.
  • the parameter q is preferably equal to p + 1.
  • the step of determining the pulse emission rates continues with a phase 12 during which the selection of a first rate F 1 depends on the technical characteristics of the radar and the calculation of a Nyquist velocity V nl. corresponding.
  • a noise corresponding to the noise specific to the radar and the usual atmospheric conditions in the measurement zone is assigned to the speed V 1 'and the velocity V 1 ' thus noisy is folded as before in the range [- Vm / V nl ] to obtain the speed V 1 'used later in the calculations.
  • the noise added to the speed V 1 1 is a Gaussian distribution noise of zero average and standard deviation parameterizable so that this noise corresponds to that encountered under conditions of use.
  • the step of determining the pulse transmission rates is completed by comparing the test speeds V obtained for all the couples and the speed V to select the best torque.
  • the frequency determination method can be carried out for several noise levels in order to evaluate the relevance of the selected pairs with respect to the noise levels encountered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a method for measurement of air speed in an atmospheric region by means of the Doppler effect using radar, comprising the following steps: transmission of bursts of three pulses at different rates F<SUB>1</SUB>, F<SUB>2</SUB>, F<SUB>3</SUB>, determination of a speed V<SUB>1</SUB>, V<SUB>2</SUB>, V<SUB>3</SUB> for the air from the reflected pulses of each burst and calculation of the air speed V from the air speeds V<SUB>1</SUB>, V<SUB>2</SUB>, V<SUB>3</SUB> determined by the reflected pulses for each burst.

Description

Procédé de mesure de la vitesse de l'air par radar DOPPLER. DOPPLER radar air velocity measurement method.
La présente invention concerne "un procédé de mesure de la vitesse de l'air dans une zone de l'atmosphère .The present invention relates to "a method of measuring the air velocity in a region of the atmosphere.
ARRIERE PLAN DE L'INVENTION En météorologie, il est connu de mesurer la vitesse de l'air au moyen d'un radar en utilisant l'effet Doppler : le radar émet des trains d'ondes ou impulsions sinusoïdales qui sont retournées vers le radar par des particules en suspension dans l'air ; si l'air a un mou- vement provoquant un éloignement ou un rapprochement des particules relativement au radar, les impulsions retournées au radar présentent un décalage de phase par rapport aux impulsions émises, décalage qui permet de calculer la vitesse radiale des particules par rapport au radar et donc la vitesse de l'air qui les transporte. La vitesse peut ainsi être déterminée sans ambiguïté si la vitesse réelle des particules est comprise dans un intervalle dit de Nyquist dépendant de la cadence d'émission des impulsions (également appelée fréquence d'émission). Si la vi- tesse réelle des particules est en dehors de cet intervalle, la vitesse calculée est égale à la vitesse réelle modulo la largeur de l'intervalle de Nyquist. On parle alors d'un repliement, dans l'intervalle de Nyquist, de la vitesse calculée. Pour augmenter la largeur de cet intervalle, il est connu d'augmenter la cadence d'émission des impulsions. Il en découle cependant un certain nombre d'inconvénients, et notamment une forte sollicitation de l'émetteur, une consommation importante de celui-ci et une di- minution de la portée du radar.BACKGROUND OF THE INVENTION In meteorology, it is known to measure the air velocity by means of a radar using the Doppler effect: the radar transmits sinusoidal wave trains or pulses which are returned to the radar by particles suspended in the air; if the air has a movement causing the particles to move away from or towards the radar, the pulses returned to the radar have a phase shift with respect to the pulses emitted, an offset which makes it possible to calculate the radial velocity of the particles relative to the radar and therefore the speed of the air that carries them. The speed can thus be determined without ambiguity if the real speed of the particles is within a so-called Nyquist interval depending on the rate of emission of the pulses (also called emission frequency). If the actual velocity of the particles is outside this range, the calculated velocity is equal to the actual velocity modulo the width of the Nyquist interval. We then speak of a folding in the Nyquist interval of the calculated speed. To increase the width of this interval, it is known to increase the pulse transmission rate. However, there are a number of drawbacks, in particular a strong solicitation of the transmitter, a significant consumption of the latter and a reduction in the range of the radar.
Il est également possible d'utiliser un radar de longueur d'onde plus importante. Un tel radar est cependant coûteux.It is also possible to use a radar of longer wavelength. Such a radar is however expensive.
Il est en outre connu d'émettre des rafales d'im- pulsions selon une première et une deuxième cadence d'émission des impulsions, la substitution d'une cadence à 1 ' autre intervenant après chaque rafale (procédé " dual puise répétition frequency - PRF " ou double fréquence de répétition des impulsions) . En combinant les vitesses calculées à partir des impulsions reçues en retour des impulsions émises lors de rafales successives, la vitesse des particules peut être déterminée sans ambiguïté dans un intervalle de Nyquist élargi. Toutefois, comme l'antenne du radar tourne sans cesse, la zone d'atmosphère vers laquelle est émise une rafale à la première cadence d'émission est légèrement différente de celle vers laquelle est émise la rafale suivante à la deuxième cadence d'émission. Il en résulte une imprécision de la détermination de vitesse d'autant plus importante que le radar est implanté dans une zone où la vitesse de l'air présente de fortes variations locales et que la vitesse de rotation du radar est élevée.It is furthermore known to emit pulses of pulses according to a first and a second rate pulse emission, the substitution of one rate to the other speaker after each burst (process "dual pulses repetition frequency - PRF" or double pulse repetition frequency). By combining the velocities calculated from the pulses received from the pulses transmitted in successive bursts, the particle velocity can be determined unambiguously in an expanded Nyquist interval. However, as the radar antenna rotates continuously, the atmosphere zone to which a burst is emitted at the first transmission rate is slightly different from that to which the next burst is transmitted at the second transmission rate. This results in an inaccuracy of the determination of speed all the more important that the radar is located in an area where the air velocity has large local variations and the speed of rotation of the radar is high.
OBJET DE L'INVENTION II serait donc intéressant de disposer d'un moyen permettant de précisément déterminer la vitesse de l'air avec un intervalle de Nyquist relativement important .OBJECT OF THE INVENTION It would therefore be advantageous to have a means for precisely determining the air velocity with a relatively large Nyquist interval.
BREVE DESCRIPTION DE L'INVENTIONBRIEF DESCRIPTION OF THE INVENTION
A cet effet, on prévoit, selon l'invention, un procédé de mesure de la vitesse de l'air dans une zone de l'atmosphère par effet Doppler au moyen d'un radar, comprenant les étapes de :For this purpose, according to the invention, there is provided a method for measuring the air velocity in a Doppler zone of the atmosphere by means of a radar, comprising the steps of:
- émettre des rafales de trois impulsions à des cadences différentes Fx, F2, F3,- emit gusts of three pulses at different rates F x , F 2 , F 3 ,
- déterminer une vitesse V1, V2, V3 de l'air à partir d'impulsions reçues en retour des impulsions de chaque rafale,determining a speed V 1 , V 2 , V 3 of the air from pulses received in return from the pulses of each burst,
- calculer la vitesse V de l'air à partir des vitesses Vi, V2, V3 déterminées pour les impulsions reçues en retour de chaque rafale. Ainsi, chaque impulsion est émise à une cadence différente de celle des impulsions suivantes. L'intervalle de Nyquist est obtenu en combinant les trois cadences d'émission de sorte que l'intervalle de Nyquist est relativement large. Les impulsions aux trois cadences d'émission sont émises successivement vers une même zone de l'atmosphère, ce qui limite l'imprécision du procédé.calculating the air velocity V from the velocities V 1 , V 2 , V 3 determined for the pulses received in return from each burst. Thus, each pulse is emitted at a rate different from that of subsequent pulses. The Nyquist interval is obtained by combining the three emission rates so that the Nyquist interval is relatively wide. The pulses at the three emission rates are emitted successively to the same zone of the atmosphere, which limits the imprecision of the process.
De préférence, le calcul de la vitesse V de l'air comprend les phases de :Preferably, the calculation of the velocity V of the air comprises the phases of:
- calculer les vitesses de Nyquist Vnl, Vn2, Vn3- correspondant à chaque cadence Fi, F2, F3 et la vitesse decalculate the Nyquist velocities V nl , V n2 , V n3 corresponding to each rate Fi, F 2 , F 3 and the speed of
Nyquist équivalente Vneg/ Nyquist equivalent V neg /
- pour chaque valeur d'un nombre entier k variant dans l'intervalle [-Vneq / 2Vnl + % ; Vneq / 2Vm + %] ,for each value of an integer k varying in the interval [-V neq / 2V nl +%; V neq / 2Vm +%],
. calculer une vitesse Vtest = Vi + 2kVni, . replier la vitesse Vtest dans les intervalles. calculating a speed V = Vi + t your 2kV n i,. fold the speed V test in the intervals
[-V112, V112] et [-Vn3, Vn3] pour obtenir les vitesses V2' et V3',[-V 112 , V 112 ] and [-Vn 3 , V n3 ] to obtain the speeds V 2 'and V 3 ',
. calculer les écarts ΔV2 = V2 '-V2 et ΔV3 = V3'- V3 et l'écart quadratique moyen + ΔV3 2) / 2), - retenir comme vitesse V la vitesse Vtest correspondant au plus faible écart quadratique moyen.. calculate the deviations ΔV 2 = V 2 '-V 2 and ΔV 3 = V 3 ' - V 3 and the mean squared difference + ΔV 3 2 ) / 2), - remember as speed V the test speed V corresponding to the smallest mean square deviation.
Ce mode de calcul s'avère relativement fiable et simple à mettre en œuvre informatiquement avec des ressources informatiques relativement faibles. Avantageusement, les cadences F1, F2, F3 sont relativement proches.This calculation method proves to be relatively reliable and easy to implement by computer with relatively low computing resources. Advantageously, the rates F 1 , F 2 , F 3 are relatively close.
Ceci n'entraîne qu'une sollicitation relativement faible de l'émetteur du radar et limite l'usure de celui-ci.This causes only a relatively small load on the radar transmitter and limits its wear.
Selon un mode de ' mise en oeuvre particulier, le procédé comprend une étape de détermination des cadencesAccording to a particular mode of implementation, the method comprises a step of determining the rates
Fi^ F2, F3 .comprenant les phases de :Fi ^ F 2 , F 3 com, taking the phases of:
-. déterminer des couples de paramètres p/q et r/s tels que p et q ainsi que r et s soient premiers entre eux, q et s soient supérieurs à p et r respectivement, p soit supérieur à q/2 et r soit supérieur à s/2, - sélectionner une fréquence Fi et calculer une vitesse de Nyquist Vni correspondante,-. determine pairs of parameters p / q and r / s such that p and q and r and s are prime between them, q and s are greater than p and r respectively, p is greater than q / 2 and r is greater than s / 2, select a frequency Fi and calculate a corresponding Nyquist velocity V n i,
- choisir une vitesse V correspondant à la vitesse maximale de l'air dans la zone de mesure et replier la vitesse V dans l'intervalle [-Vnl, Vnl] pour obtenir la vitesse V1' ,- choose a speed V corresponding to the maximum speed of the air in the measuring zone and fold the speed V in the interval [-V nl , V nl ] to obtain the speed V 1 ',
- pour chaque couple p/q et r/s :- for each pair p / q and r / s:
.calculer des cadences F2 = p/q * Fi et F3 = r/s * Fi et les vitesses de Nyquist Vn2/ Vn3, .calculer la vitesse de Nyquist équivalente.calculate rates F 2 = p / q * Fi and F 3 = r / s * Fi and Nyquist velocities V n2 / V n3 , .calculate the equivalent Nyquist velocity
Vneq = ppcm(p, r) * Vni,V neq = ppcm (p, r) * V n i,
.pour chaque valeur d'un nombre entier k variant dans l'intervalle [-Vneq / 2Vm + % ; Vneq / 2Vm + %] , * calculer une vitesse Vtest = Vi'+ 2kVni,for each value of an integer k varying in the interval [-V neq / 2Vm +%; V neq / 2Vm +%], * calculate a speed V test = Vi '+ 2kV n i,
* replier la vitesse Vtest dans les intervalles [-Vn2/ Vn2] et [-Vn3, Vn3] pour obtenir les vitesses V2' et V3' ,* fold the speed V test in the intervals [-V n2 / Vn 2 ] and [-V n3 , V n3 ] to obtain the speeds V 2 'and V 3 ',
* calculer les écarts ΔV2 = V2 '-V2 et ΔV3 = V3'-V3 et l'écart quadratique moyen E=V((ΔV2 2 * calculate the deviations ΔV 2 = V 2 '-V 2 and ΔV 3 = V 3 ' -V 3 and the mean squared difference E = V ((ΔV 2 2
+ ΔV3 2) / 2) ,+ ΔV 3 2 ) / 2),
.retenir la vitesse Vtest correspondant au plus faible écart quadratique moyen..Hold your speed V t corresponding to the lowest standard deviation.
- comparer les vitesses Vtest obtenues pour tous les couples et la vitesse V pour sélectionner le meilleur couple.- Compare your speed V t obtained for all couples and speed V to select the best couple.
Ce mode de détermination est relativement simple, fiable et rapide.This mode of determination is relatively simple, reliable and fast.
Avantageusement alors, la comparaison comprend les phases de calculer pour tous les couples l'écart Δ' = Vtest - V . et de vérifier si Δ' est inférieur à la moitié de la vitesse de Nyquist VnX.Advantageously then, the comparison comprises the phases of calculating for all the couples the difference Δ '= V test - V. and to check if Δ 'is less than half the speed of Nyquist V nX .
Ce mode de comparaison allie simplicité et efficacité. De préférence encore, le procédé comprend l'étape d'affecter aux vitesses V1', V2' et V3', avant leur utilisation dans les calculs, un bruit correspondant au bruit propre au radar et aux conditions atmosphériques habituelles dans la zone de mesure et l'étape de replier les vitesses V1' , V2' et V3' ainsi bruitées dans les intervalles [-Vm, Vm] / [-Vn2, V112] et [-Vn3, Vn3] pour obtenir les vitesses V1' , V2' et V3' utilisées par la suite dans les calculs.This mode of comparison combines simplicity and efficiency. More preferably, the method comprises the step to assign to the speeds V 1 ', V 2 ' and V 3 ', before their use in the calculations, a noise corresponding to the noise specific to the radar and to the usual atmospheric conditions in the measuring zone and the step of folding the speeds V 1 ', V 2 ' and V 3 'and noisy in the intervals [-Vm, Vm] / [-V n2 , V 112 ] and [-V n3 , V n3 ] to obtain the speeds V 1 ', V 2 'and V 3 ' used later in the calculations.
Il est ainsi possible de déterminer des cadences d'émission qui soient optimisées pour la zone d'atmosphère où les mesures de vitesse sont effectuées.It is thus possible to determine transmission rates that are optimized for the atmosphere zone where the speed measurements are made.
D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit d'un mode de mise en oeuvre particulier non limita- tif de l'invention.Other characteristics and advantages of the invention will emerge on reading the following description of a particular, nonlimiting embodiment of the invention.
BREVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
II sera fait référence aux dessins annexés, parmi lesquels :Reference will be made to the appended drawings, among which:
- la figure 1 est un diagramme par blocs illus- trant le déroulement général du procédé de l'invention,FIG. 1 is a block diagram illustrating the general course of the process of the invention;
- la figure 2 est un diagramme par blocs illustrant le déroulement de l'étape de détermination des fréquences conformément à l'invention,FIG. 2 is a block diagram illustrating the progress of the frequency determination step according to the invention,
- la figure 3 est un schéma illustrant l'émission des impulsions dans le temps.- Figure 3 is a diagram illustrating the emission of pulses over time.
DESCRIPTION DETAILLEE DE L'INVENTION En référence aux figures, le procédé conforme à l'invention est mis en oeuvre au moyen d'un radar Doppler susceptible d'émettre des rafales d'impulsions en chan- géant la cadence d'émission entre chaque impulsion.DETAILED DESCRIPTION OF THE INVENTION With reference to the figures, the method according to the invention is implemented by means of a Doppler radar capable of emitting pulses of pulses by changing the transmission rate between each pulse. .
Pour la mesure de la vitesse de l'air, le procédé de l'invention débute par l'étape 30 d'émettre des rafales de trois impulsions 1, 2, 3 à des cadences différentes F1, F2, F3 (la durée tl séparant les impulsions 1 et 2 est différente de la durée t2 séparant les impulsions 2 et 3 et la durée t3 séparant l'impulsion 3 d'une rafale de l'impulsion 1 de la rafale suivante est également différente des durées tl et t2 , voir figure 3) .For the measurement of the air velocity, the method of the invention starts with the step of emitting gusts of three pulses 1, 2, 3 at different rates F 1 , F 2 , F 3 (the duration t1 separating the pulses 1 and 2 is different from the duration t2 separating the pulses 2 and 3 and the duration t3 separating the pulse 3 from a burst of the pulse 1 of the following burst is also different from the times t1 and t2, see Figure 3).
Lorsqu'une impulsion rencontre des particules en suspension dans l'air, ces particules renvoient une impulsion vers le radar.When an impulse encounters particles suspended in the air, these particles return a pulse towards the radar.
Le procédé se poursuit ainsi par une étape 40 de détermination de vitesses Vi, V2, V3 de l'air à partir des impulsions reçues en retour des impulsions 1, 2, 3 de chaque rafale. Le calcul des vitesses Vi, V2, V3 est connu en lui-même et repose sur la formule suivante : V = Fd * λ / 2 où Fd est le décalage en fréquence de l'impulsion reçue par rapport à l'impulsion émise (également appelé fréquence Doppler) . La vitesse V de l'air est ensuite calculée à partir des vitesses V1, V2, V3 déterminées pour les impulsions reçues en retour de chaque rafale (étape 50) .The method is thus continued by a step 40 for determining the velocities V 1 , V 2 , V 3 of the air from the pulses received in return from the pulses 1, 2, 3 of each burst. The calculation of the velocities Vi, V 2 , V 3 is known in itself and rests on the following formula: V = Fd * λ / 2 where Fd is the frequency offset of the received pulse with respect to the transmitted pulse (also called Doppler frequency). The speed V of the air is then calculated from the speeds V 1 , V 2 , V 3 determined for the pulses received in return for each burst (step 50).
Le calcul de la vitesse V de l'air nécessite d'avoir calculé les vitesses de Nyquist Vnl, Vn2/ Vn3 correspondant à chaque cadence Fi, F2, F3 et la vitesse deCalculation of the speed V of the air requires having computed the Nyquist velocities V nl , V n2 / V n3 corresponding to each rate Fi, F 2 , F 3 and the speed of
Nyquist équivalente Vneg (étape 20) . On rappelle que la vitesse de Nyquist est égale au produit de la longueur d'onde de l'impulsion et de la cadence d'émission divisé par 4. A titre d'exemple, Vni = λ* Fx / 4. Le calcul de la vitesse de Nyquist équivalente Vneq est réalisé à partir des rapport de cadences relativement à la cadence F1 et de la vitesse de Nyquist Vnl comme cela est expliqué plus loin dans la description de l'étape de détermination des cadences . Ensuite, on fait varier un nombre entier k dans l'intervalle [-Vneq / 2Vnl + % ; Vneq / 2Vnl + ^] et pour chaque valeur de k dans cet intervalle :Nyquist equivalent V neg (step 20). It is recalled that the Nyquist speed is equal to the product of the wavelength of the pulse and the transmission rate divided by 4. For example, V n i = λ * F x / 4. calculating the equivalent Nyquist velocity V ne q is produced from the rate ratios relative to the rate F 1 and the Nyquist velocity V n1, as explained further in the description of the step of determining the rates. Then, an integer k is varied in the range [-V neq / 2V nl +%; V neq / 2V nl + ^] and for each value of k in this interval:
.une vitesse Vtest = V1 + 2kVnl est calculée, .la vitesse Vtest est repliée dans les inter- valles [-Vn2, Vn2] et [-Vn3, Vn3] pour obtenir les vitesses V2' et V3', V2' = Vtest modulo (2Vn2) et V3' = Vtest modulo (2 V113) ,.a your speed V t = V 1 + 2kV nl is calculated, .the your speed V t is folded in the intervals [-V n2, V n2] and [-V n3, V n3] for speeds V 2 'V and 3', V 2 '= V test modulo (2V n2) and V 3 = V test modulo (2 V 113)
.les écarts ΔV2 = V2' -V2 et ΔV3 = V3' -V3 et l'écart quadratique moyen (ΔV2 2 + ΔV3 2) / 2) sont cal- culés ..the deviations ΔV 2 = V 2 '-V 2 and ΔV 3 = V 3 ' -V 3 and the mean squared difference (ΔV 2 2 + ΔV 3 2 ) / 2) are cal- culated.
Puis les écarts quadratiques moyens obtenus pour toutes les valeurs de k sont comparés les uns aux autres et la vitesse Vtest correspondant au plus faible écart quadratique moyen est retenue comme étant la vitesse V de l'air (étape 60) .Then the average quadratic differences obtained for all the values of k are compared with each other and the speed V te st corresponding to the smallest mean square deviation is selected as the speed V of the air (step 60).
Pour mettre en oeuvre le procédé de l ' invention, il est nécessaire d'avoir préalablement déterminé les cadences d'émission des impulsions F1, F2, P3. L'étape 10 de détermination des cadences Fi, F2, F3 est détaillé sur la figure 2 et débute par une phase 11 de détermination de couples de rapports de paramètres p/q et r/s qui serviront à définir les cadences F2, F3 en fonction de Fi . F2 = p/q * Fi et F3 = r/s * Fx.To implement the method of the invention, it is necessary to have previously determined the transmission rates of the pulses F 1 , F 2 , P 3 . The step 10 for determining the rates Fi, F 2 , F 3 is detailed in FIG. 2 and begins with a phase 11 for determining pairs of parameter ratios p / q and r / s which will be used to define the rates F 2 , F 3 according to Fi. F 2 = p / q * Fi and F 3 = r / s * F x .
De préférence, afin d'optimiser la recherche de ces couples, des contraintes sont imposées dans le choix des paramètres p, q, r, s :Preferably, in order to optimize the search for these pairs, constraints are imposed in the choice of the parameters p, q, r, s:
- p et q ainsi que r et s sont premiers entre eux,- p and q as well as r and s are first between them,
- q et s sont supérieurs à p et r respectivement, - p/q est supérieur à r/s,q and s are greater than p and r respectively, p / q is greater than r / s,
- p est supérieur à q/2,p is greater than q / 2,
- r est supérieur à s/2.r is greater than s / 2.
Les paramètres p et r sont avantageusement supérieurs à q/2 et s/2 respectivement, pour éviter que les cadences F2 et F3 soient très inférieures à la cadence F1, ce qui risquerait de provoquer une usure du magnétron du radar. , The parameters p and r are advantageously greater than q / 2 and s / 2 respectively, to prevent the rates F 2 and F 3 are much lower than the rate F 1 , which may cause wear magnetron radar.
En pratique, pour restreindre le nombre de possibilités, il est possible de limiter la valeur de p à 11. En outre, on s'est aperçu que pour une efficacité maximale du procédé le paramètre q est- de préférence égale à p + 1.In practice, to limit the number of possibilities, it is possible to limit the value of p to 11. In addition, it was found that for efficiency maximum of the method the parameter q is preferably equal to p + 1.
L'étape de détermination des cadences d'émission des impulsions se poursuit par une phase 12 au cours de laquelle interviennent la sélection d'une première cadence F1 en fonction des caractéristiques techniques du radar et le calcul d'une vitesse de Nyquist Vnl correspondante. Une vitesse V correspondant à la vitesse maximale de l'air dans la zone de mesure est repliée dans l'intervalle de Nyquist [-Vm, Vnl] pour obtenir la vitesse V1', c'est-à-dire V1' = V modulo (2*Vnl) . Lors de la phase 13 , un bruit correspondant au bruit propre au radar et aux conditions atmosphériques habituelles dans la zone de mesure est affecté à la vitesse V1' et la vitesse V1' ainsi bruitée est repliée comme précédemment dans l'intervalle [-Vm/ Vnl] pour obtenir la vitesse V1' utilisée par la suite dans les calculs. Le bruit ajouté à la vitesse V1 1 est un bruit de distribution gaussienne de moyenne nulle et d'écart-type paramétrable de manière que ce bruit correspondent à celui rencontré en conditions d'utilisation.The step of determining the pulse emission rates continues with a phase 12 during which the selection of a first rate F 1 depends on the technical characteristics of the radar and the calculation of a Nyquist velocity V nl. corresponding. A velocity V corresponding to the maximum velocity of the air in the measuring zone is folded in the Nyquist interval [-Vm, V nl ] to obtain the velocity V 1 ', that is to say V 1 ' = V modulo (2 * V nl ). During phase 13, a noise corresponding to the noise specific to the radar and the usual atmospheric conditions in the measurement zone is assigned to the speed V 1 'and the velocity V 1 ' thus noisy is folded as before in the range [- Vm / V nl ] to obtain the speed V 1 'used later in the calculations. The noise added to the speed V 1 1 is a Gaussian distribution noise of zero average and standard deviation parameterizable so that this noise corresponds to that encountered under conditions of use.
Les opérations suivantes sont ensuite réalisées pour chaque couple p/q et r/s (phase 14) :The following operations are then performed for each pair p / q and r / s (phase 14):
. calcul des cadences F2 = p/q * F1 et F3 = r/s * F1 et les vitesses de Nyquist Vn2, Vn3 correspondantes .. calculating the rates F 2 = p / q * F 1 and F 3 = r / s * F 1 and the corresponding Nyquist velocities V n2 , V n3 .
. calcul de la vitesse de Nyquist équivalente Vneq en multipliant la vitesse de Nyquist Vnl par le plus petit commun multiple des paramètre p et r (Vneq = ppcm(p, r) * V111) , pour chaque valeur de k entier variant dans ; l'intervalle [-Vneq / 2Vnl + U ; Vneq / 2Vnl + %] ,. calculating the equivalent Nyquist velocity V neq by multiplying the Nyquist velocity V nl by the smallest common multiple of the parameters p and r (V neq = ppcm (p, r) * V 111 ), for each value of k integer varying in ; the interval [-V neq / 2V nl + U; V neq / 2V nl +%],
* calculer une vitesse Vtest = V1'+ 2kVnl/ * Calculating a speed V thy t = V 1 '+ 2kV nl /
* replier la vitesse Vtest dans les intervalles [-Vn2, Vn2] et [-V113, Vn3] pour obtenir les vi- tesses V2 ' et V3 ' ,* fold the speed V test in the intervals [-V n2 , V n2 ] and [-V 113 , V n3 ] to obtain the vi- tesses V 2 'and V 3 ',
* comme pour la vitesse Vi1, affecter aux vitesses V2' et V3' un bruit correspondant au bruit propre au radar et aux conditions atmo- sphériques habituelles dans la zone de mesure et replier les vitesses V2' et V3' ainsi brui- tées dans les intervalles [-Vn2, V112] et [-Vn3, Vn3] pour obtenir les vitesses V2' et V3' utilisées dans la suite des calculs, * calculer les écarts ΔV2 = V2 '-V2 et ΔV3 = V3'-* as for the speed Vi 1 , assign to the velocities V 2 'and V 3 ' a noise corresponding to the noise specific to the radar and to the usual atmospheric conditions in the measuring zone and fold the velocities V 2 'and V 3 ' as well noised in the intervals [-V n2 , V 112 ] and [-V n3 , V n3 ] to obtain the velocities V 2 'and V 3 ' used in the following calculations, * calculate the deviations ΔV 2 = V 2 '-V 2 and ΔV 3 = V 3 ' -
V3 et l'écart quadratique moyen (ΔV2 2 + ΔV3 2) / 2), retenir la vitesse Vtest correspondant au plus faible écart quadratique moyen. L'étape de détermination des cadences d'émission des impulsions se termine par la comparaison 15 des vitesses Vtest obtenues pour tous les couples et la vitesse V pour sélectionner le meilleur couple. Cette comparaison comprend les phases de calculer pour tous les couples l'écart Δ' = Vtest - V', de comparer les écarts Δ' et de vérifier si Δ' est inférieur à la moitié de la vitesse de Nyquist Vnl . Pour affiner la sélection du meilleur couple, il est en outre possible de comparer les écarts quadratiques moyens obtenus en recherchant le couple présentant l'écart Δ' et l'écart quadratique moyen E les plus faibles ou le couple offrant le meilleur compromis entre ces deux écarts.V 3 and the mean squared difference (ΔV 2 2 + ΔV 3 2 ) / 2), hold the test speed V corresponding to the smallest mean squared difference. The step of determining the pulse transmission rates is completed by comparing the test speeds V obtained for all the couples and the speed V to select the best torque. This comparison comprises the phases of calculating for all the couples the difference Δ '= V tes t - V', of comparing the deviations Δ 'and of checking if Δ' is less than half the speed of Nyquist V nl . To refine the selection of the best pair, it is also possible to compare the average quadratic differences obtained by looking for the pair with the difference Δ 'and the mean squared difference E the lowest or the couple offering the best compromise between these two deviations.
A titre d'exemple, compte tenu des conditions atmosphériques de la France et plus particulièrement des turbulences de l'air dans ce pays, les paramètres suivants donnent des résultats satisfaisants : p = 6, q = 7, r = 4, s = 5 ou p = 7, q = 8, r = 2 et s = 3.For example, given the atmospheric conditions in France and more particularly the air turbulence in this country, the following parameters give satisfactory results: p = 6, q = 7, r = 4, s = 5 where p = 7, q = 8, r = 2 and s = 3.
Ainsi, en choisissant une cadence F1 à 375 Hz, on obtient, avec le premier jeu de paramètres, F2 = 321 Hz et F3 = 300 Hz. Ces paramètres sont bien entendu utilisables pour toutes les zones présentant des conditions similaires à celles rencontrées en France.Thus, by choosing a rate F 1 at 375 Hz, one obtains, with the first set of parameters, F 2 = 321 Hz and F 3 = 300 Hz. These parameters are of course usable for all areas with conditions similar to those encountered in France.
Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention tel que défini par les revendications.Of course, the invention is not limited to the embodiment described and variants may be provided without departing from the scope of the invention as defined by the claims.
Le procédé de détermination des fréquences peut être réalisé pour plusieurs niveaux de bruits afin d'éva- luer la pertinence des couples retenus par rapport aux niveaux de bruits rencontrés.The frequency determination method can be carried out for several noise levels in order to evaluate the relevance of the selected pairs with respect to the noise levels encountered.
Les valeurs numériques ne sont données qu'à titre indicatif et d'autres valeurs sont bien entendu utilisables . The numerical values are given for information only and other values are of course usable.

Claims

REVENDICATIONS
1. Procédé de mesure de la vitesse de l'air dans une zone de l'atmosphère par effet Doppler au moyen d'un radar, comprenant les étapes de :A method for measuring air velocity in a Doppler-effect zone of the atmosphere using a radar, comprising the steps of:
- émettre des rafales de trois impulsions à des cadences différentes F1, F2, F3,- emit gusts of three pulses at different rates F 1 , F 2 , F 3 ,
- déterminer une vitesse V1, V2, V3 de l'air à partir d'impulsions reçues en retour des impulsions de chaque rafale,determining a speed V 1 , V 2 , V 3 of the air from pulses received in return from the pulses of each burst,
- calculer la vitesse V de l'air à partir des vitesses V1, V2, V3 déterminées pour les impulsions reçues en retour de chaque rafale .calculating the air velocity V from the velocities V 1 , V 2 , V 3 determined for the pulses received in return from each burst.
2. Procédé selon la revendication 1, caractérisé en ce que le calcul de la vitesse V de l'air comprend les phases de :2. Method according to claim 1, characterized in that the calculation of the speed V of the air comprises the phases of:
- calculer les vitesses de Nyquist Vnl, Vn2, Vn3 correspondant à chaque cadence Fi, F2, F3 et la vitesse de Nyquist équivalente Vneg, - pour chaque valeur d'un nombre entier k variant dans l'intervalle [-Vneg / 2Vnl + y, ; Vneq / 2Vnl + %] , calculer une vitesse Vtest = V1 + 2kVnl, replier la vitesse Vtest dans les intervalles [-Vn2, Vn2] et [-Vn3, Vn3] pour obtenir les vitesses V2' et V3', calculer les écarts ΔV2 = V2' -V2 et ΔV3 = V3' -V3 et l'écart quadratique moyen (ΔV2 2 + ΔV3 2) / 2) ,- calculate the Nyquist speed V D, V n2, V n3 corresponding to each rate Fi, F 2, F 3 and the speed V neg Nyquist equivalent, - for each value of an integer k varying in the interval [ -V neg / 2V nl + y,; V neq / 2V nl +%], calculate a speed V test = V 1 + 2kV nl , fold the speed V test in the intervals [-V n2 , V n2 ] and [-V n3 , V n3 ] to obtain the speeds V 2 'and V 3 ', calculate the deviations ΔV 2 = V 2 '-V 2 and ΔV 3 = V 3 ' -V 3 and the mean squared difference (ΔV 2 2 + ΔV 3 2 ) / 2),
- retenir comme vitesse V la vitesse Vtest corres- pondant au plus faible écart quadratique moyen.- remember as velocity V the velocity V te s t corresponding to the smallest mean square deviation.
3. Procédé selon la revendication 1, caractérisé en ce que les cadences F1, F2, F3 sont relativement proches.3. Method according to claim 1, characterized in that the rates F 1 , F 2 , F 3 are relatively close.
4. Procédé selon la revendication 3, caractérisé en ce que les cadences F2 et F3 valent respectivement 6/7 * F1 et 4/5 * Fx .4. Method according to claim 3, characterized in that the rates F 2 and F 3 are respectively 6/7 * F 1 and 4/5 * F x .
5. Procédé selon la revendication 3, caractérisé en ce que les cadences F2 et F3 valent respectivement 7/85. Method according to claim 3, characterized in that the rates F 2 and F 3 are respectively 7/8
* Fx et 2/3 * F1. * F x and 2/3 * F 1 .
6. Procédé selon la revendication 1, caractérisé en ce qu'il comprend une étape de détermination des cadences F1, F2, F3 comprenant l'es phases de :6. The method of claim 1, characterized in that it comprises a step of determining the rates F 1, F 2, F 3 comprising the phases are:
- déterminer des couples p/q et r/s tels que p et q ainsi que r et s soient premiers entre eux, q et s soient supérieurs à p et r respectivement, p soit supérieur à q/2 et r soit supérieur à s/2,- determine pairs p / q and r / s such that p and q and r and s are prime between them, q and s are greater than p and r respectively, p is greater than q / 2 and r is greater than s / 2,
- sélectionner une cadence Fi et calculer une vitesse de Nyquist Vnl correspondante,- Select a rate Fi and calculate a corresponding Nyquist V nl speed,
- choisir une vitesse V correspondant à la vi- tesse maximale de l'air dans la zone de mesure et replier la vitesse V dans l'intervalle [-Vnl, Vnl] pour obtenir la vitesse V1' ,- choose a speed V corresponding to the maximum speed of the air in the measurement zone and fold the speed V in the interval [-V nl , V nl ] to obtain the speed V 1 ',
- pour chaque couple p/q et r/s :- for each pair p / q and r / s:
. calculer des cadences F2 = p/q * F1 et F3 = r/s * F1 et les vitesses de Nyquist Vn2, Vn3,. calculate rates F 2 = p / q * F 1 and F 3 = r / s * F 1 and the velocities of Nyquist V n2 , V n3 ,
. calculer la vitesse de Nyquist équivalente. calculate the equivalent Nyquist velocity
Vneq = ppcm(p, r) * Vnl,Vneq = ppcm (p, r) * V nl ,
. pour chaque valeur d'un nombre entier k variant dans l'intervalle [-Vneq / 2Vnl + % ; Vneg / 2Vnl + H] ,. for each value of an integer k varying in the interval [-V neq / 2V nl +%; V neg / 2V nl + H],
* calculer une vitesse Vtest = V1'+ 2kVnl,* Calculating a speed V thy t = V 1 '+ 2kV nl,
* replier la vitesse Vtest dans les intervalles [-Vn2, Vn2] et [-Vn3, V113] pour obtenir les vitesses V2' et V3' , * calculer les écarts ΔV2 = V2' -V2 et ΔV3 * fold the speed V test in the intervals [-V n2 , V n2 ] and [-V n3 , V 113 ] to obtain the velocities V 2 'and V 3 ', * calculate the deviations ΔV 2 = V 2 '-V 2 and ΔV 3
= V3 '-V3 et l'écart quadratique moyen retenir la vitesse Vtest correspondant au plus faible écart quadratique moyen. - comparer les vitesses Vtegt obtenues pour tous les couples et la vitesse V pour sélectionner le meilleur couple.= V 3 '-V 3 and the mean squared difference remember the speed V test corresponding to the smallest mean squared difference. - compare the V tegt speeds obtained for all couples and speed V to select the best torque.
7. Procédé selon la revendication 6, caractérisé en ce que la comparaison comprend les phases de calculer pour tous les couples l'écart Δ' = Vtest - V' et de vérifier si Δ' est inférieur à la moitié de la vitesse de Ny- quist Vm.7. Method according to claim 6, characterized in that the comparison comprises the phases of calculating for all couples the difference Δ '= V test - V' and to check if Δ 'is less than half the speed of Ny - quist Vm.
8. Procédé selon la revendication 6, caractérisé en ce que la comparaison comprend une phase de comparai- son des écarts quadratiques moyens obtenus pour tous les couples .8. Method according to claim 6, characterized in that the comparison comprises a comparison phase of the average quadratic differences obtained for all couples.
9. Procédé selon la revendication 6, caractérisé en ce qu'il comprend la phase d'affecter aux vitesses V1', V2' et V3', avant leur utilisation dans les calculs, un bruit correspondant au bruit propre au radar et aux conditions atmosphériques habituelles dans la zone de mesure et l'étape de replier les vitesses V1', V2' et V3' ainsi bruitées dans les intervalles [-Vni, Vni] , [-Vn2, Vn2] et [-Vn3, Vn3] pour obtenir les vitesses V1', V2' et V3' utilisées par la suite dans les calculs.9. The method of claim 6, characterized in that it comprises the phase of assigning to the velocities V 1 ', V 2 ' and V 3 ', before their use in the calculations, a noise corresponding to the specific noise radar and to normal atmospheric conditions in the measuring area and the step of folding the speeds V 1 ', V 2' V and 3 'and noisy in the ranges [i -V n, V n i], [-V n2, V n2 ] and [-V n3 , V n3 ] to obtain the velocities V 1 ', V 2 ' and V 3 'used later in the calculations.
10. Procédé selon la revendication 6, caractérisé en ce que le paramètre q est égal à p + 1. 10. Method according to claim 6, characterized in that the parameter q is equal to p + 1.
EP06755534A 2005-06-02 2006-05-30 Method for measurement of air speed by doppler radar Withdrawn EP1886166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0505607A FR2886737B1 (en) 2005-06-02 2005-06-02 METHOD FOR MEASURING AIR SPEED BY RADAR DOPPLER
PCT/FR2006/001220 WO2006129006A1 (en) 2005-06-02 2006-05-30 Method for measurement of air speed by doppler radar

Publications (1)

Publication Number Publication Date
EP1886166A1 true EP1886166A1 (en) 2008-02-13

Family

ID=35774618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06755534A Withdrawn EP1886166A1 (en) 2005-06-02 2006-05-30 Method for measurement of air speed by doppler radar

Country Status (4)

Country Link
US (1) US7579977B2 (en)
EP (1) EP1886166A1 (en)
FR (1) FR2886737B1 (en)
WO (1) WO2006129006A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886737B1 (en) * 2005-06-02 2007-09-07 Meteo France Etablissement Pub METHOD FOR MEASURING AIR SPEED BY RADAR DOPPLER
GB0817570D0 (en) * 2008-09-25 2008-11-05 Secr Defence Improved weather radar
FR2945352A1 (en) * 2009-05-05 2010-11-12 Meteo France METHOD AND MODULE FOR DETERMINING THE SPEED OF AT LEAST ONE TARGET BY A WEATHER RADAR
JP2017090143A (en) * 2015-11-06 2017-05-25 富士通テン株式会社 Radar device, signal processing device for radar device, and signal processing method
JP6500838B2 (en) * 2016-05-18 2019-04-17 株式会社デンソー Speed detection device
JP7168493B2 (en) * 2018-03-23 2022-11-09 株式会社Soken radar equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2736161B1 (en) * 1990-12-14 1997-09-12 Le Centre Thomson D Applic Rad MULTI-GUST COHERENT INTEGRATION METHOD AND DEVICE FOR PULSE DOPPLER RADAR
US5175551A (en) * 1991-12-18 1992-12-29 Unisys Corporation Downdraft velocity estimator for a microburst precursor detection system
US5623267A (en) * 1993-11-30 1997-04-22 Wurman; Joshua M. A. R. Wide-angle multiple-doppler radar network
DE19605568A1 (en) * 1996-02-15 1997-08-21 Daimler Benz Aerospace Ag Procedure for determining the speed of a radar target
US5808580A (en) * 1997-02-06 1998-09-15 Andrews, Jr.; Grealie A. Radar/sonar system concept for extended range-doppler coverage
DE19750742A1 (en) * 1997-11-15 1999-05-20 Daimler Benz Aerospace Ag Target detecting by high pulse repetition frequency radar
JP3269441B2 (en) * 1997-12-22 2002-03-25 三菱電機株式会社 Weather radar equipment
US6456229B2 (en) * 1999-12-13 2002-09-24 University Corporation For Atmospheric Research Bistatic radar network having incoherent transmitter operating in a scanning mode to identify scatterers
WO2001084181A2 (en) * 2000-04-24 2001-11-08 Lockheed Martin Mission Systems Passive coherent location system and method
US6710743B2 (en) * 2001-05-04 2004-03-23 Lockheed Martin Corporation System and method for central association and tracking in passive coherent location applications
FR2848675B1 (en) * 2002-12-17 2005-05-06 Thales Sa METHOD OF MEASURING DOPPLER FREQUENCY BY TRANSMITTING LACUNAR PULSE TRAINS
FR2886737B1 (en) * 2005-06-02 2007-09-07 Meteo France Etablissement Pub METHOD FOR MEASURING AIR SPEED BY RADAR DOPPLER
US7365675B2 (en) * 2005-09-26 2008-04-29 The Boeing Company Measuring wind vectors remotely using airborne radar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006129006A1 *

Also Published As

Publication number Publication date
FR2886737A1 (en) 2006-12-08
US20080211714A1 (en) 2008-09-04
FR2886737B1 (en) 2007-09-07
WO2006129006A1 (en) 2006-12-07
US7579977B2 (en) 2009-08-25

Similar Documents

Publication Publication Date Title
EP1886166A1 (en) Method for measurement of air speed by doppler radar
FR2901366A1 (en) METHOD FOR DETECTING REFLECTORS OF ELECTROMAGNETIC IMPLUSION
EP0225667B1 (en) Moving ultrasonic echographic locality exploration apparatus, in particular for the flow of blood or organs such as the heart
FR2722005A1 (en) APPARATUS AND METHOD FOR ATTENUATING AMBIGUITS IN PULSE DOPPLER RADARS
FR2772929A1 (en) METEOROLOGICAL RADAR APPARATUS
EP2287633B1 (en) Radar for the detection of aerial targets fitted on an aircraft, in particular for avoiding obstacles in flight
EP3645981B1 (en) Method for measuring a speed of a fluid
FR2851662A1 (en) Medium e.g. linear probe, discontinuity detecting method for e.g. portable medical apparatus, involves applying coherence criteria to selected maxima for regrouping maxima to same discontinuity, where maxima has value higher than threshold
FR2707115A1 (en) A method for producing seismic wavelet forms having minimal side lobe energy.
FR2890751A1 (en) METHOD AND DEVICE FOR MEASURING CABLE LENGTH BASED ON REFLECTION PHASE SHIFTS.
FR2890450A1 (en) METHOD FOR HIGH-RESOLUTION DETERMINATION BY DOPPLER ANALYSIS OF THE SPEED FIELD OF AN AIR MASS
EP2453251B1 (en) Method for performing high-resolution analysis of an area of space by means of a frequency-agile pulsed wave
EP2821809B1 (en) Method for detecting at least one target by pulse-Doppler radar with unambiguous measurement of radial velocity and pulse-Doppler radar for implementing such a method
EP0546623B1 (en) Ultrasonic echograph for measuring high velocities of blood flows
EP3088913A1 (en) Method for tracking a moving target using an a priori model
CA1157131A (en) Method and means for assessing the condition of the sea surface from a distance
EP2978127B1 (en) Method for digitally compensating variations, based on the temperature, of an electrical variable of an onboard spatial radio frequency telecommunications device
EP3044580A1 (en) Method for the non-destructive ultrasonic testing of a part by echo analysis
CA2134856A1 (en) Process for determining the distance ambiguity rank in radar echoes
EP3605145A1 (en) High-resolution remote processing method
EP3459177B1 (en) Method to manipulate a puls sequence signal
Hill et al. Fiber-based 1.5 μm lidar vibrometer in pulsed and continuous modes
FR2972055A1 (en) Method for determination of row of distance ambiguity of echo signal received by Doppler type pulsed radar, involves determining row of distance ambiguity of echo signal from one of three frequency spectrums
EP2251711A1 (en) Method and system for the determination of the velocity of at least one target by meteorological radar
WO2018055050A1 (en) Device for generating a continuous carrier signal from a reference pulse signal.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131209

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140621