EP1885568A1 - Verstellbare radaufhängung für nutzfahrzeuge - Google Patents

Verstellbare radaufhängung für nutzfahrzeuge

Info

Publication number
EP1885568A1
EP1885568A1 EP06747820A EP06747820A EP1885568A1 EP 1885568 A1 EP1885568 A1 EP 1885568A1 EP 06747820 A EP06747820 A EP 06747820A EP 06747820 A EP06747820 A EP 06747820A EP 1885568 A1 EP1885568 A1 EP 1885568A1
Authority
EP
European Patent Office
Prior art keywords
wheel
suspension
suspension part
pivot
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06747820A
Other languages
English (en)
French (fr)
Other versions
EP1885568A4 (de
Inventor
Göte HÅKANSSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AS FORS MW
Original Assignee
AS FORS MW
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AS FORS MW filed Critical AS FORS MW
Publication of EP1885568A1 publication Critical patent/EP1885568A1/de
Publication of EP1885568A4 publication Critical patent/EP1885568A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G5/00Resilient suspensions for a set of tandem wheels or axles having interrelated movements
    • B60G5/04Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid
    • B60G5/06Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid the arms turning on a common pivot, e.g. being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/13Independent suspensions with longitudinal arms only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/143Mounting of suspension arms on the vehicle body or chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/421Pivoted lever mechanisms for mounting suspension elements, e.g. Watt linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/423Rails, tubes, or the like, for guiding the movement of suspension elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/04Trailers

Definitions

  • the present invention relates to an adjustable wheel suspension for utility vehicles according to the preamble to the following Claim 1.
  • EP 1 180 474 an arrangement for adjustable wheel suspensions is already known, but, in the past, complicated solutions have been used that have a large number of moving parts in order to obtain an integral height adjustment function, in particular with multi-wheel suspensions of the bogie type.
  • the object of the invention is to create a simple mechanism for adjustment between different height positions and working positions of a multi-wheel suspension for a utility vehicle.
  • Figure 1 is a view from the back of a trailer of a type that can be provided with the wheel suspension according to the invention
  • Figure 2 is a view from the side of the same trailer in a tipping position and provided with an interchangeable open container
  • Figures 3-5 show schematically the wheel suspension in different working positions in large scale
  • Figures 6-9 show the wheel suspension in smaller scale, from the side and from above in different views of a rear part of the left side of a trailer.
  • the wheel suspension according to the invention can be used on different types of wheeled vehicles for transporting loads, where there is need of a bogie that is adjustable between a movable and fixed state and where a vehicle frame is required that is adjustable between different height positions, such as, for example, in the case of trailers of the cargo shifter type 1 , examples of which are shown in Figures 1 and 2.
  • the basic construction of a trailer of this type comprises a chassis 2 with a frame 3 and wheel suspension 4 for the wheels 5-8, of which there are at least two on each side, forming a combined unit, commonly called a bogie.
  • a trailer with a bogie can consist of two pairs of wheels and a towing device arranged at the front end of the frame.
  • the trailer in the example has a superstructure in the form of a shifter unit 9 with tipping frame 10 and open interchangeable container 1 1 , that is a loose container that can be tipped off and positioned for loading, and exchanged for a new container.
  • a height-adjusting function is advantageous, so that it is possible to lower the frame to a lower height in the unloading and loading positions, that gives a less steep incline for pulling the container onto the trailer, and to raise it to a greater height in the driving position.
  • the wheel suspension 4 according to the invention is, as shown by for example Figure 1 , constructed, on each side of the trailer, of a rigid suspension part 13 mounted on the frame 3 of the trailer in such a way that it can pivot around a horizontal shaft 12, and two supporting arms 14, 15, one for each wheel 16, 17, arranged so that they can pivot around the same bearing shaft, one forward-directed supporting arm 14 for the front wheel 16 and one backward-directed supporting arm 15 for the rear wheel 17.
  • the wheels are mounted, in such a way that they can rotate, on separate wheel axles 18, 19 at the outer end 20, 21 of each supporting arm, the inner end 22, 23 of which is mounted on the frame 3 of the trailer.
  • Each supporting arm can, in principle, have a separate pivot point, that in addition is separate from the pivot axle 12 of the suspension part 13, but common axles have great advantages.
  • the rigid suspension part 13 can be pivoted around its horizontal pivot axle 12 and can either swing freely or be locked in a symmetrical position or inclined in one direction or the other, and due to the fact that the supporting arms 14, 15 can, in addition, be connected rigidly to the suspension part or angled in relation to each other and to the suspension part, a number of operating positions and modes are made possible.
  • the controlled positions and modes of the suspension part 13 are achieved due to the fact that linear force devices are arranged between the frame 3 and the suspension part, which linear force devices are arranged either to allow the pivoting movement of the suspension part within a limited angular range or to lock the part in a selected rotational position.
  • linear force devices are arranged between the frame 3 and the suspension part, which linear force devices are arranged either to allow the pivoting movement of the suspension part within a limited angular range or to lock the part in a selected rotational position.
  • two piston cylinders 30, 31 are arranged symmetrically on each side of the trailer around the imaginary vertical plane 24 and are attached by one end, in the example the cylinder end 28, 29, to the longitudinal frame member 25 of the frame 3 in such a way that they can pivot on separate horizontal bearing shafts 26, 27.
  • each piston cylinder is connected to the pivoting suspension part 13 at separate locations 34, 35 that are at a distance from each other and at a distance from the pivot axle 12 of the suspension part and are positioned in such a way that the longitudinal axes 36, 37 of the piston cylinders do not intersect the pivot axle 12, in order to create a turning moment.
  • the pivot axle 12 and the connection points 34, 35 form the corners of an imaginary triangle with its apex pointing downwards.
  • the connection points 34, 35 are movable, due to the fact that the ends of the piston rods have spindles 38, 39 or rollers that can run in guides 40, 41 respectively on the suspension part 13.
  • the two guides extend in such a way that the two opposing piston cylinders are essentially horizontal, that is they extend with essentially horizontal longitudinal axes 36, 37 in a neutral position and can be angled upwards and downwards in other positions.
  • the suspension part 13 has a selected configuration, but it can have a completely different design. It consists of a rigid unit, that is arranged on the pivot axle 12 in such a way that it can pivot and comprises, in the example, a rigid bracket 42 with two arms 43, 44, that meet at the bottom at the pivot point 12 and that have an upper part 45 at the top, which upper part, in the example, is in the form of a slightly angled inverted V, with two arms 46, 47, that can be constructed as box girders, in which the piston cylinders 30, 31 are inserted, and that have guides 40, 41 that can be constructed as elongated slots in the walls of the girders. Each slot is delimited at its ends by outer and inner stops 48-51 , against which the spindles 38, 39 make contact to limit the pivoting movement of the suspension part or to lock it completely in a selected position, determined by the positions of the piston cylinders 30, 31.
  • a second pair of linear force devices 52, 53 is arranged, each of which is arranged between the suspension part 13 and the respective supporting arm 14, 15.
  • These consist of piston cylinders, that are attached at one end, for example the cylinder end 54, 55, to the upper part
  • the piston cylinders are arranged to control the angular positions of the supporting arms in relation to the suspension part or alternatively to allow a movement in relation to this, for example a springing movement if such a function is selected, for example by the piston cylinders being allowed to change length during the springing movement, for example by means of compressed air.
  • the wheel suspension By means of the wheel suspension according to the invention, adjustment of the two pairs of wheels 5-8 between different operating positions and modes is made possible, for example for adjusting the vehicle for different terrains by, for example, letting the wheel suspension float freely, so that the pairs of wheels are allowed to follow the surface irregularities and by selecting different clearances, either with floating or locked suspension, with the wheels at the same axle distance or different axle distances to the frame.
  • the wheels have been omitted from the side views for the sake of clarity.
  • Figure 3 shows the operating mode with floating bogie with the supporting arms in the neutral position, when the horizontal piston cylinders 30, 31 are in a central position and do not lock the suspension part 13 that is thus able to float, and the inclining piston cylinders 52, 53 are similarly in a central position as far as their linear change of length is concerned.
  • all four piston cylinders can be locked by means of their hydraulic fluid.
  • the horizontal piston cylinders 30, 31 can be unloaded and allowed to follow the floating movement, when the spindles 38, 39 make contact with the respective stops 48-51 , whereby a damped floating movement is obtained.
  • the lower, vertical or inclined piston cylinders 52, 53 can also either be locked or can move with hydraulic medium damping or with a spring function.
  • Figure 4 shows an operating mode in which the upper, horizontal piston cylinders 30, 31 are extended to their inner stops 49, 51 and remain in this position by the action of the hydraulic fluid pressure.
  • the suspension part 13 is thereby locked and creates fixed positions for the upper attachment points of the inclined piston cylinders 52, 53, whereby the piston cylinders can be set in selected extended positions, that are locked by means of the hydraulic fluid pressure, illustrated in Figure 4 as a central position for a medium height of the trailer frame 3 and with both pairs of wheels in an active load-bearing position, on a horizontal surface.
  • Figure 5 shows a floating bogie, that is a suspension part 13, similar to the operating mode in Figure 3, but in fully deflected position, where the end position is reached by the outer stop 30 of the front guide 40 coming into contact with the spindle 32 of the front horizontal piston cylinder 30, while at the same time, the hydraulic system locks the same piston cylinder.
  • the front wheel is accordingly in its highest position, on account of the unevenness of the ground.
  • Figure 6 shows a locked bogie similar to the position in Figure 4, but where the front wheel is raised to the top position by the front inclined piston cylinder 52 being maximally retracted and accordingly by the front supporting arm 14 being pivoted up around the pivot axle 12.
  • Figure 7 is a partial view from above of the rear part of the trailer, showing more clearly the supporting arms 14, 15 and their mounting on the pivot axle
  • Figures 8 and 9 are views corresponding to Figures 6 and 7, but with the piston cylinders and the suspension part omitted.
  • the piston cylinders can be comprised in a pressurized medium system, that is advantageously hydraulic, but can be solely pneumatic or combined with air suspension, where the inclined piston cylinders can be given a spring function.
  • the bogie can alternatively be a so-called triple bogie.
  • the bogies on the left and right sides of the trailer are suitably mounted separately so that they can float individually in response to the unevenness of the ground, but they are advantageously synchronously controlled in an integrated operating system, for example a hydraulic system.
  • the horizontal piston cylinders can alternatively be connected to the frame in such a way that they can move.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
EP06747820A 2005-05-31 2006-05-30 Verstellbare radaufhängung für nutzfahrzeuge Withdrawn EP1885568A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0501263A SE528713C2 (sv) 2005-05-31 2005-05-31 Omställbar hjulupphängning för nyttofordon
PCT/SE2006/000626 WO2006130077A1 (en) 2005-05-31 2006-05-30 Adjustable wheel suspension for utility vehicles

Publications (2)

Publication Number Publication Date
EP1885568A1 true EP1885568A1 (de) 2008-02-13
EP1885568A4 EP1885568A4 (de) 2011-01-05

Family

ID=37481916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06747820A Withdrawn EP1885568A4 (de) 2005-05-31 2006-05-30 Verstellbare radaufhängung für nutzfahrzeuge

Country Status (4)

Country Link
EP (1) EP1885568A4 (de)
NO (1) NO20076141L (de)
SE (1) SE528713C2 (de)
WO (1) WO2006130077A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO343670B1 (en) * 2018-04-21 2019-05-06 Svela Solutions As Torsjons-bogie hjuloppheng for tilhengere
US11511583B2 (en) * 2021-04-05 2022-11-29 Kjell Robt Waerstad Suspension system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460196A (en) * 1981-12-23 1984-07-17 Roberto Perlini Suspension system for coupled vehicle axles
WO1984004284A1 (en) * 1983-04-28 1984-11-08 Haeglinge Ind Ab Tractor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398248A (en) * 1945-06-14 1946-04-09 Fruehauf Trailer Co Heavy-duty vehicle
US3471166A (en) * 1967-10-12 1969-10-07 Lockheed Aircraft Corp Heavy-duty multiple axle vehicle
GB1276352A (en) * 1969-05-22 1972-06-01 North Derbyshire Eng Co Ltd Improvements in or relating to suspension systems for road vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460196A (en) * 1981-12-23 1984-07-17 Roberto Perlini Suspension system for coupled vehicle axles
WO1984004284A1 (en) * 1983-04-28 1984-11-08 Haeglinge Ind Ab Tractor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006130077A1 *

Also Published As

Publication number Publication date
SE0501263L (sv) 2006-12-01
NO20076141L (no) 2008-02-29
EP1885568A4 (de) 2011-01-05
SE528713C2 (sv) 2007-01-30
WO2006130077A1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US5505482A (en) Road-railer suspension system having a spring lift and a stabilizer bar
US5882031A (en) Vehicle suspension system
CA2090698C (en) Rear dumping vehicle
FI124889B (fi) Sovitelma metsäkoneessa ja vastaavalla sovitelmalla varustettu metsäkone
US4881747A (en) Self steering suspension assembly
US6406043B1 (en) Suspension and steering system for a vehicle
CN1038793A (zh) 重载运输车
US20060091635A1 (en) Closed pneumatic synchronization system for independent suspensions
CN102131691A (zh) 带有效瓦特杆的悬挂装置
US3704898A (en) Vehicle axle suspension
US4324417A (en) Vehicle with bogie-mounted wheels and raising device for a pair of wheels
EP3512723B1 (de) Schienentriebfahrzeug mit variabler traktion
US9517674B2 (en) Pneumatic control system for a heavy-duty vehicle
US8220809B2 (en) Independent parallelogram suspension system
US5458355A (en) Retractable double trailing axle attachment
GB2311967A (en) A variable-track, four wheel steering agricultural vehicle with active suspension
JPH04503786A (ja) 大型ダンプトラック
US6322090B1 (en) Suspension system with an oscillating, rigid axle, particularly for tractors
US3807752A (en) Vehicle wheel support
US3439927A (en) Suspension mechanism for vehicle wheels
US3825135A (en) Slag pot carrier
WO2006130077A1 (en) Adjustable wheel suspension for utility vehicles
WO2012155206A1 (en) Improvements to haul bodies and related apparatus
US20050093260A1 (en) Non co-planar rear suspension for heavy trucks
US6098551A (en) Twin-axle rail vehicle bogie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20101202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110622