EP1881551B1 - Wave guide manifold - Google Patents

Wave guide manifold Download PDF

Info

Publication number
EP1881551B1
EP1881551B1 EP07013103.2A EP07013103A EP1881551B1 EP 1881551 B1 EP1881551 B1 EP 1881551B1 EP 07013103 A EP07013103 A EP 07013103A EP 1881551 B1 EP1881551 B1 EP 1881551B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
length
bend
edge length
manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07013103.2A
Other languages
German (de)
French (fr)
Other versions
EP1881551A1 (en
Inventor
Peter Prassmayer
Werner Blaier
Krzysztof Kaczmarski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP1881551A1 publication Critical patent/EP1881551A1/en
Application granted granted Critical
Publication of EP1881551B1 publication Critical patent/EP1881551B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/02Bends; Corners; Twists
    • H01P1/022Bends; Corners; Twists in waveguides of polygonal cross-section

Definitions

  • the invention relates to a 90 ° -Hohlleiterkrümmer.
  • Waveguides are known to be used in microwave technology. Waveguides represent the basic element in waveguide technology. Waveguides are available in various lengths, cross-sectional shapes and sizes. Hollow waveguides often have a rectangular cross section. But also round cross-sectional shapes for waveguides are known. Usually, such waveguides are provided at the beginning and at the end with a flange so as to connect successive waveguide sections firmly together. In a waveguide section usually the cross section is obtained. But also transitions from one cross-sectional shape to another cross-sectional shape are known.
  • waveguide headers or waveguide angles are used.
  • these are 90 ° elbows, where the direction of the electric field lines (E-bend, E-angle), that is the rectangular waveguide over the broadside, or the direction of the magnetic field lines (H-bend, H- Angle), ie with rectangular waveguides in the direction of the narrow side, changes.
  • Such waveguide manifolds are basically from the publication " Erich Pehl, Microwave Technology, Volume 1, Waveguides and Line Components, Dr. med. Alfred Bachig Verlag Heidelberg, 1988, pages 172-175 "as well as, for example” Walter Jansen, waveguide and stripline, dr. Alfred Bachig Verlag Heidelberg, 1977, pages 101 to 104
  • a so-called H-manifold and with reference to Figure 6.1 c a so-called e-manifold reproduced.
  • a 90 ° -Hohlleiterkrümmer is also from the EP-A1-0 285 295 known.
  • the square in cross-section 90 ° -Hohlleiterkrümmer has an edge length according to an embodiment FIG. 2 of this prior publication, which is given as 0.900 inch (1 inch equals 25.4 mm).
  • the length L is from the beginning of the taper to the extreme 90 ° corner point in the case of optimizing the E-plane waves 0.700 inches and for optimizing the H-plane wave 0.642 Inch should be at an edge length of the waveguide cross section of 0.900 inches. In the latter case, the chamfer points in the propagation direction the electromagnetic waves have a length that exceeds the edge length by almost 1%.
  • a 90 ° -Hohlleiterkrümmer is basically from the US-A 2 411 338 known.
  • a in cross-section rectangular waveguide manifold is also the EP-A1-0 012 978 to be known as known.
  • the invention provides a 90 ° -Hohlleiterkrümmer, due to its square waveguide cross-section equally as E-manifold for electric field lines or as H-manifold for magnetic field lines can be used.
  • the inventive 90 ° waveguide manifold is designed for a frequency range of 10.7 to 12.75 GHz, namely for vertical and horizontal polarization (parallel alignment with the two mutually perpendicular axes of the square cross-section of the waveguide).
  • the edge length is e.g. 15 mm.
  • the two waveguide sections formed perpendicular to each other in the 90 ° bend region are connected such that the connecting side located at the inner 90 ° corner point is an edge length of a ⁇ 2, where a is the edge length of the square waveguide.
  • the length of the bend thus corresponds to a diagonal in a square with the edge length a.
  • the bevel of the compensated corner in the 90 ° bend region has the edge length a of the square waveguide, wherein slight deviations of less than 0.1% can still be considered sufficient in the sense of the invention.
  • the inventive 90 ° -Hohlleiterkrümmer is made of zinc die-cast material.
  • the inner dimension of the waveguide must always be taken into account, and not the outer lengths, taking into account the wall thicknesses.
  • the square waveguide on its connecting pieces as a light internal dimension the edge length a. So should the beveled wall in the angular range as réelle explained a length in the propagation direction have the electromagnetic waves, which is equal to the dimension a of the clear distance at the square in cross-section Ruthen.
  • FIG. 1 is a schematic 3D representation of an inventive embodiment of a 90 ° -Hohlleiterkrümmers shown comprising two mutually perpendicular, straight-running waveguide fittings 1.
  • These waveguide connecting pieces 1 have a square cross-section, with an edge length a.
  • the housing wall is made of electrically conductive material, namely metal. It is a cast material, since the waveguide according to the invention is to be produced in a casting process. For this purpose, zinc is used as cast or die cast material.
  • the waveguide connecting pieces 1 at their end face open connection side 3 nor a circumferential flange, to which the waveguide manifold thus formed with a subsequent, usually straight waveguide connector or, for example, a waveguide terminal of an LNB or other components are connected can.
  • FIG. 1 shows, the 90 ° -Hohlleiterkrümmer or waveguide angle on an inner edge 5, at which the inner wall portions 7 of the two waveguide fittings 1 at a 90 ° angle to each other.
  • the in FIG. 1 left inner wall portion 7 and also belonging to the left waveguide connector 1 outer wall portion 9 parallel to each other.
  • the inner and the outer wall portion 7, 9 of the in FIG. 1 right waveguide connector 1 aligned parallel to each other.
  • the inner and outer wall section 7, 9 of the left-lying waveguide connection piece 1 are then to the inner and outer wall sections 7, 9 of the in FIG. 1 right waveguide connector 1 aligned vertically.
  • the manifold boundary wall 15 is a transition wall portion respectively between the wall portions 11 of the two waveguide fittings 1.
  • the chamfer 19 has in plan view according to FIG. 2 a length which is equal to the edge length a of the square in cross-section waveguide fittings 1. Such dimensioning provides the best transmission conditions for the propagation of an electromagnetic wave in this waveguide elbow. Deviations from the edge length a for the chamfer 19 in the propagation direction of the electromagnetic waves of less than 0.1% are still sufficient to achieve the desired result.
  • the length of the designated as bevel 19 and extending in a 135 ° angle to the alignment of the waveguide connectors 1 wall is equal to the edge length a, that has the same length as the edge length at the opening area of the waveguide connecting pieces 1.
  • This length of the chamfer 19 is ie measured in the direction of the plane of curvature. Since the height in the direction perpendicular thereto in the waveguide manifold also has the edge length a, thus the wall defined by the bevel 19 has a square shape, since not only the length but also the height perpendicular thereto is equal to the edge length a.
  • the dimensions given above with regard to the edge length with the dimension a as well as with respect to the length of the bevel with the length a in each case relate to the internal dimension of the waveguide sections.
  • the waveguide elbow may have an arbitrarily thick wall with an arbitrarily thick wall thickness, so that the outer dimensions of the edge length or the outer dimension of the bevel of the length a may differ.
  • the waveguide internal dimension with respect to the square opening has an edge length a with respect to the waveguide channel in the longitudinal and transverse directions of the square waveguide, wherein the internal dimension of the chamfer in the waveguide inner piece has the length a and a height with the clear internal dimension a.
  • the outer contours can be angular.
  • the compensating wall sections 23 shown in the figures can be made longer and terminate at right angles to one another with the formation of an outer vertical edge, as if no bevelled wall 19 were provided internally as the boundary wall of the waveguide channel. Because as stated, only the measurement and the design of the waveguide elbow is with respect to the waveguide channel limiting inner walls crucial. In other words, all of the walls explained above represent the inner walls and / or surfaces that bound the waveguide channel to the outside.

Landscapes

  • Waveguides (AREA)

Description

Die Erfindung betrifft einen 90°-Hohlleiterkrümmer.The invention relates to a 90 ° -Hohlleiterkrümmer.

Hohlleiter werden bekanntermaßen in der Mikrowellentechnik eingesetzt. Hohlleiter stellen das Grundelement in der Hohlleitertechnik dar. Hohlleiter gibt es in verschiedenen Längen, Querschnittsformen und Größen. Häufig weisen Hohlwellenleiter einen rechteckförmigen Querschnitt auf. Aber auch runde Querschnittsformen für Hohlleiter sind bekannt. Üblicherweise werden derartige Hohlleiter am Anfang und am Ende mit einem Flansch ausgestattet, um so aufeinander folgende Hohlleiterabschnitte fest miteinander zu verbinden. In einer Hohlleiterstrecke bleibt üblicherweise der Querschnitt erhalten. Aber auch Übergänge von einer Querschnittsform in eine andere Querschnittsform sind bekannt.Waveguides are known to be used in microwave technology. Waveguides represent the basic element in waveguide technology. Waveguides are available in various lengths, cross-sectional shapes and sizes. Hollow waveguides often have a rectangular cross section. But also round cross-sectional shapes for waveguides are known. Usually, such waveguides are provided at the beginning and at the end with a flange so as to connect successive waveguide sections firmly together. In a waveguide section usually the cross section is obtained. But also transitions from one cross-sectional shape to another cross-sectional shape are known.

Häufig stellt sich die Aufgabe, in einer Hohlleiterstrecke eine Richtungsänderung vorzusehen. Dafür werden sogenannten Hohlleiterkrümmer oder Hohlleiterwinkel verwendet. Meistens handelt es sich dabei um 90°-Krümmer, bei denen sich die Richtung der elektrischen Feldlinien (E-Krümmer, E-Winkel), also bei der Rechteckhohlleitung über die Breitseite, oder die Richtung der magnetischen Feldlinien (H-Krümmer, H-Winkel), also bei Rechteckhohlleitern in Richtung der schmalen Seite, ändert.Frequently, the task arises to provide a direction change in a waveguide route. For this purpose, so-called waveguide headers or waveguide angles are used. In most cases, these are 90 ° elbows, where the direction of the electric field lines (E-bend, E-angle), that is the rectangular waveguide over the broadside, or the direction of the magnetic field lines (H-bend, H- Angle), ie with rectangular waveguides in the direction of the narrow side, changes.

Derartige Hohlleiter-Krümmer sind grundsätzlich aus der Veröffentlichung " Erich Pehl, Mikrowellentechnik, Band 1, Wellenleitungen und Leitungsbausteine, Dr. Alfred Hütig Verlag Heidelberg, 1988, Seiten 172 bis 175 " sowie beispielsweise aus " Walter Jansen, Hohlleiter und Streifenleiter, Dr. Alfred Hütig Verlag Heidelberg, 1977, Seiten 101 bis 104 " bekannt. Dabei sind in der vorstehend genannten Vorveröffentlichung von "Walter Jansen" unter Hinweis auf Figur 6.1 b ein sogenannter H-Krümmer und unter Hinweis auf Bild 6.1 c ein sogenannter E-Krümmer wiedergegeben.Such waveguide manifolds are basically from the publication " Erich Pehl, Microwave Technology, Volume 1, Waveguides and Line Components, Dr. med. Alfred Hütig Verlag Heidelberg, 1988, pages 172-175 "as well as, for example" Walter Jansen, waveguide and stripline, dr. Alfred Hütig Verlag Heidelberg, 1977, pages 101 to 104 Here, in the aforementioned prior publication of "Walter Jansen" with reference to Figure 6.1 b, a so-called H-manifold and with reference to Figure 6.1 c, a so-called e-manifold reproduced.

Ein 90°-Hohlleiterkrümmer ist auch aus der EP-A1-0 285 295 bekannt geworden. Der im Querschnitt quadratische 90°-Hohlleiterkrümmer weist eine Kantenlänge gemäß einem Ausführungsbeispiel nach Figur 2 dieser Vorveröffentlichung auf, die mit einer Größenangabe von 0,900 Inch (1 Inch entspricht 25,4 mm) angegeben ist. Zur Optimierung des Hohlleiterkrümmers unter Verringerung der Dämpfung wird angegeben, die Länge L vom Beginn der Abschrägung bis zu dem zu äußerst liegenden 90°-Eckpunkt im Falle der Optimierung der E-Ebenen-Wellen 0,700 Inch und zur Optimierung der H-Ebenen-Welle 0,642 Inch bei einer Kantenlänge des Hohlleiterquerschnitts von 0,900 Inch betragen soll. Im letzteren Fall weist die Abschrägung in Ausbreitungsrichtung der elektromagnetischen Wellen eine Länge auf, die die Kantenlänge um knapp 1% übersteigt.A 90 ° -Hohlleiterkrümmer is also from the EP-A1-0 285 295 known. The square in cross-section 90 ° -Hohlleiterkrümmer has an edge length according to an embodiment FIG. 2 of this prior publication, which is given as 0.900 inch (1 inch equals 25.4 mm). To optimize the waveguide bulk while reducing the attenuation, the length L is from the beginning of the taper to the extreme 90 ° corner point in the case of optimizing the E-plane waves 0.700 inches and for optimizing the H-plane wave 0.642 Inch should be at an edge length of the waveguide cross section of 0.900 inches. In the latter case, the chamfer points in the propagation direction the electromagnetic waves have a length that exceeds the edge length by almost 1%.

Ein 90°-Hohlleiterkrümmer ist grundsätzlich auch aus der US-A 2 411 338 bekannt geworden. Ein im Querschnitt rechteckförmiger Hohlleiterkrümmer ist zudem auch der EP-A1-0 012 978 als bekannt zu entnehmen.A 90 ° -Hohlleiterkrümmer is basically from the US-A 2 411 338 known. A in cross-section rectangular waveguide manifold is also the EP-A1-0 012 978 to be known as known.

Schließlich ist ein Hohlleiterkrümmer mit quadratischem Innenquerschnitt auch aus der JP 03 167901 A bekanntgeworden. Diese Vorveröffentlichung beschreibt unterschiedliche Ausführungsbeispiele mit einem rund verlaufenden Hohlleiterkrümmer sowie einem winklig verlaufenden Hohlleiterkrümmer.Finally, a Hohlleiterkrümmer with square inner cross section and from the JP 03 167901 A known. This prior publication describes different embodiments with a circular waveguide manifold and an angularly extending waveguide manifold.

Demgegenüber ist es Aufgabe der vorliegenden Erfindung, ausgehend von dem gattungsbildenden Stand der Technik einen Hohlleiter mit einem 90°-Hohlleiterkrümmer, also einem 90°-Hohlleiterwinkel zu schaffen, der einfacher und kostengünstiger herstellbar sein soll, wobei gleichzeitig gute elektrische Übertragungseigenschaften im Hinblick auf die Ausbreitung der elektromagnetischen Wellen (also sowohl der E- als auch der H-Ebenen-Wellen) im Hohlleiter erreicht werden sollen.In contrast, it is an object of the present invention, starting from the generic state of the art to provide a waveguide with a 90 ° -Hohlleiterkrümmer, ie a 90 ° waveguide angle, which should be easier and cheaper to produce, at the same time good electrical transmission properties in terms of Propagation of the electromagnetic waves (ie both the E and the H-plane waves) to be achieved in the waveguide.

Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Eine vorteilhafte Ausgestaltung der Erfindung ist in dem Unteranspruch angegebenen.The object is achieved according to the features specified in claim 1. An advantageous embodiment of the invention is specified in the dependent claim.

Die Erfindung schafft einen 90°-Hohlleiterkrümmer, der aufgrund seines quadratischen Hohlleiter-Querschnittes gleichermaßen als E-Krümmer für elektrische Feldlinien oder aber auch als H-Krümmer für magnetische Feldlinien eingesetzt werden kann.The invention provides a 90 ° -Hohlleiterkrümmer, due to its square waveguide cross-section equally as E-manifold for electric field lines or as H-manifold for magnetic field lines can be used.

In einem wie im Rahmen der Erfindung vorgesehenen quadratischen Hohlleiter sind grundsätzlich zwei zueinander orthogonale Moden ausbreitungsfähig. Üblicherweise würde allerdings bei einem derartigen, im Querschnitt quadratischen 90°-Krümmer eine Rückfluss- und Durchgangsdämpfung auftreten, die für den praktischen Gebrauch ungenügende elektrische Werte ergeben würde.In a square waveguide as provided in the invention, basically two mutually orthogonal modes are capable of propagation. Typically, however, with such a square cross-sectional 90 ° bend, there would be reflux and transmission loss which would result in insufficient electrical values for practical use.

Von daher ist es im Stand der Technik häufig üblich, beide senkrecht zueinander stehenden Moden getrennt über eigene Rechteck-Hohlleiter oder beide Moden gemeinsam über einen Rund-Hohlleiter zu führen. Ein Rund-Hohlleiter weist dabei den Nachteil auf, dass relativ große Biegeradien notwendig sind, d.h. ein platzsparender 90°-Knick nicht durchführbar ist.It is therefore common practice in the prior art to guide both mutually perpendicular modes separately via their own rectangular waveguide or both modes together via a circular waveguide. A round waveguide has the disadvantage that relatively large bending radii are necessary, i. a space-saving 90 ° -Knick is not feasible.

Der erfindungsgemäße 90°-Hohlleiterkrümmer ist für einen Frequenzbereich von 10,7 bis 12,75 GHz ausgebildet, nämlich für vertikale und horizontale Polarisation (Parallelausrichtung zu den beiden senkrecht zueinander stehenden Achsen des quadratischen Querschnitts des Hohlleiters).The inventive 90 ° waveguide manifold is designed for a frequency range of 10.7 to 12.75 GHz, namely for vertical and horizontal polarization (parallel alignment with the two mutually perpendicular axes of the square cross-section of the waveguide).

Für den angegebenen Frequenzbereich beträgt die Kantenlänge z.B. 15 mm.For the specified frequency range, the edge length is e.g. 15 mm.

Überraschend ist, dass im Rahmen der Erfindung ein Hohlleiterkrümmer geschaffen wird, dessen 90°-Winkel für beide Polarisationen gute elektrische Übertragungseigenschaften inklusive der Kreuzpolarisations-Entkopplung aufweist.It is surprising that in the context of the invention, a waveguide manifold is created whose 90 ° angle for both polarizations good electrical transmission properties including the cross-polarization decoupling.

Zur Umsetzung derartiger 90°-Hohlleiter ist bereits vorgeschlagen worden, den Übergang als kontinuierlichen Bogenabschnitt (in Seitenansicht also als teilkreisförmiges Rechteckrohr) auszubilden.For the implementation of such 90 ° waveguide has already been proposed to form the transition as a continuous arc section (in side view so as part-circular rectangular tube).

Die üblichste Ausführungsform ist jedoch, dass die zwei senkrecht zueinander ausgebildeten Hohlleiterabschnitte in dem 90°-Krümmerbereich so verbunden werden, dass die zum innenliegenden 90°-Eckpunkt außenliegende Verbindungsseite eine Kantenlänge von a √2 beträgt, wobei a die Kantenlänge des quadratischen Hohlleiters beträgt. Die Länge der Abwinklung entspricht also einer Diagonalen in einem Quadrat mit der Kantenlänge a.However, the most common embodiment is that the two waveguide sections formed perpendicular to each other in the 90 ° bend region are connected such that the connecting side located at the inner 90 ° corner point is an edge length of a √2, where a is the edge length of the square waveguide. The length of the bend thus corresponds to a diagonal in a square with the edge length a.

Erfindungsgemäß wird eine abweichende Geometrie vorgeschlagen, bei der die Abschrägung des kompensierten Ecks im 90°-Krümmerbereich die Kantenlänge a des quadratischen Hohlleiters aufweist, wobei geringfügige Abweichungen von weniger als 0,1% als noch ausreichend im Sinne der Erfindung betrachtet werden können. Dabei wird der erfindungsgemäße 90°-Hohlleiterkrümmer aus Zink-Druckgussmaterial hergestellt.According to the invention, a deviating geometry is proposed in which the bevel of the compensated corner in the 90 ° bend region has the edge length a of the square waveguide, wherein slight deviations of less than 0.1% can still be considered sufficient in the sense of the invention. In this case, the inventive 90 ° -Hohlleiterkrümmer is made of zinc die-cast material.

Bei der vorstehend erwähnten Dimensions-Regel ist stets das Innenmaß des Hohlleiters zu berücksichtigen, und nicht die Außenlängen unter Berücksichtigung der Wandstärken. Dabei weist der quadratische Hohlleiter an seinen Anschlussstücken als lichtes Innenmaß die Kantenlänge a auf. So soll auch die abgeschrägte Wand im Winkelbereich als Innenmaß eine Länge in Ausbreitungsrichtung der elektromagnetischen Wellen aufweisen, die gleich dem Maß a des lichten Abstandes an den im Querschnitt quadratischen Anschlusstücken ist.In the dimension rule mentioned above, the inner dimension of the waveguide must always be taken into account, and not the outer lengths, taking into account the wall thicknesses. In this case, the square waveguide on its connecting pieces as a light internal dimension, the edge length a. So should the beveled wall in the angular range as Innenmaß a length in the propagation direction have the electromagnetic waves, which is equal to the dimension a of the clear distance at the square in cross-section Anschlusstücken.

Es ist zwar grundsätzlich ein 90°-Hohlleiterkrümmer auch aus der US 6,253,444 B1 bekannt geworden. Im Unterschied zum Erfindungsgegenstand handelt es sich hierbei jedoch nicht um einen im Querschnitt quadratischen, sondern um einen im Querschnitt rechteckförmigen Hohlleiter-Krümmer. Darüber hinaus wird gemäß dieser Vorveröffentlichung als wesentlich herausgestellt, dass der Hohlleiter-Krümmer im Übergangsbereich keine mit der vorliegenden Erfindung vergleichbare Abschrägung aufweist, sondern dass hier Stufenabsätze in das Hohlleiter-Material eingearbeitet sind. Dabei kann es sich um wenige großdimensionierte Stufen oder um eine Vielzahl von Stufen handeln, die entsprechend der Anzahl der Stufen mit kleinerer Stufenhöhe ausgebildet sind. Im Rahmen der Erfindung hat sich allerdings gezeigt, dass eine derartige Ausführungsform nicht zu den gewünschten Eigenschaften führt, wie diese im Rahmen der Erfindung realisierbar sind.It is basically a 90 ° -Hohlleiterkrümmer also from the US 6,253,444 B1 known. In contrast to the subject invention, this is not a square in cross-section, but a rectangular in cross section waveguide manifold. In addition, it is found essential according to this prior publication that the waveguide manifold in the transition region has no comparable with the present invention bevel, but that here stepped heels are incorporated into the waveguide material. These may be a few large-sized steps or a plurality of steps, which are formed according to the number of stages with a smaller step height. In the context of the invention, however, it has been shown that such an embodiment does not lead to the desired properties, as can be realized within the scope of the invention.

Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert. Dabei zeigen im Einzelnen:

Figur 1 :
eine schematische räumliche Darstellung des erfindungsgemäßen 90°-Hohlleiterkrümmers; und
Figur 2 :
eine schematische Seitenansicht auf das Ausführungsbeispiel gemäß Figur 1.
The invention will be explained in more detail with reference to drawings. In detail:
FIG. 1:
a schematic spatial representation of the inventive 90 ° -Hohlleiterkrümmers; and
FIG. 2:
a schematic side view of the embodiment according to FIG. 1 ,

In Figur 1 ist in schematischer 3D-Darstellung ein erfindungsgemäßes Ausführungsbeispiel eines 90°-Hohlleiterkrümmers gezeigt, der zwei senkrecht zueinander stehende, gerade verlaufende Hohlleiter-Anschlussstücke 1 umfasst.In FIG. 1 is a schematic 3D representation of an inventive embodiment of a 90 ° -Hohlleiterkrümmers shown comprising two mutually perpendicular, straight-running waveguide fittings 1.

Diese Hohlleiter-Anschlussstücke 1 weisen einen quadratischen Querschnitt auf, und zwar mit einer Kantenlänge a.These waveguide connecting pieces 1 have a square cross-section, with an edge length a.

Die Gehäusewandung besteht aus elektrisch leitfähigem Material, nämlich aus Metall. Dabei handelt es sich um ein Gussmaterial, da der erfindungsgemäße Hohlleiter in einem Gussverfahren hergestellt werden soll. Hierzu wird Zink als Guss- oder Druckgussmaterial verwendet.The housing wall is made of electrically conductive material, namely metal. It is a cast material, since the waveguide according to the invention is to be produced in a casting process. For this purpose, zinc is used as cast or die cast material.

In der Regel weisen die Hohlleiter-Anschlussstücke 1 an ihrer stirnseitig offenen Anschlussseite 3 noch einen umlaufenden Flansch auf, an den der so gebildete Hohlleiterkrümmer mit einem nachfolgenden, in der Regel gerade verlaufenden Hohlleiter-Anschlussstück oder beispielsweise einem Hohlleiteranschluss eines LNB's oder anderen Umbauteilen angeschlossen werden kann.As a rule, the waveguide connecting pieces 1 at their end face open connection side 3 nor a circumferential flange, to which the waveguide manifold thus formed with a subsequent, usually straight waveguide connector or, for example, a waveguide terminal of an LNB or other components are connected can.

Wenn die Enden eines Hohlleiter-Krümmers üblicherweise mit Flanschen ausgestattet sind, so kommen insbesondere sogenannte Schraubflansche in Betracht, wie diese bei Rechteck-Hohlleitern üblich sind. Genauso ist es möglich, den beschriebenen Hohlleiter-Krümmer beispielsweise an ein LNB mittels einer Muff-Verbindung anzuschließen. D.h., dass sich der Hohlleiter-Krümmer über den Hohlleiter-Anschluss des LNB's stülpt oder überstülpt. Das andere Ende des Hohlleiter-Krümmers kann so ausgestattet sein, dass in Abhängigkeit des nachfolgenden Bauteils eine entsprechende Verbindung sichergestellt werden kann.If the ends of a waveguide bend are usually equipped with flanges, then so-called screw flanges in particular come into consideration, as are customary with rectangular waveguides. Likewise, it is possible to connect the described waveguide manifold, for example, to an LNB by means of a muff connection. This means that the waveguide elbow over the waveguide port of the LNB's inverts or over. The other end of the waveguide manifold can be so equipped be that depending on the subsequent component, a corresponding connection can be ensured.

Wie sich aus der 3D-Darstellung gemäß Figur 1 ergibt, weist der 90°-Hohlleiterkrümmer oder Hohlleiterwinkel eine innenliegende Kante 5 auf, an welcher die innenliegenden Wandabschnitte 7 der beiden Hohlleiter-Anschlussstücke 1 im 90°-Winkel aufeinanderzulaufen. Mit anderen Worten sind der in Figur 1 linke innenliegende Wandabschnitt 7 und der ebenfalls zum linken Hohlleiter-Anschlussstück 1 gehörende äußere Wandabschnitt 9 parallel zueinander. Ebenso sind der innenliegende und der außenliegende Wandabschnitt 7, 9 des in Figur 1, rechts liegenden Hohlleiter-Anschlussstückes 1 parallel zueinander ausgerichtet. Der innere und äußere Wandabschnitt 7, 9 des links liegenden Hohlleiter-Anschlussstückes 1 sind dann zu den inneren und äußeren Wandabschnitten 7, 9 des in Figur 1 rechts liegenden Hohlleiter-Anschlussstückes 1 senkrecht ausgerichtet.As can be seen from the 3D representation according to FIG. 1 shows, the 90 ° -Hohlleiterkrümmer or waveguide angle on an inner edge 5, at which the inner wall portions 7 of the two waveguide fittings 1 at a 90 ° angle to each other. In other words, the in FIG. 1 left inner wall portion 7 and also belonging to the left waveguide connector 1 outer wall portion 9 parallel to each other. Likewise, the inner and the outer wall portion 7, 9 of the in FIG. 1 , right waveguide connector 1 aligned parallel to each other. The inner and outer wall section 7, 9 of the left-lying waveguide connection piece 1 are then to the inner and outer wall sections 7, 9 of the in FIG. 1 right waveguide connector 1 aligned vertically.

Die zu den erwähnten Wandabschnitten 7 und 9 jeweils um 90° versetzt liegenden weiteren oberen und unteren Wandabschnitte 11 der beiden Hohlleiter-Anschlussstücke 1 liegen jeweils in einer gemeinsamen Ebene, nämlich in einer in Figur 1 gezeigten oberen sowie einer dazu parallelen unteren Ebene, in der auch die Krümmer-Begrenzungswand 15 des eigentlichen Winkelabschnittes 17 zu liegen kommt. Sowohl in der in Figur 1 oben liegenden Ebene als auch in der in Figur 1 unten liegenden Ebene stellt die Krümmer-Begrenzungswand 15 einen Übergangswandabschnitt jeweils zwischen den Wandabschnitten 11 der beiden Hohlleiter-Anschlussstücke 1 dar.The respective upper and lower wall sections 11 of the two waveguide connecting pieces 1, which are each offset by 90.degree. From the mentioned wall sections 7 and 9, lie in one common plane, namely in one FIG. 1 shown upper and a parallel lower plane in which also the manifold boundary wall 15 of the actual angle section 17 comes to rest. Both in the in FIG. 1 overhead level as well as in the FIG. 1 Below level, the manifold boundary wall 15 is a transition wall portion respectively between the wall portions 11 of the two waveguide fittings 1.

Wie sich insbesondere aus der Draufsicht gemäß Figur 2 ergibt, ist zu der innenliegenden 90°-Kante 5, die in Draufsicht gemäß Figur 2 senkrecht zur Zeichenebene verläuft, außenliegend eine Abschrägung 19 als Begrenzungswand vorgesehen, die senkrecht und symmetrisch zur Winkelhalbierenden 21 des 90°-Krümmers verläuft.As can be seen in particular from the top view FIG. 2 results is to the inner 90 ° edge 5, which in plan view according to FIG. 2 extends perpendicular to the plane, outboard a bevel 19 provided as a boundary wall which is perpendicular and symmetrical to the bisector 21 of the 90 ° -Krümmers.

Gemäß dieser Anordnung ergeben sich somit Ausgleichs-Wandabschnitte 23, die jeweils in Verlängerung des äußeren Wandabschnitts 9 der beiden Hohlleiter-Anschlussstücke 1 in gleicher Ebene mit diesen zu liegen kommen.According to this arrangement, thus resulting balancing wall sections 23 which come to lie in each case in extension of the outer wall portion 9 of the two waveguide fittings 1 in the same plane with these.

Die Abschrägung 19 weist in Draufsicht gemäß Figur 2 eine Länge auf, die gleich der Kantenlänge a der im Querschnitt quadratischen Hohlleiter-Anschlussstücke 1 ist. Bei einer derartigen Dimensionierung werden die besten Übertragungsbedingungen für die Ausbreitung einer elektromagnetischen Welle in diesem Hohlleiter-Winkelstück geschaffen. Abweichungen von der Kantenlänge a für die Abschrägung 19 in Ausbreitungsrichtung der elektromagnetischen Wellen von weniger als 0,1% sind zur Erzielung des erwünschten Erfolges auch noch ausreichend.The chamfer 19 has in plan view according to FIG. 2 a length which is equal to the edge length a of the square in cross-section waveguide fittings 1. Such dimensioning provides the best transmission conditions for the propagation of an electromagnetic wave in this waveguide elbow. Deviations from the edge length a for the chamfer 19 in the propagation direction of the electromagnetic waves of less than 0.1% are still sufficient to achieve the desired result.

Die Länge der als Abschrägung 19 bezeichneten und in einem 135°-Winkel zur Ausrichtung der Hohlleiter-Anschlussstücke 1 verlaufenden Wand (also in Ausbreitungsrichtung der durch den Hohlleiterkrümmer verlaufenden elektromagnetischen Wellen) ist gleich der Kantenlänge a, weist also die gleiche Länge auf wie die Kantenlänge am Öffnungsbereich der Hohlleiter-Anschlussstücke 1. Diese Länge der Abschrägung 19 wird also in Richtung der Krümmungsebene gemessen. Da die Höhe in senkrechter Richtung dazu in dem Hohlleiterkrümmer ebenfalls die Kantenlänge a aufweist, weist somit die durch die Abschrägung 19 definierte Wand eine quadratische Form auf, da nicht nur die Länge, sondern auch die dazu senkrecht stehende Höhe gleich der Kantenlänge a ist.The length of the designated as bevel 19 and extending in a 135 ° angle to the alignment of the waveguide connectors 1 wall (ie in the direction of propagation of the waveguide body extending electromagnetic waves) is equal to the edge length a, that has the same length as the edge length at the opening area of the waveguide connecting pieces 1. This length of the chamfer 19 is ie measured in the direction of the plane of curvature. Since the height in the direction perpendicular thereto in the waveguide manifold also has the edge length a, thus the wall defined by the bevel 19 has a square shape, since not only the length but also the height perpendicular thereto is equal to the edge length a.

Ferner wird darauf hingewiesen, dass sich die vorstehend angegebenen Maßangaben bezüglich der Kantenlänge mit dem Maß a wie aber auch bezüglich der Länge der Abschrägung mit der Länge a jeweils auf das Innenmaß der Hohlleiterabschnitte beziehen. In Abweichung davon kann das Hohlleiter-Winkelstück eine beliebig dicke Wand mit einer beliebig dicken Wandstärke aufweisen, so dass die Außenmaße an der Kantenlänge bzw. das Außenmaß an der Abschrägung von der Länge a abweichen kann. Das Hohlleiter-Innenmaß bezüglich der quadratischen Öffnung weist bezüglich des Hohlleiterkanals in Längs- und Querrichtung des quadratischen Hohlleiters eine Kantenlänge a auf, wobei das im Hohlleiter-Innenstück innenliegende Maß der Abschrägung die Länge a und eine Höhe mit dem lichten Innenmaß a aufweist.It should also be noted that the dimensions given above with regard to the edge length with the dimension a as well as with respect to the length of the bevel with the length a in each case relate to the internal dimension of the waveguide sections. In deviation from this, the waveguide elbow may have an arbitrarily thick wall with an arbitrarily thick wall thickness, so that the outer dimensions of the edge length or the outer dimension of the bevel of the length a may differ. The waveguide internal dimension with respect to the square opening has an edge length a with respect to the waveguide channel in the longitudinal and transverse directions of the square waveguide, wherein the internal dimension of the chamfer in the waveguide inner piece has the length a and a height with the clear internal dimension a.

Von daher können auch im Bereich der sogenannten Abschrägung die Außenkonturen winkelförmig sein. Mit anderen Worten können die in den Figuren gezeigten Ausgleichs-Wandabschnitte 23 verlängert ausgebildet sein und unter Bildung einer äußeren Vertikalkante rechtwinklig aufeinander stoßend enden, so als ob innenliegend als Begrenzungswand des Hohlleiter-Kanals keine abgeschrägte Wand 19 vorgesehen wäre. Denn wie ausgeführt, ist allein die Maßangabe und die Gestaltung des Hohlleiter-Winkelstückes bezüglich der den Hohlleiter-Kanal begrenzenden Innenwände entscheidend. Mit anderen Worten stellen alle vorstehend erläuterten Wände die Innenwände und/oder -flächen dar, die den Hohlleiter-Kanal nach außen hin begrenzen.Therefore, also in the area of the so-called bevel, the outer contours can be angular. In other words, the compensating wall sections 23 shown in the figures can be made longer and terminate at right angles to one another with the formation of an outer vertical edge, as if no bevelled wall 19 were provided internally as the boundary wall of the waveguide channel. Because as stated, only the measurement and the design of the waveguide elbow is with respect to the waveguide channel limiting inner walls crucial. In other words, all of the walls explained above represent the inner walls and / or surfaces that bound the waveguide channel to the outside.

Claims (2)

  1. 90° waveguide bend having the following features:
    - the waveguide bend has two waveguide connectors (1) that are perpendicular to each other,
    - an angular portion (17) producing the 90° change in direction is provided between the two waveguide connectors (1);
    - externally to the 90° change in direction, the angular portion (17) has a quadratic chamfer (19) and respective compensating wall portions (23) as a delimiting wall for the waveguide bend, by means of which the waveguide channel is outwardly delimited;
    - the waveguide connectors (1) have a quadratic internal cross section having an edge length a;
    - the side length of the chamfer (19) is equal to the edge length a having a deviation of less than ± 0.1 %;
    - the chamfer (19) is oriented perpendicularly to the bisecting line (21) of the 90° waveguide bend;
    - the 90° waveguide bend is designed for transmitting a frequency range of from 10.7 GHz to 12.75 GHz; and
    - the 90° waveguide bend consists of a zinc diecasting material.
  2. 90° waveguide bend according to claim 1, wherein the length of the internal and external wall portions (7, 9) of the waveguide connectors (1) is preselectable in the direction of propagation of the electromagnetic waves.
EP07013103.2A 2006-07-20 2007-07-04 Wave guide manifold Active EP1881551B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006033703A DE102006033703A1 (en) 2006-07-20 2006-07-20 waveguide bend

Publications (2)

Publication Number Publication Date
EP1881551A1 EP1881551A1 (en) 2008-01-23
EP1881551B1 true EP1881551B1 (en) 2016-09-28

Family

ID=38543548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07013103.2A Active EP1881551B1 (en) 2006-07-20 2007-07-04 Wave guide manifold

Country Status (3)

Country Link
US (1) US7750763B2 (en)
EP (1) EP1881551B1 (en)
DE (1) DE102006033703A1 (en)

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253369A (en) * 2008-04-01 2009-10-29 Furuno Electric Co Ltd Corner waveguide
US8816799B2 (en) 2010-09-30 2014-08-26 Aviat U.S., Inc. Systems and methods of waveguide assembly using longitudinal features
WO2013025964A1 (en) 2011-08-18 2013-02-21 Opel, Inc. Optical closed loop microresonator and thyristor memory device
US10521288B2 (en) * 2012-11-07 2019-12-31 International Business Machines Corporation Collaborative application testing
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10310268B2 (en) 2016-12-06 2019-06-04 Microsoft Technology Licensing, Llc Waveguides with peripheral side geometries to recycle light
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
RU177328U1 (en) * 2017-12-04 2018-02-15 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" DEVICE FOR ROTATING THE POLARIZATION PLANE
US11482793B2 (en) 2017-12-20 2022-10-25 Optisys, Inc. Integrated tracking antenna array
RU2680731C1 (en) * 2018-04-06 2019-02-26 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" Waveguide corner
WO2022241483A2 (en) 2021-05-14 2022-11-17 Optisys, Inc. Planar monolithic combiner and multiplexer for antenna arrays

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167901A (en) * 1989-11-27 1991-07-19 Matsushita Electric Works Ltd Waveguide corner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411338A (en) 1944-07-24 1946-11-19 Roberts Shepard Wave guide
US3672202A (en) * 1970-09-15 1972-06-27 Microwave Dev Lab Inc Method of making waveguide bend
DE2856733C2 (en) 1978-12-29 1984-06-20 Siemens AG, 1000 Berlin und 8000 München Rectangular waveguide angle piece bent over the narrow side of the waveguide
US4795993A (en) * 1987-03-26 1989-01-03 Hughes Aircraft Company Matched dual mode waveguide corner
DE3822981A1 (en) 1988-07-07 1988-12-22 Kathrein Werke Kg SEMICONDUCTOR POLARIZING SWITCH
EP0959515A1 (en) 1998-05-20 1999-11-24 TRT Lucent Technologies (SA) Fabrication method for microwave waveguide bends and bends obtained by this method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167901A (en) * 1989-11-27 1991-07-19 Matsushita Electric Works Ltd Waveguide corner

Also Published As

Publication number Publication date
EP1881551A1 (en) 2008-01-23
DE102006033703A1 (en) 2008-01-24
US7750763B2 (en) 2010-07-06
US20080018420A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
EP1881551B1 (en) Wave guide manifold
DE2452743A1 (en) TEMPERATURE-STABLE FILTERS FOR STRIP LINES USING DIELECTRIC RESONATORS
EP2535978B1 (en) Orthomode coupler for an antenna system
DE102005047336A1 (en) Waveguide band stop filter
DE69802556T2 (en) SEMICONDUCTOR ANTENNA SOFT WITHOUT VOTING ANGLE PIECES
DE2746376C2 (en) Coupling device between a coaxial line and a waveguide
EP3120410B1 (en) Multi-stage broadband directional coupler
EP1183752B1 (en) Polarization separating filter
DE3824150C2 (en)
EP3298649B1 (en) High-frequency conductor system with cable-bound rf bushing
EP2052434B1 (en) Directional coupler
DE3345689C2 (en)
EP1014472B1 (en) Directional coupler
DE2737125C2 (en) Transmission system
EP2438645B1 (en) Forward coupler comprising strip conductors
DE3822981C2 (en)
DE4205577A1 (en) Wideband hollow waveguide series-parallel coupling - comprises magic T formed in 2 single parts with sepn. plane along centre of E-arm and each symmetrical side-arm.
DE112013001556T5 (en) Transition from a planar circuit to a waveguide
DE19621809B4 (en) Transition from a rectangular waveguide to a circular waveguide
EP0280151B1 (en) Microwave polarisation filter
DE2732809C2 (en) Manufacturing process for a high-pass filter for millimeter waves and a filter manufactured by this process
DE69211428T2 (en) Filter device for electromagnetic waves in a waveguide with rotational symmetry, and inserted rectangular waveguide pieces
DE1034721B (en) Angled, rectangular waveguide
DE957867C (en) Filter or switch section filter with a coaxial high-frequency line
DE2407075C2 (en) Delay line for Lauffeld tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080207

17Q First examination report despatched

Effective date: 20080305

AKX Designation fees paid

Designated state(s): DE FR GB IT

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAV Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015141

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015141

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007015141

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007015141

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007015141

Country of ref document: DE

Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007015141

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007015141

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190314 AND 20190320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007015141

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007015141

Country of ref document: DE

Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200109 AND 20200115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220725

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230704