EP1874412A1 - Rotary foam distributor - Google Patents
Rotary foam distributorInfo
- Publication number
- EP1874412A1 EP1874412A1 EP06741384A EP06741384A EP1874412A1 EP 1874412 A1 EP1874412 A1 EP 1874412A1 EP 06741384 A EP06741384 A EP 06741384A EP 06741384 A EP06741384 A EP 06741384A EP 1874412 A1 EP1874412 A1 EP 1874412A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- distributor
- foam
- rotary
- output shaft
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C31/00—Delivery of fire-extinguishing material
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C31/00—Delivery of fire-extinguishing material
- A62C31/02—Nozzles specially adapted for fire-extinguishing
- A62C31/12—Nozzles specially adapted for fire-extinguishing for delivering foam or atomised foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/04—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
- B05B3/0409—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
- B05B3/0418—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
- B05B3/0422—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B3/00—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
- B05B3/02—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
- B05B3/04—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
- B05B3/0409—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
- B05B3/0418—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
- B05B3/0422—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
- B05B3/0431—Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements the rotative movement of the outlet elements being reversible
Definitions
- the present invention relates generally to fixed piping fire suppression systems and, more particularly, to a rotary-type foam distributor.
- a foam distributor is part of a fixed piping fire suppression system capable of projecting a stream of fire- extinguishing compressed-air foam or other compressed-gas foam.
- foam produced from a solution of a foam concentrate in water. The volume of the solution is expanded by the addition of air and mechanical energy to form a bubble structure resembling shaving cream. The bubble suffocates and cools the fire and protects adjacent structures from exposure to radiant heat.
- Foam is known to be very effective on liquid fires, e.g. fuel, oil or other flammable chemicals.
- Foam can be generated using an air-aspirating nozzle, which entrains air into the solution and agitates the mixture producing bubbles of non-uniform size.
- an aspirating system the foam is formed at the nozzle using the energy of the solution stream.
- This foaming typically removes substantially all of the mechanical energy of the solution stream and consequently a second flow is typically required to supply mechanical energy needed to distribute the foam.
- the duplication of supply, and the coordination of the two systems increases an expense of the system and makes the system inherently less reliable.
- Foam can also be generated by injecting air under pressure into the solution stream.
- the solution and air mixture are scrubbed by the hose (or pipe) to form a foam of uniform bubble size.
- the energy used in this system comes from the solution stream and the air injection system.
- This system produces a "compressed-air foam” (CAF) which is capable of delivering the foam with a greater force than a comparable aspirated system described above.
- CAF compressed-air foam
- compressed-air foam distributors are installed on ceilings and walls for fire- protection in a variety of applications, such as in warehouses and aircraft hangars.
- ceiling-mounted or wall-mounted foam distributors are poised to extinguish fires that might erupt if highly flammable jet fuel is accidentally ignited.
- the effectiveness of a distributor or a group of distributors to fight a fire depends on a number of factors, such as range or "reach", i.e. the distributor's ability to project the foam an adequate distance, area coverage, i.e. the floor space it can cover, reliability, compactness, power efficiency, etc. Improving the effectiveness of a distributor provides superior fire-suppression, thus requiring fewer distributors to cover a given facility, which accordingly reduces building costs and saves space.
- Applicant's United States Patent 6,764,024 discloses an impeller-driven delivery system that uses pressure of a CAF flow to drive an impeller, which is coupled by an internally mounted gear box reducer within a closed housing to revolve an output shaft that, in turn, drives a diffuser.
- the diffuser is made to revolve to distribute the CAF in a radial pattern.
- Applicant has found that greatly improved transfer of energy to a rotor, and a significantly more compact assembly, can be achieved with a different configuration. This configuration further provides a more robust, simpler, impeller and transmission system that is better suited to surviving extreme thermal and shock testing required of such devices.
- the foam distributor in accordance with the present invention has an inlet for receiving foam from a supply of compressed foam, such as compressed-air foam or other types of fire-retardant foams.
- compressed gas foams can be made of concentrates and water mixed with inert gasses, other than air.
- the foam Upon entering the distributor, the foam impinges on one or more vanes (or other impingement surfaces) of an offset radial impeller, wheel or rotor mechanism mounted on an input shaft, thereby causing the radial impeller, wheel or rotor mechanism and the input shaft to rotate.
- An offset radial impeller denotes an impeller that revolves along an axis that is transverse to the direction of flow, and so is moved by the flow itself, and transverse movement of the flow as it deflects radially away from a centre of rotation of the impeller, which center of rotation being offset from the direction of flow so that significantly less pressure is applied to the impellers when not positioned within the flow.
- the input shaft is geared to an output shaft upon which is mounted a rotary outlet, which can be a diffuser or a rotating vent of constant cross-sectional area.
- the rotary outlet is thus rotated by the foam impinging on the vanes of the radial impeller, wheel or rotor mechanism. In operation, foam is projected in a circular sweeping pattern as the rotary outlet rotates relative to the distributor body.
- the distributor can be configured with a 90-degree elbow or bend that diverts foam exiting a top surface of the distributor body.
- the foam is diverted 90 degrees so that foam is projected by the rotary outlet in a direction of a horizontal plane that is parallel to the inlet.
- the rotary outlet can rotate over a full 360 degrees, providing superior coverage for a large floor space, such as in hangars or warehouses, using a quarter to a tenth of the solution volume of conventional systems that do not foam the solution.
- this versatile distributor can be installed in a floor trench of a hangar or on a wall or ceiling. Since all rotational energy is harnessed from the pressure of the foam itself, no external energy source is required to power the distributor.
- the rotary outlet can also be made to oscillate rotationally over a limited arc by virtue of a reciprocating mechanism in the gear train which constrains the motion of the output shaft relative to the distributor body.
- the angular velocity of the rotary outlet whether freely rotating or oscillating may preferably be between 60 and 180 RPM. It has been found that slower angular velocities, while providing for a longer reach of the foam or delivering a greater volume of foam per unit area in each pass, provides too much time between passes to optimally extinguish some fires, and conversely faster angular velocities tend to reduce the reach of the foam and to cause discontinuities within the foam (depending on foam characteristics) .
- the gear train may have a reduction ratio of between 6:1 and 30:1, which may best be produced with or without the intermediary idler gear. It will be appreciated that these figures may vary with flow properties of the foam, properties of the impeller, and properties of the rotary outlet, etc.
- a distributor for distributing foam for extinguishing a fire includes a distributor body having an inlet for receiving foam from a compressed foam supply; a rotor mechanism mounted for rotation within the body and offset from the inlet, the rotor mechanism having impingement surfaces against which foam impinges to cause the rotor mechanism to rotate; and a rotary outlet connected to the rotor mechanism for rotation of the outlet relative to the body when foam impinges on the impingement surfaces of the rotor mechanism.
- the rotary outlet is rotationally connected to the rotor mechanism for unconstrained 360-degree rotation of the outlet relative to the body when foam impinges on the impingement surfaces of the rotor mechanism.
- the rotary outlet is an oscillating rotary outlet connected to the rotor mechanism for oscillation of the rotary outlet relative to the body through a limited arc when foam impinges on the impingement surfaces of the rotor mechanism.
- the rotor mechanism includes a radial impeller having a plurality of vanes defining the impingement surfaces, the radial impeller being mounted for rotation on an input shaft; and an output shaft being operatively connected to the input shaft whereby rotation of the input shaft causes rotation of the output shaft, the output shaft being rotationally connected to the rotary output.
- the rotor mechanism includes a radial impeller having a plurality of vanes defining the impingement surfaces, the radial impeller being mounted for rotation on an input shaft; and an output shaft being operatively connected to the input shaft whereby rotation of the input shaft causes rotation of the output shaft, the output shaft being operatively connected to the rotary output via a crank gear and push rod capable of reciprocating an arm connected to the output shaft to cause oscillation of the rotary output over a limited angular range of motion.
- a gear chamber isolation member is connected to the distributor body for dividing an interior volume of the distributor body into an enclosed gear chamber and a single, non-annular flow path for the foam to traverse the distributor body without interfering with the gear train.
- a distributor for distributing fire-suppressing compressed foam includes a distributor body having an inlet for receiving foam from a compressed foam supply; an impeller rotatably mounted within the body and offset from the inlet, the impeller having a plurality of vanes against which foam impinges to cause the impeller to rotate; and a rotary outlet connected to the impeller for rotation of the outlet relative to the body, when foam impinges on the vanes of the impeller.
- the impeller is mounted to an input shaft geared to an output shaft to which the rotary outlet is mounted.
- the input shaft is geared to the output shaft to enable unconstrained 360-degree rotation of the output shaft and rotary outlet relative to the distributor body.
- the input shaft is operatively connected to the output shaft via a reciprocating mechanism to enable rotational oscillation of the rotary outlet relative to the distributor body over a limited arc of motion.
- the rotary outlet is mounted to an outlet shaft for rotation relative to the body, the rotary outlet defining a rotating outlet chamber external from the body, the rotating outlet chamber and the body being in fluid communication via a plurality of exit holes disposed around the output shaft at an interface of the rotary outlet and the body.
- a gear chamber isolation member is connected to the distributor body for dividing an interior volume of the distributor body into an enclosed gear chamber and a single, non-annular flow path for the foam to traverse the distributor body without interfering with the gear train.
- FIG. 1 is a bottom view of a rotary-type foam distributor in accordance with a preferred embodiment of the present invention
- FIG. 2 is a side cross-sectional view of the distributor shown in FIG. 1 but further including a gear chamber isolation plate;
- FIG. 3 is a bottom view of a rotary-type foam distributor having an oscillating rotary outlet in accordance with another embodiment of the present invention.
- FIG. 4 is a side cross-sectional view of the distributor shown in FIG. 3 but further including a gear chamber isolation plate;
- FIG. 5 is a side cross-sectional view of the distributor having a diffuser in accordance with yet another embodiment of the present invention.
- FIG. 1 is a bottom view of a rotary-type foam distributor in accordance with a preferred embodiment of the present invention.
- the distributor which is generally designated by reference numeral 10, has a distributor body 12 (or housing) having a foam inlet 14 for receiving foam, such as compressed-air foam (CAF) or other compressed-gas foam.
- foam such as compressed-air foam (CAF) or other compressed-gas foam.
- CAF compressed-air foam
- the incoming foam travels along a foam entry axis 15 from a foam supply which is not shown, but which is known in the art of fixed piping fire-suppression.
- the distributor 10 includes a radial impeller 16 (although other equivalent devices include an impingement wheel or a rotor mechanism) which, in turn, has a plurality of vanes 18 or impingement surfaces against which the foam impinges.
- the radial impeller 16 is offset from the foam entry axis 15 so that impingement of the foam on the vanes of the impeller causes the impeller to rotate.
- the centre of the radial impeller 16 (as opposed to an axial impeller taught in the aforementioned United States Patent) is spaced apart or offset from the foam entry axis 15, which is aligned to impinge upon the vanes 18.
- This configuration effectively taps the energy of the CAF flow, harnessing a small fraction of the available energy but does not significantly reduce the range the CAF is projected.
- the radial impeller 16 is mounted to an input shaft 20 that is rotationally secured within the distributor.
- the input shaft 20 is rotationally secured within bearings set in the upper and lower surfaces of the distributor body to provide smooth and efficient rotation of the input shaft 20 relative to the distributor body 12.
- the input shaft 20 is operatively connected to an output shaft 28 via a gear train.
- a spur gear 21 is mounted to the input shaft 20 beneath the radial impeller 16.
- the spur gear 21 meshes with a first intermediary gear 22 mounted on an idler shaft 24.
- a second intermediary gear 23 mounted on the idler shaft provides a gear reduction and meshing with an output gear 26 mounted on the output shaft 28.
- the reduction gear ratio should be between 6:1 and 30:1. This will generally ensure that the angular velocity of the rotary outlet remains within a desired band of about 60 to 180 RPM, although it will be appreciated that CAF flow properties, dimensions and configurations of the impingement surfaces, flow properties in the area of the impeller, and other factors may change the optimal gear ratio and/or angular velocities.
- Loose meshing of the gears permits operation in a wide range of temperatures, accommodating different thermal expansions of the respective components.
- the output shaft 28 is securely connected to a rotary outlet 30 which is rotatable relative to the distributor body.
- the rotary outlet 30 has a vent or exit through which foam is projected as indicated by a foam projection vector 32 in FIG. 2.
- the rotary outlet 30 is referred to as a "nozzle" even if the outlet does not have a converging cross-section in the downstream direction.
- the rotary outlet can be mounted on a bearing to provide more efficient rotation relative to the distributor body.
- the foam injected into the inlet is forced under pressure through the enclosure defined by the distributor body 12, and is forced upwardly through a plurality of exits 34 into the rotary outlet 30 where it is projected radially outwardly in a circular sweeping pattern as the rotary outlet rotates.
- the rotary outlet 30 can rotate 360 degrees in an unconstrained manner relative to the distributor body to cover a circular target area fully surrounding the distributor.
- exit holes 34 there are preferably five equidistantly spaced exit holes 34 disposed circumferentially around the output shaft 28.
- the number and shape of the exit holes 34 can be varied, and other mechanisms for securing a rotating nozzle to a distributor body that permit driving of the nozzle can be used, subject to the strenuous demands of fire suppression applications.
- a chain drive can be used.
- the foam is first diverted ninety degrees from the horizontal to the vertical by the distributor body and then ninety degrees back to the horizontal by the rotary outlet.
- Persons of ordinary skill will thus readily appreciate that various refinements can be made to reduce pressure losses as the foam is forced through the two successive ninety-degree turns. For example, it is known in fluid mechanics to introduce smooth bends or elbows to minimize the pressure drop.
- the rotary outlet 30 causes the foam to divert ninety degrees so that the foam is projected in a direction initially parallel to the foam inlet.
- the projection vector 32 revolves in a horizontal plane that is parallel to a horizontal plane of the foam entry axis 15.
- the low-profile design of this distributor is compact enough to be used in a variety of tight spaces such as, for example, in a trench of an aircraft hangar where foam can be projected under wings and vehicle bodies to smother a ground-based fuel fire.
- the distributor is compact enough to be used in a variety of other applications as well, not only on the ground but also on walls or ceilings.
- FIGS. 3 and 4 illustrate a distributor 10 having an oscillating rotary outlet in accordance with another embodiment of the present invention.
- the radial impeller 16 is operatively connected to the output shaft 28 (and hence to the rotary outlet 30) by an oscillating mechanism 40 having a crank gear 42 meshed to the spur gear 21 of the input shaft 20.
- the crank gear 42 is pivotally connected (at a first pivot 43) to a reciprocating linkage such as a push rod 44.
- the push rod 44 connects at a second pivot 46 to an arm 48 fixed to the output shaft.
- the output shaft 28 (and hence the rotary outlet 30) rotationally oscillates over a limited arc.
- the rotary outlet 30 oscillates back and forth through an angle of about 170 degrees. This design is particularly useful when the distributor is positioned near a wall and the foam is delivered only to the target area away from the wall.
- the distributor 10 includes a gear chamber isolation member, such as a gear chamber isolation plate 25, for isolating the gear train from the flow of CAF.
- a gear chamber isolation member such as a gear chamber isolation plate 25, for isolating the gear train from the flow of CAF.
- the gear chamber isolation plate 25 is nevertheless helpful to preclude foam from impeding the smooth movement of the gear train.
- the gear chamber isolation plate 25 is also useful in situations where rust, or other bodies may be present in the CAF. If a large enough body were to become lodged in the gear train, it will be appreciated that the gear train may seize. By providing a gear chamber isolation plate 25 or the like, interference with the gear train is precluded.
- the input and output shafts may be supported by bearings flush mounted to the upper and lower walls of the distributor housing, bearings may be provided in a recess of either the upper or lower walls of the distributor housing, and/or the shafts may extend through one of the upper and lower walls.
- a shaft cover plate 27, as shown in FIGS. 2 and 4 is provided to prevent corrosion, or mechanical friction with anything below the distributor housing.
- a plurality of shaft cover plates covering individual shafts could also be utilized in lieu of a single shaft cover plate, and numerous other supportive and protecting configurations can be used as a matter of design elective.
- the gear chamber isolation plate 25 and the shaft cover plate 27 can be affixed to the distributor body 12 by anchor rivets 29 or, alternatively, by screws, welding, or other fastening means .
- FIG. 5 illustrates another embodiment of the distributor where the rotary outlet is a diffuser having a diverging cross-section in the downstream direction.
- the diffuser reduces the exit velocity of the foam but projects the foam in an expanding cone rather than a cylindrical "rope" of foam.
- the rotary outlet can be a diffuser, a constant-cross-section chamber, or a nozzle depending on the desired projection characteristics. Typically a constant cross-sectional area vent or diffuser is preferable (and not a nozzle which restricts or converges the foam as it exits) .
- a diffuser its design should not cause undue backpressure in the distributor which would stifle the effective throughput of foam through the device.
- the distributor 10 must be constructed to withstand high temperatures so as to be robust enough to remain operable during a fire.
- a distributor of this design may be able to withstand at least 600 degrees Celsius (1100 degrees Fahrenheit) for extended periods of time, while in operation.
- the distributor 10 harnesses the pressure of the foam to drive the rotary outlet. Therefore, the distributor is self-powered, which reduces installation and operating costs and which also enhances the robustness of the device. Furthermore, the distributor is highly efficient in that it requires very little volume of water and concentrate to cover a fixed area, relative to comparably performing fire-suppression apparatuses. This distributor requires only approximately one quarter to one tenth of the solution of comparable wide-area prior-art systems. Also, as noted above, the distributor is both low-profile and capable of covering 360 degrees, which makes it ideal for trench mounting.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
- Recrystallisation Techniques (AREA)
- Mechanical Pencils And Projecting And Retracting Systems Therefor, And Multi-System Writing Instruments (AREA)
- Nozzles (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2505911A CA2505911C (en) | 2005-04-15 | 2005-04-15 | Rotary foam distributor |
US11/106,503 US8056831B2 (en) | 2005-04-15 | 2005-04-15 | Rotary foam distributor |
PCT/CA2006/000590 WO2006108298A1 (en) | 2005-04-15 | 2006-04-13 | Rotary foam distributor |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1874412A1 true EP1874412A1 (en) | 2008-01-09 |
EP1874412A4 EP1874412A4 (en) | 2008-05-14 |
EP1874412B1 EP1874412B1 (en) | 2010-02-24 |
Family
ID=37086586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06741384A Not-in-force EP1874412B1 (en) | 2005-04-15 | 2006-04-13 | Rotary foam distributor |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1874412B1 (en) |
AT (1) | ATE458537T1 (en) |
DE (1) | DE602006012470D1 (en) |
WO (1) | WO2006108298A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8651400B2 (en) | 2007-01-12 | 2014-02-18 | Rain Bird Corporation | Variable arc nozzle |
US8074897B2 (en) | 2008-10-09 | 2011-12-13 | Rain Bird Corporation | Sprinkler with variable arc and flow rate |
US8695900B2 (en) | 2009-05-29 | 2014-04-15 | Rain Bird Corporation | Sprinkler with variable arc and flow rate and method |
US8925837B2 (en) | 2009-05-29 | 2015-01-06 | Rain Bird Corporation | Sprinkler with variable arc and flow rate and method |
US8272583B2 (en) | 2009-05-29 | 2012-09-25 | Rain Bird Corporation | Sprinkler with variable arc and flow rate and method |
US9427751B2 (en) | 2010-04-09 | 2016-08-30 | Rain Bird Corporation | Irrigation sprinkler nozzle having deflector with micro-ramps |
US9504209B2 (en) | 2010-04-09 | 2016-11-29 | Rain Bird Corporation | Irrigation sprinkler nozzle |
US9079202B2 (en) | 2012-06-13 | 2015-07-14 | Rain Bird Corporation | Rotary variable arc nozzle |
US9174227B2 (en) | 2012-06-14 | 2015-11-03 | Rain Bird Corporation | Irrigation sprinkler nozzle |
US9327297B2 (en) | 2012-07-27 | 2016-05-03 | Rain Bird Corporation | Rotary nozzle |
US9295998B2 (en) | 2012-07-27 | 2016-03-29 | Rain Bird Corporation | Rotary nozzle |
US9314952B2 (en) | 2013-03-14 | 2016-04-19 | Rain Bird Corporation | Irrigation spray nozzle and mold assembly and method of forming nozzle |
CN104923422B (en) * | 2015-06-29 | 2017-02-01 | 福建欣宇卫浴科技股份有限公司 | Circular rotation water outgoing apparatus |
US10322423B2 (en) | 2016-11-22 | 2019-06-18 | Rain Bird Corporation | Rotary nozzle |
US11154877B2 (en) | 2017-03-29 | 2021-10-26 | Rain Bird Corporation | Rotary strip nozzles |
US11059056B2 (en) | 2019-02-28 | 2021-07-13 | Rain Bird Corporation | Rotary strip nozzles and deflectors |
US11406999B2 (en) | 2019-05-10 | 2022-08-09 | Rain Bird Corporation | Irrigation nozzle with one or more grit vents |
US11247219B2 (en) | 2019-11-22 | 2022-02-15 | Rain Bird Corporation | Reduced precipitation rate nozzle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1523609A (en) * | 1922-01-03 | 1925-01-20 | Finis E Roach | Sprinkler apparatus |
GB2046129A (en) * | 1979-02-07 | 1980-11-12 | Huber M | Shower apparatus |
US4501391A (en) * | 1982-02-04 | 1985-02-26 | The Toro Company | Hose end pattern sprinkler |
WO1988007849A1 (en) * | 1987-04-14 | 1988-10-20 | Hydro Air Industries, Inc. | Hydrotherapy apparatus |
US4944457A (en) * | 1989-05-01 | 1990-07-31 | Mark Brewer | Oscillating device for fluid nozzles |
US5772117A (en) * | 1996-12-10 | 1998-06-30 | Su; Yeong Chwan | Water sprinkler |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE437937B (en) * | 1981-09-04 | 1985-03-25 | Ernst Lennart Wallman Med Firm | Mist nozzle for fire fighting using water |
US4923013A (en) * | 1989-08-14 | 1990-05-08 | Gennaro Sergio K De | Fire sprinkler system and automatic shut-off valve therefor |
JPH1057517A (en) * | 1996-08-27 | 1998-03-03 | Hochiki Corp | Sprinkling method of stationary fire extinguishing facility and sprinkling nozzle for fire extinguishing |
JP3672726B2 (en) * | 1997-06-30 | 2005-07-20 | ホーチキ株式会社 | Watering nozzle for fire extinguishing of fixed fire extinguishing equipment |
NO983690L (en) * | 1998-08-12 | 2000-02-14 | Odd J Edvardsen | Rotating nozzle head |
US6764024B2 (en) | 2000-02-29 | 2004-07-20 | National Research Council Of Canada | Rotary foam nozzle |
-
2006
- 2006-04-13 WO PCT/CA2006/000590 patent/WO2006108298A1/en not_active Application Discontinuation
- 2006-04-13 DE DE602006012470T patent/DE602006012470D1/en not_active Expired - Fee Related
- 2006-04-13 AT AT06741384T patent/ATE458537T1/en not_active IP Right Cessation
- 2006-04-13 EP EP06741384A patent/EP1874412B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1523609A (en) * | 1922-01-03 | 1925-01-20 | Finis E Roach | Sprinkler apparatus |
GB2046129A (en) * | 1979-02-07 | 1980-11-12 | Huber M | Shower apparatus |
US4501391A (en) * | 1982-02-04 | 1985-02-26 | The Toro Company | Hose end pattern sprinkler |
WO1988007849A1 (en) * | 1987-04-14 | 1988-10-20 | Hydro Air Industries, Inc. | Hydrotherapy apparatus |
US4944457A (en) * | 1989-05-01 | 1990-07-31 | Mark Brewer | Oscillating device for fluid nozzles |
US5772117A (en) * | 1996-12-10 | 1998-06-30 | Su; Yeong Chwan | Water sprinkler |
Non-Patent Citations (1)
Title |
---|
See also references of WO2006108298A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP1874412B1 (en) | 2010-02-24 |
EP1874412A4 (en) | 2008-05-14 |
ATE458537T1 (en) | 2010-03-15 |
DE602006012470D1 (en) | 2010-04-08 |
WO2006108298A1 (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8056831B2 (en) | Rotary foam distributor | |
EP1874412B1 (en) | Rotary foam distributor | |
AU732257B2 (en) | Fire-extinguishing equipment | |
WO2005084816A1 (en) | Fire extinguishing apparatus and atomizer using a swirler | |
US11975230B2 (en) | User configurable long-range fire-fighting apparatus | |
EP0961639B1 (en) | Air aspirating foam nozzle | |
CA2505911C (en) | Rotary foam distributor | |
RU2422215C1 (en) | Fire extinguisher spraying nozzle | |
EP0710139B1 (en) | An apparatus for producing fire-fighting foam | |
US20100122823A1 (en) | Foam-generating device of a fire nozzle | |
US6189622B1 (en) | Nozzle for fighting fires in buildings | |
CA2719920A1 (en) | Firefighting unit | |
US5337830A (en) | Fire fighting foam generation system | |
JP3672726B2 (en) | Watering nozzle for fire extinguishing of fixed fire extinguishing equipment | |
KR102030540B1 (en) | Water mist sprayer | |
CN115920289B (en) | Fire extinguishing agent sprinkler system with fire extinguishing early warning function | |
RU2713249C1 (en) | Medium- and low-expansion air-mechanical foam generator for the deluge gun and the deluge gun with the air-mechanical foam generator of medium and low expansion | |
JP3887157B2 (en) | Watering nozzle for fire fighting | |
JP4040952B2 (en) | Sprinkler fire extinguishing equipment sprinkler nozzle | |
US20050023005A1 (en) | Arrangement at a fire control pipe | |
RU2192546C1 (en) | Foam generator | |
JPH0420356A (en) | Spray type water discharge nozzle | |
AU654274B2 (en) | Fire fighting foam generation system | |
JP2006000672A (en) | Method for sprinkling for fixed type fire extinguishing installation and sprinkling nozzle for fire-fighting | |
JP2001145705A (en) | Water sprinking nozzle for extinguishment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20080414 |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080821 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602006012470 Country of ref document: DE Date of ref document: 20100408 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100224 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100624 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100625 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100525 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100604 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100524 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101230 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100413 |
|
26N | No opposition filed |
Effective date: 20101125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |