EP1870906B1 - Vorrichtung zur Konzentration des 99m-Technetium-Pertechnectat und Verfahren dazu - Google Patents

Vorrichtung zur Konzentration des 99m-Technetium-Pertechnectat und Verfahren dazu Download PDF

Info

Publication number
EP1870906B1
EP1870906B1 EP20060012651 EP06012651A EP1870906B1 EP 1870906 B1 EP1870906 B1 EP 1870906B1 EP 20060012651 EP20060012651 EP 20060012651 EP 06012651 A EP06012651 A EP 06012651A EP 1870906 B1 EP1870906 B1 EP 1870906B1
Authority
EP
European Patent Office
Prior art keywords
pipeline
electromagnetic valve
pertechnetate
receiving flask
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060012651
Other languages
English (en)
French (fr)
Other versions
EP1870906A1 (de
Inventor
Tsai-Yueh Luo
Ai-Ren Lo
Wuu-Jyh Lin
Tseng-Chung Huang
Ching-Jun Liou
Bor-Tsung Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Energy Research
Atomic Energy Council
Original Assignee
Institute of Nuclear Energy Research
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Energy Research, Atomic Energy Council filed Critical Institute of Nuclear Energy Research
Priority to EP20060012651 priority Critical patent/EP1870906B1/de
Publication of EP1870906A1 publication Critical patent/EP1870906A1/de
Application granted granted Critical
Publication of EP1870906B1 publication Critical patent/EP1870906B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • G21G4/08Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/0005Isotope delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0042Technetium

Definitions

  • the present invention relates to a device for concentrating radioactive materials and a method thereof, especially to a device for concentrating 99m Tc pertechnetate and a method thereof.
  • 99 Mo/ 99m Tc generator has the features of convenience, safety and easy operation that lead to its popularity in clinical use. However, after being used for a period of time, the specific activity is too low to be applied in clinical tests. Therefore, the old generators need to be replaced after a period of time.
  • Technetium-99m is one of the most important radioisotopes used for medical diagnostics. It's formed from the decay of Molybdenum-99 which has a half-life of 67 hours. The characteristics of short half life and 140keV gamma ray emission make 99m Tc as an ideal for SPECT in clinical nuclear medicine imaging procedures or detection of tumor cells, such as 99m Tc-MDP bone imaging, 99m Tc-methoxyisobutylisonitrile (MIBI) SPECT in the detection of breast cancer, 99m Tc myoview for myocardial imaging, 99m Tc-HMPAO and 99m Tc-ECD for SPECT imaging of cerebral blood flow, 99m Tc-MAG3 for renal function scintigraphy and 99m Tc-TRODAT-1 imaging for diagnosis of Parkinson's disease, and so on. These show the importance and the potential of this diagnostic nuclide- 99m Tc in nuclear medicine.
  • Technetium-99m solution is obtained from 99 Mo/ 99m Tc generator. Firstly get Technetium-99m pertechnetate by elution of with 12 ml normal saline.
  • KNAPP ET AL. "Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of Technetium-99m and Rhenium-188" PROC. INTERNATIONAL TRENDS IN RADIOPHARMACEUTICALS FOR DIAGNOSIS AND THERAPY, 1998, p. 419-425 , describes a manually operated system for enriching radioactives for clinical use like Technetium-99m and Rhenium-188.
  • the present invention reveals a concentration device for 99m Tc pertechnetate and method thereof that controls concentration process of the 99m Tc pertechnetate by means of automatic control program.
  • the device consists of a concentration unit and a control unit.
  • the 99m Tc pertechnetate is concentrated through a cation- exchange solid phase extraction chromatography column and an anion exchange column inside the concentration device and the activity of the 99m Tc pertechnetate inside a receiving flask is measured by a radiation measurement module of the control device that connects to a Geiger-Muller Counter.
  • a weighting scale member of a signal measurement module is used to weight the receiving flask.
  • the present invention includes a concentration device 10, a control device 40 and a central processing unit (CPU) 50.
  • the concentration device 10 is for carrying out concentration reaction while the control device 40 is for automatic control of the concentration device 10 by means of the central processing unit 50 that executes the automatic control program to run certain procedures for concentrating the 99m Tc pertechnetate (technetium-99m pertechnetate). For example, the volume of the 99m Tc pertechnetate is reduced from 12ml to 1ml.
  • the concentration device 10 in accordance with the present invention consists of a first container 12 for containing the 99m Tc pertechnetate that is obtained by elution with normal saline from the 99 Mo/ 99m Tc generator, a cation- exchange solid phase extraction chromatography column 14 that connects with the first container 12 by a first pipeline 15a and the first pipeline 15a having a first electromagnetic valve 16a, an anion exchange column 18 that connects with the cation- exchange solid phase extraction chromatography column 14 by a second pipeline 15b and the second pipeline 15b having a second electromagnetic valve 16b.
  • a second container 20 is for containing normal saline solution and is connected with the second electromagnetic valve 16b by a third pipeline 15c.
  • a receiving flask 2 connects with the anion exchange column 18 by a fourth pipeline 15d while the fourth pipeline 15d includes a third electromagnetic valve 16c.
  • a weighting scale member 24 and a first Geiger-Muller Counter 26 are disposed under the receiving flask 22 for detecting and monitoring the weight as well as the activity of the 99m Tc pertechnetate therein.
  • a waste bottle 28 is connected with the third electromagnetic valve 16c by a fifth pipeline 15e and a receiving flask 22 includes a first receiving flask and a second receiving flask.
  • a motor 30 -a creeping motor disposed between the fourth pipeline 15d and the fifth pipeline 15e transports the 99m Tc pertechnetate or normal saline into the receiving flask 22 or the waste bottle 28.
  • the cation- exchange solid phase extraction chromatography column 14 is a silver ion solid phase extraction chromatography column while the anion exchange column 18 is a SepPak anion exchange column. Lead is disposed around the first Geiger-Muller Counter 26 for warding off radioactive interference from the outside.
  • a control device 40 of an embodiment in accordance with the present invention is composed of a radiation measurement module 42, a signal measurement module 44, and a signal control module 46.
  • the radiation measurement module 42 is connected with the first Geiger-Muller Counter 26 while the signal measurement module 44 is joined with the weighting scale member 24.
  • the signal control module 46 connects to the motor 30, the first electromagnetic valve 16a, the second electromagnetic valve 16b, and the third electromagnetic valve 16c.
  • the radiation measurement module 42 detects activity of the concentrated 99m Tc pertechnetate inside the receiving flask 22.
  • the signal measurement module 44 gets weight of the concentrated 99m Tc pertechnetate inside the receiving flask 22.
  • the central processing unit (CPU) 50 includes a memory 52 for saving the automatic control program and connects to the control device 40.
  • the central processing unit 50 executes the automatic control program.
  • a flow chart of an embodiment of a method for concentrating 99m Tc pertechnetate in accordance with the present invention is disclosed.
  • an automatic control program is executed by a central processing unit (CPU) 50 so as to drive a radiation measurement module 42, a signal measurement module 44, and a signal control module 46.
  • CPU central processing unit
  • step S20 initiate a motor 30, a first electromagnetic valve 16a, a second electromagnetic valve 16b, and a third electromagnetic valve 16c so that 99m Tc pertechnetate in a first container 12 is transported into a cation- exchange solid phase extraction chromatography column 14, an anion exchange column 18 and waste bottle 28 through a first pipeline 15a, a second pipeline 15b, a fourth pipeline 15d, and a fifth pipeline 15e.
  • the first electromagnetic valve 16a is turned off and normal saline inside a second container 20 is sent into the anion exchange column 18 and a first receiving bottle.
  • the radiation measurement module 42 works to monitor activity of the 99m Tc pertechnetate through a first Geiger-Muller Counter 26, as shown in step S40.
  • step S50 run the signal measurement module 44 to weight the 99m Tc pertechnetate inside the first receiving flask by a weighting scale member 24 so as to check whether to interrupt the automatic control program or not.
  • an embodiment in this figure is different from the embodiment in Fig. 1B is in that the cation- exchange solid phase extraction chromatography column 14 in Fig. 1B connects with a first pipeline 15a and a first electromagnetic valve 16a while the cation- exchange solid phase extraction chromatography column 14 in Fig. 3 further connects with a sixth pipeline 15f and a fourth electromagnetic valve 16d.
  • the fourth electromagnetic valve 16d connects to a third container 32 that contains normal saline Before the concentration device 10 running concentration procedures, the cation- exchange solid phase extraction chromatography column 14 needs to be washed so as to avoid influence on solid phase extraction chromatography of the 99m Tc pertechnetate in the first container 12.
  • the motor 30 transports normal saline in the third container 32 passing through the cation- exchange solid phase extraction chromatography column 14 for washing it and then through the anion exchange column 18, the fourth pipeline 15d, the fifth pipeline 15e and conveyed to the waste bottle 28.
  • a method for concentrating 99m Tc pertechnetate in accordance with the present invention further includes a step S120-initiate the motor 30, the second electromagnetic valve 16b, the third electromagnetic valve 16c and the fourth electromagnetic valve 16d and wash the cation- exchange solid phase extraction chromatography column 14, as well as step S130-turn off the fourth electromagnetic valve 16d, turn on the first electromagnetic valve 16a and transport the 99m Tc pertechnetate.
  • the difference between the embodiment in this figure and the embodiment in Fig. 1B is in that the anion exchange column 18 in Fig. 1B connects with a first electromagnetic valve 16a, a second electromagnetic valve 16b, a first pipeline 15a and a second pipeline 15b while the anion exchange column 18 in Fig. 5 further connects with a seventh pipeline 15g and a fifth electromagnetic valve 16e.
  • the fifth electromagnetic valve 16e connects to a fourth container 34 for containing normal saline. Once the fifth electromagnetic valve 16e is turned on, the motor 30 transports normal saline in the fourth container 34 into the anion exchange column 18 for eluting it and then the eluant is sent to the fourth pipeline 15d and the second receiving flask.
  • this embodiment includes a further step-elute the anion exchange column 18.
  • a method for concentrating 99m Tc pertechnetate in accordance with the present invention further includes a step S260- elute the anion exchange column 18. Firstly replace the first receiving flask by the second receiving flask. Then turned off the second electromagnetic valve 16band initiate the fifth electromagnetic valve 16e. The normal saline inside the fourth container 34 elutes the anion exchange column 18 for being sampled by the second receiving flask.
  • a film 36 is disposed on top of the receiving flask 22 while a second Geiger-Muller Counter 38 is arranged on bottom of the waste bottle 28.
  • the film 36 of the concentration device 10 of the present invention is used to filter concentrated 99m Tc pertechnetate obtained from normal saline and the second Geiger-Muller Counter 38 is used for the radiation measurement module 42 of the control device 40 to detect activity of the solution inside the waste bottle 28. If the solution inside the waste bottle 28 still contains the required level of activity, it can be recycled and concentrated again for being applied to the next test so as to reduce the waste.
  • the concentration device of the present invention can prolong service life of generators.
  • a 99 Mo/ 99m Tc generator with activity of 200mCi(minicurie) as an example, after the first elution, it takes 24 hours to get the maximum activity 140 mCi. And the activity of Tc-99m reduces along with the decay of parent nuclide 99 Mo, as shown in Fig. 8 & Fig. 9 .
  • the 99 Mo/ 99m Tc generator is eluted again by 10ml normal saline in the second hour. Then specific activity of the obtained Tc-99m is 35mCi/10ml.
  • Tc-99m The activity of above mentioned Tc-99m is not enough for clinical use on lots tests of nuclear medicine.
  • Tc-99m MIBI(Carolite) sold by pharmaceutical company- Bristol-Myers Squibb requires radioactivity level of 25-150mCi/1-3ml.
  • the activity of recently released dopamine transporter imaging agent ( 99m Tc TRODAT-1) is 6-8mCi/ml.
  • the radioactivity of the 99 Mo/ 99m Tc generator is 200mCi, the radioactivity of the 99 Mo/ 99m Tc is only 33mCi for being eluted seven days. If the initial activity of the generator is 500mCi, the radioactivity of the 99 Mo/ 99m Tc at elapsed time of 11 days is only 30mCi. As for hospitals, the specific activity is too low for clinical use and it need to purchase new generators. However, the present invention makes the radioactivity of 99 Mo/ 99m Tc change from 30mCi/10ml to 30mCi/1ml. There is no need to replace old generators for preparation of radioisotopes. Furthermore, lifetime of each generator is extended at least 3 days.
  • the present invention is advantageous to prepare radiopharmaceuticals in clinical use, not only extends lifetime of generators, but also reduces cost for preparing radiopharmaceuticals. Moreover, due to automation of the concentration device of the present invention, the present invention decreases exposure time to radioactive material and further reduces the radiation dose to the operators. The present invention can also be applied to deal with concentration for Re-188 radioactive solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine (AREA)

Claims (13)

  1. Vorrichtung zur Konzentration von 99mTc-Pertechnetat, welche folgendes umfasst:
    eine Konzentrationsvorrichtung (10) mit
    einem ersten Behälter (12) zur Aufnahme von 99mTc-Pertechnetat,
    einer Kationenaustausch-Festphasenextraktionschromatographie-Säule (14), die mit dem ersten Behälter (12) über eine erste Rohrleitung (15a) verbunden ist und die erste Rohrleitung (15a) ein erstes elektromagnetisches Ventil (16a) aufweist,
    einer Anionenaustausch-Säule (18), die mit der Kationenaustausch-Festphasenextraktionschromatographie-Säule (14) über eine zweite Rohrleitung (15b) verbunden ist und die zweite Rohrleitung (15b) ein zweites elektromagnetisches Ventil (16b) aufweist,
    einem zweiten Behälter (20) zur Aufnahme von isotonischer Kochsalzlösung, der mit dem zweiten elektromagnetischen Ventil (16b) über ein dritte Rohrleitung (15c) verbunden ist, und
    einem Auffangkolben (22), der mit der Anionenaustausch-Säule (18) über eine vierte Rohrleitung (15d) verbunden ist und die vierte Rohrleitung (15d) ein drittes elektromagnetisches Ventil (16c) aufweist, wobei unter dem Auffangkolben (22) eine Waage (24) und ein erster Geiger-Müller-Zähler (26) angeordnet sind, um das Gewicht und die Aktivität des 99mTc-Pertechnetats im Auffangkolben (22) zu erfassen und zu überwachen,
    einer Abfallflasche (28), die mit dem dritten elektromagnetischen Ventil (16c) über eine fünfte Rohrleitung (15e) verbunden ist,
    wobei das 99mTc-Pertechnetat oder die isotonische Kochsalzlösung über die erste Rohrleitung (15a), die zweite Rohrleitung (15b), die dritte Rohrleitung (15c), die vierte Rohrleitung (15d) und die fünfte Rohrleitung (15e) in den Auffangkolben (22) oder die Abfallflasche (28) transportiert werden;
    dadurch gekennzeichnet, dass die Vorrichtung weiterhin umfasst:
    eine Kontrollvorrichtung (40) mit einem Strahlungsmessmodul (42), einem Signalmessmodul (44) und einem Signalkontrollmodul (46), wobei das Strahlungsmessmodul (42) mit dem ersten Geiger-Müller-Zähler (26), das Signalmessmodul (44) mit der Waage (24) und das Signalkontrollmodul (46) mit dem Motor (30), dem ersten elektromagnetischen Ventil (16a), dem zweiten elektromagnetischen Ventil (16b) sowie dem dritten elektromagnetischen Ventil (16c) verbunden sind; und
    einen Zentralprozessor (50), mit einem Speicher (52) zur Sicherung eines automatischen Kontrollprogramms, der mit der Kontrollvorrichtung (40) verbunden ist,
    wobei das automatische Kontrollprogramm vom Zentralprozessor (50) zur Kontrolle des Gewichts und der Aktivität des 99mTc-Pertechnetats im Auffangkolben (22) durchgeführt wird, um somit das 99mTc-Pertechnetats automatisch zu konzentrieren.
  2. Vorrichtung nach Anspruch 1, wobei ein zweiter Geiger-Müller-Zähler (38), der mit dem Strahlungsmessmodul (42) verbunden ist, unter der Abfallflasche (28) angeordnet ist, um die Aktivität des 99mTc-Pertechnetats im Auffangkolben (22) zu überwachen.
  3. Vorrichtung nach Anspruch 1, wobei eine Folie (36) auf dem Auffangkolben (22) angeordnet ist.
  4. Vorrichtung nach Anspruch 1, wobei der Motor (30) ein Kriechmotor und zwischen der vierten Rohrleitung (15d) und der fünften Rohrleitung (15e) angeordnet ist.
  5. Vorrichtung nach Anspruch 1, wobei die Kationenaustausch-Festphasenextraktionschromatographie-Säule (14) eine Silberionen-Festphasenextraktionschromatographie-Säule ist.
  6. Vorrichtung nach Anspruch 1, wobei die Anionenaustausch-Säule (18) eine SepPak Anionenaustausch-Säule ist.
  7. Vorrichtung nach Anspruch 1, wobei die Vorrichtung weiterhin einen dritten Behälter (32) zur Aufnahme von sterilisiertem Wasser umfasst, welcher mit der Kationenaustausch-Festphasenextraktionschromatographie-Säule (14) über eine sechste Rohrleitung (15f) und ein viertes elektromagnetisches Ventil (16d) verbunden ist.
  8. Vorrichtung nach Anspruch 1, wobei die Vorrichtung weiterhin einen vierten Behälter (34) zur Aufnahme von isotonischer Kochsalzlösung umfasst, welcher mit der zweiten Rohrleitung (15b) über eine siebte Rohrleitung (15g) und ein fünftes elektromagnetisches Ventil (16e) verbunden ist.
  9. Vorrichtung nach Anspruch 1, wobei um den ersten Geiger-Müller-Zähler (26) und um den zweiten Geiger-Müller-Zähler (38) Blei angeordnet ist, um eine radioaktive Beeinträchtigung von außen abzuschirmen.
  10. Verfahren zur Konzentration von 99mTc-Pertechnetat, dadurch gekennzeichnet, dass die folgenden Schritte umfasst werden:
    Ausführen eines automatischen Kontrollprogramms durch einen Zentralprozessor (50), um ein Strahlungsmessmodul (42), ein Signalmessmodul (44) und ein Signalkontrollmodul (46) zu betreiben,
    Betreiben des Signalkontrollmoduls (46) mit folgenden Schritten:
    Initiieren eines Motors (30), eines ersten elektromagnetischen Ventils (16a), eines zweiten elektromagnetischen Ventils (16b) und eines dritten elektromagnetischen Ventils (16c) zum Transport des 99mTc-Pertechnetats vom ersten Behälter (12) in eine Kationenaustausch-Festphasenextraktionschromatographie-Säule (14), eine Anionenaustausch-Säule (18) und eine Abfallflasche über eine erste Rohrleitung (15a), eine zweite Rohrleitung (15b), eine vierte Rohrleitung (15d) und eine fünfte Rohrleitung (15e), und
    Abschalten des ersten elektromagnetischen Ventils (16a) und Transport der isotonischen Kochsalzlösung in die Anionenaustausch-Säule (18) und einen ersten Auffangkolben (22),
    Betreiben des Strahlungsmessmoduls (42) mit einem ersten Geiger-Müller-Zähler (26) zur Überwachung der Aktivität; und
    Betreiben des Signalmessmoduls (44) mit einer ersten Waage (24) zum Wiegen des 99mTc-Pertechnetats im ersten Auffangkolben (22), um zu überprüfen, ob das automatische Kontrollprogramms unterbrochen werden muss oder nicht.
  11. Verfahren nach Anspruch 10, wobei das Verfahren vor dem Schritt des Initiierens eines Motors (30), eines ersten elektromagnetischen Ventils (16a), eines zweiten elektromagnetischen Ventils (16b) und eines dritten elektromagnetischen Ventils (16c), ferner folgenden Schritt umfasst:
    Initiieren des Motors (30), des zweiten elektromagnetischen Ventils (16b), des dritten elektromagnetischen Ventils (16c) und des vierten elektromagnetischen Ventils (16d), um sterilisiertes Wasser aus einem dritten Behälter (32), über eine sechste Rohrleitung (15f), die zweite Rohrleitung (15b), die vierte Rohrleitung (15d) und die fünfte Rohrleitung (15e), in die Abfallflasche (28) zu transportieren.
  12. Verfahren nach Anspruch 10, wobei das Verfahren nach dem Schritt des Abschaltens des ersten elektromagnetischen Ventils (16a) und des Transports der isotonischen Kochsalzlösung in die Anionenaustausch-Säule (18) und einen ersten Auffangkolben (22), ferner folgenden Schritt umfasst:
    Einschalten eines fünften elektromagnetischen Ventils (16e), um isotonische Kochsalzlösung aus einem vierten Behälter (34) über eine siebte Rohrleitung (15g) in die Anionenaustausch-Säule (18) und über die vierte Rohrleitung (15d) in einen zweiten Auffangkolben (22) zu leiten.
  13. Verfahren nach Anspruch 10, wobei das Verfahren beim Abschalten des ersten elektromagnetischen Ventils (16a) und beim Transport der isotonischen Kochsalzlösung in die Anionenaustausch-Säule (18) und einen ersten Auffangkolben (22), ferner folgenden Schritt umfasst:
    Betreiben eines Filterprozesses, bei dem die die isotonische Kochsalzlösung, nachdem diese die Anionenaustausch-Säule (18) passiert hat, gefiltert in dem ersten Auffangkolben (22) erhalten wird.
EP20060012651 2006-06-20 2006-06-20 Vorrichtung zur Konzentration des 99m-Technetium-Pertechnectat und Verfahren dazu Expired - Fee Related EP1870906B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20060012651 EP1870906B1 (de) 2006-06-20 2006-06-20 Vorrichtung zur Konzentration des 99m-Technetium-Pertechnectat und Verfahren dazu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060012651 EP1870906B1 (de) 2006-06-20 2006-06-20 Vorrichtung zur Konzentration des 99m-Technetium-Pertechnectat und Verfahren dazu

Publications (2)

Publication Number Publication Date
EP1870906A1 EP1870906A1 (de) 2007-12-26
EP1870906B1 true EP1870906B1 (de) 2013-08-14

Family

ID=37198769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060012651 Expired - Fee Related EP1870906B1 (de) 2006-06-20 2006-06-20 Vorrichtung zur Konzentration des 99m-Technetium-Pertechnectat und Verfahren dazu

Country Status (1)

Country Link
EP (1) EP1870906B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249352B (zh) * 2011-05-23 2013-03-20 中国工程物理研究院核物理与化学研究所 医用高锝酸盐自动生产装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1528153A (en) * 1975-02-03 1978-10-11 Radio Chem Centre Ltd Technetium-99m
US4778672A (en) * 1985-11-27 1988-10-18 University Of Cincinnati Method of isolating radioactive perrhenate or pertechnetate from an aqueous solution
ES2106186T3 (es) * 1991-05-01 1997-11-01 Mallinckrodt Medical Inc Procedimiento de transporte de materias liquidas y dispositivo para la elucion automatica de un generador de radionuclidos.
JP4495453B2 (ja) * 2001-06-22 2010-07-07 ピージー リサーチ ファンデーション,インコーポレーテッド 自動放射性核種分離システム

Also Published As

Publication number Publication date
EP1870906A1 (de) 2007-12-26

Similar Documents

Publication Publication Date Title
Meyer et al. 68 Ga-labelled DOTA-derivatised peptide ligands
McAlister et al. Automated two column generator systems for medical radionuclides
AU663716B2 (en) Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system
CA2940697A1 (en) Real time nuclear isotope detection
KR101948404B1 (ko) 양전자 방출 단층촬영에 사용하기 위한 43sc 방사성핵종 및 그의 방사성제약의 제조
Saptiama et al. Development of 99 Mo/99m Tc generator system for production of medical radionuclide 99m Tc using a neutron-activated 99 Mo and zirconium based material (ZBM) as its adsorbent
Knapp Jr et al. Use of new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188
Fukumura et al. An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use
Chakravarty et al. Facile radiochemical separation of clinical-grade 90Y from 90Sr by selective precipitation for targeted radionuclide therapy
Mushtaq Concentration of 99mTcO4−/188ReO4− by a single, compact, anion exchange cartridge
Chattopadhyay et al. A novel 99mTc delivery system using (n, γ) 99Mo adsorbed on a large alumina column in tandem with Dowex-1 and AgCl columns
EP1870906B1 (de) Vorrichtung zur Konzentration des 99m-Technetium-Pertechnectat und Verfahren dazu
Chattopadhyay et al. A novel technique for the effective concentration of 99mTc from a large alumina column loaded with low specific-activity (n, γ)-produced 99Mo
Callahan et al. The use of alumina “SepPaks®” as a simple method for the removal and determination of tungsten-188 breakthrough from tungsten-188/rhenium-188 generators
Tatenuma et al. A mass-production process of a highly pure medical use 99mTc from natural isotopic Mo (n, γ) 99Mo without using uranium
US20070258885A1 (en) Device for concentrating Technetium-99m pertechnetate and method thereof
Luo et al. A design for automatic preparation of highly concentrated 188Re-perrhenate solutions
Mansur et al. Concentration of 99mTc-pertechnetate and 188Re-perrhenate
Van der Meulen et al. The production of 82Sr using larger format RbCl targets
Hou Determination of radionuclidic impurities in 99mTc eluate from 99Mo/99mTc generator for quality control
Sarkar et al. Evaluation of two methods for concentrating perrhenate (188Re) eluates obtained from 188W–188Re generator
Jäckel et al. Development of semi-automated system for preparation of 188Re aqueous solutions of high and reproducible activity concentrations
JP4578425B2 (ja) テクネチウム−99m過テクネチウム酸溶液の濃縮装置及びその方法
Kao et al. An efficient and aseptic preparation of “sodium fluoride (18 F) injection” in a GMP compliant facility
Fuchigami et al. Development of a 68Ge/68Ga generator system using polysaccharide polymers and its application in PET imaging of tropical infectious diseases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006037795

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G21G0004000000

Ipc: G21G0001000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G21G 4/08 20060101ALI20130213BHEP

Ipc: G21G 1/00 20060101AFI20130213BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006037795

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006037795

Country of ref document: DE

Representative=s name: LANGPATENT ANWALTSKANZLEI IP LAW FIRM, DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006037795

Country of ref document: DE

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006037795

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006037795

Country of ref document: DE

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140620