EP1870906B1 - Dispositif de concentration du pertechnéctate de Technetium-99m et procédé correspondant - Google Patents

Dispositif de concentration du pertechnéctate de Technetium-99m et procédé correspondant Download PDF

Info

Publication number
EP1870906B1
EP1870906B1 EP20060012651 EP06012651A EP1870906B1 EP 1870906 B1 EP1870906 B1 EP 1870906B1 EP 20060012651 EP20060012651 EP 20060012651 EP 06012651 A EP06012651 A EP 06012651A EP 1870906 B1 EP1870906 B1 EP 1870906B1
Authority
EP
European Patent Office
Prior art keywords
pipeline
electromagnetic valve
pertechnetate
receiving flask
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060012651
Other languages
German (de)
English (en)
Other versions
EP1870906A1 (fr
Inventor
Tsai-Yueh Luo
Ai-Ren Lo
Wuu-Jyh Lin
Tseng-Chung Huang
Ching-Jun Liou
Bor-Tsung Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Nuclear Energy Research
Atomic Energy Council
Original Assignee
Institute of Nuclear Energy Research
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Nuclear Energy Research, Atomic Energy Council filed Critical Institute of Nuclear Energy Research
Priority to EP20060012651 priority Critical patent/EP1870906B1/fr
Publication of EP1870906A1 publication Critical patent/EP1870906A1/fr
Application granted granted Critical
Publication of EP1870906B1 publication Critical patent/EP1870906B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • G21G4/08Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/0005Isotope delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0042Technetium

Definitions

  • the present invention relates to a device for concentrating radioactive materials and a method thereof, especially to a device for concentrating 99m Tc pertechnetate and a method thereof.
  • 99 Mo/ 99m Tc generator has the features of convenience, safety and easy operation that lead to its popularity in clinical use. However, after being used for a period of time, the specific activity is too low to be applied in clinical tests. Therefore, the old generators need to be replaced after a period of time.
  • Technetium-99m is one of the most important radioisotopes used for medical diagnostics. It's formed from the decay of Molybdenum-99 which has a half-life of 67 hours. The characteristics of short half life and 140keV gamma ray emission make 99m Tc as an ideal for SPECT in clinical nuclear medicine imaging procedures or detection of tumor cells, such as 99m Tc-MDP bone imaging, 99m Tc-methoxyisobutylisonitrile (MIBI) SPECT in the detection of breast cancer, 99m Tc myoview for myocardial imaging, 99m Tc-HMPAO and 99m Tc-ECD for SPECT imaging of cerebral blood flow, 99m Tc-MAG3 for renal function scintigraphy and 99m Tc-TRODAT-1 imaging for diagnosis of Parkinson's disease, and so on. These show the importance and the potential of this diagnostic nuclide- 99m Tc in nuclear medicine.
  • Technetium-99m solution is obtained from 99 Mo/ 99m Tc generator. Firstly get Technetium-99m pertechnetate by elution of with 12 ml normal saline.
  • KNAPP ET AL. "Use of a new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of Technetium-99m and Rhenium-188" PROC. INTERNATIONAL TRENDS IN RADIOPHARMACEUTICALS FOR DIAGNOSIS AND THERAPY, 1998, p. 419-425 , describes a manually operated system for enriching radioactives for clinical use like Technetium-99m and Rhenium-188.
  • the present invention reveals a concentration device for 99m Tc pertechnetate and method thereof that controls concentration process of the 99m Tc pertechnetate by means of automatic control program.
  • the device consists of a concentration unit and a control unit.
  • the 99m Tc pertechnetate is concentrated through a cation- exchange solid phase extraction chromatography column and an anion exchange column inside the concentration device and the activity of the 99m Tc pertechnetate inside a receiving flask is measured by a radiation measurement module of the control device that connects to a Geiger-Muller Counter.
  • a weighting scale member of a signal measurement module is used to weight the receiving flask.
  • the present invention includes a concentration device 10, a control device 40 and a central processing unit (CPU) 50.
  • the concentration device 10 is for carrying out concentration reaction while the control device 40 is for automatic control of the concentration device 10 by means of the central processing unit 50 that executes the automatic control program to run certain procedures for concentrating the 99m Tc pertechnetate (technetium-99m pertechnetate). For example, the volume of the 99m Tc pertechnetate is reduced from 12ml to 1ml.
  • the concentration device 10 in accordance with the present invention consists of a first container 12 for containing the 99m Tc pertechnetate that is obtained by elution with normal saline from the 99 Mo/ 99m Tc generator, a cation- exchange solid phase extraction chromatography column 14 that connects with the first container 12 by a first pipeline 15a and the first pipeline 15a having a first electromagnetic valve 16a, an anion exchange column 18 that connects with the cation- exchange solid phase extraction chromatography column 14 by a second pipeline 15b and the second pipeline 15b having a second electromagnetic valve 16b.
  • a second container 20 is for containing normal saline solution and is connected with the second electromagnetic valve 16b by a third pipeline 15c.
  • a receiving flask 2 connects with the anion exchange column 18 by a fourth pipeline 15d while the fourth pipeline 15d includes a third electromagnetic valve 16c.
  • a weighting scale member 24 and a first Geiger-Muller Counter 26 are disposed under the receiving flask 22 for detecting and monitoring the weight as well as the activity of the 99m Tc pertechnetate therein.
  • a waste bottle 28 is connected with the third electromagnetic valve 16c by a fifth pipeline 15e and a receiving flask 22 includes a first receiving flask and a second receiving flask.
  • a motor 30 -a creeping motor disposed between the fourth pipeline 15d and the fifth pipeline 15e transports the 99m Tc pertechnetate or normal saline into the receiving flask 22 or the waste bottle 28.
  • the cation- exchange solid phase extraction chromatography column 14 is a silver ion solid phase extraction chromatography column while the anion exchange column 18 is a SepPak anion exchange column. Lead is disposed around the first Geiger-Muller Counter 26 for warding off radioactive interference from the outside.
  • a control device 40 of an embodiment in accordance with the present invention is composed of a radiation measurement module 42, a signal measurement module 44, and a signal control module 46.
  • the radiation measurement module 42 is connected with the first Geiger-Muller Counter 26 while the signal measurement module 44 is joined with the weighting scale member 24.
  • the signal control module 46 connects to the motor 30, the first electromagnetic valve 16a, the second electromagnetic valve 16b, and the third electromagnetic valve 16c.
  • the radiation measurement module 42 detects activity of the concentrated 99m Tc pertechnetate inside the receiving flask 22.
  • the signal measurement module 44 gets weight of the concentrated 99m Tc pertechnetate inside the receiving flask 22.
  • the central processing unit (CPU) 50 includes a memory 52 for saving the automatic control program and connects to the control device 40.
  • the central processing unit 50 executes the automatic control program.
  • a flow chart of an embodiment of a method for concentrating 99m Tc pertechnetate in accordance with the present invention is disclosed.
  • an automatic control program is executed by a central processing unit (CPU) 50 so as to drive a radiation measurement module 42, a signal measurement module 44, and a signal control module 46.
  • CPU central processing unit
  • step S20 initiate a motor 30, a first electromagnetic valve 16a, a second electromagnetic valve 16b, and a third electromagnetic valve 16c so that 99m Tc pertechnetate in a first container 12 is transported into a cation- exchange solid phase extraction chromatography column 14, an anion exchange column 18 and waste bottle 28 through a first pipeline 15a, a second pipeline 15b, a fourth pipeline 15d, and a fifth pipeline 15e.
  • the first electromagnetic valve 16a is turned off and normal saline inside a second container 20 is sent into the anion exchange column 18 and a first receiving bottle.
  • the radiation measurement module 42 works to monitor activity of the 99m Tc pertechnetate through a first Geiger-Muller Counter 26, as shown in step S40.
  • step S50 run the signal measurement module 44 to weight the 99m Tc pertechnetate inside the first receiving flask by a weighting scale member 24 so as to check whether to interrupt the automatic control program or not.
  • an embodiment in this figure is different from the embodiment in Fig. 1B is in that the cation- exchange solid phase extraction chromatography column 14 in Fig. 1B connects with a first pipeline 15a and a first electromagnetic valve 16a while the cation- exchange solid phase extraction chromatography column 14 in Fig. 3 further connects with a sixth pipeline 15f and a fourth electromagnetic valve 16d.
  • the fourth electromagnetic valve 16d connects to a third container 32 that contains normal saline Before the concentration device 10 running concentration procedures, the cation- exchange solid phase extraction chromatography column 14 needs to be washed so as to avoid influence on solid phase extraction chromatography of the 99m Tc pertechnetate in the first container 12.
  • the motor 30 transports normal saline in the third container 32 passing through the cation- exchange solid phase extraction chromatography column 14 for washing it and then through the anion exchange column 18, the fourth pipeline 15d, the fifth pipeline 15e and conveyed to the waste bottle 28.
  • a method for concentrating 99m Tc pertechnetate in accordance with the present invention further includes a step S120-initiate the motor 30, the second electromagnetic valve 16b, the third electromagnetic valve 16c and the fourth electromagnetic valve 16d and wash the cation- exchange solid phase extraction chromatography column 14, as well as step S130-turn off the fourth electromagnetic valve 16d, turn on the first electromagnetic valve 16a and transport the 99m Tc pertechnetate.
  • the difference between the embodiment in this figure and the embodiment in Fig. 1B is in that the anion exchange column 18 in Fig. 1B connects with a first electromagnetic valve 16a, a second electromagnetic valve 16b, a first pipeline 15a and a second pipeline 15b while the anion exchange column 18 in Fig. 5 further connects with a seventh pipeline 15g and a fifth electromagnetic valve 16e.
  • the fifth electromagnetic valve 16e connects to a fourth container 34 for containing normal saline. Once the fifth electromagnetic valve 16e is turned on, the motor 30 transports normal saline in the fourth container 34 into the anion exchange column 18 for eluting it and then the eluant is sent to the fourth pipeline 15d and the second receiving flask.
  • this embodiment includes a further step-elute the anion exchange column 18.
  • a method for concentrating 99m Tc pertechnetate in accordance with the present invention further includes a step S260- elute the anion exchange column 18. Firstly replace the first receiving flask by the second receiving flask. Then turned off the second electromagnetic valve 16band initiate the fifth electromagnetic valve 16e. The normal saline inside the fourth container 34 elutes the anion exchange column 18 for being sampled by the second receiving flask.
  • a film 36 is disposed on top of the receiving flask 22 while a second Geiger-Muller Counter 38 is arranged on bottom of the waste bottle 28.
  • the film 36 of the concentration device 10 of the present invention is used to filter concentrated 99m Tc pertechnetate obtained from normal saline and the second Geiger-Muller Counter 38 is used for the radiation measurement module 42 of the control device 40 to detect activity of the solution inside the waste bottle 28. If the solution inside the waste bottle 28 still contains the required level of activity, it can be recycled and concentrated again for being applied to the next test so as to reduce the waste.
  • the concentration device of the present invention can prolong service life of generators.
  • a 99 Mo/ 99m Tc generator with activity of 200mCi(minicurie) as an example, after the first elution, it takes 24 hours to get the maximum activity 140 mCi. And the activity of Tc-99m reduces along with the decay of parent nuclide 99 Mo, as shown in Fig. 8 & Fig. 9 .
  • the 99 Mo/ 99m Tc generator is eluted again by 10ml normal saline in the second hour. Then specific activity of the obtained Tc-99m is 35mCi/10ml.
  • Tc-99m The activity of above mentioned Tc-99m is not enough for clinical use on lots tests of nuclear medicine.
  • Tc-99m MIBI(Carolite) sold by pharmaceutical company- Bristol-Myers Squibb requires radioactivity level of 25-150mCi/1-3ml.
  • the activity of recently released dopamine transporter imaging agent ( 99m Tc TRODAT-1) is 6-8mCi/ml.
  • the radioactivity of the 99 Mo/ 99m Tc generator is 200mCi, the radioactivity of the 99 Mo/ 99m Tc is only 33mCi for being eluted seven days. If the initial activity of the generator is 500mCi, the radioactivity of the 99 Mo/ 99m Tc at elapsed time of 11 days is only 30mCi. As for hospitals, the specific activity is too low for clinical use and it need to purchase new generators. However, the present invention makes the radioactivity of 99 Mo/ 99m Tc change from 30mCi/10ml to 30mCi/1ml. There is no need to replace old generators for preparation of radioisotopes. Furthermore, lifetime of each generator is extended at least 3 days.
  • the present invention is advantageous to prepare radiopharmaceuticals in clinical use, not only extends lifetime of generators, but also reduces cost for preparing radiopharmaceuticals. Moreover, due to automation of the concentration device of the present invention, the present invention decreases exposure time to radioactive material and further reduces the radiation dose to the operators. The present invention can also be applied to deal with concentration for Re-188 radioactive solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine (AREA)

Claims (13)

  1. Dispositif pour concentrer du pertechnétate 99mTc comprenant :
    un dispositif de concentration (10) qui possède :
    un premier récipient (12) destiné à contenir du pertechnétate 99mTc ;
    une colonne de chromatographie d'extraction en phase solide d'échange de cations (14) reliée au premier récipient (12) par une première canalisation (15a) et la première canalisation (15a) présente une première électrovanne (16a) ;
    une colonne d'échange d'anions (18) reliée à la colonne de chromatographie d'extraction en phase solide d'échange de cations (14) par une deuxième canalisation (15b) et la deuxième canalisation (15b) présente une deuxième électrovanne (16b) ;
    un deuxième récipient (20) destiné à contenir une solution physiologique salée, relié à la deuxième électrovanne (16b) par une troisième canalisation (15c) ; et
    un flacon de réception (22) relié à la colonne d'échange d'anions (18) par une quatrième canalisation (15d) et la quatrième canalisation (15d) présente une troisième électrovanne (16c); un élément de pesage (24) et un premier compteur Geiger - Müller (26) sont disposés sous le flacon de réception (22) pour détecter et surveiller le poids et l'activité du pertechnétate 99mTc à l'intérieur du flacon de réception (22) ;
    une bouteille à déchets (28) reliée à la troisième électrovanne (16c) par une cinquième canalisation (15e) ;
    dans lequel le pertechnétate 99mTc ou la solution physiologique salée est transportée dans le flacon de réception (22) ou la bouteille à déchets (28) de la première canalisation (15a), de la deuxième canalisation (15b), de la troisième canalisation (15c), de la quatrième canalisation (15d) et de la cinquième canalisation (15e) ;
    caractérisé en ce que le dispositif comprend
    un dispositif de commande (40) qui présente un module de mesure de rayonnement (42), un module de mesure de signal (44), et un module de commande de signal (46) ; le module de mesure de rayonnement (42) est relié au premier compteur Geiger - Müller (26) et le module de mesure de signal (44) est raccordé à l'élément de pesage (24) ; le module de commande de signal (46) est relié au moteur (30), à la première électrovanne (16a), à la deuxième électrovanne (16b) et à la troisième électrovanne (16c) ; et
    une unité centrale de traitement (50) qui présente une mémoire (52) destinée à sauvegarder un programme de commande automatique et reliée au dispositif de commande (40) ;
    dans lequel le programme de commande automatique est exécuté par l'unité centrale de traitement (50) pour commander le poids et l'activité du pertechnétate 99mTc à l'intérieur du flacon de réception afin de concentrer automatiquement le pertechnétate 99mTc.
  2. Dispositif selon la revendication 1, dans lequel un second compteur Geiger - Müller (38) qui est relié au module de mesure de rayonnement (42), est disposé sous la bouteille à déchets (28) pour surveiller l'activité du pertechnétate 99mTc à l'intérieur du flacon de réception (22).
  3. Dispositif selon la revendication 1, dans lequel un film (36) est agencé au sommet du flacon de réception (22).
  4. Dispositif selon la revendication 1, dans lequel le moteur (30) est un moteur glissant et est disposé entre la quatrième canalisation (15d) et la cinquième canalisation (15e).
  5. Dispositif selon la revendication 1, dans lequel la colonne de chromatographie d'extraction en phase solide d'échange de cations (14) est une colonne de chromatographie d'extraction en phase solide d'échange d'ions argent.
  6. Dispositif selon la revendication 1, dans lequel la colonne d'échange d'anions (18) est une colonne d'échange d'anions Sep - Pak.
  7. Dispositif selon la revendication 1, dans lequel le dispositif comprend en outre un troisième récipient (32) destiné à contenir de l'eau stérilisée et le troisième récipient (32) est relié à la colonne de chromatographie d'extraction en phase solide d'échange de cations (14) par l'intermédiaire d'une sixième canalisation (15f) et d'une quatrième électrovanne (16d).
  8. Dispositif selon la revendication 1, dans lequel le dispositif comprend en outre un quatrième récipient (34) destiné à contenir une solution physiologique salée et le quatrième récipient (34) est relié à la deuxième canalisation (15b) par l'intermédiaire d'une septième canalisation (15g) et d'une cinquième électrovanne (16e).
  9. Dispositif selon la revendication 1, dans lequel du plomb est disposé autour du premier compteur Geiger - Müller (26) et du second compteur Geiger - Müller (38) pour les protéger d'interférences radioactives en provenance de l'extérieur.
  10. Procédé pour concentrer du pertechnétate 99mTc, caractérisé en ce qu'il comprend les étapes consistant à :
    exécuter un programme de commande automatique par une unité centrale de traitement (50) pour lancer un module de mesure de rayonnement (42), un module de mesure de signal (44) et un module de commande de signal (46) ;
    lancer le module de commande de signal (46) comprend les étapes consistant à :
    amorcer un moteur (30), une première électrovanne (16a), une deuxième électrovanne (16b) et une troisième électrovanne (16c) pour transporter le pertechnétate 99mTc à partir du premier récipient (12) dans une colonne de chromatographie d'extraction en phase solide d'échange de cations (14), une colonne d'échange d'anions (18) et une bouteille à déchets (28) par l'intermédiaire d'une première canalisation (15a), d'une deuxième canalisation (15b), d'une quatrième canalisation (15d) et d'une cinquième canalisation (15e) ; et
    arrêter la première électrovanne (16a) et transporter la solution physiologique salée dans la colonne d'échange d'anions (18) et dans un premier flacon de réception (22) ;
    lancer le module de mesure de rayonnement (42) par l'intermédiaire d'un premier compteur Geiger - Müller (26) pour surveiller l' activité ; et
    lancer le module de mesure de signal (44) pour peser le pertechnétate 99mTc à l'intérieur du premier flacon de réception (22) par l'intermédiaire d'un élément de pesage (24) afin de vérifier s'il convient d'interrompre ou pas le programme de commande automatique.
  11. Procédé selon la revendication 10, dans lequel, avant l'étape consistant à amorcer un moteur (30), une première électrovanne (16a), une deuxième électrovanne (16b) et une troisième électrovanne (16c), le procédé comprend en outre une étape consistant à : amorcer le moteur (30), la deuxième électrovanne (16b), la troisième électrovanne (16c) et la quatrième électrovanne (16d) afin de transporter de l'eau stérilisée à l'intérieur d'un troisième récipient (32) dans la bouteille à déchets (28) par l'intermédiaire d'une sixième canalisation (15f), de la deuxième canalisation (15b), de la quatrième canalisation (15d) et de la cinquième canalisation (15e).
  12. Procédé selon la revendication 10, dans lequel, après l'étape consistant à arrêter la première électrovanne (16a) et à transporter la solution physiologique salée dans la colonne d'échange d'anions (18) et dans un premier flacon de réception (22), le procédé comprend en outre une étape consistant à :
    mettre en marche une cinquième électrovanne (16e) pour envoyer une solution physiologique salée à l'intérieur d'un quatrième récipient (34) dans la colonne d'échange d'anions (18) par l'intermédiaire d'une septième canalisation (15g) et dans un second flacon de réception (22) par l'intermédiaire de la quatrième canalisation (15d).
  13. Procédé selon la revendication 10, dans lequel, au cours de l'étape consistant à arrêter la première électrovanne (16a) et à transporter la solution physiologique salée dans la colonne d'échange d'anions (18) et dans un premier flacon de réception (22), le procédé comprend en outre une étape consistant à : lancer un processus de filtration une fois que la solution physiologique salée est passée à travers la colonne d'échange d'anions (18), et recevoir la solution physiologique salée filtrée dans le premier flacon de réception (22).
EP20060012651 2006-06-20 2006-06-20 Dispositif de concentration du pertechnéctate de Technetium-99m et procédé correspondant Expired - Fee Related EP1870906B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20060012651 EP1870906B1 (fr) 2006-06-20 2006-06-20 Dispositif de concentration du pertechnéctate de Technetium-99m et procédé correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060012651 EP1870906B1 (fr) 2006-06-20 2006-06-20 Dispositif de concentration du pertechnéctate de Technetium-99m et procédé correspondant

Publications (2)

Publication Number Publication Date
EP1870906A1 EP1870906A1 (fr) 2007-12-26
EP1870906B1 true EP1870906B1 (fr) 2013-08-14

Family

ID=37198769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060012651 Expired - Fee Related EP1870906B1 (fr) 2006-06-20 2006-06-20 Dispositif de concentration du pertechnéctate de Technetium-99m et procédé correspondant

Country Status (1)

Country Link
EP (1) EP1870906B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249352B (zh) * 2011-05-23 2013-03-20 中国工程物理研究院核物理与化学研究所 医用高锝酸盐自动生产装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1528153A (en) * 1975-02-03 1978-10-11 Radio Chem Centre Ltd Technetium-99m
US4778672A (en) * 1985-11-27 1988-10-18 University Of Cincinnati Method of isolating radioactive perrhenate or pertechnetate from an aqueous solution
CA2108017C (fr) * 1991-05-01 2004-07-20 Charles Philip Wells Methode d'acheminement de liquides et dispositif d'elution automatique d'un generateur de radionucleides
AU2002320137B2 (en) * 2001-06-22 2006-12-14 Pg Research Foundation, Inc. Automated radionuclide separation system and method

Also Published As

Publication number Publication date
EP1870906A1 (fr) 2007-12-26

Similar Documents

Publication Publication Date Title
Meyer et al. 68 Ga-labelled DOTA-derivatised peptide ligands
AU663716B2 (en) Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system
Baum et al. Theranostics, Gallium-68, and other radionuclides: a pathway to personalized diagnosis and treatment
CA2940697A1 (fr) Detection d'isotope nucleaire en temps reel
KR101948404B1 (ko) 양전자 방출 단층촬영에 사용하기 위한 43sc 방사성핵종 및 그의 방사성제약의 제조
US20080149847A1 (en) System for the Control, Verification and Recording of the Performance of a Radioisotope Generator's Operations
Saptiama et al. Development of 99 Mo/99m Tc generator system for production of medical radionuclide 99m Tc using a neutron-activated 99 Mo and zirconium based material (ZBM) as its adsorbent
Knapp Jr et al. Use of new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188
Fukumura et al. An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use
Mushtaq Concentration of 99mTcO4−/188ReO4− by a single, compact, anion exchange cartridge
Chattopadhyay et al. A novel 99mTc delivery system using (n, γ) 99Mo adsorbed on a large alumina column in tandem with Dowex-1 and AgCl columns
EP1870906B1 (fr) Dispositif de concentration du pertechnéctate de Technetium-99m et procédé correspondant
Chattopadhyay et al. A novel technique for the effective concentration of 99mTc from a large alumina column loaded with low specific-activity (n, γ)-produced 99Mo
Callahan et al. The use of alumina “SepPaks®” as a simple method for the removal and determination of tungsten-188 breakthrough from tungsten-188/rhenium-188 generators
Tatenuma et al. A mass-production process of a highly pure medical use 99mTc from natural isotopic Mo (n, γ) 99Mo without using uranium
US20070258885A1 (en) Device for concentrating Technetium-99m pertechnetate and method thereof
Van der Meulen et al. The production of 82Sr using larger format RbCl targets
Hou Determination of radionuclidic impurities in 99mTc eluate from 99Mo/99mTc generator for quality control
Mansur et al. Concentration of 99mTc-pertechnetate and 188Re-perrhenate
Sarkar et al. Evaluation of two methods for concentrating perrhenate (188Re) eluates obtained from 188W–188Re generator
JP4578425B2 (ja) テクネチウム−99m過テクネチウム酸溶液の濃縮装置及びその方法
Kao et al. An efficient and aseptic preparation of “sodium fluoride (18 F) injection” in a GMP compliant facility
Fuchigami et al. Development of a 68Ge/68Ga generator system using polysaccharide polymers and its application in PET imaging of tropical infectious diseases
Le et al. Development of multiple-elution cartridge-based radioisotope concentrator device for increasing the 99m Tc and 188 Re concentration and the effectiveness of 99m Tc/99 Mo utilisation
Camroodien ETD: Development of 18F radiochemistry for positron emission particle tracking (PEPT)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006037795

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G21G0004000000

Ipc: G21G0001000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G21G 4/08 20060101ALI20130213BHEP

Ipc: G21G 1/00 20060101AFI20130213BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006037795

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006037795

Country of ref document: DE

Representative=s name: LANGPATENT ANWALTSKANZLEI IP LAW FIRM, DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006037795

Country of ref document: DE

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006037795

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006037795

Country of ref document: DE

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140620