EP1867739B1 - Alloy based on nickel and its application for spark plug electrodes - Google Patents

Alloy based on nickel and its application for spark plug electrodes Download PDF

Info

Publication number
EP1867739B1
EP1867739B1 EP07009792A EP07009792A EP1867739B1 EP 1867739 B1 EP1867739 B1 EP 1867739B1 EP 07009792 A EP07009792 A EP 07009792A EP 07009792 A EP07009792 A EP 07009792A EP 1867739 B1 EP1867739 B1 EP 1867739B1
Authority
EP
European Patent Office
Prior art keywords
alloy
weight
nickel
spark plug
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07009792A
Other languages
German (de)
French (fr)
Other versions
EP1867739A1 (en
Inventor
Werner Niessner
Hans Delesky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Ignition GmbH
Original Assignee
BorgWarner Beru Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38197635&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1867739(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BorgWarner Beru Systems GmbH filed Critical BorgWarner Beru Systems GmbH
Priority to EP10008490.4A priority Critical patent/EP2343389B1/en
Publication of EP1867739A1 publication Critical patent/EP1867739A1/en
Application granted granted Critical
Publication of EP1867739B1 publication Critical patent/EP1867739B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent

Definitions

  • the invention is based on an alloy having the features specified in the preamble of claim 1.
  • Such an alloy is from the DE 29 36 312 C3 known.
  • the known alloy consists of 0.3 to 3% by weight of silicon, 0.2 to 3% by weight of aluminum, 0.2 to 3% by weight of chromium, 0 to 0.5% by weight of manganese and 0.01 to 0 , 1% by weight of yttrium and the remainder of nickel.
  • the DE 29 36 312 C3 teaches for this reason that a conventional nickel-base alloy of 0.3 to 3% by weight silicon, up to 0.5% by weight manganese, 0.2 to 3% by weight chromium and / or 0.2 to 3% by weight % Aluminum, balance nickel, an yttrium content of 0.01 to 1% by weight. Yttrium is said to improve the resistance of nickel alloy to oxidation and lead oxide corrosion.
  • the manganese content in the known nickel alloy is limited to the minimum required to ensure sufficient deoxidization and adequate desulfurization.
  • a nickel-base alloy for spark plug electrodes which contains 1.8 to 2.2% by weight of silicon, 2 to 2.4% by weight of aluminum, 0.05 to 0.1% by weight of yttrium and / or hafnium and / or Contains zirconium and the remainder consists of nickel.
  • the low proportion of yttrium should lead to a good high-temperature oxidation protection, which results in a particularly good oxidation resistance of the alloy according to the invention, especially in combination with aluminum and silicon.
  • manganese should not contain the known alloy, since manganese leads to a substantial deterioration of the oxidation resistance of the alloy.
  • made of the nickel alloy electrodes should have a high heat resistance and a high temperature fatigue life.
  • the new alloy for use in spark plug electrodes must be characterized by a sufficiently high melting point and boiling point and must be well deformed and can be welded in order to produce the spark plug electrodes cost-effectively mass-produced in mass production.
  • the nickel-based alloy of the present invention contains 1.5 to 2.5% by weight of silicon, 1.5 to 3% by weight of aluminum, 0 to 0.5% by weight of manganese, and 0.05 to 0.2% by weight of titanium Combination with 0.1 to 0.3% by weight zirconium.
  • the alloy according to the invention should therefore contain 1.5 to 2.5% by weight of silicon, preferably 2% by weight.
  • the aluminum increases the strength of the nickel alloy and, by forming the stable Al 2 O 2, improves the corrosion resistance of the alloy. At the elevated temperatures to which the alloy is exposed when used in spark plugs, a noticeable improvement in corrosion resistance is obtained from an aluminum content of 1.5% by weight. With an aluminum content of more than 3% by weight, the workability of the nickel alloy becomes so difficult that cold working as usual in the production of a composite electrode having a copper core and a nickel alloy jacket for a spark plug is feasible only with high tool wear is. Therefore, the proportion of aluminum in the alloy according to the invention should be 1.5 to 3% by weight, preferably 2% by weight.
  • Manganese has the task of deoxidizing the alloy during melting. Excessive manganese content leads to a deterioration of the oxidation properties of the alloy, which is why the proportion of manganese in the alloy according to the invention should not exceed 0.5% by weight. Preferably, the manganese content is 0.2 to 0.45% by weight.
  • Chromium is a common component of nickel alloys for spark plug electrodes because it helps to improve corrosion resistance. At temperatures above 900 ° C, which arise in the spark plugs sparking in the electrode surfaces, occurs an increased evaporation of chromium as chromium oxide, which has an increased burning of the nickel alloy result. Moreover, as an alloying ingredient, chromium has the disadvantage that it makes it difficult to process the alloy in the fabrication of electrodes, particularly composite electrodes, as used in spark plugs. In addition, a high proportion of chromium makes it difficult to weld the electrodes. Preferably, therefore, the present invention completely eliminates chromium as an alloying ingredient.
  • Titanium has a high melting point at 1677 ° C and is very resistant to corrosion due to the formation of dense titanium oxide layers. Furthermore, it has been found that titanium makes the alloy less susceptible to intergranular corrosion. This seems to be due to the titanium in the alloy forming finely divided carbides. In addition, titanium acts denitrating, deoxidizing and sulfur binding.
  • Zircon has a high melting point at 1854 ° C and exhibits high chemical resistance.
  • the improvement in corrosion resistance is not significant.
  • the invention proposes a content of 0.05 to 0.2% by weight for the titanium and a content of 0.1 to 0.3% by weight for the zirconium.
  • a particular advantage of the alloy containing titanium and zirconium is that it can be obtained dispersion hardened. Whether and to what extent dispersion hardening occurs depends on the rate at which the molten alloy is allowed to cool. The slower it is allowed to cool, the more ⁇ '-particles can precipitate out in the grain boundaries of the alloy, which consist predominantly of nickel-titanium. It has been found that for temperatures up to about 850 ° C this results in a significant increase in the strength of the alloy and the spark plug electrodes produced therewith. When using the alloy for electrodes of spark plugs, this leads to an increase in the life of the spark plugs and to an improved constancy of the spark gap, which exists between the electrodes of a spark plug.
  • zircon and hafnium behave very similar.
  • the zirconium can therefore be wholly or partly replaced by hafnium. Since hafnium is twice as dense as zirconium, hafnium should replace one part by weight of zirconium with two parts by weight of hafnium.
  • An alloy in which the zirconium is completely replaced by hafnium would therefore contain from 0.2 to 0.6% by weight of hafnium.
  • the first alloy differs in the absence of chromium from the alloy that is made from the DE 29 36 312 C3 is known and differs by a small manganese content of the alloy from the DE 102 24 891 A1 is known.
  • the second alloy differs from the first alloy by an increased yttrium content.
  • the third alloy contains yttrium, hafnium and zirconium as oxide formers and thus resembles the alloy that is derived from the DE 102 24 891 A1 is known and differs from this one by its manganese content.
  • the fourth alloy is an alloy according to claim 1.
  • the fifth alloy is a much used in practice and proven to be particularly erosion resistant and wear resistant alloy with 2% chromium.
  • the sixth alloy is Inconel 600. It is a superalloy which is particularly resistant to oxidation and corrosion even at high temperatures and is therefore used for spark plug electrodes.
  • spark plugs based on the BERU spark plug 14F-7HUR2 with solid-body electrode were produced and operated in a 1.0 liter 4-cylinder in-line engine for a duration of 500 hours.
  • a series spark plug BERU 14F-7HUR2 with Ni Al 2 Si 2 Cr 2 Mn 0.5 was used as nickel alloy. After every 125 hours of operation, the erosion of the electrodes was measured. It is shown in Figure 1 in relative units.
  • Electrodes made with the two alloys according to the invention have a burn-off factor 4.5 to 6.5 lower than the other alloys tested.
  • Spark plugs, for their electrodes nickel alloys according to the teaching of DE 29 36 312 C3 and the DE 102 24 891 A1 were used, behave in the burn-up similar to the series spark plug 14F-7HUR2, so that the invention is also clearly advantageous over these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Spark Plugs (AREA)

Abstract

Nickel-based alloy containing (wt.%):Si (1.5-2.5), Al (1.5-3), Mn (0-0.5), and Ti (0.05-0.2), in combination with Zr (0.1-0.3) where the Zr can be replaced completely or partially by Hf. .

Description

Die Erfindung geht von einer Legierung mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen aus. Eine solche Legierung ist aus der DE 29 36 312 C3 bekannt. Die bekannte Legierung besteht aus 0,3 bis 3 Gewichts-% Silizium, 0,2 bis 3 Gewichts-% Aluminium, 0,2 bis 3 Gewichts-% Chrom, 0 bis 0,5 Gewichts-% Mangan und 0,01 bis 0,1 Gewichts-% Yttrium und zum Rest aus Nickel.The invention is based on an alloy having the features specified in the preamble of claim 1. Such an alloy is from the DE 29 36 312 C3 known. The known alloy consists of 0.3 to 3% by weight of silicon, 0.2 to 3% by weight of aluminum, 0.2 to 3% by weight of chromium, 0 to 0.5% by weight of manganese and 0.01 to 0 , 1% by weight of yttrium and the remainder of nickel.

Legierungen auf der Basis von Nickel sind besonders als Elektrodenwerkstoff für den Einsatz in Zündkerzen geeignet. Elektroden in Zündkerzen werden auf vielfältige Weise besonders beansprucht, nämlich

  • durch hohe Temperaturen, typisch von 800°C bis 950°C,
  • durch die Wechselwirkung mit einer Atmosphäre, welche abwechselnd oxidierend und reduzierend ist,
  • durch chemische Angriffe, z. B. durch Schwefel, Halogene und Kohlenwasserstoffe und deren Radikale,
  • durch elektrische Funkenerosion,
  • durch Temperaturwechsel,
  • und durch Motorschwingungen.
Alloys based on nickel are particularly suitable as electrode material for use in spark plugs. Electrodes in spark plugs are particularly stressed in a variety of ways, namely
  • by high temperatures, typically from 800 ° C to 950 ° C,
  • by the interaction with an atmosphere which is alternately oxidizing and reducing,
  • by chemical attacks, eg. As by sulfur, halogens and hydrocarbons and their radicals,
  • by electrical spark erosion,
  • by temperature change,
  • and by engine vibrations.

Die genannten Belastungen begrenzen die Lebensdauer der Zündkerze vor allem durch Heißgaskorrosion, Hochtemperaturoxidation und Abbrand.The aforementioned loads limit the life of the spark plug, especially by hot gas corrosion, high-temperature oxidation and combustion.

Die DE 29 36 312 C3 lehrt aus diesem Grund, dass man einer herkömmlichen Nickelbasislegierung aus 0,3 bis 3 Gewichts-% Silizium, bis zu 0,5 Gewichts-% Mangan, 0,2 bis 3 Gewichts-% Chrom und/oder 0,2 bis 3 Gewichts-% Aluminium, Rest Nickel, einen Yttriumgehalt von 0,01 bis 1 Gewichts-% zufügt. Yttrium soll die Beständigkeit der Nickellegierung gegen Oxidation sowie gegen durch Bleioxid hervorgerufene Korrosion verbessern. Der Mangangehalt ist bei der bekannten Nickellegierung auf das zum Gewährleisten einer hinreichenden Desoxidation sowie einer hinreichenden Entschwefelung benötigte Mindestmaß beschränkt.The DE 29 36 312 C3 teaches for this reason that a conventional nickel-base alloy of 0.3 to 3% by weight silicon, up to 0.5% by weight manganese, 0.2 to 3% by weight chromium and / or 0.2 to 3% by weight % Aluminum, balance nickel, an yttrium content of 0.01 to 1% by weight. Yttrium is said to improve the resistance of nickel alloy to oxidation and lead oxide corrosion. The manganese content in the known nickel alloy is limited to the minimum required to ensure sufficient deoxidization and adequate desulfurization.

Aus der DE 102 24 891 A1 ist eine Legierung auf Nickelbasis für Zündkerzenelektroden bekannt, welche 1,8 bis 2,2 Gewichts-% Silizium, 2 bis 2,4 Gewichts-% Aluminium, 0,05 bis 0,1 Gewichts-% Yttrium und/oder Hafnium und/oder Zirkon enthält und zum Rest aus Nickel besteht. Nach der Lehre der DE 102 24 891 A1 soll insbesondere der geringe Yttriumanteil zu einem guten Hochtemperatur-Oxidationsschutz führen, der besonders in Kombination mit Aluminium und Silizium eine besonders gute Oxidationsbeständigkeit der Legierung nach der Erfindung ergebe. Mangan soll die bekannte Legierung möglichst nicht enthalten, da Mangan zu einer wesentlichen Verschlechterung der Oxidationsbeständigkeit der Legierung führe.From the DE 102 24 891 A1 For example, a nickel-base alloy for spark plug electrodes is known which contains 1.8 to 2.2% by weight of silicon, 2 to 2.4% by weight of aluminum, 0.05 to 0.1% by weight of yttrium and / or hafnium and / or Contains zirconium and the remainder consists of nickel. After the apprenticeship of DE 102 24 891 A1 In particular, the low proportion of yttrium should lead to a good high-temperature oxidation protection, which results in a particularly good oxidation resistance of the alloy according to the invention, especially in combination with aluminum and silicon. If possible, manganese should not contain the known alloy, since manganese leads to a substantial deterioration of the oxidation resistance of the alloy.

Es ist die Aufgabe der vorliegenden Erfindung, eine Nickellegierung anzugeben, die bei Verwendung für Zündkerzen in Ottomotoren noch weniger Abbrand zeigt als bekannte Nickellegierungen. Darüber hinaus sollen aus der Nickellegierung gefertigte Elektroden eine hohe Warmfestigkeit und eine hohe Temperatur-Dauerstandsfestigkeit aufweisen. Außerdem muss sich die neue Legierung für den Einsatz in Zündkerzenelektroden durch einen ausreichend hohen Schmelzpunkt und Siedepunkt auszeichnen und muss sich gut verformen und schweißen lassen, um die Zündkerzenelektroden kostengünstig großtechnisch in Serienfertigung herstellen zu können.It is the object of the present invention to provide a nickel alloy, which even less burns when used for spark plugs in gasoline engines than known nickel alloys. In addition, made of the nickel alloy electrodes should have a high heat resistance and a high temperature fatigue life. In addition, the new alloy for use in spark plug electrodes must be characterized by a sufficiently high melting point and boiling point and must be well deformed and can be welded in order to produce the spark plug electrodes cost-effectively mass-produced in mass production.

Diese Aufgabe wird gelöst durch Legierungen mit den im Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.This object is achieved by alloys having the features specified in claim 1. Advantageous developments of the invention are the subject of the dependent claims.

Die erfindungsgemäße Legierung auf Nickelbasis enthält 1,5 bis 2,5 Gewichts-% Silizium, 1,5 bis 3 Gewichts-% Aluminium, 0 bis 0,5 Gewichts-% Mangan und 0,05 bis 0,2 Gewichts-% Titan in Kombination mit 0,1 bis 0,3 Gewichts-% Zirkon.The nickel-based alloy of the present invention contains 1.5 to 2.5% by weight of silicon, 1.5 to 3% by weight of aluminum, 0 to 0.5% by weight of manganese, and 0.05 to 0.2% by weight of titanium Combination with 0.1 to 0.3% by weight zirconium.

Nickel alleine bildet eine poröse Oxidschicht, durch welche Sauerstoff hindurchdiffundiert und das darunter liegende Nickel angreift, so dass dieses weiterhin oxidiert wird. Aluminium und Silizium bilden stabile Oxide, Al2O2 und SiO2. Silizium oxidiert ab ca. 500°C zu SiO2 und verbessert dadurch die Beständigkeit der Nickellegierung gegen Korrosionsangriffe. Bei einem Siliziumanteil von weniger als 1,5 Gewichts-% wird die Wirkung der angestrebten Oxidbildung noch als mangelhaft erachtet. Ein Siliziumanteil von mehr als 2,5 Gewichts-% führt zu einer Erhöhung des Abbrandes. Die erfindungsgemäße Legierung soll deshalb 1,5 bis 2,5 Gewichts-% Silizium enthalten, vorzugsweise 2 Gewichts-%.Nickel alone forms a porous oxide layer through which oxygen diffuses and attacks the underlying nickel so that it continues to be oxidized. Aluminum and silicon form stable oxides, Al 2 O 2 and SiO 2 . Silicon oxidizes from about 500 ° C to SiO 2 , thereby improving the resistance of the nickel alloy to corrosion attacks. With a silicon content of less than 1.5% by weight, the effect of the desired oxide formation is still considered to be deficient. A silicon content of more than 2.5% by weight leads to an increase in burnup. The alloy according to the invention should therefore contain 1.5 to 2.5% by weight of silicon, preferably 2% by weight.

Das Aluminium erhöht als Legierungsbestandteil die Festigkeit der Nickellegierung und verbessert durch die Bildung des stabilen Al2O2 den Korrosionswiderstand der Legierung. Bei den erhöhten Temperaturen, welchen die Legierung bei der Verwendung in Zündkerzen ausgesetzt ist, wird eine spürbare Verbesserung der Korrosionsbeständigkeit ab einem Aluminiumgehalt von 1,5 Gewichts-% erzielt. Bei einem Aluminiumgehalt von mehr als 3 Gewichts-% wird die Bearbeitbarkeit der Nickellegierung so erschwert, dass ein Kaltumformen, wie es im Zuge der Herstellung einer Verbundelektrode mit einem Kupferkern und einem Mantel aus der Nickellegierung für eine Zündkerze üblich ist, nur mit hohem Werkzeugverschleiß durchführbar ist. Daher soll der Anteil des Aluminiums in der erfindungsgemäßen Legierung 1,5 bis 3 Gewichts-% betragen, vorzugsweise 2 Gewichts-%.As an alloying constituent, the aluminum increases the strength of the nickel alloy and, by forming the stable Al 2 O 2, improves the corrosion resistance of the alloy. At the elevated temperatures to which the alloy is exposed when used in spark plugs, a noticeable improvement in corrosion resistance is obtained from an aluminum content of 1.5% by weight. With an aluminum content of more than 3% by weight, the workability of the nickel alloy becomes so difficult that cold working as usual in the production of a composite electrode having a copper core and a nickel alloy jacket for a spark plug is feasible only with high tool wear is. Therefore, the proportion of aluminum in the alloy according to the invention should be 1.5 to 3% by weight, preferably 2% by weight.

Mangan hat die Aufgabe, die Legierung beim Erschmelzen zu desoxidieren. Ein zu hoher Mangangehalt führt zu einer Verschlechterung der Oxidationseigenschaften der Legierung, weshalb der Anteil des Mangans in der erfindungsgemäßen Legierung nicht mehr als 0,5 Gewichts-% betragen soll. Vorzugsweise beträgt der Mangangehalt 0,2 bis 0,45 Gewichts-%.Manganese has the task of deoxidizing the alloy during melting. Excessive manganese content leads to a deterioration of the oxidation properties of the alloy, which is why the proportion of manganese in the alloy according to the invention should not exceed 0.5% by weight. Preferably, the manganese content is 0.2 to 0.45% by weight.

Chrom ist ein häufiger Bestandteil von Nickellegierungen für Zündkerzenelektroden, weil es zur Verbesserung der Korrosionsbeständigkeit beiträgt. Bei Temperaturen oberhalb von 900°C, welche bei den Zündkerzen durch Funkenüberschlag in den Elektrodenoberflächen entstehen, tritt ein verstärktes Abdampfen des Chroms als Chromoxid auf, was einen verstärkten Abbrand der Nickellegierung zur Folge hat. Darüber hinaus hat Chrom als Legierungsbestandteil den Nachteil, dass es die Bearbeitung der Legierung bei der Anfertigung von Elektroden, insbesondere bei Verbundelektroden, wie sie in Zündkerzen verwendet werden, erschwert. Außerdem erschwert ein hoher Chromanteil das Schweißen der Elektroden. Vorzugsweise verzichtet die vorliegende Erfindung deshalb völlig auf Chrom als Legierungsbestandteil. Überraschenderweise hat es sich gezeigt, dass der Verzicht auf Chrom durch das gleichzeitige Vorsehen von Zirkon und Titan als Legierungsbestandteile mehr als kompensiert werden kann. Die Zugabe von 0,05 bis 0,2 Gewichts-% Titan und von 0,1 bis 0,3 Gewichts-% Zirkon führt zu einer wesentlichen Verringerung der Korrosion der Legierung unter den Einsatzbedingungen von Zündkerzen und zu einem wesentlich geringeren Abbrand. Zirkon und Titan erfüllen als Legierungsbestandteile auch die übrigen Anforderungen, die an die Verwendbarkeit der Legierung für die Herstellung von Zündkerzenelektroden erfüllt werden sollten:Chromium is a common component of nickel alloys for spark plug electrodes because it helps to improve corrosion resistance. At temperatures above 900 ° C, which arise in the spark plugs sparking in the electrode surfaces, occurs an increased evaporation of chromium as chromium oxide, which has an increased burning of the nickel alloy result. Moreover, as an alloying ingredient, chromium has the disadvantage that it makes it difficult to process the alloy in the fabrication of electrodes, particularly composite electrodes, as used in spark plugs. In addition, a high proportion of chromium makes it difficult to weld the electrodes. Preferably, therefore, the present invention completely eliminates chromium as an alloying ingredient. Surprisingly, it has been shown that the omission of chromium can be more than compensated for by the simultaneous provision of zirconium and titanium as alloy constituents. The addition of 0.05 to 0.2% by weight of titanium and 0.1 to 0.3% by weight of zircon leads to a substantial reduction in the corrosion of the alloy under the conditions of use of spark plugs and to a much lower burnup. Zirconium and titanium, as alloy constituents, also fulfill the other requirements which should be fulfilled for the usability of the alloy for the production of spark plug electrodes:

Titan hat mit 1677°C einen hohen Schmelzpunkt und ist durch die Bildung dichter Titanoxidschichten sehr korrosionsbeständig. Des weiteren hat sich gezeigt, dass Titan die Legierung weniger anfällig gegenüber interkristalliner Korrosion macht. Das scheint darauf zurückzuführen zu sein, dass das Titan in der Legierung fein verteilte Karbide bildet. Zusätzlich wirkt Titan denitrierend, desoxidierend und schwefelbindend.Titanium has a high melting point at 1677 ° C and is very resistant to corrosion due to the formation of dense titanium oxide layers. Furthermore, it has been found that titanium makes the alloy less susceptible to intergranular corrosion. This seems to be due to the titanium in the alloy forming finely divided carbides. In addition, titanium acts denitrating, deoxidizing and sulfur binding.

Zirkon hat mit 1854°C einen hohen Schmelzpunkt und weist eine hohe chemische Resistenz auf.Zircon has a high melting point at 1854 ° C and exhibits high chemical resistance.

Bei einem Titangehalt von weniger als 0,05 Gewichts-% und bei einem Zirkongehalt von weniger als 0,1 Gewichts-% ist die Verbesserung der Korrosionsbeständigkeit nicht signifikant. Bei einem Titangehalt von mehr als 0,2 Gewichts-% und bei einem Zirkongehalt von mehr als 0,3 Gewichts-% wird die Legierung zu hart, so dass sie sich mit den bei der Herstellung von Zündkerzenelektroden üblichen Verfahren nicht mehr gut verarbeiten lässt. Deshalb schlägt die Erfindung für das Titan einen Gehalt von 0,05 bis 0,2 Gewichts-% und für das Zirkon einen Gehalt von 0,1 bis 0,3 Gewichts-% vor.With a titanium content of less than 0.05% by weight and a zirconium content of less than 0.1% by weight, the improvement in corrosion resistance is not significant. With a titanium content of more than 0.2% by weight and a zirconium content of more than 0.3% by weight, the alloy becomes too hard so that it can no longer be processed well with the methods customary in the production of spark plug electrodes. Therefore, the invention proposes a content of 0.05 to 0.2% by weight for the titanium and a content of 0.1 to 0.3% by weight for the zirconium.

Ein besonderer Vorteil der Legierung, welche Titan und Zirkon enthält, besteht darin, dass sie dispersionsgehärtet erhalten werden kann. Ob und in welchem Ausmaß eine Dispersionshärtung auftritt, hängt von der Geschwindigkeit ab, mit welcher man die erschmolzene Legierung abkühlen lässt. Je langsamer man sie abkühlen lässt, desto mehr können sich in den Korngrenzen der Legierung γ'-Partikel ausscheiden, welche vorwiegend aus Nickel-Titan bestehen. Es hat sich gezeigt, dass sich dadurch für Temperaturen bis hinauf zu ungefähr 850°C eine signifikante Steigerung der Festigkeit der Legierung und der damit hergestellten Zündkerzenelektroden ergibt. Bei der Verwendung der Legierung für Elektroden von Zündkerzen führt das zu einer Steigerung der Lebensdauer der Zündkerzen und zu einer verbesserten Konstanz der Funkenstrecke, welche zwischen den Elektroden einer Zündkerze besteht.A particular advantage of the alloy containing titanium and zirconium is that it can be obtained dispersion hardened. Whether and to what extent dispersion hardening occurs depends on the rate at which the molten alloy is allowed to cool. The slower it is allowed to cool, the more γ'-particles can precipitate out in the grain boundaries of the alloy, which consist predominantly of nickel-titanium. It has been found that for temperatures up to about 850 ° C this results in a significant increase in the strength of the alloy and the spark plug electrodes produced therewith. When using the alloy for electrodes of spark plugs, this leads to an increase in the life of the spark plugs and to an improved constancy of the spark gap, which exists between the electrodes of a spark plug.

Zirkon und Hafnium verhalten sich sehr ähnlich. Das Zirkon kann deshalb ganz oder teilweise durch Hafnium ersetzt werden. Da das Hafnium eine doppelt so hohe Dichte wie das Zirkon hat, sollte beim Ersatz von Zirkon durch Hafnium ein Gewichtsteil Zirkon durch zwei Gewichtsteile Hafnium ersetzt werden. Eine Legierung, in welcher das Zirkon vollständig durch Hafnium ersetzt ist, würde deshalb 0,2 bis 0,6 Gewichts-% Hafnium enthalten.Zircon and hafnium behave very similar. The zirconium can therefore be wholly or partly replaced by hafnium. Since hafnium is twice as dense as zirconium, hafnium should replace one part by weight of zirconium with two parts by weight of hafnium. An alloy in which the zirconium is completely replaced by hafnium would therefore contain from 0.2 to 0.6% by weight of hafnium.

Die Kombination der Legierungszusätze Titan und Zirkon bzw. Titan und Hafnium führt in der erfindungsgemäßen Legierung in Kombination mit den weiteren Legierungsbestandteilen Aluminium und Silizium in einem überraschenden Ausmaß zu einer Verringerung des Abbrandes, obwohl die dünnen Oxidschichten durch den bei Zündkerzen auftretenden Funkenüberschlag immer wieder durchschlagen werden.The combination of the alloying additives titanium and zirconium or titanium and hafnium in the alloy according to the invention in combination with the other alloy components aluminum and silicon leads to a surprising extent to a reduction of the burnup, although the thin oxide layers are repeatedly penetrated by the sparkover occurring in the case of spark plugs ,

Der Fortschritt, den die Erfindung bringt, wird anhand von vergleichenden Untersuchungen deutlich, deren Ergebnis in der beigefügten Figur 1 dargestellt ist, welche den Abbrand von Zündkerzenelektroden unterschiedlicher Zusammensetzung in Abhängigkeit von der Motorlaufzeit wiedergibt.The progress that the invention brings is made clear by comparative investigations, the result of which is in the attached FIG. 1 showing the burnup of spark plug electrodes of different composition as a function of the engine running time.

Folgende Legierungen wurden vergleichend untersucht:

  1. 1. Ni Al 1,8 S1 2,0 Mn 0,4 Y 0,1
  2. 2. Ni Al 1,8 Si 2,0 Mn 0,4 Y 0,15
  3. 3. Ni Al 1,8 Si 2,0 Mn 0,4 Y 0,05 Hf 0,04 Zr 0,04
  4. 4. Ni Al 1,8 Si 2,0 Mn 0,4 Ti 0,2 Zr 0,1
  5. 5. Ni Al 2 Si 2 Cr 2 Mn 0,5
  6. 6. Inconel 600 (Ni 72 Cr 14 bis 17 Mn 1 Si 0,5)
The following alloys were examined comparatively:
  1. 1. Ni Al 1.8 S1 2.0 Mn 0.4 Y 0.1
  2. 2. Ni Al 1.8 Si 2.0 Mn 0.4 Y 0.15
  3. 3. Ni Al 1.8 Si 2.0 Mn 0.4 Y 0.05 Hf 0.04 Zr 0.04
  4. 4. Ni Al 1.8 Si 2.0 Mn 0.4 Ti 0.2 Zr 0.1
  5. 5. Ni Al 2 Si 2 Cr 2 Mn 0.5
  6. 6. Inconel 600 (Ni 72 Cr 14 to 17 Mn 1 Si 0.5)

Die erste Legierung unterscheidet sich durch Fehlen des Chroms von der Legierung, die aus der DE 29 36 312 C3 bekannt ist und unterscheidet sich durch einen kleinen Mangananteil von der Legierung, die aus der DE 102 24 891 A1 bekannt ist.The first alloy differs in the absence of chromium from the alloy that is made from the DE 29 36 312 C3 is known and differs by a small manganese content of the alloy from the DE 102 24 891 A1 is known.

Die zweite Legierung unterscheidet sich von der ersten Legierung durch einen erhöhten Yttriumgehalt.The second alloy differs from the first alloy by an increased yttrium content.

Die dritte Legierung enthält als Oxidbildner Yttrium, Hafnium und Zirkon und ähnelt damit der Legierung, die aus der DE 102 24 891 A1 bekannt ist und unterscheidet sich von dieser durch ihren Mangangehalt.The third alloy contains yttrium, hafnium and zirconium as oxide formers and thus resembles the alloy that is derived from the DE 102 24 891 A1 is known and differs from this one by its manganese content.

Die vierte Legierung ist eine Legierung gemäß Patentanspruch 1.The fourth alloy is an alloy according to claim 1.

Die fünfte Legierung ist eine in der Praxis viel verwendete und als besonders abbrandfest und verschleißfest bewährte Legierung mit 2 % Chrom.The fifth alloy is a much used in practice and proven to be particularly erosion resistant and wear resistant alloy with 2% chromium.

Die sechste Legierung ist Inconel 600. Es handelt sich dabei um eine auch bei hohen Temperaturen besonders oxidations- und korrosionsbeständige Superlegierung, welche deshalb für Zündkerzenelektroden benutzt wird.The sixth alloy is Inconel 600. It is a superalloy which is particularly resistant to oxidation and corrosion even at high temperatures and is therefore used for spark plug electrodes.

Für die Versuche wurden Zündkerzen auf der Basis der BERU-Zündkerze 14F-7HUR2 mit Massivkörperelektrode hergestellt und in einem 1,0 Liter 4 Zylinder Reihenmotor für eine Dauer von 500 Stunden betrieben. Zum Vergleich wurde eine Serienzündkerze BERU 14F-7HUR2 mit Ni Al 2 Si 2 Cr 2 Mn 0,5 als Nickellegierung herangezogen. Nach jeweils 125 Betriebsstunden wurde der Abbrand der Elektroden gemessen. Er ist in Figur 1 in relativen Einheiten dargestellt.For the tests, spark plugs based on the BERU spark plug 14F-7HUR2 with solid-body electrode were produced and operated in a 1.0 liter 4-cylinder in-line engine for a duration of 500 hours. For comparison, a series spark plug BERU 14F-7HUR2 with Ni Al 2 Si 2 Cr 2 Mn 0.5 was used as nickel alloy. After every 125 hours of operation, the erosion of the electrodes was measured. It is shown in Figure 1 in relative units.

Das Ergebnis überzeugt: Elektroden, die mit den beiden erfindungsgemäßen Legierungen hergestellt waren, liegen im Abbrand um einen Faktor 4,5 bis 6,5 günstiger als die übrigen untersuchten Legierungen. Zündkerzen, für deren Elektroden Nickellegierungen gemäß der Lehre der DE 29 36 312 C3 und der DE 102 24 891 A1 verwendet wurden, verhalten sich im Abbrand ähnlich wie die Serienzündkerze 14F-7HUR2, so dass die Erfindung auch gegenüber diesen deutlich vorteilhaft ist.The result is convincing: Electrodes made with the two alloys according to the invention have a burn-off factor 4.5 to 6.5 lower than the other alloys tested. Spark plugs, for their electrodes nickel alloys according to the teaching of DE 29 36 312 C3 and the DE 102 24 891 A1 were used, behave in the burn-up similar to the series spark plug 14F-7HUR2, so that the invention is also clearly advantageous over these.

Claims (8)

  1. Alloy on the basis of nickel with additions of silicon and aluminium, characterized in that it includes
    1.5 to 2.5 wt-% of silicon,
    1.5 to 3 wt-% of aluminium,
    0 to 0.5 wt-% of manganese,
    0.05 to 0.2 wt-% of titanium in combination with
    0.1 to 0.3 wt-% of zirconium, wherein the zirconium may be totally or partially replaced by twice the amount of hafnium,
    the remainder being nickel and usual trace elements.
  2. Alloy according to claim 1, characterized in that it does not contain chromium.
  3. Alloy according to any of the preceding claims, characterized in that the manganese content is 0.2 to 0.45 wt-%.
  4. Alloy according to any of the preceding claims, characterized in that the silicon content is 2 wt-%.
  5. Alloy according to any of the preceding claims, characterized in that the aluminium content is 2 wt-%.
  6. Alloy according to any of the preceding claims, characterized in that it comprises γ'-precipitates.
  7. The use of an alloy according to any of the preceding claims for the manufacture of electrodes for spark plugs.
  8. Electrode for spark plugs, the electrode consisting of an alloy according to any of the claims 1 to 6.
EP07009792A 2006-05-16 2007-05-16 Alloy based on nickel and its application for spark plug electrodes Active EP1867739B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10008490.4A EP2343389B1 (en) 2006-05-16 2007-05-16 Alloy based on nickel and its application for spark plug electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006023374A DE102006023374A1 (en) 2006-05-16 2006-05-16 Nickel-based alloy containing Si Al Si, Mn, and Ti and Zr where the Zr can be replaced completely or partially by Hf useful for production of sparking plug electrodes has decreased burning off liability

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10008490.4 Division-Into 2010-08-14

Publications (2)

Publication Number Publication Date
EP1867739A1 EP1867739A1 (en) 2007-12-19
EP1867739B1 true EP1867739B1 (en) 2010-10-13

Family

ID=38197635

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07009792A Active EP1867739B1 (en) 2006-05-16 2007-05-16 Alloy based on nickel and its application for spark plug electrodes
EP10008490.4A Active EP2343389B1 (en) 2006-05-16 2007-05-16 Alloy based on nickel and its application for spark plug electrodes

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10008490.4A Active EP2343389B1 (en) 2006-05-16 2007-05-16 Alloy based on nickel and its application for spark plug electrodes

Country Status (3)

Country Link
EP (2) EP1867739B1 (en)
AT (1) ATE484603T1 (en)
DE (2) DE102006023374A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392129B1 (en) 2009-12-24 2014-05-07 니혼도꾸슈도교 가부시키가이샤 Spark Plug
DE102010004345B4 (en) 2010-01-11 2018-02-22 Viessmann Werke Gmbh & Co Kg Electrode for flame monitoring on a heating burner
DE102010024488B4 (en) 2010-06-21 2012-04-26 Thyssenkrupp Vdm Gmbh Nickel-based alloy
CN102337426B (en) * 2011-10-29 2013-12-25 重庆川仪自动化股份有限公司 Ni-Al exothermic resistance alloy wire
DE102013004365B4 (en) 2013-03-14 2015-09-24 VDM Metals GmbH Nickel-based alloy with silicon, aluminum and chrome
DE102013005677B3 (en) 2013-04-03 2014-07-17 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Shaft bearing with shaft seal, especially for water pumps in motor vehicles
CN104532064A (en) * 2014-12-25 2015-04-22 春焱电子科技(苏州)有限公司 Alloy for electronic material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042200C3 (en) * 1970-08-26 1975-11-06 Beru-Werk Albert Ruprecht, 7140 Ludwigsburg Nickel alloy spark plug electrode
JPS6043897B2 (en) * 1978-09-07 1985-10-01 日本特殊陶業株式会社 Nickel alloy for spark plug electrodes
JPS6487738A (en) * 1987-09-29 1989-03-31 Mitsubishi Metal Corp Ni-based alloy for ignition plug electrode of internal combustion engine
US5204059A (en) * 1988-07-25 1993-04-20 Mitsubishi Metal Corporation Ni base alloy for spark plug electrodes of internal combustion engines
JPH08120376A (en) * 1994-10-21 1996-05-14 Mitsubishi Materials Corp Heater substrate made of nickel-base heat resistant alloy and heater member using the same
JPH0992290A (en) * 1995-09-25 1997-04-04 Mitsubishi Materials Corp Positive current collector of solid electrolyte lithium secondary battery
WO2000000652A1 (en) * 1998-06-30 2000-01-06 Federal-Mogul Corporation Spark plug electrode alloy
DE10224891A1 (en) * 2002-06-04 2003-12-18 Bosch Gmbh Robert Nickel alloy suitable for internal combustion engine spark plug electrodes, contains silicon and aluminum with yttrium, hafnium or zirconium

Also Published As

Publication number Publication date
EP1867739A1 (en) 2007-12-19
ATE484603T1 (en) 2010-10-15
EP2343389B1 (en) 2014-01-08
EP2343389A1 (en) 2011-07-13
DE502007005316D1 (en) 2010-11-25
DE102006023374A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
EP1867739B1 (en) Alloy based on nickel and its application for spark plug electrodes
DE102012009125B4 (en) Highly hard weld-on alloy powder
DE60015728T2 (en) HEAT-RESISTANT ALLOY WIRE
DE2655617C2 (en) Wrought cobalt-based alloy and process for producing a sheet from this alloy
DE3634635C2 (en) Nickel aluminides and nickel iron aluminides for use in oxidizing environments
DE102010024488B4 (en) Nickel-based alloy
DE2936312C2 (en) Use of a nickel alloy for the production of spark plug electrodes
DE60301158T2 (en) Super alloy material with improved weldability
DE2244311A1 (en) HIGH TEMPERATURE-RESISTANT NICKEL ALLOY
EP2047004B1 (en) Nickel-based alloy
DE2809081C3 (en) Use of an alloy of the iron-nickel-chromium-molybdenum system
DE10224891A1 (en) Nickel alloy suitable for internal combustion engine spark plug electrodes, contains silicon and aluminum with yttrium, hafnium or zirconium
DE2630749A1 (en) IGNITION DEVICE
DE2456857C3 (en) Use of a nickel-based alloy for uncoated components in the hot gas part of turbines
DE3503110C2 (en)
EP1420075B1 (en) Nickel-base superalloy
DE4010076A1 (en) MATERIAL SYSTEMS FOR USE IN HIGHER TEMPERATURE JET ENGINES
EP2514052A1 (en) Spark plug electrode produced from improved electrode material
DE112012002495T5 (en) Electrode material, spark plug electrode and spark plug
DE102019105660A1 (en) Copper-based alloy
EP0728917B1 (en) Exhaust valve for diesel engine
DE3114253A1 (en) "NICKEL-BASED SUPER ALLOY"
DE10014526B4 (en) Self-regulating quick heating rod glow plug
DE102016125123A1 (en) Process for the production of nickel alloys with optimized strip weldability
DE2734068A1 (en) HIGH TEMPERATURE OXYDATION RESISTANT ALLOYS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080117

17Q First examination report despatched

Effective date: 20080312

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BORGWARNER BERU SYSTEMS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007005316

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101013

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110114

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: NGK SPARK PLUG CO., LTD.

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007005316

Country of ref document: DE

Effective date: 20110713

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: BORGWARNER BERU SYSTEMS G.M.B.H.

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005316

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005316

Country of ref document: DE

Owner name: FEDERAL-MOGUL IGNITION GMBH, DE

Free format text: FORMER OWNER: BORGWARNER BERU SYSTEMS GMBH, 71636 LUDWIGSBURG, DE

Effective date: 20130109

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005316

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

Effective date: 20130109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005316

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 484603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005316

Country of ref document: DE

Representative=s name: TWELMEIER MOMMER & PARTNER PATENT- UND RECHTSA, DE

Effective date: 20130702

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005316

Country of ref document: DE

Owner name: FEDERAL-MOGUL IGNITION GMBH, DE

Free format text: FORMER OWNER: FEDERAL-MOGUL IGNITION GMBH, 65201 WIESBADEN, DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FEDERAL-MOGUL IGNITION GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502007005316

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20140306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502007005316

Country of ref document: DE

Effective date: 20140306

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230419

Year of fee payment: 17