EP1420075B1 - Nickel-base superalloy - Google Patents
Nickel-base superalloy Download PDFInfo
- Publication number
- EP1420075B1 EP1420075B1 EP03104108A EP03104108A EP1420075B1 EP 1420075 B1 EP1420075 B1 EP 1420075B1 EP 03104108 A EP03104108 A EP 03104108A EP 03104108 A EP03104108 A EP 03104108A EP 1420075 B1 EP1420075 B1 EP 1420075B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ppm
- nickel
- alloy
- phase
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000601 superalloy Inorganic materials 0.000 title claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 34
- 229910052759 nickel Inorganic materials 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 description 53
- 239000000956 alloy Substances 0.000 description 53
- 230000015556 catabolic process Effects 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910052702 rhenium Inorganic materials 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- -1 Co Inorganic materials 0.000 description 1
- 229910001011 CMSX-4 Inorganic materials 0.000 description 1
- 101000797593 Homo sapiens Protein AMN1 homolog Proteins 0.000 description 1
- 102100032914 Protein AMN1 homolog Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
Definitions
- the invention relates to the field of materials technology. It relates to a nickel-base superalloy, in particular for the production of single-crystal components, such as blades for gas turbines.
- Such nickel-base superalloys are known. Single crystal components of these alloys have a very good material strength at high temperatures. As a result, z. B. the inlet temperature of gas turbines are increased, whereby the efficiency of the gas turbine increases.
- Nickel-based superalloys for single-crystal components contain mixed-crystal-hardening alloying elements, for example Re, W, Mo, Co, Cr, and ⁇ '-phase-forming elements, for example, Al, Ta, and Ti.
- the content of refractory alloying elements (W, Mo, Re) in the base matrix (austenitic ⁇ -phase) continuously increases with the increase of the stress temperature of the Alloy.
- refractory alloying elements (W, Mo, Re) in the base matrix continuously increases with the increase of the stress temperature of the Alloy.
- the alloys disclosed in the above references have high creep strength, good LCF (low duty cycle fatigue) and HCF (high cycle fatigue) properties, and high oxidation resistance.
- the alloys known from US 5,270,123 have comparable disadvantages.
- a positive or a negative lattice offset between the matrix forming ⁇ phase and the ⁇ 'phase, ie the secondary intermetallic phase Ni 3 Al, in the case of the Ta, Ti, Hf partial Al and Co, and Cr can partly replace Ni.
- This lattice distortion hinders dislocations when sliding or cutting the ⁇ '-grains.
- the lattice distortion causes an increase in the Kurrzeitfestmaschine, but with prolonged stress, a coarsening of the microstructure and then a degradation of the ⁇ 'structure and thus causes a long-term mechanical weakening of the alloy.
- This disadvantage is eliminated with the alloy known from EP 0 914 483 B1.
- This nickel base superalloy consists essentially of (measured in% by weight) 6.0-6.8% Cr, 8.0-10.0% Co, 0.5-0.7% Mo, 6.2-6.6% W, 2.7-3.2% Re, 5.4- 5.8% Al, 0.5-0.9% Ti, 7.2-7.8% Ta, 0.15-0.3% Hf, 0.02-0.04% C, 40-100 ppm B, 0-400 ppm Y, balance Ni with impurities, the ratio of ( Ta + 1.5 Hf + 0.5 Mo - 0.5 Ti) / (W + 1.2 Re) ⁇ 0.7.
- this nickel-base superalloy alloyed with rhenium has excellent castability and high phase stability combined with the best mechanical properties. It is also characterized by high fatigue strength and creep stability even with long-term exposure.
- the aim of the invention is to avoid the disadvantages mentioned.
- the invention is based on the object to develop a nickel-based superalloy, which on the one hand has a strong and strong ⁇ -phase as a matrix and which on the other hand only a small proportion, i. less than 50%, at ⁇ '-phase, and thus is very resistant to oxidation and has a good creep behavior.
- the advantages of the invention are that the alloy has a good degradation behavior.
- the ⁇ phase (matrix) is solidified by the addition of ruthenium, despite the absence of rhenium, which according to the known state of the art is considered to be a particularly good solid solution promoter and therefore greatly improves the properties of the ⁇ matrix.
- the alloy according to the invention is distinguished by good creep rupture strength, stable microstructures and good castability.
- the oxidation resistance of the alloy is very good. It is outstandingly suitable for the production of single-crystal components, for example blades for gas turbines.
- the degradation behavior of the alloy according to the invention is good. There is no single crystal crack growth and no large decrease in yield strength at room temperature in the degraded state compared to the non-degraded state.
- Nickel-based superalloys having the chemical composition given in Table 1 were investigated (in% by weight): Table 1: Chemical composition of the investigated alloys L1 (AMN1) L2 (AMN3) VL (PW 1483) Ni rest rest rest Cr 9.96 12:34 12.8 Co 8.86 8.84 9 Not a word 1:47 1.85 1.9 W 3:45 3.76 3.8 Ta 4 4.96 4 al 3:57 3:45 3.8 Ti 3.83 3.96 4 Hf 0.5 00:48 - C 0025 0033 - B 86 ppm 79 ppm - Si 10 ppm 10 ppm - Ru 1:07 00:28 -
- Alloys L1 and L2 are alloys whose composition falls within the claims of the present invention.
- alloy VL is a comparative alloy known in the art as PW 1483. It differs from the alloys according to the invention primarily in that it is not alloyed with ruthenium and no appreciable Si content is present.
- the alloys L2 and VL are almost identical. This is true up to the Cr content on the alloy L1. In the case of L1, the Cr content is about 3% by weight lower than in the case of the comparative alloy VL.
- the alloy L1 thus has over 10% higher hardness than the comparative alloy VL.
- the ⁇ -phase (matrix) of the alloys according to the invention is solidified mainly by the alloyed ruthenium.
- FIG. 1 shows the microstructure of the comparative alloy VL1
- FIG. 2 shows the microstructure of the alloy L1 according to the invention.
- the smaller proportion of ⁇ '-phase (dark particles) is clearly recognizable in the alloy L1.
- the ⁇ '-phase secondary precipitation-hardening intermetallic phase
- the ⁇ '-phase in L1 has a spherical shape, which is an indication of a very small lattice offset between the ⁇ and the ⁇ 'phase.
- This small lattice offset and, above all, the low volume fraction of ⁇ '-phase (less than 50%) have a positive effect in that there is no ⁇ / ⁇ '-inversion of the microstructure, i. the ⁇ '-phase is embedded in the ⁇ -phase and does not form a continuous network.
- a good degradation behavior of the inventive alloys is achieved.
- the ⁇ '-phase is embedded in the ⁇ -phase and does not form a continuous network.
- the alloy L1AD shows predominantly round to oval forms of the ⁇ '-phase, while in the alloy L2AD the ⁇ '-phase is very elongated.
- Fig. 5 the weight change as a function of time for the three alloys is shown. After being degraded, the alloys according to the invention have a significantly lower weight change than the comparative alloy known from the prior art, ie they have a significantly better oxidation resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft eine Nickel-Basis-Superlegierung, insbesondere zur Herstellung von Einkristall-Komponenten, wie beispielsweise Schaufeln für Gasturbinen.The invention relates to the field of materials technology. It relates to a nickel-base superalloy, in particular for the production of single-crystal components, such as blades for gas turbines.
Derartige Nickel-Basis-Superlegierungen sind bekannt. Einkristall-Komponenten aus diesen Legierungen weisen bei hohen Temperaturen eine sehr gute Materialfestigkeit auf. Dadurch kann z. B. die Einlasstemperatur von Gasturbinen erhöht werden, wodurch die Effizienz der Gasturbine steigt.Such nickel-base superalloys are known. Single crystal components of these alloys have a very good material strength at high temperatures. As a result, z. B. the inlet temperature of gas turbines are increased, whereby the efficiency of the gas turbine increases.
Nickel-Basis-Superlegierungen für Einkristall-Komponenten, wie sie aus US 4,643,782, EP 0 208 645 und US 5,270,123 bekannt sind, enthalten dazu mischkristallverfestigende Legierungselemente, beispielsweise Re, W, Mo, Co, Cr, sowie γ'-Phasen bildende Elemente, beispielsweise Al, Ta, und Ti. Der Gehalt an hochschmelzenden Legierungselementen (W, Mo, Re) in der Grundmatrix (austenitische γ-Phase) nimmt kontinuierlich zu mit der Zunahme der Beanspruchungstemperatur der Legierung. So enthalten z. B. übliche Nickel-Basis-Superlegierungen für Einkristalle 6-8 % W, bis zu 6 % Re und bis zu 2 % Mo (Angaben in Gew.- %). Die in den oben genannten Druckschriften offenbarten Legierungen weisen eine hohe Kriechfestigkeit, gute LCF (Ermüdung bei niedriger Lastspielzahl)- und HCF(Ermüdung bei hoher Lastspielzahl)-Eigenschaften sowie einen hohen Oxidationswiderstand auf.Nickel-based superalloys for single-crystal components, as known from US Pat. Nos. 4,643,782,
Diese bekannten Legierungen wurden für Flugzeugturbinen entwickelt und deshalb optimiert auf den Kurz- und Mittelzeiteinsatz, d.h. die Beanspruchungsdauer wird auf bis zu 20 000 Stunden ausgelegt. Im Gegensatz dazu müssen industrielle Gasturbinen-Komponenten auf eine Beanspruchungsdauer von bis zu 75 000 Stunden ausgelegt werden.These known alloys have been developed for aircraft turbines and therefore optimized for short and medium time use, i. the load duration is designed for up to 20,000 hours. In contrast, industrial gas turbine components have to be designed for a service life of up to 75,000 hours.
Nach einer Beanspruchungsdauer von 300 Stunden zeigt z. B. die Legierung CMSX-4 aus US 4,643,782 beim versuchsweisen Einsatz in einer Gasturbine bei einer Temperatur oberhalb von 1000 °C eine starke Vergröberung der γ'-Phase, die nachteilig mit einer Erhöhung der Kriechgeschwindigkeit der Legierung einhergeht.After a period of use of 300 hours z. For example, the alloy CMSX-4 of US 4,643,782 when experimentally used in a gas turbine at a temperature above 1000 ° C, a strong coarsening of the γ'-phase, which is associated with an increase in the creeping speed of the alloy adversely.
Auch die z.B. aus US 5,270,123 bekannten Legierungen weisen vergleichbare Nachteile auf. Durch die dort gewählten Zulegierungselemente wird in den oben genannten Legierungen ein positiver oder ein negativer Gitterversatz zwischen der die Matrix bildenden γ-Phase und der γ'-Phase, d.h. der sekundären intermetallischen Phase Ni3Al, bei der Ta, Ti, Hf teilweise Al und Co, und Cr teilweise Ni ersetzen können, hervorgerufen. Durch diese Gitterverzerrung werden Versetzungen beim Gleiten oder Schneiden der γ'-Körner behindert. Die Gitterverzerrung bewirkt zwar eine Erhöhung der Kurrzeitfestigkeit, aber bei längerer Beanspruchung wird eine Vergröberung des Gefüges und anschliessend eine Degradation der γ'-Struktur und damit eine langfristige mechanische Schwächung der Legierung bewirkt.Also, for example, the alloys known from US 5,270,123 have comparable disadvantages. By the alloying elements selected there, a positive or a negative lattice offset between the matrix forming γ phase and the γ 'phase, ie the secondary intermetallic phase Ni 3 Al, in the case of the Ta, Ti, Hf partial Al and Co, and Cr can partly replace Ni. This lattice distortion hinders dislocations when sliding or cutting the γ'-grains. Although the lattice distortion causes an increase in the Kurrzeitfestigkeit, but with prolonged stress, a coarsening of the microstructure and then a degradation of the γ 'structure and thus causes a long-term mechanical weakening of the alloy.
Dieser Nachteil wird mit der aus EP 0 914 483 B1 bekannten Legierung beseitigt. Diese Nickel-Basis-Superlegierung besteht im wesentlichen aus (gemessen in Gew.- %) 6.0-6.8 % Cr, 8.0-10.0 % Co, 0.5-0.7 % Mo, 6.2-6.6 % W, 2.7-3.2 % Re, 5.4-5.8 % Al, 0.5-0.9 % Ti, 7.2-7.8 % Ta, 0.15-0.3 % Hf, 0.02-0.04 % C, 40-100 ppm B, 0-400 ppm Y, Rest Ni mit Verunreinigungen, wobei das Verhältnis von (Ta + 1.5 Hf + 0.5 Mo - 0.5 Ti) / (W + 1.2 Re) ≥ 0.7 ist. Diese Legierungen weisen auf Grund des genannten Verhältnisses der Legierungselemente bei Betriebstemperatur keinen Gitterversatz zwischen der γ-Phase und der γ'-Phase auf, wodurch eine hohe Langzeitstabilität bei mässiger Belastung erreicht wird. Ausserdem besitzt diese mit Rhenium legierte Nickel-Basis-Superlegierung eine hervorragende Giessbarkeit und eine grosse Phasenstabilität kombiniert mit besten mechanischen Eigenschaften. Sie zeichnet sich zudem durch hohe Dauerfestigkeit und Kriechstabilität auch bei Langzeitbelastung aus.This disadvantage is eliminated with the alloy known from
Es wurde weiterhin festgestellt, dass es beim Vorliegen einer mechanischen Belastung und einer langzeitigen Hochtemperaturbeanspruchung zu einer gerichteten Vergröberung der y'-Teilchen, der sogenannten Flossbildung (rafting) kommt und, bei hohen γ'-Gehalten (d.h. bei einem γ'-Volumenanteil von mindestens 50%), zur Invertierung der Mikrostruktur, d.h. γ' wird zur durchgehenden Phase, in der die frühere γ-Matrix eingebettet ist. Da die intermetallische γ'-Phase zur Umgebungsversprödung (environmental embrittlement) neigt, führt dies unter bestimmten Belastungsbedingungen zu massivem Abfall der mechanischen Eigenschaften, vor allem der Streckgrenze, bei Raumtemperatur (Degradation der Eigenschaften). Die Umgebungsversprödung tritt insbesondere dann auf, wenn Feuchtigkeit und lange Haltezeiten unter Zugbelastung vorliegen.It has also been found that in the presence of mechanical stress and a long-term high temperature stress to a directional coarsening of the y'-particles, the so-called rafting (rafting) occurs, and, at high γ'-levels (ie at a γ'-volume fraction of at least 50%) for inversion of the microstructure, ie γ 'becomes the continuous phase in which the former γ-matrix is embedded. Since the intermetallic γ'-phase tends to environmental embrittlement, under certain loading conditions this leads to a massive decrease of the mechanical properties, especially the yield strength, at room temperature (degradation of the properties). The environmental embrittlement occurs especially when moisture and long hold times are under tensile load.
Ziel der Erfindung ist es, die genannten Nachteile zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, eine Nickel-Basis-Superlegierung zu entwickeln, welche einerseits eine feste und starke γ-Phase als Matrix aufweist und welche andererseits nur einen geringen Anteil, d.h. weniger als 50 %, an γ'-Phase aufweist, und dadurch sehr oxidationsbeständig ist und ein gutes Zeitstandverhalten aufweist.The aim of the invention is to avoid the disadvantages mentioned. The invention is based on the object to develop a nickel-based superalloy, which on the one hand has a strong and strong γ-phase as a matrix and which on the other hand only a small proportion, i. less than 50%, at γ'-phase, and thus is very resistant to oxidation and has a good creep behavior.
Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die erfindungsgemässe Nickel-Basis-Superlegierung durch folgende chemische Zusammensetzung (Angaben in Gew.- %) gekennzeichnet ist:
- 7-13 Cr
- 4-10 Co
- 0.5-2 Mo
- 2-8 W
- 4-6 Ta
- 3-6 Al
- 1-4 Ti
- 0.1-6 Ru
- 0.01-0.5 Hf
- 0.001-0.15 Si
- 0-700 ppm C
- 0-300 ppm B
- 7-13 Cr
- 4-10 co
- 0.5-2 mo
- 2-8 W
- 4-6 d
- 3-6 Al
- 1-4 Ti
- 0.1-6 Ru
- 0.01-0.5 Hf
- 0.001-0.15 Si
- 0-700 ppm C
- 0-300 ppm B
Rest Nickel und herstellungsbedingte Verunreinigungen.Remaining nickel and manufacturing-related impurities.
Die Vorteile der Erfindung bestehen darin, dass die Legierung ein gutes Degradationsverhalten aufweist. Die γ-Phase (Matrix) wird durch das Zulegieren von Ruthenium verfestigt, und dies trotz der Abwesenheit von Rhenium, das gemäss bekanntem Stand der Technik als besonders guter Mischkristallverfestiger gilt und daher die Eigenschaften der γ-Matrix stark verbessert. Die erfindungsgemässe Legierung zeichnet sich durch gute Zeitstandfestigkeit, stabile Gefüge und eine gute Giessbarkeit aus.The advantages of the invention are that the alloy has a good degradation behavior. The γ phase (matrix) is solidified by the addition of ruthenium, despite the absence of rhenium, which according to the known state of the art is considered to be a particularly good solid solution promoter and therefore greatly improves the properties of the γ matrix. The alloy according to the invention is distinguished by good creep rupture strength, stable microstructures and good castability.
Ausserdem ist der Oxidationswiderstand der Legierung sehr gut. Sie ist hervorragend geeignet zur Herstellung von Einkristall-Komponenten, beispielsweise Schaufeln für Gasturbinen.In addition, the oxidation resistance of the alloy is very good. It is outstandingly suitable for the production of single-crystal components, for example blades for gas turbines.
Auf Grund des geringen Anteils an sekundärer ausscheidungshärtender γ'-Phase, welche in der stark verfestigten γ-Phase eingelagert ist, ist das Degradationsverhalten der erfindungsgemässen Legierung gut. Es gibt kein Einkristall-Risswachstum und keinen starken Abfall der Streckgrenze bei Raumtemperatur im degradierten Zustand im Vergleich zum nicht degradierten Zustand.Due to the small proportion of secondary precipitation-hardening γ'-phase, which is incorporated in the strongly solidified γ-phase, the degradation behavior of the alloy according to the invention is good. There is no single crystal crack growth and no large decrease in yield strength at room temperature in the degraded state compared to the non-degraded state.
Bevorzugte Bereiche der erfindungsgemässen Nickel-Basis-Superlegierung sind (Angaben in Gew.-%):
- 10-13 Cr
- 8-9 Co
- 1.5-2 Mo
- 3-5 W
- 4-5 Ta
- 3-5 Al
- 2-4 Ti
- 0.3-4 Ru
- 0.01-0.5 Hf
- 0.001-0.15 Si
- 0-700 ppm C
- 0-300 ppm B
- 10-13 Cr
- 8-9 Co
- 1.5-2 Mo
- 3-5 W
- 4-5 d
- 3-5 al
- 2-4 ti
- 0.3-4 Ru
- 0.01-0.5 Hf
- 0.001-0.15 Si
- 0-700 ppm C
- 0-300 ppm B
Rest Nickel und herstellungsbedingte Verunreinigungen.Remaining nickel and manufacturing-related impurities.
Ein besonders bevorzugter Bereich der erfindungsgemässen Nickel-Basis-Superlegierung ist folgender:
- 10-13 Cr
- 8-9 Co
- 1.5-2 Mo
- 3.5-4 W
- 4-5 Ta
- 3.5-5 Al
- 3-4 Ti
- 0.3-1.5 Ru
- 0.5 Hf
- 10-500 ppm Si
- 250-350 ppm C
- 80-100 ppm B
- 10-13 Cr
- 8-9 Co
- 1.5-2 Mo
- 3.5-4 W
- 4-5 d
- 3.5-5 Al
- 3-4 Ti
- 0.3-1.5 Ru
- 0.5 Hf
- 10-500 ppm Si
- 250-350 ppm C
- 80-100 ppm B
Rest Nickel und herstellungsbedingte Verunreinigungen.Remaining nickel and manufacturing-related impurities.
Eine weitere erfindungsgemässe Nickel-Basis-Superlegierung weist folgende chemische Zusammensetzung (Angaben in Gew.-%) auf:
- 7-9 Cr
- 8-9 Co
- 1.5-2 Mo
- 3-5 W
- 5-6 Ta
- 3-5 Al
- 1-2 Ti
- 0.5-1.5 Ru
- 0.5 Hf
- 700 ppm C
- 100 ppm B
- 500 ppm Si
- 7-9 cr
- 8-9 Co
- 1.5-2 Mo
- 3-5 W
- 5-6 d
- 3-5 al
- 1-2 Ti
- 0.5-1.5 Ru
- 0.5 Hf
- 700 ppm C
- 100 ppm B
- 500 ppm Si
Rest Nicckel und herstellungsbedingte Verunreinigungen.Rest Nicckel and manufacturing impurities.
In den Zeichnungen sind zwei Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
- Fig. 1
- ein Gefügebild der Vergleichslegierung VL;
- Fig. 2
- ein Gefügebild der erfindungsgemässen Legierung L1;
- Fig. 3
- ein Gefügebild der erfindungsgemässen Legierung L1 nach Degradierung;
- Fig.4
- ein Gefügebild der erfindungsgemässen Legierung L2 nach Degradierung;
- Fig. 5
- ein Diagramm, welches die Gewichtsänderung der Legierungen VL, L1 und L2 in Abhängigkeit von der Zeit angibt;
- Fig. 6
- ein Diagramm, welches die 0,2%-Streckgrenze der Legierungen VL, L1 und L2 in Abhängigkeit vom Degradations-Parameter angibt und
- Fig. 7
- ein Diagramm, welches die Spannung (1%-Dehngrenze) der Legierungen VL, L1 und L2 in Abhängigkeit vom Larson Miller-Parameter angibt.
- Fig. 1
- a micrograph of the comparative alloy VL;
- Fig. 2
- a micrograph of the inventive alloy L1;
- Fig. 3
- a micrograph of the inventive alloy L1 after degradation;
- Figure 4
- a micrograph of the inventive alloy L2 after degradation;
- Fig. 5
- a diagram indicating the weight change of the alloys VL, L1 and L2 as a function of time;
- Fig. 6
- a diagram indicating the 0.2% yield strength of the alloys VL, L1 and L2 depending on the degradation parameter, and
- Fig. 7
- a diagram which indicates the stress (1% proof stress) of the alloys VL, L1 and L2 in dependence on the Larson Miller parameter.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 7 näher erläutert.The invention will be explained in more detail with reference to embodiments and FIGS. 1 to 7.
Es wurden Nickel-Basis-Superlegierungen mit der in Tabelle 1 angegebenen chemischen Zusammensetzung untersucht (Angaben in Gew.-%):
Die Legierungen L1 und L2 sind Legierungen, deren Zusammensetzung unter die Patentansprüche der vorliegenden Erfindung fällt. Im Gegensatz dazu ist die Legierung VL eine Vergleichslegierung, die unter der Bezeichnung PW 1483 bekannter Stand der Technik ist. Sie unterscheidet sich von den erfindungsgemässen Legierungen vor allem darin, dass sie nicht mit Ruthenium legiert ist und kein erwähnenswerter Si-Anteil vorhanden ist. In der Zusammensetzung bezüglich der Elemente Cr, Co, Mo, Ta, Al, Ti und Ni sind die Legierungen L2 und VL nahezu identisch. Das trifft bis auf den Cr-Gehalt auch auf die Legierung L1 zu. Bei L1 ist der Cr-Gehalt um ca. 3 Gew.-% geringer als bei der Vergleichslegierung VL.Alloys L1 and L2 are alloys whose composition falls within the claims of the present invention. In contrast, alloy VL is a comparative alloy known in the art as PW 1483. It differs from the alloys according to the invention primarily in that it is not alloyed with ruthenium and no appreciable Si content is present. In the composition of the elements Cr, Co, Mo, Ta, Al, Ti and Ni, the alloys L2 and VL are almost identical. This is true up to the Cr content on the alloy L1. In the case of L1, the Cr content is about 3% by weight lower than in the case of the comparative alloy VL.
Alle drei Legierungen wurden folgender Wärmebehandlung unterzogen: 1 h/1204 °C + 1 h/1265 °C + 4 h 1080 °C.All three alloys were subjected to the following heat treatment: 1 h / 1204 ° C + 1 h / 1265 ° C + 4 h 1080 ° C.
Es wurde die Vickers-Härte HV2 gemessen. Dabei wurden die in der Tabelle 2 aufgeführten Resultate erzielt.
Die Legierung L1 weist somit eine um über 10 % höhere Härte auf als die Vergleichslegierung VL. Die γ-Phase (Matrix) der erfindungsgemässen Legierungen wird vor allem durch das zulegierte Ruthenium verfestigt.The alloy L1 thus has over 10% higher hardness than the comparative alloy VL. The γ-phase (matrix) of the alloys according to the invention is solidified mainly by the alloyed ruthenium.
Die Figur 1 zeigt das Gefüge der Vergleichslegierung VL1, während Fig. 2 das Gefüge der erfindungsgemässen Legierung L1 zeigt.FIG. 1 shows the microstructure of the comparative alloy VL1, while FIG. 2 shows the microstructure of the alloy L1 according to the invention.
Im Vergleich zur Legierung VL ist bei der Legierung L1 deutlich der geringere Anteil an γ'-Phase (dunkle Teilchen) zu erkennen. Die γ'-Phase (sekundäre, durch Ausscheidungshärtung gebildete intermetallische Phase) hat in der Legierung VL eine etwa viereckige Form und ist streifenförmig in der Matrix angeordnet. Demgegenüber hat die γ'-Phase in L1 eine kugelige Form, was ein Hinweis auf einen sehr geringen Gitterversatz zwischen der γ- und der γ'-Phase darstellt. Dieser geringe Gitterversatz und vor allem der geringe Volumenanteil an γ'-Phase (weniger als 50 %) wirken sich dahingehend positiv aus, dass es zu keiner γ/γ'-Inversion der Mikrostruktur kommt, d.h. die γ'-Phase ist in der γ-Phase eingebettet und bildet kein durchgehendes Netz. Somit wird ein gutes Degradationsverhalten der erfindungsgemässen Legierungen erzielt.In comparison with the alloy VL, the smaller proportion of γ'-phase (dark particles) is clearly recognizable in the alloy L1. The γ'-phase (secondary precipitation-hardening intermetallic phase) has an approximately quadrangular shape in the alloy VL and is arranged in a striped manner in the matrix. In contrast, the γ'-phase in L1 has a spherical shape, which is an indication of a very small lattice offset between the γ and the γ 'phase. This small lattice offset and, above all, the low volume fraction of γ'-phase (less than 50%) have a positive effect in that there is no γ / γ'-inversion of the microstructure, i. the γ'-phase is embedded in the γ-phase and does not form a continuous network. Thus, a good degradation behavior of the inventive alloys is achieved.
Die Figuren 3 und 4 zeigen Gefügebilder der erfindungsgemässen Legierungen L1AD (Fig. 3) und L2AD (Fig. 4) im degradierten Zustand (T = 1000 °C, σ = 80 MPa, t = 747 h). Die γ'-Phase ist in der γ-Phase eingebettet und bildet kein durchgehendes Netz. Die Legierung L1AD zeigt dabei überwiegend runde bis ovale Formen der γ'-Phase, während bei der Legierung L2AD die γ'-Phase sehr gestreckt ausgebildet ist.FIGS. 3 and 4 show micrographs of the novel alloys L1AD (FIG. 3) and L2AD (FIG. 4) in the degraded state (T = 1000 ° C., σ = 80 MPa, t = 747 h). The γ'-phase is embedded in the γ-phase and does not form a continuous network. The alloy L1AD shows predominantly round to oval forms of the γ'-phase, while in the alloy L2AD the γ'-phase is very elongated.
Dies hat Auswirkungen auf die Eigenschaften. In Fig. 5 ist die Gewichtsänderung in Abhängigkeit von der Zeit für die drei Legierungen dargestellt. Die erfindungsgemässen Legierungen weisen nach Degradierung eine deutlich geringere Gewichtsänderung auf als die aus dem Stand der Technik bekannte Vergleichslegierung, d.h. sie haben eine wesentlich bessere Oxidationsbeständigkeit.This has effects on the properties. In Fig. 5 the weight change as a function of time for the three alloys is shown. After being degraded, the alloys according to the invention have a significantly lower weight change than the comparative alloy known from the prior art, ie they have a significantly better oxidation resistance.
Fig. 6 zeigt die Abhängigkeit der 0,2% Streckgrenze bei Raumtemperatur vom Degradations-Parameter P mit
Während sich die Vergleichslegierung VL und die Legierung L2AD fast gleich verhalten, liegt für L1AD die Spannung um ca. 200 MPa unterhalb der Werte für VL und L2AD.While the comparative alloy VL and the alloy L2AD behave almost the same, for L1AD the voltage is about 200 MPa below the values for VL and L2AD.
Trägt man die 0,1 Dehngrenze über dem Larson Miller Parameter LM, mit
Selbstverständlich ist die Erfindung nicht auf die beschriebenen Ausführungsbeispiele beschränkt.Of course, the invention is not limited to the described embodiments.
Claims (4)
- Nickel-base superalloy for producing single-crystal components, characterized by the following chemical composition (details in % by weight):7-13 Cr4-10 Co0.5-2 Mo2-8 W4-6 Ta3-6 Al1-4 Ti0.1-6 Ru0.01-0.5 Hf0.001-0.15 Si0-700 ppm C0-300 ppm B
remainder nickel and production-related impurities. - Nickel-base superalloy according to Claim 1, characterized by the following chemical composition (details in % by weight):10-13 Cr8-9 Co1.5-2 Mo3-5 W4-5 Ta3-5 Al2-4 Ti0.3-4 Ru0.01-0.5 Hf0.001-0.15 Si0.700 ppm C0-300 ppm B
remainder nickel and production-related impurities. - Nickel-base superalloy according to Claim 2, characterized by the following chemical composition (details in % by weight):10-13 Cr8-9 Co1.5-2 Mo3.5-4 W4-5 Ta3.5-5 Al3-4 Ti0.3-1.5 Ru0.5 Hf10-500 ppm Si250-350 ppm C80-100 ppm B
remainder nickel and production-related impurities. - Nickel-base superalloy according to Claim 1, characterized by the following chemical composition (details in % by weight):7-9 Cr8-9 Co1.5-2 Mo3-5 W5-6 Ta3-5 Al1-2 Ti0.5-1.5 Ru0.5 Hf500 ppm Si700 ppm C100 ppm B
remainder nickel and production-related impurities.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US291392P | 2002-11-12 | ||
US10/291,392 US6706241B1 (en) | 2002-11-12 | 2002-11-12 | Nickel-base superalloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1420075A1 EP1420075A1 (en) | 2004-05-19 |
EP1420075B1 true EP1420075B1 (en) | 2006-02-22 |
Family
ID=31946562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03104108A Expired - Lifetime EP1420075B1 (en) | 2002-11-12 | 2003-11-06 | Nickel-base superalloy |
Country Status (4)
Country | Link |
---|---|
US (1) | US6706241B1 (en) |
EP (1) | EP1420075B1 (en) |
JP (1) | JP4523264B2 (en) |
DE (1) | DE50302468D1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006053826A2 (en) * | 2004-11-18 | 2006-05-26 | Alstom Technology Ltd | Nickel-based superalloy |
US20060182649A1 (en) * | 2005-02-16 | 2006-08-17 | Siemens Westinghouse Power Corp. | High strength oxidation resistant superalloy with enhanced coating compatibility |
US20100008790A1 (en) | 2005-03-30 | 2010-01-14 | United Technologies Corporation | Superalloy compositions, articles, and methods of manufacture |
US8920937B2 (en) * | 2007-08-05 | 2014-12-30 | United Technologies Corporation | Zirconium modified protective coating |
US8876989B2 (en) | 2007-08-31 | 2014-11-04 | General Electric Company | Low rhenium nickel base superalloy compositions and superalloy articles |
US20130230405A1 (en) * | 2007-08-31 | 2013-09-05 | Kevin Swayne O'Hara | Nickel base superalloy compositions being substantially free of rhenium and superalloy articles |
EP2145968A1 (en) * | 2008-07-14 | 2010-01-20 | Siemens Aktiengesellschaft | Nickel base gamma prime strengthened superalloy |
US8216509B2 (en) * | 2009-02-05 | 2012-07-10 | Honeywell International Inc. | Nickel-base superalloys |
US20110076180A1 (en) * | 2009-09-30 | 2011-03-31 | General Electric Company | Nickel-Based Superalloys and Articles |
US8708659B2 (en) * | 2010-09-24 | 2014-04-29 | United Technologies Corporation | Turbine engine component having protective coating |
US9752215B2 (en) | 2012-02-14 | 2017-09-05 | United Technologies Corporation | Superalloy compositions, articles, and methods of manufacture |
US9783873B2 (en) | 2012-02-14 | 2017-10-10 | United Technologies Corporation | Superalloy compositions, articles, and methods of manufacture |
US20160214350A1 (en) | 2012-08-20 | 2016-07-28 | Pratt & Whitney Canada Corp. | Oxidation-Resistant Coated Superalloy |
GB2587635B (en) * | 2019-10-02 | 2022-11-02 | Alloyed Ltd | A Nickel-based alloy |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1520630A (en) * | 1974-07-08 | 1978-08-09 | Johnson Matthey Co Ltd | Platinum group metal-containing alloys |
US4643782A (en) | 1984-03-19 | 1987-02-17 | Cannon Muskegon Corporation | Single crystal alloy technology |
US4719080A (en) | 1985-06-10 | 1988-01-12 | United Technologies Corporation | Advanced high strength single crystal superalloy compositions |
CA1315572C (en) * | 1986-05-13 | 1993-04-06 | Xuan Nguyen-Dinh | Phase stable single crystal materials |
US5270123A (en) | 1992-03-05 | 1993-12-14 | General Electric Company | Nickel-base superalloy and article with high temperature strength and improved stability |
DE19624055A1 (en) | 1996-06-17 | 1997-12-18 | Abb Research Ltd | Nickel-based super alloy |
JPH10330872A (en) * | 1997-05-29 | 1998-12-15 | Toshiba Corp | Ni-base superalloy, and ni-base superalloy parts |
EP1204776B1 (en) * | 1999-07-29 | 2004-06-02 | Siemens Aktiengesellschaft | High-temperature part and method for producing the same |
US6468367B1 (en) * | 1999-12-27 | 2002-10-22 | General Electric Company | Superalloy weld composition and repaired turbine engine component |
-
2002
- 2002-11-12 US US10/291,392 patent/US6706241B1/en not_active Expired - Lifetime
-
2003
- 2003-11-06 DE DE50302468T patent/DE50302468D1/en not_active Expired - Lifetime
- 2003-11-06 EP EP03104108A patent/EP1420075B1/en not_active Expired - Lifetime
- 2003-11-12 JP JP2003383045A patent/JP4523264B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP4523264B2 (en) | 2010-08-11 |
US6706241B1 (en) | 2004-03-16 |
JP2004285472A (en) | 2004-10-14 |
EP1420075A1 (en) | 2004-05-19 |
DE50302468D1 (en) | 2006-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3023576C2 (en) | ||
DE60309266T2 (en) | Welding material, gas turbine blade or gas turbine injector and method of repairing gas turbine blades and gas turbine injectors | |
DE2415074C2 (en) | Use of a nickel-based superalloy to manufacture gas turbine parts | |
DE60015728T2 (en) | HEAT-RESISTANT ALLOY WIRE | |
EP2163656B1 (en) | High-temperature-resistant cobalt-base superalloy | |
DE602005002866T2 (en) | Process for producing a low thermal expansion Ni-base superalloy | |
EP0914484B1 (en) | Nickel-base superalloy | |
DE69902138T2 (en) | An alloy for repairing turbine blades, a process and the workpiece repaired in this way | |
EP1420075B1 (en) | Nickel-base superalloy | |
DE69208538T2 (en) | Heat-resistant alloy based on nickel | |
DE69903224T2 (en) | Monocrystalline nickel-based superalloy with a high gamma prime phase | |
EP3175008B1 (en) | Cobalt based alloy | |
DE60302108T2 (en) | Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method | |
EP1815035A2 (en) | Nickel-based superalloy | |
EP1359231B1 (en) | Nickel-based superalloy | |
DE60020424T2 (en) | Nickel-base superalloy | |
EP2402473A2 (en) | Process for producing a single-crystal component made of a nickel-based superalloy | |
EP1900839B1 (en) | Method for the heat treatment of nickel-based superalloys | |
DE2741271A1 (en) | NICKEL-BASED SUPER ALLOY AND CAST BODY FROM THEM | |
DE3331806C2 (en) | ||
EP1061150B1 (en) | Coating containing NiAl beta Phases | |
EP2196550B1 (en) | High temperature and oxidation resistant material on the basis of NiAl | |
DE2632237A1 (en) | USING A NICKEL-CHROME-COBALT ALLOY | |
DE3248134C2 (en) | ||
DE2458540A1 (en) | CAST ITEM FROM A NICKEL BASE SUPER ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20041106 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50302468 Country of ref document: DE Date of ref document: 20060427 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060411 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
26 | Opposition filed |
Opponent name: SIEMENS, AKTIENGESELLSCHAFT Effective date: 20061018 |
|
R26 | Opposition filed (corrected) |
Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG Effective date: 20061018 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APAW | Appeal reference deleted |
Free format text: ORIGINAL CODE: EPIDOSDREFNO |
|
APAY | Date of receipt of notice of appeal deleted |
Free format text: ORIGINAL CODE: EPIDOSDNOA2O |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20110907 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 50302468 Country of ref document: DE Effective date: 20110907 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20151118 Year of fee payment: 13 Ref country code: DE Payment date: 20151119 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20151119 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50302468 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50302468 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALSTOM TECHNOLOGY LTD, CH Effective date: 20161110 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50302468 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161106 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161106 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170601 |