EP1420075B1 - Nickel-base superalloy - Google Patents

Nickel-base superalloy Download PDF

Info

Publication number
EP1420075B1
EP1420075B1 EP03104108A EP03104108A EP1420075B1 EP 1420075 B1 EP1420075 B1 EP 1420075B1 EP 03104108 A EP03104108 A EP 03104108A EP 03104108 A EP03104108 A EP 03104108A EP 1420075 B1 EP1420075 B1 EP 1420075B1
Authority
EP
European Patent Office
Prior art keywords
ppm
nickel
alloy
phase
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03104108A
Other languages
German (de)
French (fr)
Other versions
EP1420075A1 (en
Inventor
Robert Baumann
David Duhl
Andreas KÜNZLER
Mohamed Yousef Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31946562&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1420075(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1420075A1 publication Critical patent/EP1420075A1/en
Application granted granted Critical
Publication of EP1420075B1 publication Critical patent/EP1420075B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • the invention relates to the field of materials technology. It relates to a nickel-base superalloy, in particular for the production of single-crystal components, such as blades for gas turbines.
  • Such nickel-base superalloys are known. Single crystal components of these alloys have a very good material strength at high temperatures. As a result, z. B. the inlet temperature of gas turbines are increased, whereby the efficiency of the gas turbine increases.
  • Nickel-based superalloys for single-crystal components contain mixed-crystal-hardening alloying elements, for example Re, W, Mo, Co, Cr, and ⁇ '-phase-forming elements, for example, Al, Ta, and Ti.
  • the content of refractory alloying elements (W, Mo, Re) in the base matrix (austenitic ⁇ -phase) continuously increases with the increase of the stress temperature of the Alloy.
  • refractory alloying elements (W, Mo, Re) in the base matrix continuously increases with the increase of the stress temperature of the Alloy.
  • the alloys disclosed in the above references have high creep strength, good LCF (low duty cycle fatigue) and HCF (high cycle fatigue) properties, and high oxidation resistance.
  • the alloys known from US 5,270,123 have comparable disadvantages.
  • a positive or a negative lattice offset between the matrix forming ⁇ phase and the ⁇ 'phase, ie the secondary intermetallic phase Ni 3 Al, in the case of the Ta, Ti, Hf partial Al and Co, and Cr can partly replace Ni.
  • This lattice distortion hinders dislocations when sliding or cutting the ⁇ '-grains.
  • the lattice distortion causes an increase in the Kurrzeitfestmaschine, but with prolonged stress, a coarsening of the microstructure and then a degradation of the ⁇ 'structure and thus causes a long-term mechanical weakening of the alloy.
  • This disadvantage is eliminated with the alloy known from EP 0 914 483 B1.
  • This nickel base superalloy consists essentially of (measured in% by weight) 6.0-6.8% Cr, 8.0-10.0% Co, 0.5-0.7% Mo, 6.2-6.6% W, 2.7-3.2% Re, 5.4- 5.8% Al, 0.5-0.9% Ti, 7.2-7.8% Ta, 0.15-0.3% Hf, 0.02-0.04% C, 40-100 ppm B, 0-400 ppm Y, balance Ni with impurities, the ratio of ( Ta + 1.5 Hf + 0.5 Mo - 0.5 Ti) / (W + 1.2 Re) ⁇ 0.7.
  • this nickel-base superalloy alloyed with rhenium has excellent castability and high phase stability combined with the best mechanical properties. It is also characterized by high fatigue strength and creep stability even with long-term exposure.
  • the aim of the invention is to avoid the disadvantages mentioned.
  • the invention is based on the object to develop a nickel-based superalloy, which on the one hand has a strong and strong ⁇ -phase as a matrix and which on the other hand only a small proportion, i. less than 50%, at ⁇ '-phase, and thus is very resistant to oxidation and has a good creep behavior.
  • the advantages of the invention are that the alloy has a good degradation behavior.
  • the ⁇ phase (matrix) is solidified by the addition of ruthenium, despite the absence of rhenium, which according to the known state of the art is considered to be a particularly good solid solution promoter and therefore greatly improves the properties of the ⁇ matrix.
  • the alloy according to the invention is distinguished by good creep rupture strength, stable microstructures and good castability.
  • the oxidation resistance of the alloy is very good. It is outstandingly suitable for the production of single-crystal components, for example blades for gas turbines.
  • the degradation behavior of the alloy according to the invention is good. There is no single crystal crack growth and no large decrease in yield strength at room temperature in the degraded state compared to the non-degraded state.
  • Nickel-based superalloys having the chemical composition given in Table 1 were investigated (in% by weight): Table 1: Chemical composition of the investigated alloys L1 (AMN1) L2 (AMN3) VL (PW 1483) Ni rest rest rest Cr 9.96 12:34 12.8 Co 8.86 8.84 9 Not a word 1:47 1.85 1.9 W 3:45 3.76 3.8 Ta 4 4.96 4 al 3:57 3:45 3.8 Ti 3.83 3.96 4 Hf 0.5 00:48 - C 0025 0033 - B 86 ppm 79 ppm - Si 10 ppm 10 ppm - Ru 1:07 00:28 -
  • Alloys L1 and L2 are alloys whose composition falls within the claims of the present invention.
  • alloy VL is a comparative alloy known in the art as PW 1483. It differs from the alloys according to the invention primarily in that it is not alloyed with ruthenium and no appreciable Si content is present.
  • the alloys L2 and VL are almost identical. This is true up to the Cr content on the alloy L1. In the case of L1, the Cr content is about 3% by weight lower than in the case of the comparative alloy VL.
  • the alloy L1 thus has over 10% higher hardness than the comparative alloy VL.
  • the ⁇ -phase (matrix) of the alloys according to the invention is solidified mainly by the alloyed ruthenium.
  • FIG. 1 shows the microstructure of the comparative alloy VL1
  • FIG. 2 shows the microstructure of the alloy L1 according to the invention.
  • the smaller proportion of ⁇ '-phase (dark particles) is clearly recognizable in the alloy L1.
  • the ⁇ '-phase secondary precipitation-hardening intermetallic phase
  • the ⁇ '-phase in L1 has a spherical shape, which is an indication of a very small lattice offset between the ⁇ and the ⁇ 'phase.
  • This small lattice offset and, above all, the low volume fraction of ⁇ '-phase (less than 50%) have a positive effect in that there is no ⁇ / ⁇ '-inversion of the microstructure, i. the ⁇ '-phase is embedded in the ⁇ -phase and does not form a continuous network.
  • a good degradation behavior of the inventive alloys is achieved.
  • the ⁇ '-phase is embedded in the ⁇ -phase and does not form a continuous network.
  • the alloy L1AD shows predominantly round to oval forms of the ⁇ '-phase, while in the alloy L2AD the ⁇ '-phase is very elongated.
  • Fig. 5 the weight change as a function of time for the three alloys is shown. After being degraded, the alloys according to the invention have a significantly lower weight change than the comparative alloy known from the prior art, ie they have a significantly better oxidation resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft eine Nickel-Basis-Superlegierung, insbesondere zur Herstellung von Einkristall-Komponenten, wie beispielsweise Schaufeln für Gasturbinen.The invention relates to the field of materials technology. It relates to a nickel-base superalloy, in particular for the production of single-crystal components, such as blades for gas turbines.

Stand der TechnikState of the art

Derartige Nickel-Basis-Superlegierungen sind bekannt. Einkristall-Komponenten aus diesen Legierungen weisen bei hohen Temperaturen eine sehr gute Materialfestigkeit auf. Dadurch kann z. B. die Einlasstemperatur von Gasturbinen erhöht werden, wodurch die Effizienz der Gasturbine steigt.Such nickel-base superalloys are known. Single crystal components of these alloys have a very good material strength at high temperatures. As a result, z. B. the inlet temperature of gas turbines are increased, whereby the efficiency of the gas turbine increases.

Nickel-Basis-Superlegierungen für Einkristall-Komponenten, wie sie aus US 4,643,782, EP 0 208 645 und US 5,270,123 bekannt sind, enthalten dazu mischkristallverfestigende Legierungselemente, beispielsweise Re, W, Mo, Co, Cr, sowie γ'-Phasen bildende Elemente, beispielsweise Al, Ta, und Ti. Der Gehalt an hochschmelzenden Legierungselementen (W, Mo, Re) in der Grundmatrix (austenitische γ-Phase) nimmt kontinuierlich zu mit der Zunahme der Beanspruchungstemperatur der Legierung. So enthalten z. B. übliche Nickel-Basis-Superlegierungen für Einkristalle 6-8 % W, bis zu 6 % Re und bis zu 2 % Mo (Angaben in Gew.- %). Die in den oben genannten Druckschriften offenbarten Legierungen weisen eine hohe Kriechfestigkeit, gute LCF (Ermüdung bei niedriger Lastspielzahl)- und HCF(Ermüdung bei hoher Lastspielzahl)-Eigenschaften sowie einen hohen Oxidationswiderstand auf.Nickel-based superalloys for single-crystal components, as known from US Pat. Nos. 4,643,782, EP 0 208 645 and US Pat. No. 5,270,123, contain mixed-crystal-hardening alloying elements, for example Re, W, Mo, Co, Cr, and γ'-phase-forming elements, for example, Al, Ta, and Ti. The content of refractory alloying elements (W, Mo, Re) in the base matrix (austenitic γ-phase) continuously increases with the increase of the stress temperature of the Alloy. To contain z. B. common nickel-based superalloys for single crystals 6-8% W, up to 6% Re and up to 2% Mo (in% by weight). The alloys disclosed in the above references have high creep strength, good LCF (low duty cycle fatigue) and HCF (high cycle fatigue) properties, and high oxidation resistance.

Diese bekannten Legierungen wurden für Flugzeugturbinen entwickelt und deshalb optimiert auf den Kurz- und Mittelzeiteinsatz, d.h. die Beanspruchungsdauer wird auf bis zu 20 000 Stunden ausgelegt. Im Gegensatz dazu müssen industrielle Gasturbinen-Komponenten auf eine Beanspruchungsdauer von bis zu 75 000 Stunden ausgelegt werden.These known alloys have been developed for aircraft turbines and therefore optimized for short and medium time use, i. the load duration is designed for up to 20,000 hours. In contrast, industrial gas turbine components have to be designed for a service life of up to 75,000 hours.

Nach einer Beanspruchungsdauer von 300 Stunden zeigt z. B. die Legierung CMSX-4 aus US 4,643,782 beim versuchsweisen Einsatz in einer Gasturbine bei einer Temperatur oberhalb von 1000 °C eine starke Vergröberung der γ'-Phase, die nachteilig mit einer Erhöhung der Kriechgeschwindigkeit der Legierung einhergeht.After a period of use of 300 hours z. For example, the alloy CMSX-4 of US 4,643,782 when experimentally used in a gas turbine at a temperature above 1000 ° C, a strong coarsening of the γ'-phase, which is associated with an increase in the creeping speed of the alloy adversely.

Auch die z.B. aus US 5,270,123 bekannten Legierungen weisen vergleichbare Nachteile auf. Durch die dort gewählten Zulegierungselemente wird in den oben genannten Legierungen ein positiver oder ein negativer Gitterversatz zwischen der die Matrix bildenden γ-Phase und der γ'-Phase, d.h. der sekundären intermetallischen Phase Ni3Al, bei der Ta, Ti, Hf teilweise Al und Co, und Cr teilweise Ni ersetzen können, hervorgerufen. Durch diese Gitterverzerrung werden Versetzungen beim Gleiten oder Schneiden der γ'-Körner behindert. Die Gitterverzerrung bewirkt zwar eine Erhöhung der Kurrzeitfestigkeit, aber bei längerer Beanspruchung wird eine Vergröberung des Gefüges und anschliessend eine Degradation der γ'-Struktur und damit eine langfristige mechanische Schwächung der Legierung bewirkt.Also, for example, the alloys known from US 5,270,123 have comparable disadvantages. By the alloying elements selected there, a positive or a negative lattice offset between the matrix forming γ phase and the γ 'phase, ie the secondary intermetallic phase Ni 3 Al, in the case of the Ta, Ti, Hf partial Al and Co, and Cr can partly replace Ni. This lattice distortion hinders dislocations when sliding or cutting the γ'-grains. Although the lattice distortion causes an increase in the Kurrzeitfestigkeit, but with prolonged stress, a coarsening of the microstructure and then a degradation of the γ 'structure and thus causes a long-term mechanical weakening of the alloy.

Dieser Nachteil wird mit der aus EP 0 914 483 B1 bekannten Legierung beseitigt. Diese Nickel-Basis-Superlegierung besteht im wesentlichen aus (gemessen in Gew.- %) 6.0-6.8 % Cr, 8.0-10.0 % Co, 0.5-0.7 % Mo, 6.2-6.6 % W, 2.7-3.2 % Re, 5.4-5.8 % Al, 0.5-0.9 % Ti, 7.2-7.8 % Ta, 0.15-0.3 % Hf, 0.02-0.04 % C, 40-100 ppm B, 0-400 ppm Y, Rest Ni mit Verunreinigungen, wobei das Verhältnis von (Ta + 1.5 Hf + 0.5 Mo - 0.5 Ti) / (W + 1.2 Re) ≥ 0.7 ist. Diese Legierungen weisen auf Grund des genannten Verhältnisses der Legierungselemente bei Betriebstemperatur keinen Gitterversatz zwischen der γ-Phase und der γ'-Phase auf, wodurch eine hohe Langzeitstabilität bei mässiger Belastung erreicht wird. Ausserdem besitzt diese mit Rhenium legierte Nickel-Basis-Superlegierung eine hervorragende Giessbarkeit und eine grosse Phasenstabilität kombiniert mit besten mechanischen Eigenschaften. Sie zeichnet sich zudem durch hohe Dauerfestigkeit und Kriechstabilität auch bei Langzeitbelastung aus.This disadvantage is eliminated with the alloy known from EP 0 914 483 B1. This nickel base superalloy consists essentially of (measured in% by weight) 6.0-6.8% Cr, 8.0-10.0% Co, 0.5-0.7% Mo, 6.2-6.6% W, 2.7-3.2% Re, 5.4- 5.8% Al, 0.5-0.9% Ti, 7.2-7.8% Ta, 0.15-0.3% Hf, 0.02-0.04% C, 40-100 ppm B, 0-400 ppm Y, balance Ni with impurities, the ratio of ( Ta + 1.5 Hf + 0.5 Mo - 0.5 Ti) / (W + 1.2 Re) ≥ 0.7. These alloys have no lattice offset between the γ-phase and the γ'-phase due to the said ratio of the alloying elements at the operating temperature, whereby a high long-term stability under moderate load is achieved. In addition, this nickel-base superalloy alloyed with rhenium has excellent castability and high phase stability combined with the best mechanical properties. It is also characterized by high fatigue strength and creep stability even with long-term exposure.

Es wurde weiterhin festgestellt, dass es beim Vorliegen einer mechanischen Belastung und einer langzeitigen Hochtemperaturbeanspruchung zu einer gerichteten Vergröberung der y'-Teilchen, der sogenannten Flossbildung (rafting) kommt und, bei hohen γ'-Gehalten (d.h. bei einem γ'-Volumenanteil von mindestens 50%), zur Invertierung der Mikrostruktur, d.h. γ' wird zur durchgehenden Phase, in der die frühere γ-Matrix eingebettet ist. Da die intermetallische γ'-Phase zur Umgebungsversprödung (environmental embrittlement) neigt, führt dies unter bestimmten Belastungsbedingungen zu massivem Abfall der mechanischen Eigenschaften, vor allem der Streckgrenze, bei Raumtemperatur (Degradation der Eigenschaften). Die Umgebungsversprödung tritt insbesondere dann auf, wenn Feuchtigkeit und lange Haltezeiten unter Zugbelastung vorliegen.It has also been found that in the presence of mechanical stress and a long-term high temperature stress to a directional coarsening of the y'-particles, the so-called rafting (rafting) occurs, and, at high γ'-levels (ie at a γ'-volume fraction of at least 50%) for inversion of the microstructure, ie γ 'becomes the continuous phase in which the former γ-matrix is embedded. Since the intermetallic γ'-phase tends to environmental embrittlement, under certain loading conditions this leads to a massive decrease of the mechanical properties, especially the yield strength, at room temperature (degradation of the properties). The environmental embrittlement occurs especially when moisture and long hold times are under tensile load.

Darstellung der ErfindungPresentation of the invention

Ziel der Erfindung ist es, die genannten Nachteile zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, eine Nickel-Basis-Superlegierung zu entwickeln, welche einerseits eine feste und starke γ-Phase als Matrix aufweist und welche andererseits nur einen geringen Anteil, d.h. weniger als 50 %, an γ'-Phase aufweist, und dadurch sehr oxidationsbeständig ist und ein gutes Zeitstandverhalten aufweist.The aim of the invention is to avoid the disadvantages mentioned. The invention is based on the object to develop a nickel-based superalloy, which on the one hand has a strong and strong γ-phase as a matrix and which on the other hand only a small proportion, i. less than 50%, at γ'-phase, and thus is very resistant to oxidation and has a good creep behavior.

Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die erfindungsgemässe Nickel-Basis-Superlegierung durch folgende chemische Zusammensetzung (Angaben in Gew.- %) gekennzeichnet ist:

  • 7-13 Cr
  • 4-10 Co
  • 0.5-2 Mo
  • 2-8 W
  • 4-6 Ta
  • 3-6 Al
  • 1-4 Ti
  • 0.1-6 Ru
  • 0.01-0.5 Hf
  • 0.001-0.15 Si
  • 0-700 ppm C
  • 0-300 ppm B
According to the invention, this object is achieved in that the nickel-based superalloy according to the invention is characterized by the following chemical composition (data in% by weight):
  • 7-13 Cr
  • 4-10 co
  • 0.5-2 mo
  • 2-8 W
  • 4-6 d
  • 3-6 Al
  • 1-4 Ti
  • 0.1-6 Ru
  • 0.01-0.5 Hf
  • 0.001-0.15 Si
  • 0-700 ppm C
  • 0-300 ppm B

Rest Nickel und herstellungsbedingte Verunreinigungen.Remaining nickel and manufacturing-related impurities.

Die Vorteile der Erfindung bestehen darin, dass die Legierung ein gutes Degradationsverhalten aufweist. Die γ-Phase (Matrix) wird durch das Zulegieren von Ruthenium verfestigt, und dies trotz der Abwesenheit von Rhenium, das gemäss bekanntem Stand der Technik als besonders guter Mischkristallverfestiger gilt und daher die Eigenschaften der γ-Matrix stark verbessert. Die erfindungsgemässe Legierung zeichnet sich durch gute Zeitstandfestigkeit, stabile Gefüge und eine gute Giessbarkeit aus.The advantages of the invention are that the alloy has a good degradation behavior. The γ phase (matrix) is solidified by the addition of ruthenium, despite the absence of rhenium, which according to the known state of the art is considered to be a particularly good solid solution promoter and therefore greatly improves the properties of the γ matrix. The alloy according to the invention is distinguished by good creep rupture strength, stable microstructures and good castability.

Ausserdem ist der Oxidationswiderstand der Legierung sehr gut. Sie ist hervorragend geeignet zur Herstellung von Einkristall-Komponenten, beispielsweise Schaufeln für Gasturbinen.In addition, the oxidation resistance of the alloy is very good. It is outstandingly suitable for the production of single-crystal components, for example blades for gas turbines.

Auf Grund des geringen Anteils an sekundärer ausscheidungshärtender γ'-Phase, welche in der stark verfestigten γ-Phase eingelagert ist, ist das Degradationsverhalten der erfindungsgemässen Legierung gut. Es gibt kein Einkristall-Risswachstum und keinen starken Abfall der Streckgrenze bei Raumtemperatur im degradierten Zustand im Vergleich zum nicht degradierten Zustand.Due to the small proportion of secondary precipitation-hardening γ'-phase, which is incorporated in the strongly solidified γ-phase, the degradation behavior of the alloy according to the invention is good. There is no single crystal crack growth and no large decrease in yield strength at room temperature in the degraded state compared to the non-degraded state.

Bevorzugte Bereiche der erfindungsgemässen Nickel-Basis-Superlegierung sind (Angaben in Gew.-%):

  • 10-13 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3-5 W
  • 4-5 Ta
  • 3-5 Al
  • 2-4 Ti
  • 0.3-4 Ru
  • 0.01-0.5 Hf
  • 0.001-0.15 Si
  • 0-700 ppm C
  • 0-300 ppm B
Preferred ranges of the nickel-base superalloy according to the invention are (in% by weight):
  • 10-13 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3-5 W
  • 4-5 d
  • 3-5 al
  • 2-4 ti
  • 0.3-4 Ru
  • 0.01-0.5 Hf
  • 0.001-0.15 Si
  • 0-700 ppm C
  • 0-300 ppm B

Rest Nickel und herstellungsbedingte Verunreinigungen.Remaining nickel and manufacturing-related impurities.

Ein besonders bevorzugter Bereich der erfindungsgemässen Nickel-Basis-Superlegierung ist folgender:

  • 10-13 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3.5-4 W
  • 4-5 Ta
  • 3.5-5 Al
  • 3-4 Ti
  • 0.3-1.5 Ru
  • 0.5 Hf
  • 10-500 ppm Si
  • 250-350 ppm C
  • 80-100 ppm B
A particularly preferred range of the nickel-based superalloy according to the invention is the following:
  • 10-13 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3.5-4 W
  • 4-5 d
  • 3.5-5 Al
  • 3-4 Ti
  • 0.3-1.5 Ru
  • 0.5 Hf
  • 10-500 ppm Si
  • 250-350 ppm C
  • 80-100 ppm B

Rest Nickel und herstellungsbedingte Verunreinigungen.Remaining nickel and manufacturing-related impurities.

Eine weitere erfindungsgemässe Nickel-Basis-Superlegierung weist folgende chemische Zusammensetzung (Angaben in Gew.-%) auf:

  • 7-9 Cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3-5 W
  • 5-6 Ta
  • 3-5 Al
  • 1-2 Ti
  • 0.5-1.5 Ru
  • 0.5 Hf
  • 700 ppm C
  • 100 ppm B
  • 500 ppm Si
A further nickel-based superalloy according to the invention has the following chemical composition (data in% by weight):
  • 7-9 cr
  • 8-9 Co
  • 1.5-2 Mo
  • 3-5 W
  • 5-6 d
  • 3-5 al
  • 1-2 Ti
  • 0.5-1.5 Ru
  • 0.5 Hf
  • 700 ppm C
  • 100 ppm B
  • 500 ppm Si

Rest Nicckel und herstellungsbedingte Verunreinigungen.Rest Nicckel and manufacturing impurities.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

In den Zeichnungen sind zwei Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:

Fig. 1
ein Gefügebild der Vergleichslegierung VL;
Fig. 2
ein Gefügebild der erfindungsgemässen Legierung L1;
Fig. 3
ein Gefügebild der erfindungsgemässen Legierung L1 nach Degradierung;
Fig.4
ein Gefügebild der erfindungsgemässen Legierung L2 nach Degradierung;
Fig. 5
ein Diagramm, welches die Gewichtsänderung der Legierungen VL, L1 und L2 in Abhängigkeit von der Zeit angibt;
Fig. 6
ein Diagramm, welches die 0,2%-Streckgrenze der Legierungen VL, L1 und L2 in Abhängigkeit vom Degradations-Parameter angibt und
Fig. 7
ein Diagramm, welches die Spannung (1%-Dehngrenze) der Legierungen VL, L1 und L2 in Abhängigkeit vom Larson Miller-Parameter angibt.
In the drawings, two embodiments of the invention are shown. Show it:
Fig. 1
a micrograph of the comparative alloy VL;
Fig. 2
a micrograph of the inventive alloy L1;
Fig. 3
a micrograph of the inventive alloy L1 after degradation;
Figure 4
a micrograph of the inventive alloy L2 after degradation;
Fig. 5
a diagram indicating the weight change of the alloys VL, L1 and L2 as a function of time;
Fig. 6
a diagram indicating the 0.2% yield strength of the alloys VL, L1 and L2 depending on the degradation parameter, and
Fig. 7
a diagram which indicates the stress (1% proof stress) of the alloys VL, L1 and L2 in dependence on the Larson Miller parameter.

Wege zur Ausführung der ErfindungWays to carry out the invention

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 7 näher erläutert.The invention will be explained in more detail with reference to embodiments and FIGS. 1 to 7.

Es wurden Nickel-Basis-Superlegierungen mit der in Tabelle 1 angegebenen chemischen Zusammensetzung untersucht (Angaben in Gew.-%): Tabelle 1: Chemische Zusammensetzung der untersuchten Legierungen L1 (AMN1) L2 (AMN3) VL (PW 1483) Ni Rest Rest Rest Cr 9.96 12.34 12.8 Co 8.86 8.84 9 Mo 1.47 1.85 1.9 W 3.45 3.76 3.8 Ta 4 4.96 4 Al 3.57 3.45 3.8 Ti 3.83 3.96 4 Hf 0.5 0.48 - C 0.025 0.033 - B 86 ppm 79 ppm - Si 10 ppm 10 ppm - Ru 1.07 0.28 - Nickel-based superalloys having the chemical composition given in Table 1 were investigated (in% by weight): Table 1: Chemical composition of the investigated alloys L1 (AMN1) L2 (AMN3) VL (PW 1483) Ni rest rest rest Cr 9.96 12:34 12.8 Co 8.86 8.84 9 Not a word 1:47 1.85 1.9 W 3:45 3.76 3.8 Ta 4 4.96 4 al 3:57 3:45 3.8 Ti 3.83 3.96 4 Hf 0.5 00:48 - C 0025 0033 - B 86 ppm 79 ppm - Si 10 ppm 10 ppm - Ru 1:07 00:28 -

Die Legierungen L1 und L2 sind Legierungen, deren Zusammensetzung unter die Patentansprüche der vorliegenden Erfindung fällt. Im Gegensatz dazu ist die Legierung VL eine Vergleichslegierung, die unter der Bezeichnung PW 1483 bekannter Stand der Technik ist. Sie unterscheidet sich von den erfindungsgemässen Legierungen vor allem darin, dass sie nicht mit Ruthenium legiert ist und kein erwähnenswerter Si-Anteil vorhanden ist. In der Zusammensetzung bezüglich der Elemente Cr, Co, Mo, Ta, Al, Ti und Ni sind die Legierungen L2 und VL nahezu identisch. Das trifft bis auf den Cr-Gehalt auch auf die Legierung L1 zu. Bei L1 ist der Cr-Gehalt um ca. 3 Gew.-% geringer als bei der Vergleichslegierung VL.Alloys L1 and L2 are alloys whose composition falls within the claims of the present invention. In contrast, alloy VL is a comparative alloy known in the art as PW 1483. It differs from the alloys according to the invention primarily in that it is not alloyed with ruthenium and no appreciable Si content is present. In the composition of the elements Cr, Co, Mo, Ta, Al, Ti and Ni, the alloys L2 and VL are almost identical. This is true up to the Cr content on the alloy L1. In the case of L1, the Cr content is about 3% by weight lower than in the case of the comparative alloy VL.

Alle drei Legierungen wurden folgender Wärmebehandlung unterzogen: 1 h/1204 °C + 1 h/1265 °C + 4 h 1080 °C.All three alloys were subjected to the following heat treatment: 1 h / 1204 ° C + 1 h / 1265 ° C + 4 h 1080 ° C.

Es wurde die Vickers-Härte HV2 gemessen. Dabei wurden die in der Tabelle 2 aufgeführten Resultate erzielt. Tabelle 2: Vickers-Härte für die untersuchten Legierungen L1 VL HV2 447 403 The Vickers hardness HV2 was measured. The results listed in Table 2 were achieved. Table 2: Vickers hardness for the alloys tested L1 VL HV2 447 403

Die Legierung L1 weist somit eine um über 10 % höhere Härte auf als die Vergleichslegierung VL. Die γ-Phase (Matrix) der erfindungsgemässen Legierungen wird vor allem durch das zulegierte Ruthenium verfestigt.The alloy L1 thus has over 10% higher hardness than the comparative alloy VL. The γ-phase (matrix) of the alloys according to the invention is solidified mainly by the alloyed ruthenium.

Die Figur 1 zeigt das Gefüge der Vergleichslegierung VL1, während Fig. 2 das Gefüge der erfindungsgemässen Legierung L1 zeigt.FIG. 1 shows the microstructure of the comparative alloy VL1, while FIG. 2 shows the microstructure of the alloy L1 according to the invention.

Im Vergleich zur Legierung VL ist bei der Legierung L1 deutlich der geringere Anteil an γ'-Phase (dunkle Teilchen) zu erkennen. Die γ'-Phase (sekundäre, durch Ausscheidungshärtung gebildete intermetallische Phase) hat in der Legierung VL eine etwa viereckige Form und ist streifenförmig in der Matrix angeordnet. Demgegenüber hat die γ'-Phase in L1 eine kugelige Form, was ein Hinweis auf einen sehr geringen Gitterversatz zwischen der γ- und der γ'-Phase darstellt. Dieser geringe Gitterversatz und vor allem der geringe Volumenanteil an γ'-Phase (weniger als 50 %) wirken sich dahingehend positiv aus, dass es zu keiner γ/γ'-Inversion der Mikrostruktur kommt, d.h. die γ'-Phase ist in der γ-Phase eingebettet und bildet kein durchgehendes Netz. Somit wird ein gutes Degradationsverhalten der erfindungsgemässen Legierungen erzielt.In comparison with the alloy VL, the smaller proportion of γ'-phase (dark particles) is clearly recognizable in the alloy L1. The γ'-phase (secondary precipitation-hardening intermetallic phase) has an approximately quadrangular shape in the alloy VL and is arranged in a striped manner in the matrix. In contrast, the γ'-phase in L1 has a spherical shape, which is an indication of a very small lattice offset between the γ and the γ 'phase. This small lattice offset and, above all, the low volume fraction of γ'-phase (less than 50%) have a positive effect in that there is no γ / γ'-inversion of the microstructure, i. the γ'-phase is embedded in the γ-phase and does not form a continuous network. Thus, a good degradation behavior of the inventive alloys is achieved.

Die Figuren 3 und 4 zeigen Gefügebilder der erfindungsgemässen Legierungen L1AD (Fig. 3) und L2AD (Fig. 4) im degradierten Zustand (T = 1000 °C, σ = 80 MPa, t = 747 h). Die γ'-Phase ist in der γ-Phase eingebettet und bildet kein durchgehendes Netz. Die Legierung L1AD zeigt dabei überwiegend runde bis ovale Formen der γ'-Phase, während bei der Legierung L2AD die γ'-Phase sehr gestreckt ausgebildet ist.FIGS. 3 and 4 show micrographs of the novel alloys L1AD (FIG. 3) and L2AD (FIG. 4) in the degraded state (T = 1000 ° C., σ = 80 MPa, t = 747 h). The γ'-phase is embedded in the γ-phase and does not form a continuous network. The alloy L1AD shows predominantly round to oval forms of the γ'-phase, while in the alloy L2AD the γ'-phase is very elongated.

Dies hat Auswirkungen auf die Eigenschaften. In Fig. 5 ist die Gewichtsänderung in Abhängigkeit von der Zeit für die drei Legierungen dargestellt. Die erfindungsgemässen Legierungen weisen nach Degradierung eine deutlich geringere Gewichtsänderung auf als die aus dem Stand der Technik bekannte Vergleichslegierung, d.h. sie haben eine wesentlich bessere Oxidationsbeständigkeit.This has effects on the properties. In Fig. 5 the weight change as a function of time for the three alloys is shown. After being degraded, the alloys according to the invention have a significantly lower weight change than the comparative alloy known from the prior art, ie they have a significantly better oxidation resistance.

Fig. 6 zeigt die Abhängigkeit der 0,2% Streckgrenze bei Raumtemperatur vom Degradations-Parameter P mit P = ( T - 800 ) t 1 / 2 σ 1 / 5 .

Figure imgb0001
FIG. 6 shows the dependency of the 0.2% yield strength at room temperature on the degradation parameter P with P = ( T - 800 ) t 1 / 2 σ 1 / 5 ,
Figure imgb0001

Während sich die Vergleichslegierung VL und die Legierung L2AD fast gleich verhalten, liegt für L1AD die Spannung um ca. 200 MPa unterhalb der Werte für VL und L2AD.While the comparative alloy VL and the alloy L2AD behave almost the same, for L1AD the voltage is about 200 MPa below the values for VL and L2AD.

Trägt man die 0,1 Dehngrenze über dem Larson Miller Parameter LM, mit LM = T ( log t + 20 )

Figure imgb0002
auf, so ergeben sich die in Fig. 7 dargestellten Abhängigkeiten. Die Legierung L2AD weist über den gesamten Bereich höhere Dehngrenzen auf als die Vergleichslegierung (bei besserem Oxidationsverhalten). Zwar weist die Legierung L1AD nur geringere Dehngrenzen als die Vergleichslegierung VL auf, hat aber dafür ebenfalls eine wesentlich bessere Oxidationsbeständigkeit.If one carries the 0.1 proof stress over the Larson Miller parameter LM, with LM = T ( log t + 20 )
Figure imgb0002
on, the dependencies shown in Fig. 7 result. The alloy L2AD has higher yield strengths over the entire range than the comparison alloy (with better oxidation behavior). Although the alloy L1AD has only lower yield strengths than the comparative alloy VL, but also has a much better oxidation resistance.

Selbstverständlich ist die Erfindung nicht auf die beschriebenen Ausführungsbeispiele beschränkt.Of course, the invention is not limited to the described embodiments.

Claims (4)

  1. Nickel-base superalloy for producing single-crystal components, characterized by the following chemical composition (details in % by weight):
    7-13 Cr
    4-10 Co
    0.5-2 Mo
    2-8 W
    4-6 Ta
    3-6 Al
    1-4 Ti
    0.1-6 Ru
    0.01-0.5 Hf
    0.001-0.15 Si
    0-700 ppm C
    0-300 ppm B

    remainder nickel and production-related impurities.
  2. Nickel-base superalloy according to Claim 1, characterized by the following chemical composition (details in % by weight):
    10-13 Cr
    8-9 Co
    1.5-2 Mo
    3-5 W
    4-5 Ta
    3-5 Al
    2-4 Ti
    0.3-4 Ru
    0.01-0.5 Hf
    0.001-0.15 Si
    0.700 ppm C
    0-300 ppm B

    remainder nickel and production-related impurities.
  3. Nickel-base superalloy according to Claim 2, characterized by the following chemical composition (details in % by weight):
    10-13 Cr
    8-9 Co
    1.5-2 Mo
    3.5-4 W
    4-5 Ta
    3.5-5 Al
    3-4 Ti
    0.3-1.5 Ru
    0.5 Hf
    10-500 ppm Si
    250-350 ppm C
    80-100 ppm B

    remainder nickel and production-related impurities.
  4. Nickel-base superalloy according to Claim 1, characterized by the following chemical composition (details in % by weight):
    7-9 Cr
    8-9 Co
    1.5-2 Mo
    3-5 W
    5-6 Ta
    3-5 Al
    1-2 Ti
    0.5-1.5 Ru
    0.5 Hf
    500 ppm Si
    700 ppm C
    100 ppm B

    remainder nickel and production-related impurities.
EP03104108A 2002-11-12 2003-11-06 Nickel-base superalloy Expired - Lifetime EP1420075B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US291392P 2002-11-12
US10/291,392 US6706241B1 (en) 2002-11-12 2002-11-12 Nickel-base superalloy

Publications (2)

Publication Number Publication Date
EP1420075A1 EP1420075A1 (en) 2004-05-19
EP1420075B1 true EP1420075B1 (en) 2006-02-22

Family

ID=31946562

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03104108A Expired - Lifetime EP1420075B1 (en) 2002-11-12 2003-11-06 Nickel-base superalloy

Country Status (4)

Country Link
US (1) US6706241B1 (en)
EP (1) EP1420075B1 (en)
JP (1) JP4523264B2 (en)
DE (1) DE50302468D1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053826A2 (en) * 2004-11-18 2006-05-26 Alstom Technology Ltd Nickel-based superalloy
US20060182649A1 (en) * 2005-02-16 2006-08-17 Siemens Westinghouse Power Corp. High strength oxidation resistant superalloy with enhanced coating compatibility
US20100008790A1 (en) 2005-03-30 2010-01-14 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US8920937B2 (en) * 2007-08-05 2014-12-30 United Technologies Corporation Zirconium modified protective coating
US8876989B2 (en) 2007-08-31 2014-11-04 General Electric Company Low rhenium nickel base superalloy compositions and superalloy articles
US20130230405A1 (en) * 2007-08-31 2013-09-05 Kevin Swayne O'Hara Nickel base superalloy compositions being substantially free of rhenium and superalloy articles
EP2145968A1 (en) * 2008-07-14 2010-01-20 Siemens Aktiengesellschaft Nickel base gamma prime strengthened superalloy
US8216509B2 (en) * 2009-02-05 2012-07-10 Honeywell International Inc. Nickel-base superalloys
US20110076180A1 (en) * 2009-09-30 2011-03-31 General Electric Company Nickel-Based Superalloys and Articles
US8708659B2 (en) * 2010-09-24 2014-04-29 United Technologies Corporation Turbine engine component having protective coating
US9752215B2 (en) 2012-02-14 2017-09-05 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US9783873B2 (en) 2012-02-14 2017-10-10 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US20160214350A1 (en) 2012-08-20 2016-07-28 Pratt & Whitney Canada Corp. Oxidation-Resistant Coated Superalloy
GB2587635B (en) * 2019-10-02 2022-11-02 Alloyed Ltd A Nickel-based alloy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520630A (en) * 1974-07-08 1978-08-09 Johnson Matthey Co Ltd Platinum group metal-containing alloys
US4643782A (en) 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US4719080A (en) 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
CA1315572C (en) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Phase stable single crystal materials
US5270123A (en) 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
DE19624055A1 (en) 1996-06-17 1997-12-18 Abb Research Ltd Nickel-based super alloy
JPH10330872A (en) * 1997-05-29 1998-12-15 Toshiba Corp Ni-base superalloy, and ni-base superalloy parts
EP1204776B1 (en) * 1999-07-29 2004-06-02 Siemens Aktiengesellschaft High-temperature part and method for producing the same
US6468367B1 (en) * 1999-12-27 2002-10-22 General Electric Company Superalloy weld composition and repaired turbine engine component

Also Published As

Publication number Publication date
JP4523264B2 (en) 2010-08-11
US6706241B1 (en) 2004-03-16
JP2004285472A (en) 2004-10-14
EP1420075A1 (en) 2004-05-19
DE50302468D1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
DE3023576C2 (en)
DE60309266T2 (en) Welding material, gas turbine blade or gas turbine injector and method of repairing gas turbine blades and gas turbine injectors
DE2415074C2 (en) Use of a nickel-based superalloy to manufacture gas turbine parts
DE60015728T2 (en) HEAT-RESISTANT ALLOY WIRE
EP2163656B1 (en) High-temperature-resistant cobalt-base superalloy
DE602005002866T2 (en) Process for producing a low thermal expansion Ni-base superalloy
EP0914484B1 (en) Nickel-base superalloy
DE69902138T2 (en) An alloy for repairing turbine blades, a process and the workpiece repaired in this way
EP1420075B1 (en) Nickel-base superalloy
DE69208538T2 (en) Heat-resistant alloy based on nickel
DE69903224T2 (en) Monocrystalline nickel-based superalloy with a high gamma prime phase
EP3175008B1 (en) Cobalt based alloy
DE60302108T2 (en) Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method
EP1815035A2 (en) Nickel-based superalloy
EP1359231B1 (en) Nickel-based superalloy
DE60020424T2 (en) Nickel-base superalloy
EP2402473A2 (en) Process for producing a single-crystal component made of a nickel-based superalloy
EP1900839B1 (en) Method for the heat treatment of nickel-based superalloys
DE2741271A1 (en) NICKEL-BASED SUPER ALLOY AND CAST BODY FROM THEM
DE3331806C2 (en)
EP1061150B1 (en) Coating containing NiAl beta Phases
EP2196550B1 (en) High temperature and oxidation resistant material on the basis of NiAl
DE2632237A1 (en) USING A NICKEL-CHROME-COBALT ALLOY
DE3248134C2 (en)
DE2458540A1 (en) CAST ITEM FROM A NICKEL BASE SUPER ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041106

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50302468

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060411

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: SIEMENS, AKTIENGESELLSCHAFT

Effective date: 20061018

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT ABT. CT IP PG

Effective date: 20061018

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APAW Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNO

APAY Date of receipt of notice of appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDNOA2O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20110907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 50302468

Country of ref document: DE

Effective date: 20110907

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151118

Year of fee payment: 13

Ref country code: DE

Payment date: 20151119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151119

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302468

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50302468

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50302468

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601