EP1857531A1 - Composition d'Huiles Combustibles. - Google Patents

Composition d'Huiles Combustibles. Download PDF

Info

Publication number
EP1857531A1
EP1857531A1 EP07008848A EP07008848A EP1857531A1 EP 1857531 A1 EP1857531 A1 EP 1857531A1 EP 07008848 A EP07008848 A EP 07008848A EP 07008848 A EP07008848 A EP 07008848A EP 1857531 A1 EP1857531 A1 EP 1857531A1
Authority
EP
European Patent Office
Prior art keywords
fuel oil
monomer
oil additive
additive according
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07008848A
Other languages
German (de)
English (en)
Inventor
Bettina Siggelkow
Waltraud Nagel
Markus Kupetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Finance BVI Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Publication of EP1857531A1 publication Critical patent/EP1857531A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/165Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/1955Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by an alcohol, ether, aldehyde, ketonic, ketal, acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters

Definitions

  • the present invention relates to an additive, its use as a cold flow improver for vegetable or animal fuel oils and correspondingly fueled fuel oils.
  • renewable raw materials include, in particular, natural oils and fats of plant or animal origin. These are usually triglycerides of fatty acids with 10 to 24 carbon atoms, which have a comparable calorific value to conventional fuels, but at the same time are considered to be less harmful to the environment.
  • Biofuels ie fuels derived from animal or plant material, are obtained from renewable sources and thus produce only as much CO 2 as was previously converted into biomass. It has been reported that combustion produces less carbon dioxide than equivalent amount of petroleum distillate fuel, eg, diesel fuel, and that very little sulfur dioxide is produced. In addition, they are biodegradable.
  • Oils obtained from animal or vegetable material are mainly metabolites comprising triglycerides of monocarboxylic acids and generally of the formula in which R is an aliphatic radical of 10 to 25 carbon atoms, which may be saturated or unsaturated.
  • oils contain glycerides of a variety of acids, the number and variety of which varies with the source of the oil, and may additionally contain phosphoglycerides.
  • Such oils can be obtained by methods known in the art.
  • EP-A-0 665 873 discloses a fuel oil composition
  • a fuel oil composition comprising a biofuel, a petroleum-based fuel oil and an additive which comprises (a) an oil-soluble ethylene copolymer or (b) a comb polymer or (c) a polar nitrogen compound or (d) a compound in which at least one substantially linear alkyl group having 10 to 30 carbon atoms is bonded to a non-polymeric organic group to provide at least one linear chain of atoms including the carbon atoms of the alkyl groups and one or more non-terminal oxygen atoms, or (e) one or more of Components (a), (b), (c) and (d).
  • EP-A-0 153 176 discloses the use of polymers based on unsaturated C 4 -C 8 dicarboxylic acid di-alkyl esters having average alkyl chain lengths of 12 to 14 as cold flow improvers for certain petroleum distillate fuel oils.
  • Suitable comonomers are unsaturated esters, in particular vinyl acetate, but also ⁇ -olefins.
  • EP-A-1 491 614 discloses oils of vegetable or animal origin and blends thereof with petroleum distillate fuel oils containing an ethylene-vinyl ester copolymer containing at least 17 mole percent vinyl ester to improve their low temperature properties and a degree of branching of 5 or more alkyl branches per 100 methylene groups.
  • fatty acid esters which are derived, for example, from rapeseed, waste-oil, sunflower and / or soybean oil and which contain at least 7% by weight of palmitic and stearic acid methyl esters.
  • CFPP values -10 ° C and -20 ° C and below are to be set and the set CFPP value remains constant even after prolonged storage of the oil in the region of its cloud point or below.
  • these additives should help to prevent the sedimentation of these oils, so that even after storage for several days of the fatty acid esters, they remain homogeneous and flowable and their CFPP does not change.
  • Another object of the invention is a fuel oil composition containing a fuel oil of animal or vegetable origin and the additive defined above.
  • Another object of the invention is the use of the above defined Additive for improving the cold flow properties of fuel oils of animal or vegetable origin.
  • Another object of the invention is a method for improving the cold flow properties of fuel oils of animal or vegetable origin by adding to fuel oils of animal or vegetable origin, the additive defined above.
  • Q assumes values of 24 to 26.
  • Chain length of olefins is understood here as the chain length of the monomeric olefin minus the two olefinically bonded C atoms.
  • the chain length is equal to the total chain length of the olefin minus the two olefinically bonded carbon atoms.
  • the chain length is the length of the alkyl radicals which, introduced into the polymer by the olefin, depart from the polymer backbone.
  • Suitable ethylene copolymers A) are preferably those which contain from 18 to 35 mol% of one or more vinyl and / or (meth) acrylic esters and from 65 to 82% by weight of ethylene. Particularly preferred are ethylene copolymers having 18.5 to 27 mol% of at least one vinyl ester. Suitable vinyl esters are derived from fatty acids with linear or branched alkyl groups having 1 to 30 carbon atoms. Preferred ethylene copolymers have a melt viscosity V 140 of at least 5, preferably 10 to 100, in particular 20 to 60 mPas.
  • vinyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl laurate and vinyl stearate and branched fatty acid-based esters of vinyl alcohol such as vinyl isobutyrate, vinyl pivalate, vinyl 2-ethylhexanoate, iso-nonanoic acid vinyl ester, Vinyl neononanoate, vinyl neodecanoate and vinyl neoundecanoate.
  • esters of acrylic and methacrylic acid having 1 to 20 C atoms in the alkyl radical such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n- and isobutyl (meth) acrylate, hexyl , Octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl (meth) acrylate. Also suitable are mixtures of two, three, four or more of these comonomers.
  • copolymers contain in addition to ethylene and 18 to 35 mol% vinyl esters still 0.5 to 10 mol% of olefins having 3 to 10 carbon atoms, such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • olefins having 3 to 10 carbon atoms, such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • the copolymers A preferably have weight-average molecular weights M w, measured by gel permeation chromatography (GPC) against polystyrene standards in THF of from 1000 to 10 000, in particular from 1500 to 5000 g / mol.
  • GPC gel permeation chromatography
  • Their means of 1 H NMR spectroscopy (400 MHz with CDCl 3 as solvent) certain degrees of branching less than 5, preferably less than 4 CH 3/100 CH 2 groups.
  • the methyl groups are derived from the short and long chain branches, and not from copolymerized comonomers.
  • the copolymers (A) can be prepared by the usual copolymerization methods such as suspension polymerization, solvent polymerization, gas phase polymerization or high-pressure bulk polymerization.
  • the high-pressure mass polymerization is preferably carried out at pressures of from 50 to 400 MPa, preferably from 100 to 300 MPa, and at temperatures of from 100 to 300 ° C., preferably from 150 to 250 ° C.
  • the polymerization takes place in a multi-zone reactor, wherein the temperature difference between the peroxide dosages along the tubular reactor is kept as low as possible, i. ⁇ 50 ° C, preferably ⁇ 30 ° C, in particular ⁇ 15 ° C.
  • the temperature maxima in the individual reaction zones preferably differ by less than 30 ° C., more preferably by less than 20 ° C. and especially by less than 10 ° C.
  • the reaction of the monomers is by free-radical initiators (Radical chain starter) initiated.
  • This class of substances includes, for example, oxygen, hydroperoxides, peroxides and azo compounds such as cumene hydroperoxide, t-butyl hydroperoxide, dilauroyl peroxide, dibenzoyl peroxide, bis (2-ethylhexyl) peroxide carbonate, t-butyl perpivalate, t-butyl permalate, t-butyl perbenzoate, dicumyl peroxide, t-butylcumyl peroxide , Di- (t-butyl) peroxide, 2,2'-azobis (2-methylpropanonitrile), 2,2'-azobis (2-methylbutyronitrile).
  • the initiators are used individually or as a mixture of two or more substances in amounts of 0.01 to 20 wt .-%, preferably 0.05 to 10 wt .-%,
  • the high-pressure mass polymerization is carried out batchwise or continuously in known high-pressure reactors, for example autoclaves or tubular reactors, tube reactors have proven particularly useful.
  • Solvents such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures, benzene or toluene may be present in the reaction mixture. Preferred is the substantially solvent-free operation.
  • Preferred moderators are, for example, hydrogen, saturated and unsaturated hydrocarbons such as propane or propene, aldehydes such as propionaldehyde, n-butyraldehyde or isobutyraldehyde, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and alcohols such as butanol.
  • the comonomers as well as the moderators can be metered into the reactor both together with ethylene and separately via side streams. In this case, the monomer streams can be composed differently ( EP-A-0 271 738 and EP-A-0 922 716 ).
  • Suitable copolymers or terpolymers include, for example: ethylene-vinyl acetate copolymers with 10 to 40% by weight of vinyl acetate and 60 to 90% by weight of ethylene; from DE-A-34 43 475 known ethylene-vinyl acetate-hexene terpolymers; in the EP-A-0 203 554 described ethylene-vinyl acetate-diisobutylene terpolymers; from EP-A-0 254 284 known mixture of an ethylene-vinyl acetate-diisobutylene terpolymer and an ethylene / vinyl acetate copolymer; in the EP-A-0 405 270 disclosed blends of an ethylene-vinyl acetate copolymer and an ethylene-vinyl acetate-N-vinylpyrrolidone terpolymer; in the EP-A-0 463 518 described ethylene / vinyl acetate / iso-butyl vinyl
  • the polymers underlying the mixtures differ in at least one characteristic.
  • they may contain different comonomers, different comonomer contents, Have molecular weights and / or degrees of branching.
  • the mixing ratio of the various ethylene copolymers is preferably between 20: 1 and 1:20, preferably 10: 1 to 1:10, in particular 5: 1 to 1: 5.
  • the copolymers B are preferably derived from dicarboxylic acids B2 and their derivatives, such as esters and anhydrides. Preference is given to maleic acid, fumaric acid, itaconic acid and especially maleic anhydride.
  • Suitable comonomers are monoolefins B1 having from 10 to 20, in particular from 12 to 18, carbon atoms. These are preferably linear and the double bond is preferably terminal such as in dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene and octadecene.
  • the molar ratio of dicarboxylic acids / derivatives to olefin or olefins in the polymer is preferably in the range 1: 1.5 to 1.5: 1, in particular it is equimolar.
  • minor amounts of up to 20 mol%, preferably ⁇ 10 mol%, especially ⁇ 5 mol%, other comonomers besides B1 and B2 which are copolymerizable with dicarboxylic acids / derivatives and the stated olefins may also be present in the copolymers B.
  • Examples of such comonomers are olefins having 2 to 50 carbon atoms, allyl polyglycol ethers, C 1 -C 30 -alkyl (meth) acrylates, vinylaromatics or C 1 -C 20 -alkyl vinyl ethers. The same are preferably used in minor amounts poly (isobutylene) having molecular weights of up to 5,000 g / mol, with highly reactive variants with a high proportion of terminal vinylidene groups are preferred. These other comonomers are not taken into account in the calculation of the factor Q which is decisive for the effectiveness.
  • the preparation of the copolymers B) according to the invention is preferably carried out at temperatures between 50 and 220 ° C, in particular 100 to 190 ° C.
  • the preferred method of preparation is solvent-free bulk polymerization, but it is also possible to carry out the polymerization in the presence of aprotic solvents such as benzene, toluene, xylene or higher-boiling aromatic, aliphatic or isoaliphatic solvents or solvent mixtures such as kerosene or solvent naphtha.
  • the polymerization is particularly preferably in less moderating, aliphatic or isoaliphatic solvents.
  • the proportion of solvent in the polymerization mixture is generally between 10 and 90% by weight, preferably between 35 and 60% by weight.
  • the reaction temperature can be set particularly easily by the boiling point of the solvent or by working under reduced or elevated pressure.
  • the average molecular weight Mw of the copolymers B according to the invention is generally between 1,200 and 200,000 g / mol, in particular between 2,000 and 100,000 g / mol, measured by gel permeation chromatography (GPC) against polystyrene standards in THF.
  • Copolymers of the invention must be oil-soluble in practice-relevant dosing quantities, ie they must dissolve in the oil to be additized at 50 ° C. without residue.
  • the reaction of the monomers is initiated by free radical initiators (free radical initiators).
  • This class of substance includes e.g. Oxygen, hydroperoxides and peroxides such as e.g. Cumene hydroperoxide, t-butyl hydroperoxide, dilauroyl peroxide, dibenzoyl peroxide, bis (2-ethylhexyl) peroxide carbonate, t-butyl perpivalate, t-butyl permalate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, di (t-butyl) peroxide, and azo compounds such as eg 2,2'-azobis (2-methylpropanonitrile) or 2,2'-azobis (2-methylbutyronitrile).
  • the initiators are used individually or as a mixture of two or more substances in amounts of 0.01 to 20 wt .-%, preferably 0.05 to 10 w
  • the copolymers can be prepared either by reaction of maleic, fumaric and / or itaconic acid or their anhydrides with the corresponding alcohol and subsequent copolymerization or by copolymerization of olefin or olefins with at least one unsaturated dicarboxylic acid or its derivative such as itacon and / or Maleic anhydride and subsequent reaction with alcohols are produced.
  • a copolymerization with anhydrides is preferably carried out and the resulting copolymer is converted after the preparation into an ester and / or a diester.
  • This esterification takes place in both cases, for example by reaction with 0.8 to 2.5 moles of alcohol per mole of anhydride, preferably with 1.0 to 2.0 moles of alcohol per mole of anhydride at 50 to 300 ° C.
  • esterification temperatures of about 70 to 120 ° C are preferred.
  • larger amounts of alcohol preferably 2 moles of alcohol per mole of anhydride formed at 100 - 300 ° C, preferably 120 - 250 ° C diester.
  • the water of reaction can be distilled off by means of an inert gas stream or discharged in the presence of an organic solvent by means of azeotropic distillation.
  • half esters copolymers having acid numbers of 30-70 mg KOH / g, preferably 40-60 mg KOH / g, are considered here. Copolymers with acid numbers of less than 40, especially less than 30 mg KOH / g are considered as diesters. Particularly preferred are half esters.
  • Suitable alcohols are particularly linear, but they can also minor amounts, eg. B. up to 30 wt .-%, preferably up to 20 wt .-% and especially up to 10 wt .-% (in 1- or 2-position) branched alcohols. Particularly preferred are octanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol and hexadecanol.
  • the effectiveness can be further adapted to specific fatty acid ester compositions.
  • Particularly preferred copolymers B contain half esters of primary alcohols as monomer B2.
  • the effectiveness can be further adapted to specific fatty acid ester compositions.
  • the additives may also contain polymers and copolymers based on C 10 -C 24 -alkyl acrylates or methacrylates (component C).
  • These poly (alkyl acrylates) and methacrylates have molecular weights Mw of 800 to 1,000,000 g / mol, and are preferably derived from caprylic, capric, undecyl, lauryl, myristyl, cetyl, palmitoleyl, stearyl alcohol or their mixtures such as coconut, palm tallow fat or behenyl alcohol.
  • mixtures of different copolymers B are used, the average (weight average) of the parameters Q of the mixture components assuming values of 23 to 27 and preferably values of 24 to 26.
  • the mixing ratio of the additive components A and B according to the invention is (in parts by weight) 20: 1 to 1:20, preferably 10: 1 to 1:10, in particular 5: 1 to 1: 5.
  • the proportion of component C in the formulations of A, B and C may be up to 40% by weight; it is preferably less than 20% by weight, in particular between 1 and 10% by weight, based on the total weight of A, B. and C.
  • the additives of the invention are added to oils in amounts of 0.001 to 5 wt .-%, preferably 0.005 to 1 wt .-% and especially 0.01 to 0.6 wt .-%. They may be dissolved as such or dissolved or dispersed in solvents such as aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures such.
  • toluene xylene, ethylbenzene, decane, pentadecane, gasoline fractions, kerosene, naphtha, diesel, fuel oil, isoparaffins or commercial solvent mixtures such as Solvent Naphtha, ® Hydrosol A 200 N, ® Shellsol A 150 ND, ® Caromax 20 LN, ® Shellsol AB , ® Solvesso 150, ® Solvesso 150 ND, ® Solvesso 200, ® Exxsol, ® Isopar and ® Shellsol D types.
  • they are dissolved in fuel oil of animal or vegetable origin based on fatty acid alkyl esters.
  • the additives according to the invention preferably contain 1 to 80%, especially 10 to 70%, in particular 25 to 60%, of solvent.
  • the fuel oil which is often referred to as “biodiesel” or “biofuel”
  • biodiesel is fatty acid alkyl esters of fatty acids having 12 to 24 carbon atoms and alcohols having 1 to 4 carbon atoms.
  • fatty acids having 12 to 24 carbon atoms and alcohols having 1 to 4 carbon atoms.
  • a major part of the fatty acids contains one, two or three double bonds.
  • oils derived from animal or vegetable material and in which the additive according to the invention can be used are rapeseed oil, coriander oil, soybean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, corn oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, Beef tallow, bone oil, fish oils and used edible oils.
  • oils derived from wheat, jute, sesame, shea nut, arachis oil and linseed oil can be derived from these oils by methods known in the art.
  • Rapeseed oil which is a mixture of glycerol partially esterified fatty acids, is preferred because it is available in large quantities and is readily available by squeezing rapeseed. Furthermore, the also widespread oils of used fat, palm oil, sunflower and soybeans and their mixtures with rapeseed oil are preferred.
  • Particularly suitable as biofuels are lower alkyl esters of fatty acids.
  • lower alkyl esters of fatty acids are, for example, commercially available mixtures of ethyl, propyl, butyl and especially methyl esters of fatty acids having 14 to 22 carbon atoms, for example of lauric, myristic, palmitic, palmitolic, stearic, oleic, elaidic, petroselic, ricinoleic, elaeostearic, linoleic, linolenic , Eicosanoic acid, gadoleic acid, docosanoic acid or erucic acid, which preferably have an iodine value of from 50 to 150, in particular from 90 to 125.
  • Mixtures with particularly advantageous properties are those which are mainly d. H. at least 50 wt .-%, contain methyl esters of fatty acids having 16 to 22 carbon atoms and 1, 2 or 3 double bonds.
  • the preferred lower alkyl esters of fatty acids are the methyl esters of oleic, linoleic, linolenic and erucic acids.
  • a biofuel is an oil obtained from plant or animal matter or both, or a derivative thereof, which can be used as a fuel and especially as a diesel or fuel oil.
  • vegetable oil derivatives are preferred, with particularly preferred biofuels being alkyl ester derivatives of rapeseed oil, cottonseed oil, soybean oil, sunflower oil, olive oil or palm oil, with methyl rapeseed oil, methyl sunflower oil, palm oil methyl ester and soybean oil methyl ester being most preferred. Due to the high demand for biofuels, more and more manufacturers of fatty acid methyl esters are switching to other sources of raw materials with higher yields Availability off.
  • waste oil which is used as Altfettölmethylester as biodiesel alone or in admixture with other fatty acid methyl esters, such as rapeseed, methyl sunflower oil, palm oil and methyl soybean oil.
  • rapeseed oil methyl ester with soybean oil methyl ester or rapeseed oil methyl ester with a mixture of soybean oil methyl ester and palm oil methyl ester or a mixture of soybean oil methyl ester and palm oil methyl ester should also be mentioned in particular.
  • the additive may be added to the oil to be treated according to methods known in the art. If more than one additive component or co-additive component is to be used, such components may be incorporated into the oil together or separately in any combination.
  • the CFPP value of biodiesel can be adjusted to values of -10 ° C. and below -20 ° C. and in some cases to values below -25 ° C., as required for marketing, in particular in winter become.
  • the pour point of biodiesel is reduced by the addition of the additives according to the invention.
  • the additives according to the invention are particularly advantageous in problematic oils which have a high proportion of esters of saturated fatty acids palmitic acid and stearic acid of more than 7% by weight, as contained, for example, in fatty acid methyl esters of used oil, sunflower and soya.
  • the additives according to the invention can adjust mixtures of methyl rapeseed oil and / or used fatty oil methyl ester and / or sunflower and / or soybean oil fatty acid methyl ester to CFPP values of -10.degree. C. or -20.degree. C. and below. It is thus possible with the additives according to the invention also, Altfettölmethylester or sunflower or soybean oil fatty acid methyl ester to CFPP values of -10 ° C and -20 ° C and below set. In addition, the oils thus added have good cold-cycle stability, ie the CFPP value remains constant even when stored under winter conditions and does not tend to sediment at constant low temperatures (e.g. -10 ° C or -22 ° C).
  • the additives according to the invention are also used together with one or more oil-soluble co-additives, which in themselves improve the cold flow properties of crude oils, lubricating oils or fuel oils.
  • oil-soluble co-additives are polar compounds which cause a paraffin dispersion (paraffin dispersants) and oil-soluble amphiphiles.
  • the additives of the invention can be used in admixture with paraffin dispersants.
  • Paraffin dispersants reduce the size of the paraffin crystals and cause the paraffin particles to not settle but remain colloidally dispersed with significantly reduced sedimentation effort.
  • paraffin dispersants both low molecular weight and polymeric, oil-soluble compounds having ionic or polar groups such.
  • amine salts and / or amides proven.
  • Particularly preferred paraffin dispersants contain reaction products of secondary fatty amines having 20 to 44 carbon atoms, in particular dicocoamine, ditallow fatty amine, distearylamine and dibehenylamine with carboxylic acids and derivatives thereof.
  • Paraffin dispersants which have been obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides have proven particularly suitable (cf. US 4 211 534 ).
  • amides and ammonium salts of aminoalkylene polycarboxylic acids such as nitrilotriacetic acid or ethylenediaminetetraacetic acid with secondary amines are suitable as paraffin dispersants (cf. EP 0 398 101 ).
  • paraffin dispersants are copolymers of maleic anhydride and ⁇ , ⁇ -unsaturated compounds, which can optionally be reacted with primary monoalkylamines and / or aliphatic alcohols (cf. EP 0 154 177 ) and the reaction products of alkenyl spiro-bis-lactones with amines (cf. EP 0 413 279 B1 ) and after EP-A-0 606 055 A2 Reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • the mixing ratio (in parts by weight) of the additives according to the invention with paraffin dispersants is 1:10 to 20: 1, preferably 1: 1 to 10: 1.
  • the oils treated with the additive according to the invention can also be added to middle distillates obtained from petroleum.
  • the resulting mixtures of biofuel and middle distillate can in turn be mixed with cold additives such as flow improvers or wax dispersants, and Performance Packages.
  • the middle distillate is in particular those mineral oils which are obtained by distillation of crude oil and boil in the range of 120 to 450 ° C, for example kerosene, jet fuel, diesel and fuel oil.
  • such middle distillates are used which contain 0.05% by weight of sulfur and less, more preferably less than 350 ppm of sulfur, in particular less than 200 ppm of sulfur and in special cases less than 50 ppm of sulfur.
  • These are generally those middle distillates which have been subjected to a hydrogenating refining, and therefore contain only small amounts of polyaromatic and polar compounds.
  • middle distillates which have 95% distillation points below 370.degree. C., in particular 350.degree. C. and in special cases below 330.degree.
  • Synthetic fuels such as those obtainable by the Fischer-Tropsch process, are also suitable as middle distillates.
  • the additives can be used alone or together with other additives, for example with other pour point depressants or dewaxing aids, with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, conductivity improvers, sludge inhibitors, odorants and / or additives for lowering the cloud point.
  • other pour point depressants or dewaxing aids with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, conductivity improvers, sludge inhibitors, odorants and / or additives for lowering the cloud point.
  • V 140 The viscosity (V 140 ) was measured with a Haake Reostress 600 viscometer.
  • comb polymer ethylene copolymer polyacrylate 800 ppm 1000 ppm 1500 ppm 7 (V) B1 A1 - -11 -17 -20 8th B1 A2 - -20 -22 -25 9 (V) B1 A3 - -11 -15 -15 Ex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
EP07008848A 2006-05-16 2007-05-02 Composition d'Huiles Combustibles. Withdrawn EP1857531A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006022698A DE102006022698B4 (de) 2006-05-16 2006-05-16 Zusammensetzung von Brennstoffölen

Publications (1)

Publication Number Publication Date
EP1857531A1 true EP1857531A1 (fr) 2007-11-21

Family

ID=38425459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07008848A Withdrawn EP1857531A1 (fr) 2006-05-16 2007-05-02 Composition d'Huiles Combustibles.

Country Status (6)

Country Link
US (1) US20070266621A1 (fr)
EP (1) EP1857531A1 (fr)
JP (1) JP2007308703A (fr)
KR (1) KR101298049B1 (fr)
CA (1) CA2588550A1 (fr)
DE (1) DE102006022698B4 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955495B2 (en) * 2008-07-31 2011-06-07 Chevron U.S.A. Inc. Composition of middle distillate
JP2011122135A (ja) * 2009-10-07 2011-06-23 Adeka Corp 脂肪酸メチルエステル用低温流動性向上剤
EP2504415A1 (fr) * 2009-11-24 2012-10-03 The Lubrizol Corporation Composition de lubrification contenant une combinaison d'agent de modification de viscosité
JP5731238B2 (ja) * 2010-03-04 2015-06-10 株式会社Adeka バイオディーゼル燃料組成物
JP5634302B2 (ja) * 2011-02-28 2014-12-03 株式会社Adeka 脂肪酸メチルエステル用低温流動性向上剤

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541664A1 (fr) * 2003-12-11 2005-06-15 Clariant GmbH Huiles combustibles comprenant des distillats moyens et des huiles d'origine végétale ou animale et ayant des propriétés à froid améliorées
EP1605031A2 (fr) * 2004-06-11 2005-12-14 Clariant GmbH Composition d'agents d'amélioration d'écoulement à froid dans un solvant-naphta à faible taux de naphtalène

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211534A (en) * 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
DE3405843A1 (de) * 1984-02-17 1985-08-29 Bayer Ag, 5090 Leverkusen Copolymere auf basis von maleinsaeureanhydrid und (alpha), (beta)-ungesaettigten verbindungen, ein verfahren zu ihrer herstellung und ihre verwendung als paraffininhibitoren
CA1282240C (fr) * 1984-02-21 1991-04-02 Albert Rossi Mazout a teneur de polymere d'alkylester
DE3742630A1 (de) * 1987-12-16 1989-06-29 Hoechst Ag Polymermischungen fuer die verbesserung der fliessfaehigkeit von mineraloeldestillaten in der kaelte
DE3922146A1 (de) * 1989-07-06 1991-01-17 Roehm Gmbh Additive fuer dieselkraftstoff
DE3926992A1 (de) * 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
DE4020640A1 (de) * 1990-06-29 1992-01-02 Hoechst Ag Terpolymerisate des ethylens, ihre herstellung und ihre verwendung als additive fuer mineraloeldestillate
DE4040317A1 (de) * 1990-12-17 1992-06-25 Henkel Kgaa Mischungen von fettsaeureniedrigalkylestern mit verbesserter kaeltestabilitaet
DE4042206A1 (de) * 1990-12-29 1992-07-02 Hoechst Ag Terpolymerisate des ethylens, ihre herstellung und ihre verwendung als additive fuer mineraloeldestillate
DE4138429A1 (de) * 1991-11-22 1993-05-27 Roehm Gmbh Verfahren zur herstellung von kompositionen mit verbessertem tieftemperaturverhalten
GB9204709D0 (en) * 1992-03-03 1992-04-15 Exxon Chemical Patents Inc Additives for oils
GB9222458D0 (en) * 1992-10-26 1992-12-09 Exxon Chemical Patents Inc Oil additives and compositions
DK0606055T3 (da) * 1993-01-06 1998-04-14 Clariant Gmbh Terpolymerer på basis af alfa,beta-umættede dicarboxylsyreanhydrider, alfa-beta-umættede forbindelser og polyoxyalkylenethere af lavere umættede alkoholer
GB9417670D0 (en) * 1994-09-02 1994-10-19 Exxon Chemical Patents Inc Oil additives, compositions and polymers for use therein
US5757190A (en) * 1996-05-03 1998-05-26 Digital Control Corporation System including an arrangement for tracking the positional relationship between a boring tool and one or more buried lines and method
DE19620119C1 (de) * 1996-05-18 1997-10-23 Hoechst Ag Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
DE19754555A1 (de) * 1997-12-09 1999-06-24 Clariant Gmbh Verfahren zur Herstellung von Ethylen-Mischpolymerisaten und deren Verwendung als Zusatz zu Mineralöl und Mineralöldestillaten
DE19757830C2 (de) * 1997-12-24 2003-06-18 Clariant Gmbh Brennstofföle mit verbesserter Schmierwirkung
US7041738B2 (en) * 2002-07-09 2006-05-09 Clariant Gmbh Cold flow improvers for fuel oils of vegetable or animal origin
DE10260714A1 (de) * 2002-12-23 2004-07-08 Clariant Gmbh Brennstofföle mit verbesserten Kälteeigenschaften
ATE552324T1 (de) * 2003-06-23 2012-04-15 Infineum Int Ltd Ölzusammensetzungen
PL1491614T3 (pl) * 2003-06-23 2012-09-28 Infineum Int Ltd Kompozycje olejów
DE10349851B4 (de) * 2003-10-25 2008-06-19 Clariant Produkte (Deutschland) Gmbh Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
DE10349850C5 (de) * 2003-10-25 2011-12-08 Clariant Produkte (Deutschland) Gmbh Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
DE10357878C5 (de) * 2003-12-11 2013-07-25 Clariant Produkte (Deutschland) Gmbh Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541664A1 (fr) * 2003-12-11 2005-06-15 Clariant GmbH Huiles combustibles comprenant des distillats moyens et des huiles d'origine végétale ou animale et ayant des propriétés à froid améliorées
EP1605031A2 (fr) * 2004-06-11 2005-12-14 Clariant GmbH Composition d'agents d'amélioration d'écoulement à froid dans un solvant-naphta à faible taux de naphtalène

Also Published As

Publication number Publication date
US20070266621A1 (en) 2007-11-22
DE102006022698A1 (de) 2007-11-22
JP2007308703A (ja) 2007-11-29
CA2588550A1 (fr) 2007-11-16
KR101298049B1 (ko) 2013-08-20
KR20070111375A (ko) 2007-11-21
DE102006022698B4 (de) 2008-10-02

Similar Documents

Publication Publication Date Title
EP1380635B1 (fr) Agent d'amélioration de l'écoulement à froid pour huiles combustibles d'origine animale ou végétale.
DE102006022718B4 (de) Zusammensetzung von Brennstoffölen
EP1526167B1 (fr) Agent d'amélioration de l'écoulement à froid pour huiles combustibles d'origine végétale ou animale
EP1857529B1 (fr) Agent d'amélioration de l'écoulement à froid pour huiles combustibles d'origine végétale ou animale
EP1541664B1 (fr) Huiles combustibles comprenant des distillats moyens et des huiles d'origine végétale ou animale et ayant des propriétés à froid améliorées
EP1541663B1 (fr) Huiles combustibles comprenant des distillats moyens et des huiles d'origine végétale ou animale et ayant des propriétés à froid améliorées
EP1526168B1 (fr) Agent d'amélioration de l'écoulement à froid pour huiles combustibles d'origine végétale ou animale
DE102006022720B4 (de) Kaltfließverbesserer für pflanzliche oder tierische Brennstofföle
EP1808449B1 (fr) Additif pour distillats de huile minérale ayant un bas contenu de soufre comprenant des copolymères greffés à base de copolymères éthylene/vinyl esters
EP1541662B1 (fr) Huiles combustibles comprenant des distillats moyens et des huiles d'origine végétale ou animale et ayant des propriétés à froid améliorées.
EP1674554A1 (fr) Additifs pour distillats d'huiles minérales, à faible contenu en soufre, comprenant un copolymère greffé à base de copolymères d'éthylène-acétate de vinyle.
EP1808450A1 (fr) Additifs pour distillats d'huile minérale à faible teneur en soufre, comprenant des copolymères greffés sur la base de vinyl ethylène ester copolymer
DE10319028B4 (de) Demulgatoren für Mischungen aus Mitteldestillaten mit Brennstoffölen pflanzlichen oder tierischen Ursprungs
DE102006022698B4 (de) Zusammensetzung von Brennstoffölen
EP1935967A1 (fr) Agents d'abaissement du point d'écoulement des combustibles d'origine animale ou végétale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080521

17Q First examination report despatched

Effective date: 20080624

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CLARIANT FINANCE (BVI) LIMITED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20131210