EP1851531A1 - Technical device combination for measuring material concentration and temperature profile based on fibre bragg gratings in optical fibres - Google Patents

Technical device combination for measuring material concentration and temperature profile based on fibre bragg gratings in optical fibres

Info

Publication number
EP1851531A1
EP1851531A1 EP06700471A EP06700471A EP1851531A1 EP 1851531 A1 EP1851531 A1 EP 1851531A1 EP 06700471 A EP06700471 A EP 06700471A EP 06700471 A EP06700471 A EP 06700471A EP 1851531 A1 EP1851531 A1 EP 1851531A1
Authority
EP
European Patent Office
Prior art keywords
arrangement according
spectroscopy
fiber
bragg gratings
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06700471A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Borchers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer Technology Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services GmbH filed Critical Bayer Technology Services GmbH
Publication of EP1851531A1 publication Critical patent/EP1851531A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present invention relates to a method for the apparatus-technical combination of MR substance concentration measurements with the spectroscopic evaluation of glass fibers, equipped with fiber Bragg gratings (FBG) for the measurement of temperature profiles.
  • FBG fiber Bragg gratings
  • FT-NIR Fourier Transform Near Infrared
  • MM glass fibers with a large light-carrying cross section (several 100 ⁇ m) are used for process coupling.
  • the spectrometers themselves are high-resolution and cover a wide spectral bandwidth (about 800 nm to 2.5 ⁇ m).
  • the object was thus to modify the optical components or their composition so that both probes (process light barriers for concentration measurements and FBG-equipped glass fibers for temperature measurements) can be operated with the same device base, preferably in optical multiplex ,
  • the spectroscopic arrangement according to the invention therefore consists of at least one light source for FBG fibers and NIR measuring cell, at least one optical multiplexer for connecting the measuring path to the spectrometer, at least one FBG fiber and at least one glass fiber for NIR spectroscopy, an interferometer, a Detector and a signal evaluation / control, whereby some of these components can already be summarized in more complex components (eg FT-NIR spectrometer).
  • a spectrometer can serve several, and in particular also different, measuring tasks virtually simultaneously. This is a significant contribution to reducing costs for the individual measuring point, especially since only access to the process control system is required. It may well be useful to use the apparatus combination according to the invention even if the measurement of substance concentrations and the measurement of temperatures with fiber Bragg gratings in different apparatus takes place.
  • the particular advantage of this method for the FBG temperature measurement - due to the large spectral acceptance of the analyzer and the spectrally broad light source - is also that the spectral distribution of the FBG on a glass fiber strand can be done with larger spectral distances, so that the possible spectral change not caused by temperature changes so quickly leading to a spectral overlap with another FBG ' on the fiber.
  • this advantage can also be used to write more FBG to a fiber, without the individual spectra of the FBG overlap with temperature variations.
  • an FT-NIR spectrometer is used in an arrangement as shown in Scheme 1.
  • the interferometer is located in the optical path between circulator and detector.
  • a separate illumination path can be set up with the optimal components for the respective spectroscopy.
  • an additional single-mode multiplexer is provided in the method according to the invention, which is also operated synchronously with the other two multiplexers.
  • the shading of the multiplexer is controlled so that the switched to the input of the interferometer measuring channel is also supplied with the appropriate light source.
  • the total number of possible measuring sections (NIR measuring probes or FBG-equipped optical fibers) is limited only by the number of input channels of the Mult ⁇ plexer in front of the input of the interferometer.
  • the usual sources for example halogen lamps
  • the optical multiplexer with MM fiber optic coupling can be used at the outputs of the multiplexer.
  • the customary broadband light sources for example ELEDs or SLEDs with fiber pigtails
  • these light sources are limited to some 10 nm in usable emission bandwidth.
  • one or even all multiplexers for switching over the light source (s) can be dispensed with if each unit to be spectroscoped (FBG-populated fiber or NIR measuring cell) is supplied with its own, suitable light source.
  • FBG-populated fiber or NIR measuring cell spectroscoped
  • This can be useful for financial reasons or because only one measuring section (FBG-equipped fiber or NIR measuring cell) is operated by the respective type (scheme 2).
  • this possibility can also be used specifically to select specific suitable light sources for different FBG-equipped optical fibers.
  • each measuring section is selectively connected to each measuring section, each with suitable multiplexers.
  • An embodiment in which FBG spectroscopy is operated only from one end of the fiber is also preferred.
  • the time sequence of the measuring sections to be spectroscoped can be freely selected by the device controller.
  • the circulator of one or more measuring sections of FBG-equipped glass fibers can be replaced by a 2x2 coupler.
  • this combination is generally associated with greater losses of intensity (Scheme 3). Nevertheless, it can prove advantageous if a large spectral width has to be covered, for which the increasing attenuation of the circulators in the spectral edge region exceeds the losses of a 2x2 coupler.
  • the FBG-tipped sensing fiber can be used for one or even several measuring stre 'CKEN without the use of a circulator or 2x2-coupler are connected directly in the light path between the illumination fiber and the input multiplexers of the interferometer and thus analyzed in transmission (Scheme 4).
  • this is not the preferred variant for temperature evaluation of the FBG spectra, since they have asymmetries in this arrangement.
  • several light sources for spectroscopy are coupled to glass fibers equipped with fiber Bragg gratings via 2x2 couplers (scheme 5). In this way, the effective spectral illumination bandwidth can be extended.
  • This principle can also be cascaded for more than two light sources. This spectral combination of multiple light sources is also a preferred embodiment.
  • a common data path to the process control system is used for the measurement of substance concentrations and temperature or profiles.
  • the spectroscopic arrangement according to the invention can be used in various processes of the food industry, the food processing industry, the chemical-pharmaceutical industry and the petrochemical industry, in particular refineries, in order to determine appropriate data.
  • the spectroscopic arrangement according to the invention is suitable as a measuring device.
  • Preferred, particularly preferred or very particularly preferred are embodiments which make use of the parameters, compounds, definitions and explanations mentioned under preferred, particularly preferred or very particularly preferred.
  • Scheme 6 shows an arrangement for the apparatus-technologically combined spectroscopic evaluation of NIR probes and fiber Bragg gratings for temperature measurement.
  • the ELED with downstream optical MEMS multiplexer from an FBG evaluation unit (AWE) from AOS, Dresden is used for the light source for fiber Bragg grating evaluation.
  • the fiber Bragg gratings were also inscribed by AOS into an SMF-28 fiber.
  • the FT-NIR spectrometer used was the Matrix Duplex device from Bruker in the configuration shown. The measured spectrum of the fiber Bragg gratings is shown in Figure 1.
  • Scheme 7 the arrangement of Scheme 6 is modified so that a halogen lamp with condenser was used to illuminate the glass fiber loaded with fiber Bragg gratings.
  • Figure 2 shows the spectrum of the fiber Bragg gratings measured with it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The invention relates to a method for combining devices for measuring material concentrations NIR associated with a spectroscopic evaluation of glass fibres and fitted with fibre Bragg gratings (FBG) for measuring temperature profiles.

Description

Apparatetechnische Kombination einer NIR-Stoffkonzentratioήsmessung mit einer auf Faser-Bragg-Gittern in Glasfasern beruhenden TemperaturprofilmessungApparatus-technical combination of an NIR substance concentration measurement with a temperature profile measurement based on fiber Bragg gratings in glass fibers
Die vorliegende Erfindung betrifft ein Verfahren zur apparatetechnischen Kombination von MR- Stoffkonzentrationsmessungen mit der spektroskopischen Auswertung von Glasfasern, bestückt mit Faser-Bragg-Gittern (FBG) zur Messung von Temperaturprofilen.The present invention relates to a method for the apparatus-technical combination of MR substance concentration measurements with the spectroscopic evaluation of glass fibers, equipped with fiber Bragg gratings (FBG) for the measurement of temperature profiles.
Üblicherweise werden zur Online-Messung von Stoffkonzentrationen in komplexen stofflichen Gemischen in chemisch-pharmazeutischen Anlagen Fourier-Transform-Nah-Infrarot (FT-NIR) Spektrometer eingesetzt, (s. PROCESS, 4/2003 „Bessere Daten für effizientere Prozesse). Diese Geräte gibt es heute in prozesstauglichen Ausführungen mit optischem Multiplexer für die Bedienung mehrerer optischer Sonden (z.B. Fa. Braker, Matrix-F). Die wesentlichen optischen Komponenten sind in diesen Spektrornetern integriert (Lichtquelle, Interferometer, Detektor, Referenzlaser für die Wellenlängenkalibrierung des Interferometer s). Um ein gutes Signal-zu-Rausch- Verhältnis zu erhalten, werden zur Prozessankopplung Multimode-Glas-Glasfasern (MM-Glasfasern) mit großem lichttragenden Querschnitt (mehrere 100 μm) verwendet. Die Spektrometer selbst sind hochauflösend und decken eine große spektrale Bandbreite ab (ca. 800 nm bis 2,5 μm).Usually, Fourier Transform Near Infrared (FT-NIR) spectrometers are used for the online measurement of substance concentrations in complex material mixtures in chemical-pharmaceutical plants (see PROCESS, 4/2003 "Better Data for More Efficient Processes). These devices are now available in process-compatible versions with optical multiplexer for the operation of several optical probes (for example Fa. Braker, Matrix-F). The main optical components are integrated in these spectrometers (light source, interferometer, detector, reference laser for the wavelength calibration of the interferometer s). In order to obtain a good signal-to-noise ratio, multi-mode glass (MM) glass fibers with a large light-carrying cross section (several 100 μm) are used for process coupling. The spectrometers themselves are high-resolution and cover a wide spectral bandwidth (about 800 nm to 2.5 μm).
Für die Temperaturprofilmessung mittels FBG-bestückter Glasfasern [s. DE 0403132404 A bzw. zur FBG-Technologie s. R. Kashyap, „Fiber Bragg Grätings", Academic Press, 458 (1999), • www.inventivefiber.com.sg/FBG.html. K.O. Hill et Al:, Appl. Phys. Lett. 32, p647 (19,78)], die schon prinzipbedingt auf 'der Verwendung von vergleichsweise lichtschwachen Single-Mode-Glas- fasern (SM-Glasfasern) beruht, haben die optischen Komponenten deutlich andere Eigenschaften als bei der stofflichen Konzentrationsmessung über die FT-NIR-Spekτroskopie. Da die Anwendung der FBG-Technologie ursprünglich und in weit überwiegendem Ausmaß in der optischen Nachrichtenübertragung liegt, sind die entsprechenden optischen Komponenten auch speziell auf die Belange dieser Technologie abgestimmt. Eingesetzt werden für gewöhnlich schmalbandige, hochauflösende Diodenarray-Spektrometer oder scannende Laserlichtquellen oder Faserspektro- meter. Die Lichtquellen sind den Spektrometern angepasst (SLED 's (Superluminescent Light Emitting Diode) oder scannende Laserquellen) und verfügen über typische Bandbreiten von einigen zehn Nanometern.For temperature profile measurement using FBG-equipped glass fibers [s. DE 0403132404 A or to the FBG technology s. R. Kashyap, "Fiber Bragg Grating", Academic Press, 458 (1999), www.inventivefiber.com.sg/FBG.html, KO Hill et al., Appl. Phys. Lett., 32, p647 (19, 78 )], which is based in principle on the use of comparatively faint single-mode glass fibers (SM glass fibers), the optical components have distinctly different properties than in the case of material concentration measurement via FT-NIR spectroscopy While FBG technology was originally and widely used in optical communications, the corresponding optical components are also tuned specifically to the needs of this technology, typically using narrowband, high-resolution diode array spectrometers or scanning laser light sources or fiber spectrometers are adapted to the spectrometers (SLEDs (Superluminescent Light Emitting Diode) or scanning laser sources) and have typical bandwidths of one to two ten nanometers.
Beide Technologien (FT-NIR zur Stoffkonzentrationsbestimmung und die Spektroskopie an FBG- bestückten Glasfasern) haben einen Überlapp im verwendeten Spektralbereich und in der möglichen Anwendung in chemisch-pharmazeutischen Apparaten, in Apparaten der Petrochemie, insbesondere Raffinerien bzw. in Apparaten der Nahrungsmittel verarbeitenden Industrie. (Reaktoren, Kolonnen (z.B. zur Destillation, Extraktion oder zum Trocknen), Kristaller, Trockner, Öfen, speziell mikrowellenbeheizte oder Induktionsöfen) Dies lässt den Wunsch nach einer gemeinsamen Gerätebasis entstehen.Both technologies (FT-NIR for substance concentration determination and spectroscopy on FBG-equipped glass fibers) have an overlap in the spectral range used and in the possible application in chemical-pharmaceutical apparatuses, in apparatuses of the petrochemical industry, in particular refineries or in apparatuses of the food-processing industry. (Reactors, columns (eg for distillation, extraction or drying), crystallizers, dryers, Ovens, especially microwave-heated or induction ovens) This creates the desire for a common device base.
Ausgehend vom Stand der Technik stellte sich somit die Aufgabe, die optischen Komponenten bzw. deren Zusammenstellung so zu modifizieren, dass beide Messsonden (Prozesslichtschranken für Konzentrationsmessungen und FBG-bestückte Glasfasern für Temperaturmessungen) mit der gleichen Gerätebasis, vorzugsweise im optischen Multiplex, bedient werden können.Starting from the prior art, the object was thus to modify the optical components or their composition so that both probes (process light barriers for concentration measurements and FBG-equipped glass fibers for temperature measurements) can be operated with the same device base, preferably in optical multiplex ,
Die apparative Kombination von FT-NIR-Spektroskopie mit der spektroskopischen Auswertung von FBG bestückten Glasfasern ist im Stand der Technik nirgends erwähnt.The apparatus combination of FT-NIR spectroscopy with the spectroscopic evaluation of FBG-equipped glass fibers is nowhere mentioned in the prior art.
Überraschend wurde nun gefunden, dass mit einer speziellen Konfiguration der optischen Kompo- nenten und unter Umständen bei Verwendung spezieller zusätzlicher Lichtquellen, die kombinierte Spektroskopie an Stoffgemischen und an FBG-bestückten Glasfasern möglich ist. Zur Durchführung der vorliegenden Erfindung können dabei die aus dem Stand der Technik hinreichend bekannten und kommerziell erhältlichen Geräte, Glasfasern etc. (s.o. Stand der Technik)*eingesetzt werden.Surprisingly, it has now been found that with a special configuration of the optical components and possibly with the use of special additional light sources, the combined spectroscopy of mixtures of substances and of FBG-equipped glass fibers is possible. For carrying out the present invention, it is possible to use the devices, glass fibers, etc. known from the prior art which are sufficiently known from the prior art (see prior art) * .
Die erfindungsgemäße spektroskopische Anordnung besteht daher aus mindestens einer Lichtquelle für FBG-Fasern und NIR-Messzelle, mindestens eines optischen Multiplexers zur Aufschaltung der Messstrecke auf das Spektrometer, mindestens einer FBG-Faser und mindestens einer Glasfaser für die NIR-Spektroskopie, einem Interferometer, einem Detektor und einer Signalauswertung/Steuerung, wobei einige dieser Bauteile auch bereits in komplexeren Bauteilen (z.B. FT-NIR-Spektrometer) zusammengefasst sein können.The spectroscopic arrangement according to the invention therefore consists of at least one light source for FBG fibers and NIR measuring cell, at least one optical multiplexer for connecting the measuring path to the spectrometer, at least one FBG fiber and at least one glass fiber for NIR spectroscopy, an interferometer, a Detector and a signal evaluation / control, whereby some of these components can already be summarized in more complex components (eg FT-NIR spectrometer).
Damit ist es jetzt möglich mit nur einem Spektrometer zwei verschiedenartige Messaufgaben an Apparaten der chemisch-pharmazeutischen Industrie zu bedienen. Durch die optische Multiplex- fähigkeit können mit einem Spektrometer mehrere, insbesondere auch verschiedenartige Messaufgaben quasi simultan bedient werden. Dies ist ein erheblicher Beitrag zur Kostensenkung für die einzelne Messstelle, zumal auch nur ein Zugang zum Prozessleitsystem erforderlich ist. Dabei kann es durchaus sinnvoll sein, die erfindungsgemäße apparative Kombination auch dann zu nutzen, wenn die Messung von Stoffkonzentrationen und die Messung von Temperaturen mit Faser-Bragg-Gittern in verschiedenen Apparaten stattfindet.Thus, it is now possible to use two different measuring tasks on apparatuses of the chemical and pharmaceutical industry with only one spectrometer. As a result of the optical multiplexing capability, a spectrometer can serve several, and in particular also different, measuring tasks virtually simultaneously. This is a significant contribution to reducing costs for the individual measuring point, especially since only access to the process control system is required. It may well be useful to use the apparatus combination according to the invention even if the measurement of substance concentrations and the measurement of temperatures with fiber Bragg gratings in different apparatus takes place.
Der besondere Vorteil dieser Methode für die FBG-Temperaturmessung - bedingt durch die große spektrale Akzeptanz des Analysators und die spektral breite Lichtquelle - ist auch, dass die spektrale Verteilung der FBG auf einem Glasfaserstrang mit größeren spektralen Abständen erfolgen kann, so dass die mögliche spektrale Änderung hervorgerufen durch Temperaturänderungen nicht so schnell zu einem spektralen Überlapp mit einem anderen FBG' auf der Faser führt. Alternativ oder auch ergänzend kann dieser Vorteil auch genutzt werden um mehr FBG auf eine Faser zu schreiben, ohne dass sich die Einzel-Spektren der FBG bei Temperaturvariationen überlappen.The particular advantage of this method for the FBG temperature measurement - due to the large spectral acceptance of the analyzer and the spectrally broad light source - is also that the spectral distribution of the FBG on a glass fiber strand can be done with larger spectral distances, so that the possible spectral change not caused by temperature changes so quickly leading to a spectral overlap with another FBG ' on the fiber. Alternatively or in addition, this advantage can also be used to write more FBG to a fiber, without the individual spectra of the FBG overlap with temperature variations.
Nach dem erfindungsgemäßen Verfahren wird ein FT-NIR-Spektrometer in einer Anordnung wie in Schema 1 dargestellt verwendet. Das Interferometer befindet -sich im optischen Weg zwischen Zirkulator und Detektor. Auf diese Art und Weise kann für jede der beiden spektroskopischen Methoden ein separater Beleuchtungsweg mit den für die jeweilige Spektroskopie optimalen Komponenten aufgebaut werden. Gegenüber der üblichen apparativen Ausstattung von Mehrkanal- FT-NIR-Spektrometern mit zwei synchronisiert betriebenen Multi-Mode-Multiplexern ist im erfindungsgemäßen Verfahren ein zusätzlicher Single-Mode-Multiplexer vorgesehen, der ebenfalls mit den beiden anderen Multiplexern synchron betrieben wird. Die Verschattung der Multiplexer wird dabei so gesteuert, dass der auf den Eingang des Interferometers aufgeschaltete Messkanal auch mit der entsprechenden Lichtquelle versorgt wird. Die Gesamtanzahl möglicher Messstrecken (NIR-Messsonden bzw. FBG-bestückte Glasfasern) wird dabei nur durch die Anzahl der-Eingangs- kanäle des Multϊplexers vor dem Eingang des Interferometers begrenzt.According to the method of the invention, an FT-NIR spectrometer is used in an arrangement as shown in Scheme 1. The interferometer is located in the optical path between circulator and detector. In this way, for each of the two spectroscopic methods, a separate illumination path can be set up with the optimal components for the respective spectroscopy. Compared with the conventional equipment of multi-channel FT-NIR spectrometers with two synchronously operated multi-mode multiplexers, an additional single-mode multiplexer is provided in the method according to the invention, which is also operated synchronously with the other two multiplexers. The shading of the multiplexer is controlled so that the switched to the input of the interferometer measuring channel is also supplied with the appropriate light source. The total number of possible measuring sections (NIR measuring probes or FBG-equipped optical fibers) is limited only by the number of input channels of the Multϊplexer in front of the input of the interferometer.
Für die Lichtquellen zur NIR-Spektroskopie (Stoffkonzentrationsbestimmung) lassen sich die dort üblichen Quellen (z.B. Halogenlampen) mit entsprechender Einkopplung in die MM-Glasfaser bzw. auch direkter Ankopplung an den optischen Multiplexer mit MM-Glasfaser-Einkopplung an den Ausgängen des Multiplexers verwenden. 'For the light sources for NIR spectroscopy (substance concentration determination), the usual sources (for example halogen lamps) with appropriate coupling into the MM fiber or also direct coupling to the optical multiplexer with MM fiber optic coupling can be used at the outputs of the multiplexer. '
Für die Spektroskopie an den FBG-bestückten Glasfasern lassen sich die speziell dafür gebräuchlichen Breitbandlichtquellen (z.B. ELED's oder SLED's mit Faser-Pigtail) verwenden. Diese Lichtquellen sind jedoch auf einige 10 nm in der nutzbaren Emissions-Bandbreite beschränkt.For spectroscopy on the FBG-tipped optical fibers, the customary broadband light sources (for example ELEDs or SLEDs with fiber pigtails) can be used. However, these light sources are limited to some 10 nm in usable emission bandwidth.
Es ist für den Fachmann dabei unerwartet, dass die Lichtintensität die die mittels SM-Glasfaser erreicht werden kann für die Analyse mittels FT-NIR-Spektroskopie ausreicht. FT-MR-Spektro- meter werden üblicherweise mit den deutlich höheren Intensitäten die in MM-Glasfasern erreichbar sind, betrieben, es ist daher vollkommen überraschend, dass auch die geringen, in SM Glasfasern möglichen Intensitäten für den Betrieb der Spektrometer ausreichen und den erfindungsgemäßen Kombinationsbetrieb ermöglichen.It is unexpected to those skilled in the art that the light intensity that can be achieved by means of SM glass fiber is sufficient for the analysis by means of FT-NIR spectroscopy. FT-MR spectrometers are usually operated with the much higher intensities which are achievable in MM glass fibers. It is therefore completely surprising that even the small intensities possible in SM glass fibers are sufficient for the operation of the spectrometers and the combination operation according to the invention enable.
Überraschend wurde zudem gefunden, dass an Stelle der ELED's bzw. SLED's selbst mit konventionellen Glühlampen, insbesondere Halogenlampen, und einem lichtstarken Kondensor, der das Licht auf die Stirnfläche einer SM-Glasfaser bündelt, ausreichend Licht für den Detektor des FT-NIR-. Spektrometers zur Verfügung steht. Dies ist deswegen so erstaunlich, weil der Unterschied in der Einkoppeleffizienz zwischen MM-Glasfaser und SM-Glasfaser bei der SM- Glasfaser um ca. einen Faktor 20.000 geringer als bei der MM-Glasfaser ausfällt (geometrischer Unterschied in der Querschnittsfläche und Unterschied in der numerischen Apertur). In einer bevorzugten Ausführungsform können daher sowohl die NIR-Spektroskopie als auch die FBG Temperaturmessung mit einer gemeinsamen, je nach Bedarf unterschiedlich eingekoppelten Lichtquelle betrieben werden.Surprisingly, it has also been found that instead of the ELEDs or SLEDs even with conventional incandescent lamps, in particular halogen lamps, and a high-speed condenser, which focuses the light on the end face of an SM glass fiber, sufficient light for the detector of the FT-NIR. Spectrometer is available. This is so amazing because the difference in coupling efficiency between MM fiber and SM fiber in the SM Glass fiber is approximately 20,000 times smaller than the MM glass fiber (geometric difference in cross-sectional area and difference in numerical aperture). In a preferred embodiment, therefore, both the NIR spectroscopy and the FBG temperature measurement can be operated with a common light source, which is coupled differently depending on requirements.
Alternativ zur vorgenannten Vorgehensweise kann auch auf einen oder sogar alle Multiplexer zum Umschalten der Lichtquelle(n) verzichtet werden, wenn jede zu spektroskopierende Einheit (FBG- bestückte-Faser oder NIR-Messzelle) mit einer eigenen, geeigneten Lichtquelle versorgt wird. Dies kann aus finanziellen Erwägungen oder weil vom jeweiligen Typ nur eine Messstrecke (FBG- bestückte Faser oder NIR-Messzelle) betrieben wird, sinnvoll sein (Schema 2). Diese Möglichkeit kann aber auch speziell genutzt werden, um für verschiedene FBG-bestückte Glasfasern spezifisch passende Lichtquellen zu wählen.As an alternative to the above-mentioned procedure, one or even all multiplexers for switching over the light source (s) can be dispensed with if each unit to be spectroscoped (FBG-populated fiber or NIR measuring cell) is supplied with its own, suitable light source. This can be useful for financial reasons or because only one measuring section (FBG-equipped fiber or NIR measuring cell) is operated by the respective type (scheme 2). However, this possibility can also be used specifically to select specific suitable light sources for different FBG-equipped optical fibers.
In einer Variante werden wahlweise separate Lichtquellen auf jede Messstrecke mit jeweils geeigneten Multiplexern aufgeschaltet. Bevorzugt ist auch eine Ausführungsform in welcher die FBG-Spektroskopie nur von einem Ende der Faser aus betrieben wird.In a variant, separate light sources are selectively connected to each measuring section, each with suitable multiplexers. An embodiment in which FBG spectroscopy is operated only from one end of the fiber is also preferred.
Bevorzugt kann die zeitliche Abfolge der zu spektroskopierenden Messstrecken von der Gerätesteuerung frei gewählt werden.Preferably, the time sequence of the measuring sections to be spectroscoped can be freely selected by the device controller.
In einer besonders bevorzugten Ausführungsform ist es zudem möglich die FBG-Spektroskopie wahlweise in Reflexion oder Transmission zu messen.In a particularly preferred embodiment, it is also possible to measure the FBG spectroscopy either in reflection or transmission.
In einer weiteren Variante kann der Zirkulator einer oder mehrerer Messstrecken von FBG- bestückten Glasfasern durch einen 2x2-Koppler ersetzt werden. Diese Kombination ist im allgemeinen allerdings mit größeren Verlusten an Intensität verbunden (Schema 3). Sie kann sich aber trotzdem als vorteilhaft erweisen, wenn eine große spektrale Breite abgedeckt werden muss, für die die zunehmende Dämpfung der Zirkulatoren im spektralen Randbereich die Verluste eines 2x2-Kopplers übersteigen.In another variant, the circulator of one or more measuring sections of FBG-equipped glass fibers can be replaced by a 2x2 coupler. However, this combination is generally associated with greater losses of intensity (Scheme 3). Nevertheless, it can prove advantageous if a large spectral width has to be covered, for which the increasing attenuation of the circulators in the spectral edge region exceeds the losses of a 2x2 coupler.
In einer weiteren Variante kann die FBG-bestückte Messfaser für eine oder auch mehrere Mess- stre'cken ohne Verwendung eines Zirkulators oder 2x2-Kopplers direkt in den Lichtweg zwischen Beleuchtungsfaser und Eingangsmultiplexer des Interferometers geschaltet und somit in Transmission ausgewertet werden (Schema 4). Dies ist allerdings nicht die bevorzugte Variante zur Temperatur- Auswertung der FBG-Spektren, da diese in dieser Anordnung Unsymmetrien aufweisen. In einer weiteren Variante werden mehrere Lichtquellen für die Spektroskopie an mit Faser-Bragg- Gittern bestückten Glasfasern über 2x2-Koppler miteinander gekoppelt (Schema 5). Auf diese Weise kann die effektive spektrale Beleuchtungsbandbreite ausgedehnt werden. Dieses Prinzip kann auch für mehr als zwei Lichtquellen kaskadiert werden. Diese spektrale Kombination mehrerer Lichtquellen ist ebenfalls eine bevorzugte Ausführungsform.In another variant, the FBG-tipped sensing fiber can be used for one or even several measuring stre 'CKEN without the use of a circulator or 2x2-coupler are connected directly in the light path between the illumination fiber and the input multiplexers of the interferometer and thus analyzed in transmission (Scheme 4). However, this is not the preferred variant for temperature evaluation of the FBG spectra, since they have asymmetries in this arrangement. In a further variant, several light sources for spectroscopy are coupled to glass fibers equipped with fiber Bragg gratings via 2x2 couplers (scheme 5). In this way, the effective spectral illumination bandwidth can be extended. This principle can also be cascaded for more than two light sources. This spectral combination of multiple light sources is also a preferred embodiment.
In einer ebenfalls bevorzugten Ausführungsform wird ein gemeinsamer Datenweg zum Prozess- leitsystem für die Messung von Stoffkonzentrationen und Temperatur bzw. - profilen genutzt.In a likewise preferred embodiment, a common data path to the process control system is used for the measurement of substance concentrations and temperature or profiles.
Die erfindungsgemäße spektroskopische Anordnung kann in verschiedenen Verfahren der Nahrungsmittelindustrie, der Nahrungsmittel verarbeitenden Industrie, der chemisch-pharma- zeutischen Industrie und der Petrochemie, insbesondere Raffinerien eingesetzt werden um entsprechende Daten zu ermitteln. In jedem verfahrenstechnischen Aufbau dieser Industrien, in welchen die Messung von Stoffkonzentrationen und/oder Temperatur bzw. Temperaturprofilen erforderlich ist oder nützlich erscheint, ist die erfindungsgemäße spektroskopische Anordnung als Messeinrichtung geeignet.The spectroscopic arrangement according to the invention can be used in various processes of the food industry, the food processing industry, the chemical-pharmaceutical industry and the petrochemical industry, in particular refineries, in order to determine appropriate data. In any procedural structure of these industries, in which the measurement of substance concentrations and / or temperature or temperature profiles is required or appears useful, the spectroscopic arrangement according to the invention is suitable as a measuring device.
Bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt sind Ausführungsformen, welche von den unter bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt genannten Parametern, Verbindungen, Definitionen und Erläuterungen Gebrauch machen.Preferred, particularly preferred or very particularly preferred are embodiments which make use of the parameters, compounds, definitions and explanations mentioned under preferred, particularly preferred or very particularly preferred.
Die in der Beschreibung aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Definitionen, Parameter, Verbindungen und Erläuterungen können jedoch auch untereinander, also zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden.However, the general or preferred definitions, parameters, compounds and explanations given in the description can also be combined with one another as desired, ie between the respective ranges and preferred ranges.
Die nachfolgenden Beispiele sollen die vorliegende Erfindung illustrieren ohne sie jedoch einzuschränken: The following examples are intended to illustrate the present invention without, however, limiting it:
BeispieleExamples
In Schema 6 ist eine Anordnung für die apparatetechnisch kombinierte spektroskopische Auswertung von NIR-Sonden und Faser-Bragg-Gittern zur Temperaturmessung dargestellt. Für die Lichtquelle zur Faser-Bragg-Gitter-Auswertung wird die ELED mit nachgeschaltetem optischem MEMS-Multiplexer aus einer FBG-Auswerteeinheit (AWE) der Fa. AOS, Dresden verwendet. Die Faser-Bragg-Gitter wurden ebenfalls von der Fa. AOS in eine SMF-28-Faser eingeschrieben. Für den Zirkulator wurde der Typ CIR-3-2-2-10-FA der Fa. Opneti eingesetzt. Als FT-NIR- Spektrometer wurde das Gerät Matrix-Duplex der Firma Bruker in der dargestellten Konfiguration verwendet. Das damit gemessene Spektrum der Faser-Bragg-Gitter ist in Abbildung 1 dargestellt.Scheme 6 shows an arrangement for the apparatus-technologically combined spectroscopic evaluation of NIR probes and fiber Bragg gratings for temperature measurement. The ELED with downstream optical MEMS multiplexer from an FBG evaluation unit (AWE) from AOS, Dresden is used for the light source for fiber Bragg grating evaluation. The fiber Bragg gratings were also inscribed by AOS into an SMF-28 fiber. For the circulator type CIR-3-2-2-10-FA from Opneti was used. The FT-NIR spectrometer used was the Matrix Duplex device from Bruker in the configuration shown. The measured spectrum of the fiber Bragg gratings is shown in Figure 1.
In Schema 7 ist die Anordnung nach Schema 6 so modifiziert, dass für die Beleuchtung der mit Faser-Bragg-Gittern bestückten Glasfaser eine Halogenlampe mit Kondensor verwendet wurde. Abbildung 2 zeigt das damit gemessene Spektrum der Faser-Bragg-Gitter. In Scheme 7, the arrangement of Scheme 6 is modified so that a halogen lamp with condenser was used to illuminate the glass fiber loaded with fiber Bragg gratings. Figure 2 shows the spectrum of the fiber Bragg gratings measured with it.

Claims

Patentansprüche: claims:
1. Spektroskopische Anordnung bestehend aus mindestens einer Lichtquelle für FBG Fasern und NIR-Messzelle, mindestens einem optischen Multiplexer zur Aufschaltung der Messstrecken auf das Spektrometer, mindestens einer FBG-Faser und mindestens einer1. Spectroscopic arrangement consisting of at least one light source for FBG fibers and NIR measuring cell, at least one optical multiplexer for connecting the measuring sections to the spectrometer, at least one FBG fiber and at least one
Glasfaser für die NIR-Spektroskopie, einem Interferometer, einem Detektor und einer Signalauswertung/Steuerung, zur apparativen Kombination der Nah-Infrarot- Spektroskopie zur stofflichen Konzentrationsbestimmung mit der Spektroskopie an Glasfasern bestückt mit Faser-Bragg-Gittem zur Temperatur- bzw, Temperaturprofilmessung, dadurch gekennzeichnet, dass das Interferometer eines Fourier-Transform-Spektrometers zwischen dem Ausgang der Messstrecken und dem Detektor angeordnet ist.Glass fiber for NIR spectroscopy, an interferometer, a detector and a signal evaluation / control, for the apparatus combination of near-infrared spectroscopy for material concentration determination with the spectroscopy of glass fibers equipped with fiber Bragg grating for temperature or temperature profile measurement, thereby in that the interferometer of a Fourier transform spectrometer is arranged between the output of the measuring sections and the detector.
2. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass wahlweise separate Lichtquellen auf jede Messstrecke mit jeweils geeigneten optischen Multiplexern aufgeschaltet werden können.2. Spectroscopic arrangement according to claim 1, characterized in that optionally separate light sources can be switched to each measuring section, each with suitable optical multiplexers.
3. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass jede Messstrecke auch ohne Verwendung eines optischen Multiplexers mit einer eigenen Lichtquelle ausgestattet werden kann.3. Spectroscopic arrangement according to claim 1, characterized in that each measuring section can be equipped without using an optical multiplexer with its own light source.
4. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Spektroskopie an mit Faser-Bragg-Gittern bestückten Glasfasern von nur einem Ende der Glasfaser aus durchgeführt werden kann.4. Spectroscopic arrangement according to claim 1, characterized in that the spectroscopy can be performed on equipped with fiber Bragg gratings glass fibers from only one end of the glass fiber.
5. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die zeitliche Abfolge der zu spektroskopierenden Messstrecken von der Gerätesteuerung frei gewählt werden kann.5. Spectroscopic arrangement according to claim 1, characterized in that the time sequence of the measuring sections to be spectroscoped can be freely selected by the device control.
6. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Spektroskopie an den mit Faser-Bragg-Gittern bestückten Glasfasern auch wahlweise in6. Spectroscopic arrangement according to claim 1, characterized in that the spectroscopy on the stocked with fiber Bragg gratings glass fibers also optionally in
Transmission durchgeführt werden kann.Transmission can be performed.
7. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass SLED's, ELED's oder Glühlampen als Lichtquellen für die Spektroskopie an mit Faser-Bragg- Gittern bestückten Glasfasern verwendet werden. 7. Spectroscopic arrangement according to claim 1, characterized in that SLED's, ELED's or incandescent lamps are used as light sources for the spectroscopy on fiber Bragg gratings equipped with glass fibers.
8. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass wechselweise mehrere Lichtquellen für die Spektroskopie an mit Faser-Bragg-Gittern bestückten Glasfasern spektral kombiniert werden.8. Spectroscopic arrangement according to claim 1, characterized in that alternately several light sources for the spectroscopy are spectrally combined with fiber Bragg gratings equipped with glass fibers.
9. Spektroskopische Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass für die Messung von Stoffkonzentrationen und Temperatur bzw. -profilen ein gemeinsamer9. Spectroscopic arrangement according to claim 1, characterized in that for the measurement of substance concentrations and temperature or profiles a common
Datenweg zu einem Prozessleitsystem genutzt wird.Data path is used to a process control system.
10. Verfahren zur Bestimmung von Stoffkonzentrationen und Temperatur bzw. -profilen, dadurch gekennzeichnet, dass in verfahrenstechnischen Apparaten der chemischpharmazeutischen Industrie, der Petrochemie, insbesondere Raffinerien sowie in Apparaten der Nahrungsmittel verarbeitenden Industrie eine spektroskopische Anordnung nach Ansprüchen 1 bis 9 verwendet wird. 10. A method for the determination of substance concentrations and temperature or profiles, characterized in that a spectroscopic arrangement according to claims 1 to 9 is used in process engineering apparatuses of the chemical and pharmaceutical industry, petrochemicals, in particular refineries and in apparatuses of the food processing industry.
EP06700471A 2005-01-28 2006-01-17 Technical device combination for measuring material concentration and temperature profile based on fibre bragg gratings in optical fibres Withdrawn EP1851531A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005003989 2005-01-28
DE102005004293 2005-01-28
DE102005010216A DE102005010216A1 (en) 2005-01-28 2005-03-05 Spectroscopic arrangement, has detector and signal evaluator/controller combining spectroscopy for measuring material concentrations with spectroscopy of glass fiber and fitted with fiber Bragg gratings for measuring temperature profiles
PCT/EP2006/000357 WO2006079466A1 (en) 2005-01-28 2006-01-17 Technical device combination for measuring material concentration and temperature profile based on fibre bragg gratings in optical fibres

Publications (1)

Publication Number Publication Date
EP1851531A1 true EP1851531A1 (en) 2007-11-07

Family

ID=36001634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06700471A Withdrawn EP1851531A1 (en) 2005-01-28 2006-01-17 Technical device combination for measuring material concentration and temperature profile based on fibre bragg gratings in optical fibres

Country Status (5)

Country Link
US (1) US7728960B2 (en)
EP (1) EP1851531A1 (en)
JP (1) JP5026988B2 (en)
DE (1) DE102005010216A1 (en)
WO (1) WO2006079466A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228017B2 (en) * 2005-09-30 2007-06-05 General Electric Company Fiber optic sensing device and method of making and operating the same
DE102015109263A1 (en) * 2015-06-11 2016-12-15 Thilo Kraemer Measuring system for quality monitoring of test items
JP2017040565A (en) * 2015-08-20 2017-02-23 並木精密宝石株式会社 Probe for optical imaging, and shape measuring apparatus using the probe for optical imaging
DE102016125871A1 (en) 2016-12-29 2018-07-05 Endress+Hauser Conducta Gmbh+Co. Kg System for determining and monitoring at least one process variable of a medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701191B2 (en) * 1993-01-25 1998-01-21 国際電信電話株式会社 Infrared spectrometer
JPH08338806A (en) * 1995-06-12 1996-12-24 Tokyo Electric Power Co Inc:The Apparatus for measuring concentration of gas in oil
US6228650B1 (en) 1997-12-17 2001-05-08 Phillips Petroleum Company Acid catalyst regeneration control
US6300633B1 (en) 1998-07-06 2001-10-09 Bayer Corporation In-line method for determining the residue content of an isocyanate and apparatus useful therefor
US20040010170A1 (en) 2002-01-09 2004-01-15 Vickers George H. Para-xylene and ethylbenzene separation from mixed C8 aromatics
JP4175870B2 (en) * 2002-11-21 2008-11-05 株式会社東芝 Optical fiber grating physical quantity measurement system
DE10322439A1 (en) 2003-05-19 2004-12-09 Bayer Ag Method and device for determining the isomer composition in isocyanate production processes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2006079466A1 *

Also Published As

Publication number Publication date
US20080088822A1 (en) 2008-04-17
US7728960B2 (en) 2010-06-01
JP2008528983A (en) 2008-07-31
WO2006079466A1 (en) 2006-08-03
DE102005010216A1 (en) 2006-08-03
JP5026988B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2702376B1 (en) Chip-based spectroscopy array
EP1891408A1 (en) Method and device for producing and detecting a raman spectrum
EP0257229B1 (en) Fotometer
EP0300965A1 (en) Flow-through cuvette
EP2895844B1 (en) Apparatus with an arrangement of optical elements
WO2011033017A1 (en) Method for generating and for detecting a raman spectrum
EP1851531A1 (en) Technical device combination for measuring material concentration and temperature profile based on fibre bragg gratings in optical fibres
EP2906919A1 (en) Temperature measurement using an optical waveguide in a plate heat exchanger
EP2877811B1 (en) Interferometric distance measuring assembly and method
DE102006045253B3 (en) Gas e.g. laughing gas, concentration measuring device, has reflective mirrors, where distance between mirrors is changeable on basis of Fabry Perot interferometer, and transmissions of radiations are facilitated in two spectral regions
DE102016125871A1 (en) System for determining and monitoring at least one process variable of a medium
EP3270045B1 (en) Assembly for the measurement of gas concentrations
EP3839455A1 (en) Device for high resolution detection of the concentration of substances in fluid media
DE2948590C2 (en) Device for measuring the absorption of gas mixtures
WO2003025552A1 (en) Laser-absorption spectroscopy method and devices for carrying out said method
DE102019205512B4 (en) DEVICE AND METHOD FOR EVALUATION OF SPECTRAL PROPERTIES OF AN OBJECT TO BE MEASURED
EP3304146A1 (en) Optical sensor for measuring trace components in liquids and/or gases
DE4224299C2 (en) spectrometer
DE102014119235A1 (en) Determination of polarization-optical properties of a sample taking into account a transmission dispersion
DE102011080413B4 (en) Method and device for determining a physical quantity by means of a fiber optic sensor, preferably a fiber Bragg sensor
DE102014001846B3 (en) Device for the absolute and spatially resolved measurement of the thermally relevant absorption of a light beam in an optical fiber
DE102007027301B4 (en) Method and micro-technical device for high-resolution measurement of the wavelength of electromagnetic radiation
DE102006050421A1 (en) Optical filter arrangement for selecting different wavelengths of electromagnetic spectrum, has narrow-band line filters i.e. interference filters, arranged such that filters extend into small volume unit laid around common point
DE10044827C2 (en) Method and device for the optical-spectroscopic measurement of substance concentrations in substances or substance mixtures
DE102012016910B4 (en) spectrometer arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190115