EP3304146A1 - Optical sensor for measuring trace components in liquids and/or gases - Google Patents
Optical sensor for measuring trace components in liquids and/or gasesInfo
- Publication number
- EP3304146A1 EP3304146A1 EP16726280.7A EP16726280A EP3304146A1 EP 3304146 A1 EP3304146 A1 EP 3304146A1 EP 16726280 A EP16726280 A EP 16726280A EP 3304146 A1 EP3304146 A1 EP 3304146A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ring resonator
- waveguide
- sensor according
- ring
- resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 28
- 239000007789 gas Substances 0.000 title claims abstract description 18
- 239000007788 liquid Substances 0.000 title claims abstract description 9
- 239000011148 porous material Substances 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 15
- 238000005253 cladding Methods 0.000 claims description 14
- 239000000470 constituent Substances 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims 1
- 238000000411 transmission spectrum Methods 0.000 abstract description 12
- 238000001228 spectrum Methods 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000005259 measurement Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N21/7746—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the waveguide coupled to a cavity resonator
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N2021/7706—Reagent provision
- G01N2021/7726—Porous glass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7776—Index
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N2021/8578—Gaseous flow
- G01N2021/8585—Gaseous flow using porous sheets, e.g. for separating aerosols
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/783—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/81—Indicating humidity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/121—Correction signals
- G01N2201/1211—Correction signals for temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/22—Fuels; Explosives
- G01N33/225—Gaseous fuels, e.g. natural gas
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29331—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
- G02B6/29335—Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
- G02B6/29338—Loop resonators
- G02B6/29343—Cascade of loop resonators
Definitions
- the invention relates to an optical sensor according to the preamble of claim 1.
- Optical sensors are used to measure trace moisture in gases and liquids. They consist of several porous and dielectric layers, in the pores of which any moisture particles are deposited. If light is radiated by the moisture sensor, the refractive index of the incident light changes as a result of the embedded moisture particles. This leads to a wavelength shift in the optical sensor which is proportional to the humidity in the medium to be measured. From the wavelength shift, the content of moisture in the medium to be measured can be detected.
- the measuring principle is based on the basic principle of a Fabry-Perot interferometer.
- the cause of this relatively slow reaction behavior lies in the structure of the layer system and in the thicknesses and porosities of the individual layers.
- the thickness of the layer system is crucial for the finesse of the Fabry-Perot interferometer and thus also determines the half-width at the wavelength minimum. This significantly influences the accuracy of the signal analysis.
- the known optical sensor has a layer system of eleven alternating low and high refractive porous layers, which consist of S1O2, Zr0 2 .
- the layer system has a total thickness of more as 2um.
- Such a design of the optical sensor represents a compromise between the smallest possible thickness and a high finesse.
- the response times measured with such an optical sensor at a dew point change between + 10 ° C and -60 ° C at a gas temperature of 30 ° C vary due to the different porosity of the layers between 1 and 7 hours.
- the invention has the object of providing the generic optical sensor in such a way that the measurement times are significantly reduced without affecting the measurement accuracy.
- the resonator is formed by a ring resonator.
- the ring resonator due to its sometimes very high finesse interference with the waveguide, in which a light spectrum is irradiated. From the transmission spectrum a comb of wavelength minima can be filtered out. If trace constituents are deposited in the pores of the ring resonator, the refractive index and thus the optical path length are changed. This leads to a wavelength shift of the wavelength minima filtered out. From the wavelength shift can be determined in a known manner, the content of trace constituents in the medium to be measured with high accuracy. With the sensor according to the invention results compared to the known sensor a greatly reduced thickness of the moisture layer, whereby a much faster reaction time can be made possible.
- a modems spectrum is filtered out of the transmission spectrum, which can be used to determine the content of trace constituents.
- the shift of the wavelength minima offers the possibility to calibrate highly accurate gas characteristics.
- the ring resonator is self-contained, but may have any outline shape.
- the ring resonator is assigned a further waveguide.
- the modems spectrum or the discrete wavelength maxima running in the ring resonator are partially decoupled into it.
- the decoupled light can be fed separately to a spectrometer, with which the decoupled light is evaluated.
- a plurality of ring resonators are arranged one behind the other along the waveguide.
- the plurality of ring resonators may be formed so that they have different sized pores, so that when several ring resonators and different trace constituents can be detected in a measurement process.
- the pore size is adapted to the trace constituent to be detected.
- by corresponding pore size of the ring resonators simultaneously different concentrations of H 2 0 and / or other molecules can be detected in sample gases.
- the plurality of ring resonators may be located between the two waveguides, so that the ring resonators at least partially decouple the coupled light in the other waveguide.
- the further waveguide thus makes it possible to add additional discrete wavelength maxima to the mode spectra of the further ring resonators and to feed them to a spectrometer or a similar measuring device.
- two adjacent ring resonators are located between the two waveguides.
- a plurality of such annular resonators arranged in pairs may be provided one behind the other between the two waveguides.
- the ring resonator (s) and the waveguide (s) may be provided on a carrier. It can be made of glass or crystal, for example.
- the ring resonator (s) it is also possible for the ring resonator (s) to be located on the carrier while the waveguide (s) are embedded in the carrier. The waveguide is thus protected in the sensor.
- the ring resonator (s) may be wholly or partially surrounded by a cladding layer on the outer diameter.
- This cladding layer is advantageously at least one optical PVD layer.
- the material of the cladding layer has a refractive index which is smaller than the refractive index of the material of the ring resonator.
- the cladding layer can be compared to the gas to be measured or the liquid to be measured both as a protective layer and, with a defined pore size, which is smaller than the pore size of the material of the ring resonator, as a filter layer and with a defined pore size, which is greater than the pore size of the material of the ring resonator, serve as a storage layer.
- the waveguide may be made of ion-implanted glasses or crystals or PVD optical layers.
- PVD layers may consist, for example, of SiO 2 , ZrO 2 , TiO 2 or TaO 5 .
- the ring resonator on optical PVD layers for example, S1O2, r0 2 , T1O2 or TaOs. could be.
- FIG. 1 shows a schematic representation of a first embodiment of a sensor according to the invention
- FIG. 2 shows wavelength minima filtered out from the transmission spectrum of the sensor according to FIG. 1, FIG.
- FIG. 3 shows a representation corresponding to FIG. 1 of a second embodiment of a sensor according to the invention
- FIG. 4 shows, in a representation corresponding to FIG. 2, the wavelength minima which are filtered out of the transmission spectrum associated with the sensor according to FIG. 3, FIG.
- FIG. 5 is an enlarged section of the diagram of FIG. 4,
- FIG. 14 in illustrations corresponding to FIG. 1, further embodiments of sensors according to the invention
- FIG. 1 5 is a plan view of another embodiment of a sensor according to the invention
- FIG. 16 is a side view of the sensor of FIG. 15,
- FIG. 17 is a front view of the sensor of FIG. 15,
- FIG. 22 shows the sensor according to FIGS. 15 to 17, which is connected to an LED light source and a polychromator.
- the sensors are used to measure trace moisture or trace gases in gases and / or liquids.
- the sensor determines the moisture content in natural gas.
- the sensor protrudes into the natural gas pipeline so that it is detected by the natural gas flowing through it.
- the sensor is connected to a measuring device (not shown) which detects the signals coming from the sensor and evaluates them in a known manner.
- the determined moisture content is assigned to a dew point by means of an evaluation unit of the measuring device.
- the optical sensor will be described below using the example of a humidity sensor. It can also be designed as a gas sensor with which trace gases in the medium can be detected and measured.
- the humidity sensor has in the embodiment of FIG. 1, a ring resonator 2, which serves as an optical measuring medium.
- the ring resonator is a self-contained waveguide, which in the exemplary embodiment circular shape Has.
- the ring resonator 2 may have any other suitable geometric shape.
- the ring resonator 2 has a porous coating, which is preferably at least one PVD layer vapor-deposited on a base support.
- This porous layer consists for example of Si0 2 , Zr0 2 or Ta 2 Os.
- the porosity of this layer is matched to the trace constituent to be detected. If this trace constituent to be detected is water, then the pores of the porous layer typically have a diameter of about 3 ⁇ . If the medium to be measured contains water, then water molecules are deposited in the pores of the porous layer whose diameter is slightly less than 3 ⁇ , The water molecules incorporated in the porous layer change, as will be described, the refractive index of an incident light, which results in a wavelength shift which is proportional to the moisture content in the medium to be measured.
- the light necessary for measuring the moisture content is coupled via a waveguide 1 in the ring resonator 2.
- the waveguide 1 may be made of suitable materials, such as ion-implanted glasses and crystals, or of PVD optical layers, which may be, for example, SiO 2 , ZrO 2 , ⁇ 2 , Ta 2 O 5, and the like.
- the waveguide 1 8 indicated light is initiated by an arrow.
- the light source used is preferably LED, which has a long service life, is inexpensive and requires no maintenance. Further sources of light are halogen lamps or, for example, also laser LEDs or laser diode-pumped phosphor layers or pumped TLSaphire.
- the thickness of the porous layer is for example some 100 nm. However, this value is not to be understood as limiting.
- the layer has such a thickness that an optimally fast adaptation to changing moisture conditions in a gas or liquid stream is possible.
- the ring resonator is a ring waveguide in which a continuous wave is formed due to the total reflection capability of the ring waveguide.
- the smallest distance 9 between the waveguide 1 and the ring resonator 2 is the measuring distance, which determines the size of the coupling factor. It is a measure of the decoupling of a portion of the light from the waveguide.
- the ring resonator 2 partly has a very high finesse F. This has the consequence that arise in the ring resonator 2 interference with the waveguide 1.
- the proportion of the coupled into the ring resonator 2 portion of the light 8 can be represented in a transmission spectrum, in which the intensity is plotted against the wavelength of the light 8. From this transmission spectrum, the wavelength minima can be filtered out. An example of this is shown in FIG. 2, in which a comb of wavelength minima, which arise during the coupling of the light from the waveguide 1 into the ring resonator 2, have been filtered out of the transmission spectrum.
- the water molecules deposit in the porous layer of the ring resonator 2.
- the refractive index of the light coupled into the ring resonator 2 changes. This leads to a wavelength shift that is proportional to the moisture content in the medium to be measured.
- the moisture content in the analyst can be determined with high accuracy. This will be explained in more detail with reference to the following embodiment of the sensor.
- the waveguide 1 is assigned two ring resonators 2, 3. They are advantageously designed differently and arranged with the measuring distance 9 next to the waveguide 1, in which the light 8 is introduced. In the manner described, a portion of the light is coupled into the ring resonators 2, 3. From the associated transmission spectrum two combs of wavelength minima can be filtered out. The corresponding diagram is shown in FIG. 4.
- FIG. 5 shows the wavelength range between 1 .300 and 1 .307 nm from FIG. 4 in an enlarged representation.
- FIG. 6 shows, from two ring resonators, in each case a wavelength minimum which has been filtered out of a transmission spectrum which results when water molecules are incorporated into the porous layer of the ring resonator 2 and into the non-porous layer or into the porous layer coated with an impermeable protective layer of the ring resonator 3 get no water molecules.
- a comparison of FIGS. 5 and 6 shows that, due to the incorporated water molecules, the one wavelength minimum from the ring resonator 2 has shifted from the wavelength 1.301, 45 nm to the wavelength 1.301, 68 nm. This wavelength shift, caused by the stored water molecules, is proportional to the measured moisture in the medium.
- the evaluation unit in the measuring device to which the sensor is connected, can determine the dew point and thus the proportion of moisture in the medium to be tested due to the difference between the two wavelength minima and at a known temperature of the medium.
- the temperature of the medium would, as shown in FIG. 13, comprise another additional ring resonator made of a non-porous layer of a material having a high thermo-optic coefficient dn / dt which differs greatly from the thermo-optical coefficient of the two ring resonators 2 and 3. when a difference value of its wavelength minimum with respect to the reference value of the ring sonators 3 measured and this difference value would be assigned a temperature value based on a calibration curve.
- FIGS. 7 to 10 show examples of how the wavelength shift results as a function of the moisture content in the medium to be measured.
- the two wavelength minima are at a wavelength of 1,300 and 1 .303, 1 nm. If water molecules are deposited in the porous layer of the ring resonator or resonators 2, this leads to a wavelength shift, as can be seen from the diagram according to FIG. 8. Both wavelength minima have shifted to 1, 303.1 and 1, 303.4 nm.
- the wavelength minimum in FIG. 9 shifts to a wavelength of 1.303.65 nm. With an even greater water content, this wavelength minimum shifts to a wavelength of almost 1.304 nm (FIG. 10).
- Fig. 1 1 shows a further embodiment of a sensor.
- two waveguides 1, 5 are provided, between which the ring resonator 2 is located.
- Both waveguides 1, 5 are advantageously made of the same material, such as of ion-implanted glasses or crystals or of optical PVD layers, which consist for example of S1O2, Zr02, Ti0 2 or Ta 2 Os.
- the light 8 is introduced, which is partially coupled in the manner described in the ring resonator 2.
- the mode spectra or discrete wavelength maxima forming in the ring resonator 2 are decoupled into the waveguide 5, which forwards the coupled-out light 8 '.
- the decoupled and passed through the waveguide 5 light 8 ' can be separately fed to a spectrometer.
- the two waveguides 1, 5 are advantageously arranged with the same measuring distance 9 next to the ring resonator 2.
- the moisture content can be determined in the manner described when the wavelength shift occurs.
- the two waveguides 1, 5 are provided, of which the waveguide 1 couples the light 8 into the ring resonator 2, as has been described with reference to the preceding exemplary embodiments.
- the waveguide 1 couples the light 8 into the ring resonator 2, as has been described with reference to the preceding exemplary embodiments.
- the waveguide 5 ensures that the mode spectrum or the discrete wavelength maxima running in the ring resonator 10 are coupled out into the waveguide 5.
- the decoupled light 8 ' can in turn be supplied to a spectrometer.
- the use of two adjacent ring resonators 2, 10 offers the advantage that the second ring resonator 10 could be dimensioned to be e.g. only every second wavelength maximum from the ring resonator 2 picks up and in this way enables a doubled free spectral range. This principle is helpful if the wavelength shift between maximum dryness and maximum humidity is greater than the free spectral range in the first ring resonator 2. In this way, the entire humidity range can be detected without ambiguity.
- Fig. 13 shows the possibility to arrange a plurality of ring resonators 2 to 4 in a row between the two waveguides 1 and 5.
- the light 8, which is supplied to the waveguide 1, in the manner described in the respective ring resonators 2 to 4 are coupled and coupled into the waveguide 5.
- the decoupled light 8 ' can be supplied to the waveguide 5, for example, the spectrometer.
- the waveguide 5 additionally serves to add further discrete wavelength maxima from the mode spectra of the various ring resonators 2 to 4.
- a ring could act as a reference signal that would compensate for interference, and a ring made of another material with a high thermo-optic coefficient, which could serve to determine the gas temperature.
- the points indicated between the ring resonators 3 and 4 indicate that the number of ring resonators can vary depending on the application of the sensor.
- the ring resonators 2 to 4 and 10 to 12 are provided in pairs between the two waveguides 1, 5.
- the light 8 supplied via the waveguide 1 is coupled into the respective ring resonators 2 to 4.
- This coupled light is in turn coupled into the ring resonators 10 to 12, which decouple the light in the waveguide 5.
- This coupled-out light 8 ' is in turn supplied to a spectrometer, for example.
- the wavelength maxima from the mode spectra of the individual ring resonators 10 to 12 are fed to the waveguide 5, which thus adds up these wavelength maxima.
- FIGS. 15 to 17 show a concrete embodiment of a sensor.
- the waveguide 1 is located in a carrier 13, which may consist for example of glass or crystal.
- the two ends 14, 15 of the waveguide 1 open into an end face 16 of the carrier 13.
- the adjoining the ends 14, 15 sections 17, 18 of the waveguide 1 are initially parallel to each other and go over a loop portion 19 into each other.
- the waveguide 1 is located at a short distance below the upper side 20 of the carrier 13th
- the two ring resonators 3 and 4 are arranged, which are located at the level of the loop portion 19 of the waveguide 1, viewed in plan view of the sensor.
- the ring resonators 3, 4 are located next to one another at a distance and are arranged with respect to the waveguide 1 so that they overlap, as seen in plan view according to FIG. 15 (see also FIG. 16).
- the light 8 fed into the waveguide 1 is coupled into the ring resonators 3, 4 in the manner described.
- the molecules of the moisture possibly contained in the medium are deposited in the porous layer of at least one ring resonator 3 and / or 4 and lead in the manner described to a wavelength shift of the wavelength minima, as has been explained with reference to the previous embodiments.
- FIG. 18 shows a section through the sensor according to FIG. 11.
- the two waveguides 1 and 5, between which the ring resonator 2 is located, are mounted on a carrier 6, which can consist of glass or crystal by way of example.
- the waveguides 1, 5 and the ring resonator 2 can be very easily applied to the top 21 of the carrier 6.
- the sensor is arranged so that the medium to be measured comes into contact with the ring resonator 2, so that moisture molecules can settle in the pores of the porous layer of the ring resonator 2.
- the embodiment according to FIG. 19 differs from the previous embodiment in that the two waveguides 1, 5 are arranged not at the upper side, but at a short distance from the upper side 21 within the carrier 6.
- the distance between the waveguides 1, 5 and the ring resonator 2 is chosen so that the light fed in via the waveguide 1 can be coupled into the ring resonator 2 and coupled out of the ring resonator into the waveguide 5.
- the measuring distance between the waveguides 1, 5 and the ring resonator 2 is present in this case perpendicular to the carrier top 21.
- the position of the waveguides 1, 5 is chosen so that they lie below the ring resonator 2 in section.
- FIG. 20 shows an embodiment of a sensor which basically has the same construction as the sensor according to FIG. 19.
- the ring resonator 2 is surrounded by a cladding layer 7, which consists of a material which has a smaller refractive index n than the coated ring resonator 2.
- the cladding layer 7 is advantageously an optical PVD layer. It can for example consist of SiO 2 , which has a refractive index n of 1.45.
- the ring resonator 2 can in this case for example consist of ZrO 2 with a refractive index n of 2.14.
- the cladding layer 7 may completely or partially surround the ring resonator 2.
- the cladding layer 7 can serve both as a protective layer and as a filter layer or as an intercalation layer relative to the gas to be measured or the liquid to be measured.
- the cladding layer 7 has a defined pore size which is smaller than the pore size of the material of the ring resonator 2.
- the cladding layer 7 has a defined pore size which is greater than the pore size of the material of the ring resonator 2.
- FIGS. 18 to 20 may be provided in the case of the sensors which has the two waveguides 1, 5 located on either side of the ring resonator or resonators (FIGS. 1 to 14).
- Fig. 21 shows a sensor with a layer structure.
- the carrier 6 is formed in contrast to the embodiments according to FIGS. 18 to 20 as a ring.
- the ring resonator 2 is fixed, which is surrounded according to the embodiment of FIG. 20 of the cladding layer 7.
- the waveguide 1 is fixed on the carrier 6. It is embedded in the cladding layer 7, which surrounds the ring resonator 2.
- the waveguide 1 and the ring resonator 2 with the cladding layer 7 lie in a common plane and form a first layer 22, which is fastened on the carrier 6.
- a second layer 24 is applied, which is the same as the first layer 22.
- the insulating layer 23 prevents the two layers 22, 24 interfere with each other during the measuring process.
- the ring resonators it is possible to tune the ring resonators to different trace constituents.
- the pore size is adapted to the molecular size of the trace constituents to be detected. The molecular sizes of some trace constituents are given below:
- the pores of the ring resonator are adapted to the molecular sizes given above so that the corresponding molecules can be deposited in the pores.
- the ring resonators 2 in the various layers can be matched to different components to be detected, so that the corresponding trace constituents can be detected in the medium to be measured.
- FIG. 22 shows the sensor according to FIGS. 15 to 17 with the waveguide connected to a light source 27.
- a light source 27 It is in the illustrated embodiment, an LED light source with which the light is introduced into the waveguide 1 via a fiber cable 28.
- the light fed into the waveguide 1 passes through the waveguide 1 in the manner described and arrives at the end 15 in another fiber cable 29 which supplies the decoupled light to a polychromator 30.
- the light enters via a slit 31 in the polychromator 30 and reaches a concave grating 32, at which the light is reflected to a CCD detector 33. It is connected to the measuring device (not shown), which evaluates the signals coming from the detector 33 in the manner described.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
The optical sensor serves to measure trace components in liquids and/or gases and has at least one optical resonator (2) which has at least one porous layer, the porous layers whereof serve to receive moisture particles. The resonator (2) is a ring resonator, with which at least one optical waveguide (1) is associated. Light is fed into the waveguide (1), which is partially decoupled into the ring resonator (2). Interference with the waveguide (1) arises in the ring resonator (2) because of the partially very high fineness thereof, into which waveguide a light spectrum is radiated. A comb of wave length minima can be filtered out of the transmission spectrum. If trace components are deposited in the pores of the ring resonator (2), the refractive index and the optical path length are changed, which leads to wavelength shift of the filtered wavelength minima. The amount of trace components can be determined from the wavelength shift.
Description
OPTISCHER SENSOR ZUR MESSUNG VON SPURENBESTANDTEILEN IN FLÜSSIGKEITEN UND/ODER GASEN OPTICAL SENSOR FOR MEASURING TRACE COMPONENTS IN LIQUIDS AND / OR GASES
Die Erfindung betrifft einen optischen Sensor nach dem Oberbegriff des Anspruches 1 . The invention relates to an optical sensor according to the preamble of claim 1.
Zur Messung von Spurenfeuchte in Gasen und Flüssigkeiten werden optische Sensoren eingesetzt. Sie bestehen aus mehreren porösen und dielektrischen Schichten, in deren Poren sich eventuell vorhandene Feuchtigkeitsteilchen absetzen. Wird durch den Feuchtesensor Licht gestrahlt, verändert sich infolge der eingelagerten Feuchteteilchen der Brechungsindex des eingestrahlten Lichtes. Dies führt im optischen Sensor zu einer Wellenlängenverschiebung, die proportional zur Feuchte im zu messenden Medium ist. Aus der Wellenlängenverschiebung lässt sich der Gehalt an Feuchtigkeit im zu messenden Medium erfassen. Optical sensors are used to measure trace moisture in gases and liquids. They consist of several porous and dielectric layers, in the pores of which any moisture particles are deposited. If light is radiated by the moisture sensor, the refractive index of the incident light changes as a result of the embedded moisture particles. This leads to a wavelength shift in the optical sensor which is proportional to the humidity in the medium to be measured. From the wavelength shift, the content of moisture in the medium to be measured can be detected.
Das Messprinzip beruht auf dem Grundprinzip eines Fabry-Perot- Interferometers. Es hat für viele Anwendungen jedoch ein zu langsames Reaktionsverhalten bei Feuchtigkeitsveränderungen. Die Ursache dieses relativ langsamen Reaktionsverhaltens liegt im Aufbau des Schichtensystems und in den Dicken und Porositäten der einzelnen Schichten. Je dicker das Schichtensystem ist, desto langsamer trocknet es in einem Gasstrom. Andererseits ist die Dicke des Schichtensystems für die Finesse des Fabry- Perot-Interferometers entscheidend und bestimmt somit auch die Halbwertsbreite beim Wellenlängenminimum. Dadurch wird die Messgenauigkeit bei der Signalanalyse wesentlich beeinflusst. The measuring principle is based on the basic principle of a Fabry-Perot interferometer. However, for many applications it has too slow a response to changes in humidity. The cause of this relatively slow reaction behavior lies in the structure of the layer system and in the thicknesses and porosities of the individual layers. The thicker the layer system, the slower it dries in a gas stream. On the other hand, the thickness of the layer system is crucial for the finesse of the Fabry-Perot interferometer and thus also determines the half-width at the wavelength minimum. This significantly influences the accuracy of the signal analysis.
Der bekannte optische Sensor hat ein Schichtensystem aus insgesamt elf abwechselnd niedrig- und hochbrechenden porösen Schichten, die aus S1O2, Zr02 bestehen. Das Schichtensystem hat eine Gesamtdicke von mehr
als 2um. Eine solche Ausbildung des optischen Sensors stellt einen Kom- promiss zwischen einer möglichst geringen Dicke und einer hohe Finesse dar. Die mit einem solchen optischen Sensor gemessenen Ansprechzeiten bei einem Taupunktwechsel zwischen +10°C und -60°C bei einer Gastemperatur von 30°C schwanken aufgrund unterschiedlicher Porosität der Schichten zwischen 1 und 7 Stunden. The known optical sensor has a layer system of eleven alternating low and high refractive porous layers, which consist of S1O2, Zr0 2 . The layer system has a total thickness of more as 2um. Such a design of the optical sensor represents a compromise between the smallest possible thickness and a high finesse. The response times measured with such an optical sensor at a dew point change between + 10 ° C and -60 ° C at a gas temperature of 30 ° C vary due to the different porosity of the layers between 1 and 7 hours.
Der Erfindung liegt die Aufgabe zugrunde, den gattungsgemäßen optischen Sensor so auszubilden, dass ohne Beeinträchtigung der Messgenauigkeit die Messzeiten erheblich verringert sind. The invention has the object of providing the generic optical sensor in such a way that the measurement times are significantly reduced without affecting the measurement accuracy.
Diese Aufgabe wird beim gattungsgemäßen optischen Sensor erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruches 1 gelöst. This object is achieved in the generic optical sensor according to the invention with the characterizing features of claim 1.
Beim erfindungsgemäßen Sensor wird der Resonator durch einen Ringresonator gebildet. Im Ringresonator entstehen aufgrund seiner zum Teil sehr hohen Finesse Interferenzen mit dem Wellenleiter, in den ein Lichtspektrum eingestrahlt ist. Aus dem Transmissionsspektrum kann ein Kamm von Wel- lenlängenminima herausgefiltert werden. Lagern sich Spurenbestandteile in den Poren des Ringresonators ab, wird die Brechzahl und damit die optische Weglänge verändert. Dies führt zu einer Wellenlängenverschiebung der herausgefilterten Wellenlängenminima. Aus der Wellenlängenverschiebung lässt sich in bekannter Weise der Gehalt an Spurenbestandteilen im zu messenden Medium mit hoher Genauigkeit ermitteln. Mit dem erfindungsgemäßen Sensor ergibt sich gegenüber dem bekannten Sensor eine stark reduzierte Dicke der Feuchteschicht, wodurch eine deutlich schnellere Reaktionszeit ermöglicht werden kann. In the sensor according to the invention, the resonator is formed by a ring resonator. In the ring resonator due to its sometimes very high finesse interference with the waveguide, in which a light spectrum is irradiated. From the transmission spectrum a comb of wavelength minima can be filtered out. If trace constituents are deposited in the pores of the ring resonator, the refractive index and thus the optical path length are changed. This leads to a wavelength shift of the wavelength minima filtered out. From the wavelength shift can be determined in a known manner, the content of trace constituents in the medium to be measured with high accuracy. With the sensor according to the invention results compared to the known sensor a greatly reduced thickness of the moisture layer, whereby a much faster reaction time can be made possible.
Allgemein wird aus dem Transmissionsspektrum ein Modemspektrum herausgefiltert, das zur Bestimmung des Gehalts an Spurenbestandteilen herangezogen werden kann. Die Verschiebung der Wellenlängenminima bietet die Möglichkeit, hochgenaue Gaskennlinien zu kalibrieren.
Der Ringresonator ist in sich geschlossen, kann jedoch eine beliebige Umrissform haben. Generally, a modems spectrum is filtered out of the transmission spectrum, which can be used to determine the content of trace constituents. The shift of the wavelength minima offers the possibility to calibrate highly accurate gas characteristics. The ring resonator is self-contained, but may have any outline shape.
Bei einer vorteilhaften Ausführungsform ist dem Ringresonator ein weiterer Wellenleiter zugeordnet. In ihn wird das im Ringresonator laufende Modemspektrum bzw. die diskreten Wellenlängenmaxima teilweise ausgekoppelt. Das ausgekoppelte Licht kann separat einem Spektrometer zugeführt werden, mit dem das ausgekoppelte Licht ausgewertet wird. In an advantageous embodiment, the ring resonator is assigned a further waveguide. The modems spectrum or the discrete wavelength maxima running in the ring resonator are partially decoupled into it. The decoupled light can be fed separately to a spectrometer, with which the decoupled light is evaluated.
Bei einer vorteilhaften Weiterbildung sind mehrere Ringresonatoren hintereinander längs des Wellenleiters angeordnet. Eine solche Ausbildung erlaubt eine bessere Messung des Spurenfeuchtegehaltes. Auch können die mehreren Ringresonatoren so ausgebildet sein, dass sie unterschiedlich große Poren aufweisen, so dass bei mehreren Ringresonatoren auch unterschiedliche Spurenbestandteile in einem Messvorgang erfasst werden können. Die Porengröße ist hierbei an den zu erfassenden Spurenbestandteil angepasst. So können beispielsweise durch entsprechende Porengröße der Ringresonatoren gleichzeitig unterschiedliche Konzentrationen von H20 und/oder anderen Molekülen in Messgasen erfasst werden. In an advantageous embodiment, a plurality of ring resonators are arranged one behind the other along the waveguide. Such a design allows a better measurement of the trace moisture content. Also, the plurality of ring resonators may be formed so that they have different sized pores, so that when several ring resonators and different trace constituents can be detected in a measurement process. The pore size is adapted to the trace constituent to be detected. Thus, for example, by corresponding pore size of the ring resonators simultaneously different concentrations of H 2 0 and / or other molecules can be detected in sample gases.
Bei einer vorteilhaften Ausbildung können die mehreren Ringresonatoren zwischen den beiden Wellenleitern liegen, so dass die Ringresonatoren das eingekoppelte Licht in den weiteren Wellenleiter wenigstens teilweise auskoppeln. Über den weiteren Wellenleiter besteht somit die Möglichkeit, weitere diskrete Wellenlängenmaxima auf die Modenspektren der weiteren Ringresonatoren aufzuaddieren und einem Spektrometer oder einem ähnlichen Messgerät zuzuführen. In an advantageous embodiment, the plurality of ring resonators may be located between the two waveguides, so that the ring resonators at least partially decouple the coupled light in the other waveguide. The further waveguide thus makes it possible to add additional discrete wavelength maxima to the mode spectra of the further ring resonators and to feed them to a spectrometer or a similar measuring device.
Bei einer weiteren vorteilhaften Ausführungsform befinden sich zwischen den beiden Wellenleitern zwei aneinander liegende Ringresonatoren.
Es können bei einer weiteren Ausführungsform mehrere solcher paarweise aneinanderliegenden Ringresonatoren hintereinander zwischen den beiden Wellenleitern vorgesehen sein. In a further advantageous embodiment, two adjacent ring resonators are located between the two waveguides. In a further embodiment, a plurality of such annular resonators arranged in pairs may be provided one behind the other between the two waveguides.
Der/die Ringresonator/-en und der/die Wellenleiter können auf einem Träger vorgesehen sein. Er kann beispielhaft aus Glas oder Kristall bestehen. The ring resonator (s) and the waveguide (s) may be provided on a carrier. It can be made of glass or crystal, for example.
Es ist aber auch möglich, dass der bzw. die Ringresonatoren sich auf dem Träger befinden, während der/die Wellenleiter in den Träger eingebettet sind. Der Wellenleiter ist dadurch geschützt im Sensor angeordnet. However, it is also possible for the ring resonator (s) to be located on the carrier while the waveguide (s) are embedded in the carrier. The waveguide is thus protected in the sensor.
Bei einer vorteilhaften Ausführungsform kann der/die Ringresonator/-en am Außendurchmesser von einer Mantelschicht ganz oder teilweise umgeben sein. Diese Mantelschicht ist vorteilhaft wenigstens eine optische PVD- Schicht. Das Material der Mantelschicht hat eine Brechzahl, die kleiner ist als die Brechzahl des Materials des Ringresonators. Die Mantelschicht kann gegenüber dem zu messenden Gas oder der zu messenden Flüssigkeit sowohl als Schutzschicht als auch, mit definierter Porengröße, die kleiner ist als die Porengröße des Materials des Ringresonators, als Filterschicht als auch mit definierter Porengröße, die größer ist als die Porengröße des Materials des Ringresonators, als Einlagerungsschicht dienen. In an advantageous embodiment, the ring resonator (s) may be wholly or partially surrounded by a cladding layer on the outer diameter. This cladding layer is advantageously at least one optical PVD layer. The material of the cladding layer has a refractive index which is smaller than the refractive index of the material of the ring resonator. The cladding layer can be compared to the gas to be measured or the liquid to be measured both as a protective layer and, with a defined pore size, which is smaller than the pore size of the material of the ring resonator, as a filter layer and with a defined pore size, which is greater than the pore size of the material of the ring resonator, serve as a storage layer.
Der Wellenleiter kann aus ionenimplantierten Gläsern oder Kristallen oder optischen PVD-Schichten bestehen. Solche PVD-Schichten können beispielsweise aus Si02, Zr02, Ti02 oder Ta05 bestehen. The waveguide may be made of ion-implanted glasses or crystals or PVD optical layers. Such PVD layers may consist, for example, of SiO 2 , ZrO 2 , TiO 2 or TaO 5 .
Vorteilhaft weist der Ringresonator optische PVD-Schichten auf, die z.B. S1O2, r02, T1O2 oder TaOs. sein können. Advantageously, the ring resonator on optical PVD layers, for example, S1O2, r0 2 , T1O2 or TaOs. could be.
Der Anmeldungsgegenstand ergibt sich nicht nur aus dem Gegenstand der einzelnen Patentansprüche, sondern auch durch alle in den Zeichnungen und der Beschreibung offenbarten Angaben und Merkmale. Sie werden, auch wenn sie nicht Gegenstand der Ansprüche sind, als erfindungswesent-
lieh beansprucht, soweit sie einzeln oder in Kombination gegenüber dem Stand der Technik neu sind. The subject of the application results not only from the subject matter of the individual claims, but also by all the information and features disclosed in the drawings and the description. They are, even if they are not the subject of the claims, as erfindungswesent- borrowed, as far as they are new individually or in combination over the prior art.
Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und den Zeichnungen. Further features of the invention will become apparent from the other claims, the description and the drawings.
Die Erfindung wird nachstehend anhand einiger in den Zeichnungen dargestellter Ausführungsformen näher erläutert. Es zeigen The invention is explained below with reference to some embodiments shown in the drawings. Show it
Fig. 1 in schematischer Darstellung eine erste Ausführungsform eines erfindungsgemäßen Sensors, 1 shows a schematic representation of a first embodiment of a sensor according to the invention,
Fig. 2 aus dem Transmissionsspektrum des Sensors gemäß Fig. 1 herausgefilterte Wellenlängenminima, FIG. 2 shows wavelength minima filtered out from the transmission spectrum of the sensor according to FIG. 1, FIG.
Fig. 3 in einer Darstellung entsprechend Fig. 1 eine zweite Ausführungsform eines erfindungsgemäßen Sensors, 3 shows a representation corresponding to FIG. 1 of a second embodiment of a sensor according to the invention, FIG.
Fig. 4 in einer Darstellung entsprechend Fig. 2 die Wellenlängenminima, die aus dem Sensor gemäß Fig. 3 zugeordneten Transmissionsspektrum herausgefiltert werden, FIG. 4 shows, in a representation corresponding to FIG. 2, the wavelength minima which are filtered out of the transmission spectrum associated with the sensor according to FIG. 3, FIG.
Fig. 5 ein vergrößerter Ausschnitt des Diagramms nach Fig. 4, 5 is an enlarged section of the diagram of FIG. 4,
Fig. 6 Fig. 6
bis to
Fig. 10 weitere Diagramme entsprechend Fig. 5 zur Erläuterung einer Wellenlängenverschiebung, 10 further diagrams corresponding to FIG. 5 for explaining a wavelength shift,
Fig. 1 1 Fig. 1 1
bis to
Fig. 14 in Darstellungen entsprechend Fig. 1 weitere Ausführungsformen von erfindungsgemäßen Sensoren,
Fig. 1 5 eine Draufsicht auf eine weitere Ausführungsform eines erfindungsgemäßen Sensors, FIG. 14 in illustrations corresponding to FIG. 1, further embodiments of sensors according to the invention, FIG. 1 5 is a plan view of another embodiment of a sensor according to the invention,
Fig. 16 eine Seitenansicht des Sensors gemäß Fig. 15, 16 is a side view of the sensor of FIG. 15,
Fig. 17 eine Vorderansicht des Sensors gemäß Fig. 15, 17 is a front view of the sensor of FIG. 15,
Fig. 18 Fig. 18
bis to
Fig. 21 jeweils im Schnitt weitere Ausführungsformen von erfindungsgemäßen Sensoren, 21 in each case in section further embodiments of sensors according to the invention,
Fig. 22 den Sensor gemäß den Fig. 15 bis 17, der mit einer LED- Lichtquelle und einem Polychromator verbunden ist. FIG. 22 shows the sensor according to FIGS. 15 to 17, which is connected to an LED light source and a polychromator.
Die Sensoren werden dazu verwendet, in Gasen und/oder Flüssigkeiten Spurenfeuchte oder Spurengase zu messen. Beispielsweise wird mit dem Sensor der Feuchtegehalt in Erdgas ermittelt. Hierzu ragt der Sensor so in die Erdgasleitung, dass er vom durchströmenden Erdgas erfasst wird. Der Sensor ist an ein (nicht dargestelltes) Messgerät angeschlossen, das die vom Sensor kommenden Signale erfasst und in bekannter Weise auswertet. Der ermittelte Feuchtegehalt wird mit einer Auswerteeinheit des Messgerätes einem Taupunkt zugeordnet. The sensors are used to measure trace moisture or trace gases in gases and / or liquids. For example, the sensor determines the moisture content in natural gas. For this purpose, the sensor protrudes into the natural gas pipeline so that it is detected by the natural gas flowing through it. The sensor is connected to a measuring device (not shown) which detects the signals coming from the sensor and evaluates them in a known manner. The determined moisture content is assigned to a dew point by means of an evaluation unit of the measuring device.
Nachfolgend wird der optische Sensor am Beispiel eines Feuchtesensors beschrieben. Er kann auch als Gassensor ausgebildet sein, mit dem Spurengase im Medium erfasst und gemessen werden können. The optical sensor will be described below using the example of a humidity sensor. It can also be designed as a gas sensor with which trace gases in the medium can be detected and measured.
Der Feuchtesensor hat bei der Ausführungsform gemäß Fig. 1 einen Ringresonator 2, der als optisches Messmedium dient. Der Ringresonator ist ein in sich geschlossener Wellenleiter, der im Ausführungsbeispiel Kreisform
hat. Der Ringresonator 2 kann aber jede andere geeignete geometrische Form aufweisen. The humidity sensor has in the embodiment of FIG. 1, a ring resonator 2, which serves as an optical measuring medium. The ring resonator is a self-contained waveguide, which in the exemplary embodiment circular shape Has. However, the ring resonator 2 may have any other suitable geometric shape.
Der Ringresonator 2 hat eine poröse Beschichtung, die vorzugsweise wenigstens eine PVD-Schicht ist, die auf einen Grundträger aufgedampft ist. Diese poröse Schicht besteht beispielsweise aus Si02, Zr02 oder Ta2Os. Die Porosität dieser Schicht ist auf den zu erfassenden Spurenbestandteil abgestimmt. Wenn dieser zu erfassende Spurenbestandteil Wasser ist, dann haben die Poren der porösen Schicht typischerweise einen Durchmesser von etwa 3 A. Enthält das zu messende Medium Wasser, dann lagern sich in den Poren der porösen Schicht Wassermoleküle ab, deren Durchmesser etwas kleiner als 3 A ist. Die in der porösen Schicht eingelagerten Wassermoleküle verändern in noch zu beschreibender Weise den Brechungsindex eines eingestrahlten Lichtes, wodurch sich eine Wellenlängenverschiebung ergibt, die proportional dem Feuchtegehalt im zu messenden Medium ist. The ring resonator 2 has a porous coating, which is preferably at least one PVD layer vapor-deposited on a base support. This porous layer consists for example of Si0 2 , Zr0 2 or Ta 2 Os. The porosity of this layer is matched to the trace constituent to be detected. If this trace constituent to be detected is water, then the pores of the porous layer typically have a diameter of about 3 Å. If the medium to be measured contains water, then water molecules are deposited in the pores of the porous layer whose diameter is slightly less than 3 Å , The water molecules incorporated in the porous layer change, as will be described, the refractive index of an incident light, which results in a wavelength shift which is proportional to the moisture content in the medium to be measured.
Das zur Messung des Feuchtegehaltes notwendige Licht wird über einen Wellenleiter 1 in den Ringresonator 2 eingekoppelt. Der Wellenleiter 1 kann aus geeigneten Materialien bestehen, wie aus ionenimplantierten Gläsern und Kristallen oder aus optischen PVD-Schichten, die beispielsweise aus SiO2, Zr02, ΤΊΟ2, Ta205 und dergleichen bestehen können. In den Wellenleiter 1 wird durch einen Pfeil 8 angedeutetes Licht eingeleitet. Als Lichtquelle wird bevorzugt LED eingesetzt, das eine lange Lebensdauer hat, preisgünstig ist und keine Wartung benötigt. Als weitere Lichtquellen kommen Halogenlampen oder beispielsweise auch Laser-LEDs oder mit Laserdioden gepumpte Phosphorschichten oder gepumpter TLSaphire in Betracht. The light necessary for measuring the moisture content is coupled via a waveguide 1 in the ring resonator 2. The waveguide 1 may be made of suitable materials, such as ion-implanted glasses and crystals, or of PVD optical layers, which may be, for example, SiO 2 , ZrO 2 , ΤΊΟ 2 , Ta 2 O 5, and the like. In the waveguide 1 8 indicated light is initiated by an arrow. The light source used is preferably LED, which has a long service life, is inexpensive and requires no maintenance. Further sources of light are halogen lamps or, for example, also laser LEDs or laser diode-pumped phosphor layers or pumped TLSaphire.
Die Dicke der porösen Schicht liegt beispielhaft bei einigen 100 nm. Dieser Wert ist allerdings nicht als beschränkend zu verstehen. Die Schicht hat eine solche Dicke, dass eine optimal schnelle Anpassung an wechselnde Feuchteverhältnisse in einem Gas- oder Flüssigkeitsstrom möglich ist.
Der Ringresonator ist ein Ringwellenleiter, in dem sich eine fortlaufende Welle aufgrund der Totalreflexionsfähigkeit des Ringwellenleiters ausbildet. The thickness of the porous layer is for example some 100 nm. However, this value is not to be understood as limiting. The layer has such a thickness that an optimally fast adaptation to changing moisture conditions in a gas or liquid stream is possible. The ring resonator is a ring waveguide in which a continuous wave is formed due to the total reflection capability of the ring waveguide.
Der kleinste Abstand 9 zwischen dem Wellenleiter 1 und dem Ringresonator 2 ist der Messabstand, der die Größe des Koppelfaktors bestimmt. Er ist ein Maß für die Auskoppelung eines Teils des Lichtes aus dem Wellenleiter 1. The smallest distance 9 between the waveguide 1 and the ring resonator 2 is the measuring distance, which determines the size of the coupling factor. It is a measure of the decoupling of a portion of the light from the waveguide. 1
Der Ringresonator 2 weist zum Teil eine sehr hohe Finesse F auf. Dies hat zur Folge, dass im Ringresonator 2 Interferenzen mit dem Wellenleiter 1 entstehen. Der Anteil des in den Ringresonator 2 eingekoppelten Anteils des Lichtes 8 kann in einem Transmissionsspektrum dargestellt werden, bei dem die Intensität gegen die Wellenlänge des Lichtes 8 aufgetragen ist. Aus diesem Transmissionsspektrum können die Wellenlängenminima herausgefiltert werden. Ein Beispiel hierfür zeigt Fig. 2, bei dem aus dem Transmissionsspektrum ein Kamm von Wellenlängenminima, die bei der Einkopplung des Lichtes aus dem Wellenleiter 1 in den Ringresonator 2 entstehen, herausgefiltert worden sind. The ring resonator 2 partly has a very high finesse F. This has the consequence that arise in the ring resonator 2 interference with the waveguide 1. The proportion of the coupled into the ring resonator 2 portion of the light 8 can be represented in a transmission spectrum, in which the intensity is plotted against the wavelength of the light 8. From this transmission spectrum, the wavelength minima can be filtered out. An example of this is shown in FIG. 2, in which a comb of wavelength minima, which arise during the coupling of the light from the waveguide 1 into the ring resonator 2, have been filtered out of the transmission spectrum.
Befindet sich im zu prüfenden Medium Feuchtigkeit, im Beispielsfall Wasser, dann lagern sich die Wassermoleküle in der porösen Schicht des Ringresonators 2 ab. Durch die eingelagerten Wassermoleküle ändert sich der Brechungsindex des in den Ringresonator 2 eingekoppelten Lichtes. Dies führt zu einer Wellenlängenverschiebung, die proportional zum Feuchtegehalt im zu messenden Medium ist. If there is moisture in the medium to be tested, in this case water, then the water molecules deposit in the porous layer of the ring resonator 2. By the stored water molecules, the refractive index of the light coupled into the ring resonator 2 changes. This leads to a wavelength shift that is proportional to the moisture content in the medium to be measured.
Anhand der Wellenlängenverschiebung, die sich im Transmissionsspektrum bzw. in den herausgefilterten Wellenlängenminima sichtbar macht, lässt sich mit hoher Genauigkeit der Feuchtigkeitsgehalt im Analysten bestimmen. Dies wird anhand der nachfolgenden Ausführungsform des Sensors näher erläutert. On the basis of the wavelength shift, which is visible in the transmission spectrum or in the filtered-out wavelength minima, the moisture content in the analyst can be determined with high accuracy. This will be explained in more detail with reference to the following embodiment of the sensor.
Bei der Ausführungsform gemäß Fig. 3 sind dem Wellenleiter 1 zwei Ringresonatoren 2, 3 zugeordnet. Sie sind vorteilhaft unterschiedlich ausgebildet
und mit dem Messabstand 9 neben dem Wellenleiter 1 angeordnet, in den das Licht 8 eingeleitet wird. In der beschriebenen Weise wird ein Teil des Lichtes in die Ringresonatoren 2, 3 eingekoppelt. Aus dem zugehörigen Transmissionsspektrum können zwei Kämme von Wellenlängenminima herausgefiltert werden. Das entsprechende Diagramm zeigt Fig. 4. In the embodiment according to FIG. 3, the waveguide 1 is assigned two ring resonators 2, 3. They are advantageously designed differently and arranged with the measuring distance 9 next to the waveguide 1, in which the light 8 is introduced. In the manner described, a portion of the light is coupled into the ring resonators 2, 3. From the associated transmission spectrum two combs of wavelength minima can be filtered out. The corresponding diagram is shown in FIG. 4.
Fig. 5 zeigt den Wellenlängenbereich zwischen 1 .300 und 1 .307 nm aus Fig. 4 in vergrößerter Darstellung. FIG. 5 shows the wavelength range between 1 .300 and 1 .307 nm from FIG. 4 in an enlarged representation.
Fig. 6 zeigt von zwei Ringresonatoren jeweils ein Wellenlängenminimum, welche aus einem Transmissionsspektrum herausgefiltert worden sind, die sich ergeben, wenn sich in die poröse Schicht des Ringresonators 2 Wassermoleküle einlagern und in die nicht poröse Schicht oder in die mit einer undurchlässigen Schutzschicht überzogenen porösen Schicht des Ringresonators 3 keine Wassermoleküle gelangen. Ein Vergleich der Fig. 5 und 6 zeigt, dass sich aufgrund der eingelagerten Wassermoleküle das eine Wellenlängenminimum vom Ringresonator 2 von der Wellenlänge 1.301 ,45 nm auf die Wellenlänge 1 .301 ,68 nm verschoben hat. Diese Wellenlängenverschiebung, hervorgerufen durch die eingelagerten Wassermoleküle, ist proportional zur gemessenen Feuchte im Medium. Das Wellenlängenminimum des Ringresonators 3, das im Ausführungsbeispiel bei einer Wellenlänge von 1.301 , 1 nm liegt, dient dabei als Referenzwert und kann Temperatureinflüsse kompensieren. Die Auswerteeinheit im Messgerät, an das der Sensor angeschlossen ist, kann aufgrund der Differenz beider Wellenlängenminima und bei bekannter Temperatur des Mediums den Taupunkt und damit den Anteil der Feuchtigkeit im zu prüfenden Medium ermitteln. FIG. 6 shows, from two ring resonators, in each case a wavelength minimum which has been filtered out of a transmission spectrum which results when water molecules are incorporated into the porous layer of the ring resonator 2 and into the non-porous layer or into the porous layer coated with an impermeable protective layer of the ring resonator 3 get no water molecules. A comparison of FIGS. 5 and 6 shows that, due to the incorporated water molecules, the one wavelength minimum from the ring resonator 2 has shifted from the wavelength 1.301, 45 nm to the wavelength 1.301, 68 nm. This wavelength shift, caused by the stored water molecules, is proportional to the measured moisture in the medium. The wavelength minimum of the ring resonator 3, which is in the exemplary embodiment at a wavelength of 1.301, 1 nm, serves as a reference value and can compensate for temperature influences. The evaluation unit in the measuring device to which the sensor is connected, can determine the dew point and thus the proportion of moisture in the medium to be tested due to the difference between the two wavelength minima and at a known temperature of the medium.
Die Temperatur des Mediums würde sich beispielhaft, wie in Fig. 13 dargestellt, mit einem weiteren zusätzlichen Ringresonator aus einer nicht porösen Schicht eines Materials mit einem hohen thermooptischen Koeffizienten dn/dt, der sich stark vom thermooptischen Koeffizienten der beiden Ringresonatoren 2 und 3 unterscheidet, ermitteln lassen, wenn mit diesem ein Differenzwert seines Wellenlängenminimums zum Referenzwert des Ringre-
sonators 3 gemessen und dieser Differenzwert anhand einer Kalibrierkurve einen Temperaturwert zugeordnet würde. By way of example, the temperature of the medium would, as shown in FIG. 13, comprise another additional ring resonator made of a non-porous layer of a material having a high thermo-optic coefficient dn / dt which differs greatly from the thermo-optical coefficient of the two ring resonators 2 and 3. when a difference value of its wavelength minimum with respect to the reference value of the ring sonators 3 measured and this difference value would be assigned a temperature value based on a calibration curve.
Die Fig. 7 bis 10 zeigen Beispiele, wie sich die Wellenlängenverschiebung in Abhängigkeit vom Feuchtegehalt im zu messenden Medium ergibt. Beispielhaft ist in Fig. 7 dargestellt, dass die beiden Wellenlängenminima bei einer Wellenlänge von 1.300 und 1 .303, 1 nm liegen. Lagern sich Wassermoleküle in der porösen Schicht des oder der Ringresonatoren 2 ab, führt dies zu einer Wellenlängenverschiebung, wie aus dem Diagramm gemäß Fig. 8 hervorgeht. Beide Wellenlängenminima haben sich nach 1 .303,1 und 1 .303,4 nm verschoben. FIGS. 7 to 10 show examples of how the wavelength shift results as a function of the moisture content in the medium to be measured. By way of example, it is shown in FIG. 7 that the two wavelength minima are at a wavelength of 1,300 and 1 .303, 1 nm. If water molecules are deposited in the porous layer of the ring resonator or resonators 2, this leads to a wavelength shift, as can be seen from the diagram according to FIG. 8. Both wavelength minima have shifted to 1, 303.1 and 1, 303.4 nm.
Bei einem noch größeren Wasseranteil verschiebt sich das in Fig. 9 rechte Wellenlängenminimum auf einen Wellenlängenwert von 1 .303,65 nm. Bei einem noch größeren Wassergehalt verschiebt sich dieses Wellenlängenminimum zu einer Wellenlänge von nahezu 1 .304 nm (Fig. 10). With an even greater proportion of water, the wavelength minimum in FIG. 9 shifts to a wavelength of 1.303.65 nm. With an even greater water content, this wavelength minimum shifts to a wavelength of almost 1.304 nm (FIG. 10).
Diese Beispiele zeigen, dass die Wellenlängenverschiebung mit hoher Genauigkeit erfasst und dementsprechend auch der Feuchtegehalt im zu messenden Medium sehr genau bestimmt werden kann. These examples show that the wavelength shift is detected with high accuracy and accordingly the moisture content in the medium to be measured can be determined very accurately.
Fig. 1 1 zeigt eine weitere Ausführungsform eines Sensors. Im Unterschied zu den vorigen Ausführungsbeispielen sind zwei Wellenleiter 1 , 5 vorgesehen, zwischen denen sich der Ringresonator 2 befindet. Beide Wellenleiter 1 , 5 bestehen vorteilhaft aus dem gleichen Material, wie beispielsweise aus ionenimplantierten Gläsern oder Kristallen oder aus optischen PVD- Schichten, die zum Beispiel aus S1O2, Zr02, Ti02 oder Ta2Os bestehen. In den Wellenleiter 1 wird das Licht 8 eingeleitet, das in der beschriebenen Weise teilweise in den Ringresonator 2 eingekoppelt wird. Die im Ringresonator 2 sich bildenden Modenspektren bzw. diskreten Wellenlängenmaxi- ma werden in den Wellenleiter 5 ausgekoppelt, der das ausgekoppelte Licht 8' weiterleitet. Das ausgekoppelte und durch den Wellenleiter 5 weitergeleitete Licht 8' kann separat einem Spektrometer zugeführt werden.
Die beiden Wellenleiter 1 , 5 sind vorteilhaft mit dem gleichen Messabstand 9 neben dem Ringresonator 2 angeordnet. Fig. 1 1 shows a further embodiment of a sensor. In contrast to the previous embodiments, two waveguides 1, 5 are provided, between which the ring resonator 2 is located. Both waveguides 1, 5 are advantageously made of the same material, such as of ion-implanted glasses or crystals or of optical PVD layers, which consist for example of S1O2, Zr02, Ti0 2 or Ta 2 Os. In the waveguide 1, the light 8 is introduced, which is partially coupled in the manner described in the ring resonator 2. The mode spectra or discrete wavelength maxima forming in the ring resonator 2 are decoupled into the waveguide 5, which forwards the coupled-out light 8 '. The decoupled and passed through the waveguide 5 light 8 'can be separately fed to a spectrometer. The two waveguides 1, 5 are advantageously arranged with the same measuring distance 9 next to the ring resonator 2.
Aus dem Transmissionsspektrum, das sich beim Einkoppeln des Lichtes 8 aus dem Wellenleiter 1 in den Ringresonator 2 ergibt, kann bei einer auftretenden Wellenlängenverschiebung in der beschriebenen Weise der Feuchtegehalt ermittelt werden. From the transmission spectrum resulting from the coupling of the light 8 from the waveguide 1 into the ring resonator 2, the moisture content can be determined in the manner described when the wavelength shift occurs.
Bei der Ausführungsform gemäß Fig. 12 sind wiederum die beiden Wellenleiter 1 , 5 vorgesehen, von denen der Wellenleiter 1 das Licht 8 in den Ringresonator 2 einkoppelt, wie anhand der vorigen Ausführungsbeispiele beschrieben worden ist. Neben dem Ringresonator 2 befindet sich ein zweiter Ringresonator 10, der mit dem Messabstand 9 neben dem Ringresonator 2 liegt. Dadurch kann Licht aus dem Ringresonator 2 in den Ringresonator 10 eingekoppelt werden. Der Wellenleiter 5 sorgt dafür, dass das im Ringresonator 10 laufende Modenspektrum bzw. die diskreten Wellenlängenmaxi- ma in den Wellenleiter 5 ausgekoppelt werden. Das ausgekoppelte Licht 8' kann wiederum einem Spektrometer zugeführt werden. In the embodiment according to FIG. 12, in turn, the two waveguides 1, 5 are provided, of which the waveguide 1 couples the light 8 into the ring resonator 2, as has been described with reference to the preceding exemplary embodiments. In addition to the ring resonator 2, there is a second ring resonator 10, which lies with the measuring distance 9 next to the ring resonator 2. As a result, light from the ring resonator 2 can be coupled into the ring resonator 10. The waveguide 5 ensures that the mode spectrum or the discrete wavelength maxima running in the ring resonator 10 are coupled out into the waveguide 5. The decoupled light 8 'can in turn be supplied to a spectrometer.
Der Einsatz zweier nebeneinander liegender Ringresonatoren 2, 10 bietet den Vorteil, dass der zweite Ringresonator 10 so dimensioniert sein könnte, dass er z.B. nur jedes zweite Wellenlängenmaximum vom Ringresonator 2 abgreift und auf diese Weise einen doppelt so großen freien Spektralbereich ermöglicht. Dieses Prinzip ist dann hilfreich, wenn die Wellenlängenverschiebung zwischen maximaler Trockenheit und maximaler Feuchte größer wäre als der freie Spektralbereich im ersten Ringresonator 2. Auf diese Weise kann der gesamte Feuchtebereich ohne Mehrdeutigkeiten erfasst werden. The use of two adjacent ring resonators 2, 10 offers the advantage that the second ring resonator 10 could be dimensioned to be e.g. only every second wavelength maximum from the ring resonator 2 picks up and in this way enables a doubled free spectral range. This principle is helpful if the wavelength shift between maximum dryness and maximum humidity is greater than the free spectral range in the first ring resonator 2. In this way, the entire humidity range can be detected without ambiguity.
Fig. 13 zeigt die Möglichkeit, mehrere Ringresonatoren 2 bis 4 hintereinander zwischen den beiden Wellenleitern 1 und 5 anzuordnen. Das Licht 8, das dem Wellenleiter 1 zugeführt wird, wird in der beschriebenen Weise in
die jeweiligen Ringresonatoren 2 bis 4 eingekoppelt und in den Wellenleiter 5 ausgekoppelt. Das ausgekoppelte Licht 8' kann mit dem Wellenleiter 5 beispielsweise dem Spektrometer zugeführt werden. Außerdem dient der Wellenleiter 5 bei dieser Ausführungsform zusätzlich dazu, weitere diskrete Wellenlängenmaxima aus den Modenspektren der verschiedenen Ringresonatoren 2 bis 4 hinzu zu addieren. Auf diese Weise können z.B. mehrere bis viele Ringresonatoren mit unterschiedlichen Porengrößen von fein bis grob zum Einsatz kommen und dadurch verschiedene Gase voneinander unterschieden werden. Auch könnte ein Ring als Referenzsignal wirken, der Störeinflüsse kompensieren würde, sowie ein Ring aus einem anderen Material mit einem hohen thermooptischen Koeffizienten, welcher zur Bestimmung der Gastemperatur dienen könnte. Fig. 13 shows the possibility to arrange a plurality of ring resonators 2 to 4 in a row between the two waveguides 1 and 5. The light 8, which is supplied to the waveguide 1, in the manner described in the respective ring resonators 2 to 4 are coupled and coupled into the waveguide 5. The decoupled light 8 'can be supplied to the waveguide 5, for example, the spectrometer. In addition, in this embodiment, the waveguide 5 additionally serves to add further discrete wavelength maxima from the mode spectra of the various ring resonators 2 to 4. In this way, for example, several to many ring resonators can be used with different pore sizes from fine to coarse and thereby different gases are distinguished from each other. Also, a ring could act as a reference signal that would compensate for interference, and a ring made of another material with a high thermo-optic coefficient, which could serve to determine the gas temperature.
In Fig. 13 ist durch die zwischen den Ringresonatoren 3 und 4 angegebenen Punkte angedeutet, dass die Zahl der Ringresonatoren je nach Anwendungsfall des Sensors variieren kann. In FIG. 13, the points indicated between the ring resonators 3 and 4 indicate that the number of ring resonators can vary depending on the application of the sensor.
Beim Ausführungsbeispiel nach Fig. 14 sind zwischen den beiden Wellenleitern 1 , 5 die Ringresonatoren 2 bis 4 und 10 bis 12 jeweils paarweise vorgesehen. Das über den Wellenleiter 1 zugeführte Licht 8 wird in die jeweiligen Ringresonatoren 2 bis 4 eingekoppelt. Dieses eingekoppelte Licht wird seinerseits in die Ringresonatoren 10 bis 12 eingekoppelt, die das Licht in den Wellenleiter 5 auskoppeln. Dieses ausgekoppelte Licht 8' wird wiederum beispielsweise einem Spektrometer zugeführt. Wie beim Ausführungsbeispiel nach Fig. 13 erläutert, werden die Wellenlängenmaxima aus den Modenspektren der einzelnen Ringresonatoren 10 bis 12 dem Wellenleiter 5 zugeführt, der somit diese Wellenlängenmaxima aufaddiert. In the embodiment according to FIG. 14, the ring resonators 2 to 4 and 10 to 12 are provided in pairs between the two waveguides 1, 5. The light 8 supplied via the waveguide 1 is coupled into the respective ring resonators 2 to 4. This coupled light is in turn coupled into the ring resonators 10 to 12, which decouple the light in the waveguide 5. This coupled-out light 8 'is in turn supplied to a spectrometer, for example. As explained in the exemplary embodiment according to FIG. 13, the wavelength maxima from the mode spectra of the individual ring resonators 10 to 12 are fed to the waveguide 5, which thus adds up these wavelength maxima.
Auch bei dieser Ausführungsform können, wie durch die Punkte angedeutet, weitere Ringresonatoren in beiden senkrechten Reihen vorgesehen werden, je nach Einsatzfall des Sensors.
Die Fig. 15 bis 17 zeigen ein konkretes Ausführungsbeispiel eines Sensors. Der Wellenleiter 1 befindet sich in einem Träger 13, der beispielsweise aus Glas oder aus Kristall bestehen kann. Die beiden Enden 14, 15 des Wellenleiters 1 münden in eine Stirnseite 16 des Trägers 13. Die an die Enden 14, 15 anschließenden Abschnitte 17, 18 des Wellenleiters 1 verlaufen zunächst parallel zueinander und gehen über ein Schlaufenteil 19 ineinander über. Der Wellenleiter 1 liegt mit geringem Abstand unterhalb der Oberseite 20 des Trägers 13. Also in this embodiment, as indicated by the points, further ring resonators can be provided in both vertical rows, depending on the application of the sensor. FIGS. 15 to 17 show a concrete embodiment of a sensor. The waveguide 1 is located in a carrier 13, which may consist for example of glass or crystal. The two ends 14, 15 of the waveguide 1 open into an end face 16 of the carrier 13. The adjoining the ends 14, 15 sections 17, 18 of the waveguide 1 are initially parallel to each other and go over a loop portion 19 into each other. The waveguide 1 is located at a short distance below the upper side 20 of the carrier 13th
Auf der Trägeroberseite 20 sind die beiden Ringresonatoren 3 und 4 angeordnet, die sich in Höhe des Schlaufenteiles 19 des Wellenleiters 1 befinden, in Draufsicht auf den Sensor gesehen. Die Ringresonatoren 3, 4 liegen mit Abstand nebeneinander und sind so in Bezug auf den Wellenleiter 1 angeordnet, dass sie ihn, in Draufsicht gemäß Fig. 15 gesehen, überlappen (s. auch Fig. 16). On the carrier top 20, the two ring resonators 3 and 4 are arranged, which are located at the level of the loop portion 19 of the waveguide 1, viewed in plan view of the sensor. The ring resonators 3, 4 are located next to one another at a distance and are arranged with respect to the waveguide 1 so that they overlap, as seen in plan view according to FIG. 15 (see also FIG. 16).
Das in den Wellenleiter 1 eingespeiste Licht 8 wird in die Ringresonatoren 3, 4 in der beschriebenen Weise eingekoppelt. Die Ringresonatoren 3, 4 kommen, da sie an der Oberseite 20 des Trägers 13 angeordnet sind, mit dem zu messenden Medium in Berührung. Die Moleküle der eventuell im Medium enthaltenen Feuchtigkeit lagern sich in der porösen Schicht mindestens eines Ringresonators 3 und/oder 4 ab und führen in der beschriebenen Weise zu einer Wellenlängenverschiebung der Wellenlängenminima, wie anhand der vorigen Ausführungsbeispiele erläutert worden ist. The light 8 fed into the waveguide 1 is coupled into the ring resonators 3, 4 in the manner described. The ring resonators 3, 4, since they are arranged on the upper side 20 of the carrier 13, come into contact with the medium to be measured. The molecules of the moisture possibly contained in the medium are deposited in the porous layer of at least one ring resonator 3 and / or 4 and lead in the manner described to a wavelength shift of the wavelength minima, as has been explained with reference to the previous embodiments.
Fig. 18 zeigt einen Schnitt durch den Sensor gemäß Fig. 11. Auf einem Träger 6, der beispielhaft aus Glas oder Kristall bestehen kann, sind die beiden Wellenleiter 1 und 5 aufgebracht, zwischen denen sich der Ringresonator 2 befindet. Die Wellenleiter 1 , 5 und der Ringresonator 2 lassen sich an der Oberseite 21 des Trägers 6 sehr einfach aufbringen. Während der Messung ist der Sensor so angeordnet, dass das zu messende Medium mit dem Ringresonator 2 in Kontakt kommt, so dass sich Feuchtigkeitsmoleküle in den Poren der porösen Schicht des Ringresonators 2 absetzen können.
Die Ausführungsform gemäß Fig. 19 unterscheidet sich von der vorigen Ausführungsform dadurch, dass die beiden Wellenleiter 1 , 5 nicht an der Oberseite, sondern mit geringem Abstand von der Oberseite 21 innerhalb des Trägers 6 angeordnet sind. Der Abstand zwischen den Wellenleitern 1 , 5 und dem Ringresonator 2 ist so gewählt, dass das über den Wellenleiter 1 eingespeiste Licht in den Ringresonator 2 eingekoppelt und vom Ringresonator in den Wellenleiter 5 ausgekoppelt werden kann. Der Messabstand zwischen den Wellenleitern 1 , 5 und dem Ringresonator 2 ist in diesem Falle senkrecht zur Trägeroberseite 21 vorhanden. Die Lage der Wellenleiter 1 , 5 ist so gewählt, dass sie im Schnitt unterhalb des Ringresonators 2 liegen. FIG. 18 shows a section through the sensor according to FIG. 11. The two waveguides 1 and 5, between which the ring resonator 2 is located, are mounted on a carrier 6, which can consist of glass or crystal by way of example. The waveguides 1, 5 and the ring resonator 2 can be very easily applied to the top 21 of the carrier 6. During the measurement, the sensor is arranged so that the medium to be measured comes into contact with the ring resonator 2, so that moisture molecules can settle in the pores of the porous layer of the ring resonator 2. The embodiment according to FIG. 19 differs from the previous embodiment in that the two waveguides 1, 5 are arranged not at the upper side, but at a short distance from the upper side 21 within the carrier 6. The distance between the waveguides 1, 5 and the ring resonator 2 is chosen so that the light fed in via the waveguide 1 can be coupled into the ring resonator 2 and coupled out of the ring resonator into the waveguide 5. The measuring distance between the waveguides 1, 5 and the ring resonator 2 is present in this case perpendicular to the carrier top 21. The position of the waveguides 1, 5 is chosen so that they lie below the ring resonator 2 in section.
Fig. 20 zeigt eine Ausführungsform eines Sensors, der grundsätzlich den gleichen Aufbau wie der Sensor gemäß Fig. 19 hat. Der Ringresonator 2 ist von einer Mantelschicht 7 umgeben, die aus einem Material besteht, das eine kleinere Brechzahl n hat als der umhüllte Ringresonator 2. Die Mantelschicht 7 ist vorteilhaft eine optische PVD-Schicht. Sie kann beispielsweise aus SiO2 bestehen, das eine Brechzahl n von 1 ,45 hat. Der Ringresonator 2 kann in diesem Falle beispielsweise aus ZrO2 mit einer Brechzahl n von 2,14 bestehen. FIG. 20 shows an embodiment of a sensor which basically has the same construction as the sensor according to FIG. 19. The ring resonator 2 is surrounded by a cladding layer 7, which consists of a material which has a smaller refractive index n than the coated ring resonator 2. The cladding layer 7 is advantageously an optical PVD layer. It can for example consist of SiO 2 , which has a refractive index n of 1.45. The ring resonator 2 can in this case for example consist of ZrO 2 with a refractive index n of 2.14.
Die Mantelschicht 7 kann den Ringresonator 2 ganz oder auch nur teilweise umgeben. Die Mantelschicht 7 kann gegenüber dem zu messenden Gas o- der der zu messenden Flüssigkeit sowohl als Schutzschicht als auch als Filterschicht oder als Einlagerungsschicht dienen. Im Falle einer Filterschicht hat die Mantelschicht 7 eine definierte Porengröße, die kleiner ist als die Porengröße des Materials des Ringresonators 2. Im Falle einer Einlagerungsschicht hat die Mantelschicht 7 eine definierte Porengröße, die größer ist als die Porengröße des Materials des Ringresonators 2. The cladding layer 7 may completely or partially surround the ring resonator 2. The cladding layer 7 can serve both as a protective layer and as a filter layer or as an intercalation layer relative to the gas to be measured or the liquid to be measured. In the case of a filter layer, the cladding layer 7 has a defined pore size which is smaller than the pore size of the material of the ring resonator 2. In the case of an intercalation layer, the cladding layer 7 has a defined pore size which is greater than the pore size of the material of the ring resonator 2.
Die Ausbildung gemäß den Fig. 18 bis 20 kann bei den Sensoren vorgesehen sein, die die beiden beiderseits des oder der Ringresonatoren befindlichen Wellenleiter 1 , 5 aufweist (Fig. 1 bis 14).
Fig. 21 zeigt einen Sensor mit einem Schichtaufbau. Der Träger 6 ist im Unterschied zu den Ausführungsformen gemäß den Fig. 18 bis 20 als Ring ausgebildet. Auf dem Träger 6 ist der Ringresonator 2 befestigt, der entsprechend der Ausführungsform gemäß Fig. 20 von der Mantelschicht 7 umgeben ist. Außerdem ist auf dem Träger 6 der Wellenleiter 1 befestigt. Er ist in die Mantelschicht 7 eingebettet, die den Ringresonator 2 umgibt. Der Wellenleiter 1 und der Ringresonator 2 mit der Mantelschicht 7 liegen in einer gemeinsamen Ebene und bilden eine erste Schicht 22, die auf dem Träger 6 befestigt ist. The embodiment according to FIGS. 18 to 20 may be provided in the case of the sensors which has the two waveguides 1, 5 located on either side of the ring resonator or resonators (FIGS. 1 to 14). Fig. 21 shows a sensor with a layer structure. The carrier 6 is formed in contrast to the embodiments according to FIGS. 18 to 20 as a ring. On the support 6, the ring resonator 2 is fixed, which is surrounded according to the embodiment of FIG. 20 of the cladding layer 7. In addition, the waveguide 1 is fixed on the carrier 6. It is embedded in the cladding layer 7, which surrounds the ring resonator 2. The waveguide 1 and the ring resonator 2 with the cladding layer 7 lie in a common plane and form a first layer 22, which is fastened on the carrier 6.
Auf der Schicht 22 ist unter Zwischenlage einer Isolierschicht 23 eine zweite Schicht 24 aufgebracht, die gleich ausgebildet ist wie die erste Schicht 22. Die Isolierschicht 23 verhindert, dass die beiden Schichten 22, 24 beim Messvorgang einander stören. On the layer 22 with the interposition of an insulating layer 23, a second layer 24 is applied, which is the same as the first layer 22. The insulating layer 23 prevents the two layers 22, 24 interfere with each other during the measuring process.
Auf diese Weise sind auf dem Träger 6 übereinander unter Zwischenlage jeweils einer Isolierschicht 23 weitere Schichten 25, 26 aufgebracht. Die Punkte oberhalb des Sensors zeigen an, dass weitere Schichten vorgesehen sein können. In this way, 23 more layers 25, 26 are applied to each other on the support 6 with the interposition of an insulating layer. The dots above the sensor indicate that additional layers may be provided.
Bei den Ausführungsformen mit mehreren Ringresonatoren besteht die Möglichkeit, die Ringresonatoren auf unterschiedliche Spurenbestandteile abzustimmen. So kann beispielsweise mit Hilfe des einen Ringresonators Wasser und mit Hilfe des anderen Ringresonators Ammoniak im Medium in einem Messvorgang erfasst werden. Die Porengröße ist an die Molekülgröße der zu erfassenden Spurenbestandteile angepasst. Nachfolgend sind die Molekülgrößen einiger Spurenbestandteile angegeben: In the embodiments with multiple ring resonators, it is possible to tune the ring resonators to different trace constituents. Thus, for example, with the help of one ring resonator water and with the help of the other ring resonator ammonia can be detected in the medium in one measurement. The pore size is adapted to the molecular size of the trace constituents to be detected. The molecular sizes of some trace constituents are given below:
Wasser 0,28 nm Water 0.28 nm
Ammoniak 0,30 nm Ammonia 0.30 nm
Kohlenstoffmonoxid 0,32 nm Carbon monoxide 0.32 nm
Kohlenstoffdioxid 0,33 nm
Chlorwasserstoff 0,35 nm Carbon dioxide 0.33 nm Hydrogen chloride 0.35 nm
Schwefelwasserstoff 0,36 nm Hydrogen sulfide 0.36 nm
Methanol 0,38 nm Methanol 0.38 nm
Methylmercaptan 0,45 nm Methyl mercaptan 0.45 nm
Die Poren des Ringresonators sind an die oben angegebenen Molekülgrößen so angepasst, dass sich die entsprechenden Moleküle in den Poren ablagern können. The pores of the ring resonator are adapted to the molecular sizes given above so that the corresponding molecules can be deposited in the pores.
Die Ringresonatoren 2 in den verschiedenen Schichten können auf unterschiedliche zu erfassende Bestandteile abgestimmt sein, so dass im zu messenden Medium die entsprechenden Spurenbestandteile erfasst werden können. The ring resonators 2 in the various layers can be matched to different components to be detected, so that the corresponding trace constituents can be detected in the medium to be measured.
Fig. 22 zeigt den Sensor gemäß den Fig. 15 bis 17 mit dem Wellenleiter , der an eine Lichtquelle 27 angeschlossen ist. Sie ist im dargestellten Ausführungsbeispiel eine LED-Lichtquelle, mit der das Licht in den Wellenleiter 1 über ein Faserkabel 28 eingebracht wird. Das in den Wellenleiter 1 eingespeiste Licht durchläuft den Wellenleiter 1 in der beschriebenen Weise und gelangt am Ende 15 in ein weiteres Faserkabel 29, das das ausgekoppelte Licht einem Polychromator 30 zuführt. Das Licht tritt über eine Schlitzblende 31 in den Polychromator 30 ein und gelangt auf ein konkaves Gitter 32, an dem das Licht zu einem CCD-Detektor 33 reflektiert wird. Er ist an das (nicht dargestellte) Messgerät angeschlossen, das die vom Detektor 33 kommenden Signale in der beschriebenen Weise auswertet.
FIG. 22 shows the sensor according to FIGS. 15 to 17 with the waveguide connected to a light source 27. It is in the illustrated embodiment, an LED light source with which the light is introduced into the waveguide 1 via a fiber cable 28. The light fed into the waveguide 1 passes through the waveguide 1 in the manner described and arrives at the end 15 in another fiber cable 29 which supplies the decoupled light to a polychromator 30. The light enters via a slit 31 in the polychromator 30 and reaches a concave grating 32, at which the light is reflected to a CCD detector 33. It is connected to the measuring device (not shown), which evaluates the signals coming from the detector 33 in the manner described.
Claims
1 . Optischer Sensor zur Messung von Spurenbestandteilen in Flüssigkeiten und/oder Gasen, mit mindestens einem optischen Resonator, der wenigstens eine poröse Schicht aufweist, deren Poren zur Aufnahme von Feuchteteilchen dienen, 1 . Optical sensor for measuring trace constituents in liquids and / or gases, comprising at least one optical resonator, which has at least one porous layer whose pores serve to receive moist particles,
dadurch gekennzeichnet, dass der Resonator ein Ringresonator (2 bis 4, 10 bis 12) ist, dem wenigstens ein optischer Wellenleiter (1 , 5) zugeordnet ist, in den Licht (8) eingespeist wird, das in den Ringresonator (2 bis 4, 10 bis 12) teilweise ausgekoppelt wird. characterized in that the resonator is a ring resonator (2 to 4, 10 to 12), to which at least one optical waveguide (1, 5) is associated, into which light (8) is fed, which enters the ring resonator (2 to 4, 10 to 12) is partially decoupled.
2. Sensor nach Anspruch , 2. Sensor according to claim
dadurch gekennzeichnet, dass dem Ringresonator (2 bis 4, 10 bis 12) ein weiterer Wellenleiter zugeordnet ist, in den das in den Ringresonator (2 bis 4, 10 bis 12) eingekoppelte Licht (8) wenigstens teilweise ausgekoppelt wird. characterized in that the ring resonator (2 to 4, 10 to 12) is associated with a further waveguide, in which the in the ring resonator (2 to 4, 10 to 12) coupled light (8) is at least partially decoupled.
3. Sensor nach Anspruch 2, 3. Sensor according to claim 2,
dadurch gekennzeichnet, dass das in den weiteren Wellenleiter (1 , 5) ausgekoppelte Licht (8') einem Spektrometer zuführbar ist. characterized in that in the further waveguide (1, 5) decoupled light (8 ') is fed to a spectrometer.
4. Sensor nach einem der Ansprüche 1 bis 3, 4. Sensor according to one of claims 1 to 3,
dadurch gekennzeichnet, dass mehrere Ringresonatoren (2 bis 4, 10 bis 12) hintereinander längs des Wellenleiters (1 , 5) angeordnet sind.
characterized in that a plurality of ring resonators (2 to 4, 10 to 12) are arranged one behind the other along the waveguide (1, 5).
5. Sensor nach Anspruch 4, 5. Sensor according to claim 4,
dadurch gekennzeichnet, dass die mehreren Ringresonatoren (2 bis 4, 10 bis 12) das eingekoppelte Licht in den weiteren Wellenleiter (1 , 5) wenigstens teilweise auskoppeln. characterized in that the plurality of ring resonators (2 to 4, 10 to 12) at least partially decouple the injected light into the further waveguide (1, 5).
6. Sensor nach einem der Ansprüche 2 bis 5, 6. Sensor according to one of claims 2 to 5,
dadurch gekennzeichnet, dass zwischen den beiden Wellenleitern (1 , 5) zwei aneinander liegende Ringresonatoren (2 bis 4, 10 bis 12) vorgesehen sind. characterized in that between the two waveguides (1, 5) two adjacent ring resonators (2 to 4, 10 to 12) are provided.
7. Sensor nach Anspruch 6, 7. Sensor according to claim 6,
dadurch gekennzeichnet, dass mehrere paarweise aneinander liegende Ringresonatoren (2 bis 4, 10 bis 12) hintereinander angeordnet sind. characterized in that a plurality of ring resonators arranged in pairs (2 to 4, 10 to 12) are arranged one behind the other.
8. Sensor nach einem der Ansprüche 1 bis 7, 8. Sensor according to one of claims 1 to 7,
dadurch gekennzeichnet, dass der/die Ringresonator/-en (2 bis 4, 10 bis 12) und der/die Wellenleiter (1 , 5) an einem Träger (6, 13) vorgesehen sind. characterized in that the ring resonator (s) (2 to 4, 10 to 12) and the waveguide (s) (1, 5) are provided on a carrier (6, 13).
9. Sensor nach einem der Ansprüche 1 bis 7, 9. Sensor according to one of claims 1 to 7,
dadurch gekennzeichnet, dass der/die Ringresonator/-en (2 bis 4, 10 bis 12) auf einem Träger (6, 13) angeordnet und der/die Wellenleiter (1 , 5) in den Träger (6, 13) eingebettet ist/sind. characterized in that the ring resonator (s) (2 to 4, 10 to 12) are arranged on a carrier (6, 13) and the waveguide (1, 5) is embedded in the carrier (6, 13) / are.
10. Sensor nach einem der Ansprüche 1 bis 9, 10. Sensor according to one of claims 1 to 9,
dadurch gekennzeichnet, dass der/die Ringresonator/-en (2 bis 4, 10 bis 12) von einer Mantelschicht (7) ganz oder teilweise umgeben ist/sind, deren Material eine kleinere Brechzahl (4) aufweist als das Material des Ringresonators. characterized in that the / the ring resonator (s) (2 to 4, 10 to 12) is completely or partially surrounded by a cladding layer (7) / whose material has a smaller refractive index (4) than the material of the ring resonator.
11. Sensor nach einem der Ansprüche 1 bis 10, 11. Sensor according to one of claims 1 to 10,
dadurch gekennzeichnet, dass der/die Ringresonator/-en (2 bis 4, 10 bis 12) von einer Filterschicht (7) ganz oder teilweise umgeben ist/sind,
deren Material zum Filtern von Molekülen eine kleinere Porengröße aufweist als das Material des Ringresonators. characterized in that the ring resonator (s) (2 to 4, 10 to 12) is completely or partially surrounded by a filter layer (7), their material for filtering molecules has a smaller pore size than the material of the ring resonator.
Sensor nach einem der Ansprüche 1 bis 10, Sensor according to one of claims 1 to 10,
dadurch gekennzeichnet, dass der/die Ringresonator/-en von einer E lagerungsschicht mit entsprechender Porengröße für Moleküle umgeben ist/sind. characterized in that the ring resonator (s) is / are surrounded by an E storage layer having a corresponding pore size for molecules.
Sensor nach einem der Ansprüche 1 bis 12, Sensor according to one of claims 1 to 12,
dadurch gekennzeichnet, dass der Wellenleiter (1 , 5) aus ionenimplantierten Gläsern oder Kristallen oder optischen PVD Schichten besteht. characterized in that the waveguide (1, 5) consists of ion-implanted glasses or crystals or optical PVD layers.
Sensor nach einem der Ansprüche 1 bis 13, Sensor according to one of claims 1 to 13,
dadurch gekennzeichnet, dass der/die Ringresonator/-en (2 bis 4, 10 bis 2) wenigstens eine optische PVD-Schicht aufweist/-en, wie S1O2 Zr02, ΤΊΟ2 oder Ta05.
characterized in that the ring resonator (s) (2 to 4, 10 to 2) has at least one optical PVD layer, such as S1O2 Zr0 2 , ΤΊΟ2 or Ta0 5 .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015007206.4A DE102015007206A1 (en) | 2015-06-02 | 2015-06-02 | Optical sensor |
PCT/EP2016/000880 WO2016192845A1 (en) | 2015-06-02 | 2016-05-27 | Optical sensor for measuring trace components in liquids and/or gases |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3304146A1 true EP3304146A1 (en) | 2018-04-11 |
Family
ID=56096603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16726280.7A Withdrawn EP3304146A1 (en) | 2015-06-02 | 2016-05-27 | Optical sensor for measuring trace components in liquids and/or gases |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3304146A1 (en) |
DE (1) | DE102015007206A1 (en) |
WO (1) | WO2016192845A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358238B (en) * | 2021-06-09 | 2023-08-25 | 桂林电子科技大学 | Small-size on-chip temperature sensor based on micro-ring resonator |
CN114280730B (en) * | 2021-06-29 | 2022-09-13 | 华中科技大学 | Double-resonant-cavity double-waveguide filtering system and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6819811B1 (en) * | 2000-11-09 | 2004-11-16 | Quantum Group Inc. | Nano-size gas sensor systems |
US7389025B2 (en) * | 2006-03-29 | 2008-06-17 | 3M Innovative Properties Company | Coupling light into microresonators |
WO2010077527A1 (en) * | 2008-12-29 | 2010-07-08 | 3M Innovative Properties Company | Optical microresonator |
WO2012061778A2 (en) * | 2010-11-05 | 2012-05-10 | Genalyte, Inc. | Optical analyte detection systems and methods of use |
US20120281957A1 (en) * | 2011-05-08 | 2012-11-08 | Georgia Tech Research Corporation | Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements |
GB201117649D0 (en) * | 2011-10-12 | 2011-11-23 | Univ Gent | Resonant biosensor |
-
2015
- 2015-06-02 DE DE102015007206.4A patent/DE102015007206A1/en not_active Ceased
-
2016
- 2016-05-27 EP EP16726280.7A patent/EP3304146A1/en not_active Withdrawn
- 2016-05-27 WO PCT/EP2016/000880 patent/WO2016192845A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2016192845A1 (en) | 2016-12-08 |
DE102015007206A1 (en) | 2016-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3204738B1 (en) | Optical filter element for devices for converting spectral information into location information | |
EP0163847A2 (en) | Interferential refractometer | |
EP2149028B1 (en) | Method for compensating for temperature related measurement errors in a confocal chromatic measuring distance sensor | |
EP2985579B1 (en) | Spectrometer with monochromator and order sorting filter | |
DE3339435A1 (en) | COLOR MONITORING DEVICE FOR A RUNNING MATERIAL | |
DE10205142A1 (en) | Arrangement and method for wavelength calibration in an Echelle spectrometer | |
EP0174496A2 (en) | Procedure for measuring the radiation wavelength and the wavelength-corrected radiation power of monochromatical light-sources and arrangement for carrying out this procedure | |
DE69201917T2 (en) | High-resolution spectroscope system. | |
EP0442596A2 (en) | Echelle-polychromator | |
WO2016192845A1 (en) | Optical sensor for measuring trace components in liquids and/or gases | |
DE102011116367A1 (en) | Device for the high-resolution determination of the concentration of substances in fluid media | |
EP0981735B1 (en) | Device for measuring light-activated fluorescence and its use | |
DE2948590C2 (en) | Device for measuring the absorption of gas mixtures | |
WO2021058260A1 (en) | Spectrometer device and method for calibrating a spectrometer device | |
DE4407332C2 (en) | Method for determining extinction or transmission and photometer | |
EP0536656B1 (en) | Humidity sensor | |
WO2006079466A1 (en) | Technical device combination for measuring material concentration and temperature profile based on fibre bragg gratings in optical fibres | |
EP0538664B1 (en) | Method and device for determining optical spectral shifts caused by physical or chemical effects | |
DE4224299C2 (en) | spectrometer | |
EP3770585B1 (en) | Device and method for detecting a concentration of a substance in a fluid | |
EP0579257B1 (en) | Device for determining optical spectral shifts caused by physical or chemical effects | |
EP3779408A1 (en) | Measuring device and method for detecting material concentration | |
DE3244783A1 (en) | Method and device for measuring the refractive index of liquids and gases | |
DE102015010998A1 (en) | Optical sensor for measuring at least one characteristic feature of a liquid and / or gaseous medium | |
DE102008009599B3 (en) | Optical system for non-contact reflection measurement and method for non-contact reflection measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20180102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20190802 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200213 |