EP1845175B1 - System and process for collecting effluents from an electrolytic cell - Google Patents

System and process for collecting effluents from an electrolytic cell Download PDF

Info

Publication number
EP1845175B1
EP1845175B1 EP06356042A EP06356042A EP1845175B1 EP 1845175 B1 EP1845175 B1 EP 1845175B1 EP 06356042 A EP06356042 A EP 06356042A EP 06356042 A EP06356042 A EP 06356042A EP 1845175 B1 EP1845175 B1 EP 1845175B1
Authority
EP
European Patent Office
Prior art keywords
pressurized air
pipe
cell
flow rate
outlet channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06356042A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1845175A1 (en
Inventor
Guillaume Girault
Philippe Cantin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP06356042A priority Critical patent/EP1845175B1/en
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Priority to DE602006020112T priority patent/DE602006020112D1/de
Priority to ES06356042T priority patent/ES2360871T3/es
Priority to AT06356042T priority patent/ATE498713T1/de
Priority to SI200631004T priority patent/SI1845175T1/sl
Priority to RU2008144402/02A priority patent/RU2436872C2/ru
Priority to CA2649266A priority patent/CA2649266C/en
Priority to AU2007237131A priority patent/AU2007237131B2/en
Priority to PCT/IB2007/001612 priority patent/WO2007116320A2/en
Priority to ZA200807450A priority patent/ZA200807450B/xx
Priority to EP07734843A priority patent/EP2007929A2/en
Priority to CN2007800129400A priority patent/CN101460663B/zh
Priority to US12/296,860 priority patent/US20090159434A1/en
Priority to MYPI20084020A priority patent/MY147259A/en
Priority to BRPI0710184-8A priority patent/BRPI0710184A2/pt
Priority to ARP070101542A priority patent/AR060596A1/es
Publication of EP1845175A1 publication Critical patent/EP1845175A1/en
Priority to NO20084736A priority patent/NO345106B1/no
Application granted granted Critical
Publication of EP1845175B1 publication Critical patent/EP1845175B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J11/00Devices for conducting smoke or fumes, e.g. flues 
    • F23J11/02Devices for conducting smoke or fumes, e.g. flues  for conducting smoke or fumes originating from various locations to the outside, e.g. in locomotive sheds, in garages
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/22Collecting emitted gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/002Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using a central suction system, e.g. for collecting exhaust gases in workshops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L17/00Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues
    • F23L17/16Induction apparatus, e.g. steam jet, acting on combustion products beyond the fire

Definitions

  • Aluminium metal is produced industrially by igneous electrolysis, i.e. by electrolysis of alumina in solution in a molten cryolite bath using the well-known Hall-Héroult process.
  • a plant for the production of aluminium comprises a plurality of electrolysis cells, typically several hundreds, which are arranged in rows and connected in series.
  • U.S. Patent Letters No. 6,409,894 in the name of Aluminium Pechiney describes typical arrangements of plants intended for the production of aluminium using electrolysis cells.
  • the electrolytic cells need to be tended during operation. For example, worn anodes need to be changed for new ones and the liquid aluminium produced by the cells needs to be regularly tapped.
  • the hooding includes means, such as hoods or doors, for getting access to the inner part of the cells for tending operations.
  • the removal of hoods or the opening of access doors decreases the collection efficiency of the extraction system and lets some effluents escape into the surrounding atmosphere.
  • U.S. Patent Letter No. 4,668,352 in the name of Aluminium Pechiney discloses a device and a process wherein the suction means automatically go into an increased suction mode when the opening of the hooding is detected. More precisely, the temperature of the gases in the extraction ducts of each cell is continuously measured and the system switches into the increased suction mode when an abrupt temperature drop caused by the opening of the hooding is detected in one duct. The increased suction mode is obtained by actuating a movable shutter or flap.
  • the shutters and flaps are subject to high temperatures, corrosive compounds and dusty atmosphere that can damage them and thereby reduce the reliability of the system.
  • the applicant addressed the problem of finding industrially acceptable alternative means for efficiently increasing the extraction rate of an electrolytic cell.
  • An object of the invention is a system for collecting effluents produced by an electrolysis cell intended for the production of aluminium and for drawing said effluents away from the cell in a flow of gas, said system comprising a hooding to confine the effluents, at least one outlet channel to collect said flow of gas and suction means to draw said flow of gas away from the cell through said at least one outlet channel, said hooding including removable hoods and, optionally, at least one door, to get access to the inside of the hooding, wherein said system further comprises at least one pipe comprising:
  • Another object of the invention is a process for collecting effluents produced by an electrolysis cell intended for the production of aluminium and for drawing said effluents away from the cell in a flow of gas circulating in at least one outlet channel, wherein said process comprises:
  • Pressurized air is typically supplied in said pipe(s) when at least one hood is removed from the cell or when said door is opened.
  • the pressure and flow rate of the pressurized air in said pipe(s) is adjusted according to the actual suction needs.
  • This embodiment of the invention enables tighter control on the needs for pressurized air supply.
  • the gas flow rate R in the outlet channel(s), i.e. the rate of flow of the effluent-carrying gas coming out of a cell can be increased by a factor between 1.5 and 3 by using a specified pressurized air flow rate Ro, i.e. the rate of flow of the pressurized air blown by the aperture of a pipe in the outlet channel of the cell, that is between 5 and 15 % of the normal gas flow rate in the outlet channel(s) and a pressure Po of pressurized air smaller than about 5 bars.
  • a specified pressurized air flow rate Ro i.e. the rate of flow of the pressurized air blown by the aperture of a pipe in the outlet channel of the cell, that is between 5 and 15 % of the normal gas flow rate in the outlet channel(s) and a pressure Po of pressurized air smaller than about 5 bars.
  • Figure 1 illustrates a cross section view of a typical electrolysis cell intended for the production of aluminium.
  • Figure 2 illustrates the upper part of an electrolytic cell equipped with a system for collecting effluents.
  • Figure 3 schematically illustrates an arrangement of electrolysis cells that includes a system for collecting effluents and common suction means.
  • FIGS 4 and 5 schematically illustrate embodiments an electrolytic cell equipped with a system for collecting effluents according to the invention.
  • Figure 6 illustrates a possible embodiment of a system according to the invention.
  • An electrolysis cell (1) designed for the production of aluminium is generally rectangular, with long sides that are typically 10 to 20 meters long and short sides that are typically 3 to 5 meters long and often referred to as ends.
  • an electrolysis cell (1) comprises a pot (2) that is usually located below a floor (100) common to several cells and comprises a steel shell (3) lined with refractory material (4, 4').
  • the pot (2) typically includes carbonaceous cathode blocs (5) that are connected to external electrical conductors (7) using a cathode bar (6) made of an electrically conducting material such as steel.
  • the pot (2) contains a pad of liquid aluminium (8) and an electrolytic bath (9).
  • an electrolysis cell (1) also typically includes a plurality of anodes (10, 10'), which are typically made of a carbonaceous material.
  • the anodes (10, 10') are connected to external electrical conductors (7') using anode stems (11, 11') sealed in the anodes and secured to common conductors (12, 12') called anode beams using removable connectors.
  • the anodes (10, 10') are partially immersed in the electrolytic bath (9) and are protected from oxidation by a protecting layer (13), called a bath crust, that is mostly comprised of alumina and crushed bath.
  • An electrolysis cell (1) typically further includes one or more alumina feeders that usually include a hopper (14) for feeding alumina (15) at specified locations within the cell.
  • the feeders are continuously supplied by an alumina conveyor (16) that runs along the cell.
  • An electrolysis cell (1) further includes a hooding (20) capable of confining effluents produced by the cell (1).
  • the hooding (20) includes a plurality of removable hoods (21, 21'), which are also called covers, on the long sides of the cell to get access to the inside of the hooding from either of the long sides.
  • An electrolysis cell (1) typically includes between 10 and 30 hoods (21, 21') on each long side, which are usually arranged side by side.
  • the hoods (21, 21') usually comprise a handle (22, 22') to facilitate their handling.
  • Hoods (21, 21') are usually removed for tending the inside of the cell.
  • a few hoods (21') are removed from one side of the cell when a worn anode (10') is to be changed for a new one and put back on the cell when the anode changing operation is completed.
  • the hooding (20) also includes a door or doors (23) at one end of the cell to get access to the inside of the hooding from that end.
  • the doors (23) are typically shutter doors.
  • the doors (23) are often referred to as tapping doors because they are often used for tapping liquid aluminium out of the cell. This operation is done on a regular basis to remove some of the liquid aluminium (8) produced by the cell.
  • the hooding (20) typically further includes longitudinal channels (24, 24') that run along the top of the cell. The flow of effluents circulates within these channels.
  • the hooding (20) is connected to at least one outlet channel (25) that is coupled to suction means (30, 31).
  • the outlet channel (25) is typically a duct or a conduit.
  • an intermediate insulating channel (26) is usually interposed between the outlet channel(s) (25) and the suction means (30, 31).
  • the suction means (30, 31) produce a flow of gas that sucks the effluents out of the cell. The flow of gas flows at a rate R.
  • the suction means (30, 31) typically include at least one conduit (30) and at least one fan (31).
  • the channel(s) (30) and the fan(s) (31) may be common to several cells.
  • the normal gas flow rate of a cell depends on the type of cell.
  • the normal gas flow rate typically used for an AP18 type cell of Aluminium Pechiney, when operated with a current intensity of about 180 000 Amperes, is about 1.4 Nm 3 /s
  • the normal gas flow rate typically used for an AP30 type cell of Aluminium Pechiney, when operated with a current density of about 300 000 Amperes is about 2.1 Nm 3 /s.
  • the effluents comprise a gaseous part (especially containing air, carbon dioxide and fluorinated products, such as hydrogen fluoride) and a solid or "dust" part (containing alumina, electrolytic bath, etc).
  • the effluents are confined by the hooding (20), captured by suction and treated in the treatment installation(s) (40) of the plant.
  • the treatment processes usually remove the solid particles contained in the effluents, typically using separation means such as filters or electrostatic precipitators, extract the fluorine contained in the effluents and leave a residual gas fraction containing a negligible amount of solid particles and fluorinated products.
  • the residual gas fraction mainly contains air and carbon dioxide. Treated air is exhausted through a chimney (32).
  • the flow of gas is usually made to react with compounds, typically sodium carbonate, dissolved in water to form a liquor contained in a wet scrubber.
  • compounds typically sodium carbonate
  • the reacted fluorine comes out of the process in the form of solid compounds, typically CaF2 after reacting the liquor with lime.
  • the flow of gas is made to react with powder alumina in a reactor so as produce fluorinated alumina that is partly or completely re-used to feed electrolytic cells.
  • Treatment installations typically comprise a bank of treatment units (40) in parallel, each unit usually comprising a reactor and separation means.
  • a system for collecting effluents produced by an electrolysis cell (1) comprises a hooding (20) to confine the effluents, at least one outlet channel (25) to collect and draw the effluents in a flow of gas and suction means (30, 31) to draw said flow of gas away from the cell.
  • the system further comprises at least one pipe (50) for blowing pressurized air into the outlet channel (25) so as to increase the rate of the flow of gas within the outlet channel (25).
  • Said pipe (50) comprises a first end (51), or "inlet end”, that is directly or indirectly connected to a pressurized air supply (53) and a second end (52), or “outlet end”, that is located inside said outlet channel or one of the outlet channels (25).
  • the pressurized air supply (53) can supply pressurized air at a specified pressure Po and a specified flow rate Ro.
  • the second end (52) of the pipe (50) includes at least one aperture (54) and is oriented so that pressurized air can be projected through said aperture (54) in a manner that increases the rate of said flow of gas.
  • said second end (52) is oriented so that pressurized air is projected substantially along the direction of said flow of gas.
  • the projected air forms a jet that boosts the gas flow when needed.
  • the dimension of said aperture (54) is typically between 5 mm 2 and 300 mm 2 , and more typically between 10 mm 2 and 80 mm 2 .
  • the aperture (54) typically has a circular section with a diameter that is typically between 3 and 20 mm, and more typically between 4 and 10 mm.
  • the second end (52) of the pipe(s) (50) may optionally be fitted with a nozzle that forms said aperture (54) so as to simplify maintenance and changes of pressurized air flow patterns.
  • the rate of flow of pressurized air that is ejected through said aperture (54) depends on the air pressure Po inside the pipe or pipes (50) and the size and shape of the aperture (54). In use, the flow rate is preferably adjusted by varying the air pressure Po.
  • the effluents collecting system according to the invention may include more than one pipe (50) for blowing pressurized air into the outlet channel(s) (25).
  • the system may include several pipes (50) penetrating in an outlet channel (25) so that their second end (52) with an aperture (54) is located inside the outlet channel (25).
  • the outlet channel(s) (25) may be substantially straight, as illustrated in Figure 4 .
  • the outlet channel(s) (25) may optionally include a length of duct (27) with an internal cross section that varies along said length and said second end (52) may be located within said length of duct.
  • Said length of duct (27) has an inlet (271) and an outlet (272).
  • said length of duct (27) includes a constriction (28) between said inlet (271) and outlet (272).
  • the inner cross section of the constriction (28) is smaller than the inner cross section of the inlet (271) and the inner cross section of the outlet (272).
  • the length of duct (27) may include a part having the shape of a Venturi duct.
  • the inner cross section of the length of duct (27) may vary smoothly between the inlet (271) and the outlet (272).
  • Figure 5 illustrates a variation of this embodiment wherein the outlet channel (25) comprises a first straight section (273) with a first inner cross section, a second straight section (274) with a second inner cross section and a third straight section (275) with a third inner cross section, and wherein said second cross section is smaller than said first and third cross sections so as to form said constriction (28).
  • said length of duct (27) includes a first section (276) having a truncated-cone shape located between said first (273) and second (274) straight sections and a second section (277) having a truncated-cone shape located between said second (274) and third (275) straight sections.
  • the second end (52) of the pipe (50) is preferably located in the vicinity of said constriction (28), typically upstream of a plane (29) where the section of said constriction (28) is narrowest as illustrated in Figure 5 .
  • the system may comprise one or more primary outlet channels (25', 25") merging into a single, main outlet channel (25''').
  • Figure 6 illustrates embodiments wherein the system includes two primary channels (25', 25"). The cells are seen from above.
  • the second end (52) of the pipe (50) is located inside said main outlet channel (25''').
  • the system comprises a first pipe (50') and a second pipe (50"), a first end (51', 51") of each pipe being connected to a pressurized air supply (53), a second end (52') of the first pipe (50') being located inside one of said primary outlet channels (25'), a second end (52") of the second pipe (50") being located inside the other one of said primary outlet channels (25").
  • the pressurized air supply (53) is typically common to both pipes (50', 50") and optionally to a plurality of cells.
  • the pipe or pipes (50, 50', 50") are advantageously connected to the pressurized air supply (53) through a valve (55, 55', 55").
  • the valve (55, 55', 55") enables a specific activation and control of the specified pressure and flow rate in the pipe or pipes (50, 50', 50").
  • the valve (55, 55', 55") may be coupled to a regulation system so as to enable automatic control of the specified pressure and flow rate in the pipe or pipes (50, 50', 50").
  • a valve (55, 55', 55") may be common to more than one pipe (50, 50', 50").
  • a process for collecting effluents advantageously includes connecting the pipe or pipes (50) of an effluents collecting system according to the invention to a pressurized air supply (53), activating the suction means (30, 31) and supplying pressurized air in said pipe or pipes (50, 50', 50") at a specified flow rate Ro.
  • the supply of pressurized air in said pipe or pipes (50) may be activated manually and/or automatically.
  • the latter embodiment may be implemented using temperature and/or pressure sensors.
  • the temperature and/or the pressure of the gas flowing in the outlet channel(s) (25) may be measured continuously and the supply of pressurized air in said pipe(s) (50) may be activated manually or automatically when a rapid drop in temperature or pressure is detected.
  • a cell (1) may be equipped with a probe or sensor for measuring the pressure and/or the temperature of the flow of gas coming out of the cell and the probe or sensor may be connected to monitoring device that displays alerts signals and/or activates the supply of pressurized when temperature or pressure limits are exceeded.
  • the supply of pressurized air is advantageously activated by a control valve (55, 55', 55") or the like, such as an electrically controlled valves or pneumatically controlled valves.
  • Electrically controlled valves can advantageously be connected to a regulation system that can automatically control and activate them.
  • the suction means (30, 31) are continuously activated during the electrolysis process and the pressurized air supply (53) is activated when needed and according to needs.
  • Pressurized air is typically supplied in said pipe or pipes (50) when at least one hood (21) is removed from the cell or when a door, usually a tapping door, (23) is opened.
  • the specified pressure Po and flow rate Ro may be selected according to needs, in particular according to the suction needs of the system, which may depend on the size of the orifice created by the removal of hoods or the opening of a door.
  • pressurized air is supplied in said pipe or pipes (50) at a first specified flow rate Ro1, typically by providing a first specified pressure Po1, when at least one hood (21) is removed from the cell and at a second specified flow rate Ro2, typically by providing a second specified pressure Po2, when a door (23) is opened.
  • the first specified pressure Po1 and flow rate Ro1 are typically higher than the second specified pressure Po2 and flow rate Ro2, respectively, so as to increase the gas flow rate for hoods removal more than for door opening since the removal of hoods usually requires a more important air draft than the opening of a door.
  • the gas flow rate of a cell has a normal value when the pressurized air supply is not activated and at least a first modified value when the pressurized air supply is activated.
  • the gas flow rate of the cell may have a second or more modified values when the pressurized air supply is activated. The modified values are higher than the normal value, thus amounting in an increased flow rate.
  • the normal value for the gas flow rate typically corresponds to the situation when all hoods (21) are in place
  • the first gas flow rate typically corresponds to the situation when one or more hoods (21) are removed for changing an anode
  • the second gas flow rate typically corresponds to the situation when a tapping door is opened to remove liquid aluminium from the cell
  • the first modified value is higher than the second modified value, e.g. 2 to 3 times the normal gas flow rate when several hoods are removed for changing an anode and 1.5 to 2 times the normal gas flow rate when a door is opened for tapping liquid aluminium.
  • the ratio Po/P between the pressure Po inside said pipe or pipes (50, 50', 50") and the pressure P inside the outlet channel or channels (25, 25', 25", 25"') where the outlet end (52, 52', 52") of the pipe or pipes (50, 50', 50") is located is preferably smaller than or equal to about 4, so as to avoid shock waves and ensure optimal efficiency in regard to sonic conditions.
  • Said specified flow rate Ro is typically between 5 and 15 % of said gas flow rate R.
  • the pressure Po inside the pipe(s) is typically smaller than 5 bars.
  • the suction means typically include at least one fan (31).
  • This fan (31) provides a normal flow rate in the outlet channel(s) (25, 25', 25", 25"').
  • the outlet channel(s) (25, 25', 25", 25"') is (are) typically connected to the fan (31) by a suction conduit (30).
  • the suction means include a conduit (30) that is common to at least two electrolysis cells (typically a plurality of electrolysis cells) and is connected to at least one common fan (31).
  • the fan (31) is usually located in an installation (40) for the treatment of said effluents or downstream thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cleaning In General (AREA)
EP06356042A 2006-04-11 2006-04-11 System and process for collecting effluents from an electrolytic cell Active EP1845175B1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
DE602006020112T DE602006020112D1 (de) 2006-04-11 2006-04-11 Einrichtung und Verfahren zur Sammlung der Abflüsse einer Elektrolysezelle
ES06356042T ES2360871T3 (es) 2006-04-11 2006-04-11 Sistema y proceso para la captación de efluentes de una cuba electrolítica.
AT06356042T ATE498713T1 (de) 2006-04-11 2006-04-11 Einrichtung und verfahren zur sammlung der abflüsse einer elektrolysezelle
SI200631004T SI1845175T1 (sl) 2006-04-11 2006-04-11 Sistem in postopek za zbiranje iztokov iz elektrolitične celice
EP06356042A EP1845175B1 (en) 2006-04-11 2006-04-11 System and process for collecting effluents from an electrolytic cell
BRPI0710184-8A BRPI0710184A2 (pt) 2006-04-11 2007-04-04 sistema e processo para coletar efluentes de uma célula eletrolìtica
AU2007237131A AU2007237131B2 (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell
PCT/IB2007/001612 WO2007116320A2 (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell
RU2008144402/02A RU2436872C2 (ru) 2006-04-11 2007-04-04 Система и способ улавливания выбросов из электролизера
EP07734843A EP2007929A2 (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell
CN2007800129400A CN101460663B (zh) 2006-04-11 2007-04-04 从电解池收集废物的系统和方法
US12/296,860 US20090159434A1 (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell
MYPI20084020A MY147259A (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell
CA2649266A CA2649266C (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell
ZA200807450A ZA200807450B (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell
ARP070101542A AR060596A1 (es) 2006-04-11 2007-04-11 Sistema y proceso para recolectar efluentes de una celda electrolitica
NO20084736A NO345106B1 (no) 2006-04-11 2008-11-10 System og fremgangsmåte for samling av effluenter fra en elektrolysecelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06356042A EP1845175B1 (en) 2006-04-11 2006-04-11 System and process for collecting effluents from an electrolytic cell

Publications (2)

Publication Number Publication Date
EP1845175A1 EP1845175A1 (en) 2007-10-17
EP1845175B1 true EP1845175B1 (en) 2011-02-16

Family

ID=36992538

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06356042A Active EP1845175B1 (en) 2006-04-11 2006-04-11 System and process for collecting effluents from an electrolytic cell
EP07734843A Withdrawn EP2007929A2 (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07734843A Withdrawn EP2007929A2 (en) 2006-04-11 2007-04-04 System and process for collecting effluents from an electrolytic cell

Country Status (16)

Country Link
US (1) US20090159434A1 (sl)
EP (2) EP1845175B1 (sl)
CN (1) CN101460663B (sl)
AR (1) AR060596A1 (sl)
AT (1) ATE498713T1 (sl)
AU (1) AU2007237131B2 (sl)
BR (1) BRPI0710184A2 (sl)
CA (1) CA2649266C (sl)
DE (1) DE602006020112D1 (sl)
ES (1) ES2360871T3 (sl)
MY (1) MY147259A (sl)
NO (1) NO345106B1 (sl)
RU (1) RU2436872C2 (sl)
SI (1) SI1845175T1 (sl)
WO (1) WO2007116320A2 (sl)
ZA (1) ZA200807450B (sl)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190343A1 (en) * 2019-03-14 2020-09-15 Norsk Hydro As Arrangement for collection of hot gas from an electrolysis process, and a method for such gas collection

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1035369C2 (nl) * 2008-04-29 2009-10-30 Wilhelmus Anthonius Brabander Inrichting voor het verbeteren van schoorsteentrek.
EP2135975A1 (en) * 2008-06-16 2009-12-23 Alcan International Limited Method of producing aluminium in an electrolysis cell
NL1035667C2 (nl) * 2008-07-04 2009-05-19 Pieter Polderman Injector te plaatsen in of toe te voegen aan een scheeps- of andere schoorsteen teneinde de afvoergassen te versnellen, beter te verdelen en hoger mee te voeren waardoor - zonder de druk in de pijp te beïnvloeden - de overlast van laaghangende rook geminimaliseerd wordt.
EP2248605A1 (en) 2009-05-06 2010-11-10 Danieli Corus BV Apparatus and method for balances removal of gasses from electrolysis cells by suction
IT1394799B1 (it) * 2009-07-10 2012-07-13 Zeca S P A Aspiratore di gas di scarico di autoveicoli
EP2360296B1 (en) 2010-01-21 2017-03-15 General Electric Technology GmbH A method of ventilating an aluminium production electrolytic cell
EP2402093B1 (en) 2010-06-30 2015-06-17 Alstom Technology Ltd Screening device and method of screening
FR2963625B1 (fr) 2010-08-06 2013-02-22 Solios Environnement Installation pour la collecte des gaz d'une pluralite de cuves d'electrolyse et dispositif d'ajustement pour une telle installation
FR2963793B1 (fr) 2010-08-10 2012-09-07 Solios Environnement Procede et dispositif de confinement des gaz de cuve dans une cuve d'electrolyse de l'aluminium
EP2431499B1 (en) * 2010-09-17 2014-04-23 Alstom Technology Ltd Raw gas collection system
EP2469207B1 (en) 2010-12-22 2018-06-20 General Electric Technology GmbH Metallurgical plant gas cleaning system, and method of cleaning an effluent gas
FR2969937A1 (fr) * 2011-01-05 2012-07-06 Zeca S P A Aspirateur de gaz d'echappement de vehicule a moteur
EP2489421B1 (en) 2011-02-18 2021-03-31 General Electric Technology GmbH A wet scrubber for cleaning an effluent gas comprising an inlet gas distributor with a diffusor
ES2442902T3 (es) 2011-02-18 2014-02-14 Alstom Technology Ltd Dispositivo y método para depurar un gas efluente de una célula electrolítica de producción de aluminio
US9234286B2 (en) 2012-05-04 2016-01-12 Alstom Technology Ltd Recycled pot gas pot distribution
FR3012473A1 (fr) * 2013-10-30 2015-05-01 Rio Tinto Alcan Int Ltd Dispositif d'etancheite pour capot de cellule d'electrolyse
FI126381B (en) 2014-04-23 2016-11-15 Outotec Finland Oy PROCEDURES AND ARRANGEMENTS FOR COLLECTING AND DISPOSING ACID DIMAGES FROM AN ELECTROLYTIC CELL
FR3037975B1 (fr) * 2015-06-23 2020-10-23 Fives Solios S A Dispositif de suraspiration par effet coanda d’effluents gazeux provenant d’une cuve de production industrielle d’aluminium par electrolyse ignee
RU169432U1 (ru) * 2016-03-01 2017-03-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Газосборное укрытие алюминиевого электролизера с обожженными анодами
CN107653462B (zh) * 2017-10-27 2023-06-13 贵阳铝镁设计研究院有限公司 一种铝电解槽焙烧过程沥青烟集气治理方法及装置
RU2744333C1 (ru) * 2020-02-25 2021-03-05 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Система для удаления газов из алюминиевого электролизера

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2556899A (en) * 1947-03-27 1951-06-12 William W Broussard Gas removing device
DE1161040B (de) * 1961-06-29 1964-01-09 Metallgesellschaft Ag Verfahren zum Reinigen der Abgase von Aluminium-Elektrolyseoefen mit selbstbackenden Anoden unter gleichzeitiger Rueckgewinnung des Fluors
US3782074A (en) * 1972-07-21 1974-01-01 Aronetics Inc Process and apparatus for cleansing and pumping contaminated industrial gases using a nozzle having a variable throat area
GB1571222A (en) * 1977-03-10 1980-07-09 Ardal Og Sunndal Verk Process and apparatus for treatment of waste gases
FR2563845B1 (fr) * 1984-05-03 1986-10-03 Pechiney Aluminium Procede et dispositif de suraspiration automatique sur les cuves d'electrolyse pour la production d'aluminium
FR2626324B1 (fr) * 1988-01-25 1993-04-09 Paziaud Jacques Procede de mise en mouvement de l'air dans une gaine d'aeration par jets d'air induits et son extension pour d'autres fluides
AT392927B (de) * 1989-03-20 1991-07-10 Scheuch Alois Gmbh Absaugsystem fuer den bereich der holzverarbeitung
US5070707A (en) * 1989-10-06 1991-12-10 H. A. Phillips & Co. Shockless system and hot gas valve for refrigeration and air conditioning
US5186793A (en) * 1990-12-31 1993-02-16 Invacare Corporation Oxygen concentrator utilizing electrochemical cell
FR2740862B1 (fr) * 1995-11-03 1998-01-23 Amphoux Andre Dispositif pour aspirer un fluide gazeux a travers un conduit pour le rejeter a l'exterieur de celui-ci
DE19920058A1 (de) * 1999-05-03 2000-11-09 Esta Apparatebau Absaugvorrichtung und Verfahren zum Betrieb derselben
NO314469B1 (no) * 2001-06-25 2003-03-24 Alstom Technology Ltd Fremgangsmåte og anordning for gasstransport
FR2848875B1 (fr) * 2002-12-18 2005-02-11 Pechiney Aluminium Procede et dispositif de traitement des effluents de cellule d'electrolyse pour la production d'aluminium
US7819727B2 (en) * 2004-07-08 2010-10-26 Institute of Occupational Safety and Health Council of Labor Affairs Push-pull type ventilation hood

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190343A1 (en) * 2019-03-14 2020-09-15 Norsk Hydro As Arrangement for collection of hot gas from an electrolysis process, and a method for such gas collection

Also Published As

Publication number Publication date
EP1845175A1 (en) 2007-10-17
AU2007237131B2 (en) 2011-06-02
AU2007237131A1 (en) 2007-10-18
CN101460663A (zh) 2009-06-17
ATE498713T1 (de) 2011-03-15
DE602006020112D1 (de) 2011-03-31
SI1845175T1 (sl) 2011-06-30
CA2649266C (en) 2013-12-17
CN101460663B (zh) 2011-11-16
US20090159434A1 (en) 2009-06-25
CA2649266A1 (en) 2007-10-18
EP2007929A2 (en) 2008-12-31
AR060596A1 (es) 2008-07-02
WO2007116320A3 (en) 2008-09-04
MY147259A (en) 2012-11-14
RU2008144402A (ru) 2010-05-20
RU2436872C2 (ru) 2011-12-20
WO2007116320A2 (en) 2007-10-18
ES2360871T3 (es) 2011-06-09
ZA200807450B (en) 2009-12-30
NO20084736L (no) 2009-01-08
NO345106B1 (no) 2020-09-28
BRPI0710184A2 (pt) 2011-08-09

Similar Documents

Publication Publication Date Title
EP1845175B1 (en) System and process for collecting effluents from an electrolytic cell
AU2009292735B2 (en) A device for collection of hot gas from an electrolysis process, and a method for gas collection with said device
EP2360296A1 (en) A method of ventilating an aluminium production electrolytic cell
CN107075608B (zh) 综合气体处理
AU594767B2 (en) Process for purifying the gases emitted from the electrolysis pots for the production of aluminum and related equipment
US20060289290A1 (en) Electrolytic cell effluent treatment method and device for the production of aluminium
EP3938564B1 (en) Arrangement for collection of hot gas from an electrolysis process, and a method for such gas collection
EP2431499B1 (en) Raw gas collection system
CA2585225A1 (en) Apparatus for collection and removal of gases from an aluminum reduction cell
SE468364B (sv) Saett foer kylning av stoft som avskiljts fraan roekgaserna fraan en pfbc-anlaeggning
Cook et al. Operating experience with the ALCOA 398 process for fluoride recovery
Ruonala et al. Latest Development in Zinc Processing
JP2018202353A (ja) 集塵機及びそのフィルタ交換方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080124

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: BA

Payment date: 20060509

17Q First examination report despatched

Effective date: 20080709

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GIRAULT, GUILLAUME

Inventor name: CANTIN, PHILIPPE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: BA

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006020112

Country of ref document: DE

Date of ref document: 20110331

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006020112

Country of ref document: DE

Effective date: 20110331

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2360871

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110609

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401134

Country of ref document: GR

Effective date: 20110614

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 9266

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006020112

Country of ref document: DE

Effective date: 20111117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140428

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140426

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20150323

Year of fee payment: 10

Ref country code: SK

Payment date: 20150319

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20150319

Year of fee payment: 10

Ref country code: ES

Payment date: 20150427

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150424

Year of fee payment: 10

Ref country code: GR

Payment date: 20150429

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150411

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 9266

Country of ref document: SK

Effective date: 20160411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160411

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160411

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20161227

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20110401134

Country of ref document: GR

Effective date: 20161104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160412

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160411

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160412

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230328

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230314

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230314

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20240326

Year of fee payment: 19