EP1845175B1 - System and process for collecting effluents from an electrolytic cell - Google Patents
System and process for collecting effluents from an electrolytic cell Download PDFInfo
- Publication number
- EP1845175B1 EP1845175B1 EP06356042A EP06356042A EP1845175B1 EP 1845175 B1 EP1845175 B1 EP 1845175B1 EP 06356042 A EP06356042 A EP 06356042A EP 06356042 A EP06356042 A EP 06356042A EP 1845175 B1 EP1845175 B1 EP 1845175B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressurized air
- pipe
- cell
- flow rate
- outlet channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 24
- 238000005868 electrolysis reaction Methods 0.000 claims description 23
- 239000004411 aluminium Substances 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 7
- 230000033228 biological regulation Effects 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 38
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 12
- 239000007788 liquid Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000010079 rubber tapping Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000005203 dry scrubbing Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005200 wet scrubbing Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 238000009626 Hall-Héroult process Methods 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J11/00—Devices for conducting smoke or fumes, e.g. flues
- F23J11/02—Devices for conducting smoke or fumes, e.g. flues for conducting smoke or fumes originating from various locations to the outside, e.g. in locomotive sheds, in garages
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/22—Collecting emitted gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B15/00—Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
- B08B15/002—Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using a central suction system, e.g. for collecting exhaust gases in workshops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L17/00—Inducing draught; Tops for chimneys or ventilating shafts; Terminals for flues
- F23L17/16—Induction apparatus, e.g. steam jet, acting on combustion products beyond the fire
Definitions
- Aluminium metal is produced industrially by igneous electrolysis, i.e. by electrolysis of alumina in solution in a molten cryolite bath using the well-known Hall-Héroult process.
- a plant for the production of aluminium comprises a plurality of electrolysis cells, typically several hundreds, which are arranged in rows and connected in series.
- U.S. Patent Letters No. 6,409,894 in the name of Aluminium Pechiney describes typical arrangements of plants intended for the production of aluminium using electrolysis cells.
- the electrolytic cells need to be tended during operation. For example, worn anodes need to be changed for new ones and the liquid aluminium produced by the cells needs to be regularly tapped.
- the hooding includes means, such as hoods or doors, for getting access to the inner part of the cells for tending operations.
- the removal of hoods or the opening of access doors decreases the collection efficiency of the extraction system and lets some effluents escape into the surrounding atmosphere.
- U.S. Patent Letter No. 4,668,352 in the name of Aluminium Pechiney discloses a device and a process wherein the suction means automatically go into an increased suction mode when the opening of the hooding is detected. More precisely, the temperature of the gases in the extraction ducts of each cell is continuously measured and the system switches into the increased suction mode when an abrupt temperature drop caused by the opening of the hooding is detected in one duct. The increased suction mode is obtained by actuating a movable shutter or flap.
- the shutters and flaps are subject to high temperatures, corrosive compounds and dusty atmosphere that can damage them and thereby reduce the reliability of the system.
- the applicant addressed the problem of finding industrially acceptable alternative means for efficiently increasing the extraction rate of an electrolytic cell.
- An object of the invention is a system for collecting effluents produced by an electrolysis cell intended for the production of aluminium and for drawing said effluents away from the cell in a flow of gas, said system comprising a hooding to confine the effluents, at least one outlet channel to collect said flow of gas and suction means to draw said flow of gas away from the cell through said at least one outlet channel, said hooding including removable hoods and, optionally, at least one door, to get access to the inside of the hooding, wherein said system further comprises at least one pipe comprising:
- Another object of the invention is a process for collecting effluents produced by an electrolysis cell intended for the production of aluminium and for drawing said effluents away from the cell in a flow of gas circulating in at least one outlet channel, wherein said process comprises:
- Pressurized air is typically supplied in said pipe(s) when at least one hood is removed from the cell or when said door is opened.
- the pressure and flow rate of the pressurized air in said pipe(s) is adjusted according to the actual suction needs.
- This embodiment of the invention enables tighter control on the needs for pressurized air supply.
- the gas flow rate R in the outlet channel(s), i.e. the rate of flow of the effluent-carrying gas coming out of a cell can be increased by a factor between 1.5 and 3 by using a specified pressurized air flow rate Ro, i.e. the rate of flow of the pressurized air blown by the aperture of a pipe in the outlet channel of the cell, that is between 5 and 15 % of the normal gas flow rate in the outlet channel(s) and a pressure Po of pressurized air smaller than about 5 bars.
- a specified pressurized air flow rate Ro i.e. the rate of flow of the pressurized air blown by the aperture of a pipe in the outlet channel of the cell, that is between 5 and 15 % of the normal gas flow rate in the outlet channel(s) and a pressure Po of pressurized air smaller than about 5 bars.
- Figure 1 illustrates a cross section view of a typical electrolysis cell intended for the production of aluminium.
- Figure 2 illustrates the upper part of an electrolytic cell equipped with a system for collecting effluents.
- Figure 3 schematically illustrates an arrangement of electrolysis cells that includes a system for collecting effluents and common suction means.
- FIGS 4 and 5 schematically illustrate embodiments an electrolytic cell equipped with a system for collecting effluents according to the invention.
- Figure 6 illustrates a possible embodiment of a system according to the invention.
- An electrolysis cell (1) designed for the production of aluminium is generally rectangular, with long sides that are typically 10 to 20 meters long and short sides that are typically 3 to 5 meters long and often referred to as ends.
- an electrolysis cell (1) comprises a pot (2) that is usually located below a floor (100) common to several cells and comprises a steel shell (3) lined with refractory material (4, 4').
- the pot (2) typically includes carbonaceous cathode blocs (5) that are connected to external electrical conductors (7) using a cathode bar (6) made of an electrically conducting material such as steel.
- the pot (2) contains a pad of liquid aluminium (8) and an electrolytic bath (9).
- an electrolysis cell (1) also typically includes a plurality of anodes (10, 10'), which are typically made of a carbonaceous material.
- the anodes (10, 10') are connected to external electrical conductors (7') using anode stems (11, 11') sealed in the anodes and secured to common conductors (12, 12') called anode beams using removable connectors.
- the anodes (10, 10') are partially immersed in the electrolytic bath (9) and are protected from oxidation by a protecting layer (13), called a bath crust, that is mostly comprised of alumina and crushed bath.
- An electrolysis cell (1) typically further includes one or more alumina feeders that usually include a hopper (14) for feeding alumina (15) at specified locations within the cell.
- the feeders are continuously supplied by an alumina conveyor (16) that runs along the cell.
- An electrolysis cell (1) further includes a hooding (20) capable of confining effluents produced by the cell (1).
- the hooding (20) includes a plurality of removable hoods (21, 21'), which are also called covers, on the long sides of the cell to get access to the inside of the hooding from either of the long sides.
- An electrolysis cell (1) typically includes between 10 and 30 hoods (21, 21') on each long side, which are usually arranged side by side.
- the hoods (21, 21') usually comprise a handle (22, 22') to facilitate their handling.
- Hoods (21, 21') are usually removed for tending the inside of the cell.
- a few hoods (21') are removed from one side of the cell when a worn anode (10') is to be changed for a new one and put back on the cell when the anode changing operation is completed.
- the hooding (20) also includes a door or doors (23) at one end of the cell to get access to the inside of the hooding from that end.
- the doors (23) are typically shutter doors.
- the doors (23) are often referred to as tapping doors because they are often used for tapping liquid aluminium out of the cell. This operation is done on a regular basis to remove some of the liquid aluminium (8) produced by the cell.
- the hooding (20) typically further includes longitudinal channels (24, 24') that run along the top of the cell. The flow of effluents circulates within these channels.
- the hooding (20) is connected to at least one outlet channel (25) that is coupled to suction means (30, 31).
- the outlet channel (25) is typically a duct or a conduit.
- an intermediate insulating channel (26) is usually interposed between the outlet channel(s) (25) and the suction means (30, 31).
- the suction means (30, 31) produce a flow of gas that sucks the effluents out of the cell. The flow of gas flows at a rate R.
- the suction means (30, 31) typically include at least one conduit (30) and at least one fan (31).
- the channel(s) (30) and the fan(s) (31) may be common to several cells.
- the normal gas flow rate of a cell depends on the type of cell.
- the normal gas flow rate typically used for an AP18 type cell of Aluminium Pechiney, when operated with a current intensity of about 180 000 Amperes, is about 1.4 Nm 3 /s
- the normal gas flow rate typically used for an AP30 type cell of Aluminium Pechiney, when operated with a current density of about 300 000 Amperes is about 2.1 Nm 3 /s.
- the effluents comprise a gaseous part (especially containing air, carbon dioxide and fluorinated products, such as hydrogen fluoride) and a solid or "dust" part (containing alumina, electrolytic bath, etc).
- the effluents are confined by the hooding (20), captured by suction and treated in the treatment installation(s) (40) of the plant.
- the treatment processes usually remove the solid particles contained in the effluents, typically using separation means such as filters or electrostatic precipitators, extract the fluorine contained in the effluents and leave a residual gas fraction containing a negligible amount of solid particles and fluorinated products.
- the residual gas fraction mainly contains air and carbon dioxide. Treated air is exhausted through a chimney (32).
- the flow of gas is usually made to react with compounds, typically sodium carbonate, dissolved in water to form a liquor contained in a wet scrubber.
- compounds typically sodium carbonate
- the reacted fluorine comes out of the process in the form of solid compounds, typically CaF2 after reacting the liquor with lime.
- the flow of gas is made to react with powder alumina in a reactor so as produce fluorinated alumina that is partly or completely re-used to feed electrolytic cells.
- Treatment installations typically comprise a bank of treatment units (40) in parallel, each unit usually comprising a reactor and separation means.
- a system for collecting effluents produced by an electrolysis cell (1) comprises a hooding (20) to confine the effluents, at least one outlet channel (25) to collect and draw the effluents in a flow of gas and suction means (30, 31) to draw said flow of gas away from the cell.
- the system further comprises at least one pipe (50) for blowing pressurized air into the outlet channel (25) so as to increase the rate of the flow of gas within the outlet channel (25).
- Said pipe (50) comprises a first end (51), or "inlet end”, that is directly or indirectly connected to a pressurized air supply (53) and a second end (52), or “outlet end”, that is located inside said outlet channel or one of the outlet channels (25).
- the pressurized air supply (53) can supply pressurized air at a specified pressure Po and a specified flow rate Ro.
- the second end (52) of the pipe (50) includes at least one aperture (54) and is oriented so that pressurized air can be projected through said aperture (54) in a manner that increases the rate of said flow of gas.
- said second end (52) is oriented so that pressurized air is projected substantially along the direction of said flow of gas.
- the projected air forms a jet that boosts the gas flow when needed.
- the dimension of said aperture (54) is typically between 5 mm 2 and 300 mm 2 , and more typically between 10 mm 2 and 80 mm 2 .
- the aperture (54) typically has a circular section with a diameter that is typically between 3 and 20 mm, and more typically between 4 and 10 mm.
- the second end (52) of the pipe(s) (50) may optionally be fitted with a nozzle that forms said aperture (54) so as to simplify maintenance and changes of pressurized air flow patterns.
- the rate of flow of pressurized air that is ejected through said aperture (54) depends on the air pressure Po inside the pipe or pipes (50) and the size and shape of the aperture (54). In use, the flow rate is preferably adjusted by varying the air pressure Po.
- the effluents collecting system according to the invention may include more than one pipe (50) for blowing pressurized air into the outlet channel(s) (25).
- the system may include several pipes (50) penetrating in an outlet channel (25) so that their second end (52) with an aperture (54) is located inside the outlet channel (25).
- the outlet channel(s) (25) may be substantially straight, as illustrated in Figure 4 .
- the outlet channel(s) (25) may optionally include a length of duct (27) with an internal cross section that varies along said length and said second end (52) may be located within said length of duct.
- Said length of duct (27) has an inlet (271) and an outlet (272).
- said length of duct (27) includes a constriction (28) between said inlet (271) and outlet (272).
- the inner cross section of the constriction (28) is smaller than the inner cross section of the inlet (271) and the inner cross section of the outlet (272).
- the length of duct (27) may include a part having the shape of a Venturi duct.
- the inner cross section of the length of duct (27) may vary smoothly between the inlet (271) and the outlet (272).
- Figure 5 illustrates a variation of this embodiment wherein the outlet channel (25) comprises a first straight section (273) with a first inner cross section, a second straight section (274) with a second inner cross section and a third straight section (275) with a third inner cross section, and wherein said second cross section is smaller than said first and third cross sections so as to form said constriction (28).
- said length of duct (27) includes a first section (276) having a truncated-cone shape located between said first (273) and second (274) straight sections and a second section (277) having a truncated-cone shape located between said second (274) and third (275) straight sections.
- the second end (52) of the pipe (50) is preferably located in the vicinity of said constriction (28), typically upstream of a plane (29) where the section of said constriction (28) is narrowest as illustrated in Figure 5 .
- the system may comprise one or more primary outlet channels (25', 25") merging into a single, main outlet channel (25''').
- Figure 6 illustrates embodiments wherein the system includes two primary channels (25', 25"). The cells are seen from above.
- the second end (52) of the pipe (50) is located inside said main outlet channel (25''').
- the system comprises a first pipe (50') and a second pipe (50"), a first end (51', 51") of each pipe being connected to a pressurized air supply (53), a second end (52') of the first pipe (50') being located inside one of said primary outlet channels (25'), a second end (52") of the second pipe (50") being located inside the other one of said primary outlet channels (25").
- the pressurized air supply (53) is typically common to both pipes (50', 50") and optionally to a plurality of cells.
- the pipe or pipes (50, 50', 50") are advantageously connected to the pressurized air supply (53) through a valve (55, 55', 55").
- the valve (55, 55', 55") enables a specific activation and control of the specified pressure and flow rate in the pipe or pipes (50, 50', 50").
- the valve (55, 55', 55") may be coupled to a regulation system so as to enable automatic control of the specified pressure and flow rate in the pipe or pipes (50, 50', 50").
- a valve (55, 55', 55") may be common to more than one pipe (50, 50', 50").
- a process for collecting effluents advantageously includes connecting the pipe or pipes (50) of an effluents collecting system according to the invention to a pressurized air supply (53), activating the suction means (30, 31) and supplying pressurized air in said pipe or pipes (50, 50', 50") at a specified flow rate Ro.
- the supply of pressurized air in said pipe or pipes (50) may be activated manually and/or automatically.
- the latter embodiment may be implemented using temperature and/or pressure sensors.
- the temperature and/or the pressure of the gas flowing in the outlet channel(s) (25) may be measured continuously and the supply of pressurized air in said pipe(s) (50) may be activated manually or automatically when a rapid drop in temperature or pressure is detected.
- a cell (1) may be equipped with a probe or sensor for measuring the pressure and/or the temperature of the flow of gas coming out of the cell and the probe or sensor may be connected to monitoring device that displays alerts signals and/or activates the supply of pressurized when temperature or pressure limits are exceeded.
- the supply of pressurized air is advantageously activated by a control valve (55, 55', 55") or the like, such as an electrically controlled valves or pneumatically controlled valves.
- Electrically controlled valves can advantageously be connected to a regulation system that can automatically control and activate them.
- the suction means (30, 31) are continuously activated during the electrolysis process and the pressurized air supply (53) is activated when needed and according to needs.
- Pressurized air is typically supplied in said pipe or pipes (50) when at least one hood (21) is removed from the cell or when a door, usually a tapping door, (23) is opened.
- the specified pressure Po and flow rate Ro may be selected according to needs, in particular according to the suction needs of the system, which may depend on the size of the orifice created by the removal of hoods or the opening of a door.
- pressurized air is supplied in said pipe or pipes (50) at a first specified flow rate Ro1, typically by providing a first specified pressure Po1, when at least one hood (21) is removed from the cell and at a second specified flow rate Ro2, typically by providing a second specified pressure Po2, when a door (23) is opened.
- the first specified pressure Po1 and flow rate Ro1 are typically higher than the second specified pressure Po2 and flow rate Ro2, respectively, so as to increase the gas flow rate for hoods removal more than for door opening since the removal of hoods usually requires a more important air draft than the opening of a door.
- the gas flow rate of a cell has a normal value when the pressurized air supply is not activated and at least a first modified value when the pressurized air supply is activated.
- the gas flow rate of the cell may have a second or more modified values when the pressurized air supply is activated. The modified values are higher than the normal value, thus amounting in an increased flow rate.
- the normal value for the gas flow rate typically corresponds to the situation when all hoods (21) are in place
- the first gas flow rate typically corresponds to the situation when one or more hoods (21) are removed for changing an anode
- the second gas flow rate typically corresponds to the situation when a tapping door is opened to remove liquid aluminium from the cell
- the first modified value is higher than the second modified value, e.g. 2 to 3 times the normal gas flow rate when several hoods are removed for changing an anode and 1.5 to 2 times the normal gas flow rate when a door is opened for tapping liquid aluminium.
- the ratio Po/P between the pressure Po inside said pipe or pipes (50, 50', 50") and the pressure P inside the outlet channel or channels (25, 25', 25", 25"') where the outlet end (52, 52', 52") of the pipe or pipes (50, 50', 50") is located is preferably smaller than or equal to about 4, so as to avoid shock waves and ensure optimal efficiency in regard to sonic conditions.
- Said specified flow rate Ro is typically between 5 and 15 % of said gas flow rate R.
- the pressure Po inside the pipe(s) is typically smaller than 5 bars.
- the suction means typically include at least one fan (31).
- This fan (31) provides a normal flow rate in the outlet channel(s) (25, 25', 25", 25"').
- the outlet channel(s) (25, 25', 25", 25"') is (are) typically connected to the fan (31) by a suction conduit (30).
- the suction means include a conduit (30) that is common to at least two electrolysis cells (typically a plurality of electrolysis cells) and is connected to at least one common fan (31).
- the fan (31) is usually located in an installation (40) for the treatment of said effluents or downstream thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Cleaning In General (AREA)
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES06356042T ES2360871T3 (es) | 2006-04-11 | 2006-04-11 | Sistema y proceso para la captación de efluentes de una cuba electrolítica. |
DE602006020112T DE602006020112D1 (de) | 2006-04-11 | 2006-04-11 | Einrichtung und Verfahren zur Sammlung der Abflüsse einer Elektrolysezelle |
SI200631004T SI1845175T1 (sl) | 2006-04-11 | 2006-04-11 | Sistem in postopek za zbiranje iztokov iz elektrolitične celice |
EP06356042A EP1845175B1 (en) | 2006-04-11 | 2006-04-11 | System and process for collecting effluents from an electrolytic cell |
AT06356042T ATE498713T1 (de) | 2006-04-11 | 2006-04-11 | Einrichtung und verfahren zur sammlung der abflüsse einer elektrolysezelle |
RU2008144402/02A RU2436872C2 (ru) | 2006-04-11 | 2007-04-04 | Система и способ улавливания выбросов из электролизера |
US12/296,860 US20090159434A1 (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
ZA200807450A ZA200807450B (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
CN2007800129400A CN101460663B (zh) | 2006-04-11 | 2007-04-04 | 从电解池收集废物的系统和方法 |
PCT/IB2007/001612 WO2007116320A2 (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
AU2007237131A AU2007237131B2 (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
BRPI0710184-8A BRPI0710184A2 (pt) | 2006-04-11 | 2007-04-04 | sistema e processo para coletar efluentes de uma célula eletrolìtica |
CA2649266A CA2649266C (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
EP07734843A EP2007929A2 (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
MYPI20084020A MY147259A (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
ARP070101542A AR060596A1 (es) | 2006-04-11 | 2007-04-11 | Sistema y proceso para recolectar efluentes de una celda electrolitica |
NO20084736A NO345106B1 (no) | 2006-04-11 | 2008-11-10 | System og fremgangsmåte for samling av effluenter fra en elektrolysecelle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06356042A EP1845175B1 (en) | 2006-04-11 | 2006-04-11 | System and process for collecting effluents from an electrolytic cell |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1845175A1 EP1845175A1 (en) | 2007-10-17 |
EP1845175B1 true EP1845175B1 (en) | 2011-02-16 |
Family
ID=36992538
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06356042A Active EP1845175B1 (en) | 2006-04-11 | 2006-04-11 | System and process for collecting effluents from an electrolytic cell |
EP07734843A Withdrawn EP2007929A2 (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07734843A Withdrawn EP2007929A2 (en) | 2006-04-11 | 2007-04-04 | System and process for collecting effluents from an electrolytic cell |
Country Status (16)
Country | Link |
---|---|
US (1) | US20090159434A1 (no) |
EP (2) | EP1845175B1 (no) |
CN (1) | CN101460663B (no) |
AR (1) | AR060596A1 (no) |
AT (1) | ATE498713T1 (no) |
AU (1) | AU2007237131B2 (no) |
BR (1) | BRPI0710184A2 (no) |
CA (1) | CA2649266C (no) |
DE (1) | DE602006020112D1 (no) |
ES (1) | ES2360871T3 (no) |
MY (1) | MY147259A (no) |
NO (1) | NO345106B1 (no) |
RU (1) | RU2436872C2 (no) |
SI (1) | SI1845175T1 (no) |
WO (1) | WO2007116320A2 (no) |
ZA (1) | ZA200807450B (no) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20190343A1 (en) * | 2019-03-14 | 2020-09-15 | Norsk Hydro As | Arrangement for collection of hot gas from an electrolysis process, and a method for such gas collection |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1035369C2 (nl) * | 2008-04-29 | 2009-10-30 | Wilhelmus Anthonius Brabander | Inrichting voor het verbeteren van schoorsteentrek. |
EP2135975A1 (en) * | 2008-06-16 | 2009-12-23 | Alcan International Limited | Method of producing aluminium in an electrolysis cell |
NL1035667C2 (nl) * | 2008-07-04 | 2009-05-19 | Pieter Polderman | Injector te plaatsen in of toe te voegen aan een scheeps- of andere schoorsteen teneinde de afvoergassen te versnellen, beter te verdelen en hoger mee te voeren waardoor - zonder de druk in de pijp te beïnvloeden - de overlast van laaghangende rook geminimaliseerd wordt. |
EP2248605A1 (en) | 2009-05-06 | 2010-11-10 | Danieli Corus BV | Apparatus and method for balances removal of gasses from electrolysis cells by suction |
IT1394799B1 (it) * | 2009-07-10 | 2012-07-13 | Zeca S P A | Aspiratore di gas di scarico di autoveicoli |
EP2458035A1 (en) | 2010-01-21 | 2012-05-30 | Alstom Technology Ltd | A method of ventilating an aluminium production electrolytic cell |
EP2402093B1 (en) | 2010-06-30 | 2015-06-17 | Alstom Technology Ltd | Screening device and method of screening |
FR2963625B1 (fr) | 2010-08-06 | 2013-02-22 | Solios Environnement | Installation pour la collecte des gaz d'une pluralite de cuves d'electrolyse et dispositif d'ajustement pour une telle installation |
FR2963793B1 (fr) | 2010-08-10 | 2012-09-07 | Solios Environnement | Procede et dispositif de confinement des gaz de cuve dans une cuve d'electrolyse de l'aluminium |
EP2431499B1 (en) * | 2010-09-17 | 2014-04-23 | Alstom Technology Ltd | Raw gas collection system |
EP2469207B1 (en) | 2010-12-22 | 2018-06-20 | General Electric Technology GmbH | Metallurgical plant gas cleaning system, and method of cleaning an effluent gas |
FR2969937A1 (fr) * | 2011-01-05 | 2012-07-06 | Zeca S P A | Aspirateur de gaz d'echappement de vehicule a moteur |
EP2489422B1 (en) | 2011-02-18 | 2013-10-30 | Alstom Technology Ltd | A device and a method of cleaning an effluent gas from an aluminium production electrolytic cell |
EP2489421B1 (en) | 2011-02-18 | 2021-03-31 | General Electric Technology GmbH | A wet scrubber for cleaning an effluent gas comprising an inlet gas distributor with a diffusor |
US9234286B2 (en) | 2012-05-04 | 2016-01-12 | Alstom Technology Ltd | Recycled pot gas pot distribution |
FR3012473A1 (fr) * | 2013-10-30 | 2015-05-01 | Rio Tinto Alcan Int Ltd | Dispositif d'etancheite pour capot de cellule d'electrolyse |
FI126381B (en) * | 2014-04-23 | 2016-11-15 | Outotec Finland Oy | PROCEDURES AND ARRANGEMENTS FOR COLLECTING AND DISPOSING ACID DIMAGES FROM AN ELECTROLYTIC CELL |
FR3037975B1 (fr) * | 2015-06-23 | 2020-10-23 | Fives Solios S A | Dispositif de suraspiration par effet coanda d’effluents gazeux provenant d’une cuve de production industrielle d’aluminium par electrolyse ignee |
RU169432U1 (ru) * | 2016-03-01 | 2017-03-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Газосборное укрытие алюминиевого электролизера с обожженными анодами |
CN107653462B (zh) * | 2017-10-27 | 2023-06-13 | 贵阳铝镁设计研究院有限公司 | 一种铝电解槽焙烧过程沥青烟集气治理方法及装置 |
RU2744333C1 (ru) * | 2020-02-25 | 2021-03-05 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Система для удаления газов из алюминиевого электролизера |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2556899A (en) * | 1947-03-27 | 1951-06-12 | William W Broussard | Gas removing device |
DE1161040B (de) * | 1961-06-29 | 1964-01-09 | Metallgesellschaft Ag | Verfahren zum Reinigen der Abgase von Aluminium-Elektrolyseoefen mit selbstbackenden Anoden unter gleichzeitiger Rueckgewinnung des Fluors |
US3782074A (en) * | 1972-07-21 | 1974-01-01 | Aronetics Inc | Process and apparatus for cleansing and pumping contaminated industrial gases using a nozzle having a variable throat area |
GB1571222A (en) * | 1977-03-10 | 1980-07-09 | Ardal Og Sunndal Verk | Process and apparatus for treatment of waste gases |
FR2563845B1 (fr) * | 1984-05-03 | 1986-10-03 | Pechiney Aluminium | Procede et dispositif de suraspiration automatique sur les cuves d'electrolyse pour la production d'aluminium |
FR2626324B1 (fr) * | 1988-01-25 | 1993-04-09 | Paziaud Jacques | Procede de mise en mouvement de l'air dans une gaine d'aeration par jets d'air induits et son extension pour d'autres fluides |
AT392927B (de) * | 1989-03-20 | 1991-07-10 | Scheuch Alois Gmbh | Absaugsystem fuer den bereich der holzverarbeitung |
US5070707A (en) * | 1989-10-06 | 1991-12-10 | H. A. Phillips & Co. | Shockless system and hot gas valve for refrigeration and air conditioning |
US5186793A (en) * | 1990-12-31 | 1993-02-16 | Invacare Corporation | Oxygen concentrator utilizing electrochemical cell |
FR2740862B1 (fr) * | 1995-11-03 | 1998-01-23 | Amphoux Andre | Dispositif pour aspirer un fluide gazeux a travers un conduit pour le rejeter a l'exterieur de celui-ci |
DE19920058A1 (de) * | 1999-05-03 | 2000-11-09 | Esta Apparatebau | Absaugvorrichtung und Verfahren zum Betrieb derselben |
NO314469B1 (no) * | 2001-06-25 | 2003-03-24 | Alstom Technology Ltd | Fremgangsmåte og anordning for gasstransport |
FR2848875B1 (fr) * | 2002-12-18 | 2005-02-11 | Pechiney Aluminium | Procede et dispositif de traitement des effluents de cellule d'electrolyse pour la production d'aluminium |
US7819727B2 (en) * | 2004-07-08 | 2010-10-26 | Institute of Occupational Safety and Health Council of Labor Affairs | Push-pull type ventilation hood |
-
2006
- 2006-04-11 ES ES06356042T patent/ES2360871T3/es active Active
- 2006-04-11 AT AT06356042T patent/ATE498713T1/de not_active IP Right Cessation
- 2006-04-11 DE DE602006020112T patent/DE602006020112D1/de active Active
- 2006-04-11 EP EP06356042A patent/EP1845175B1/en active Active
- 2006-04-11 SI SI200631004T patent/SI1845175T1/sl unknown
-
2007
- 2007-04-04 WO PCT/IB2007/001612 patent/WO2007116320A2/en active Application Filing
- 2007-04-04 US US12/296,860 patent/US20090159434A1/en not_active Abandoned
- 2007-04-04 ZA ZA200807450A patent/ZA200807450B/xx unknown
- 2007-04-04 AU AU2007237131A patent/AU2007237131B2/en active Active
- 2007-04-04 RU RU2008144402/02A patent/RU2436872C2/ru not_active IP Right Cessation
- 2007-04-04 EP EP07734843A patent/EP2007929A2/en not_active Withdrawn
- 2007-04-04 CN CN2007800129400A patent/CN101460663B/zh active Active
- 2007-04-04 MY MYPI20084020A patent/MY147259A/en unknown
- 2007-04-04 CA CA2649266A patent/CA2649266C/en active Active
- 2007-04-04 BR BRPI0710184-8A patent/BRPI0710184A2/pt not_active Application Discontinuation
- 2007-04-11 AR ARP070101542A patent/AR060596A1/es active IP Right Grant
-
2008
- 2008-11-10 NO NO20084736A patent/NO345106B1/no unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20190343A1 (en) * | 2019-03-14 | 2020-09-15 | Norsk Hydro As | Arrangement for collection of hot gas from an electrolysis process, and a method for such gas collection |
Also Published As
Publication number | Publication date |
---|---|
CN101460663A (zh) | 2009-06-17 |
SI1845175T1 (sl) | 2011-06-30 |
WO2007116320A2 (en) | 2007-10-18 |
ZA200807450B (en) | 2009-12-30 |
BRPI0710184A2 (pt) | 2011-08-09 |
MY147259A (en) | 2012-11-14 |
EP1845175A1 (en) | 2007-10-17 |
AU2007237131B2 (en) | 2011-06-02 |
ATE498713T1 (de) | 2011-03-15 |
RU2008144402A (ru) | 2010-05-20 |
CA2649266A1 (en) | 2007-10-18 |
NO20084736L (no) | 2009-01-08 |
RU2436872C2 (ru) | 2011-12-20 |
CA2649266C (en) | 2013-12-17 |
US20090159434A1 (en) | 2009-06-25 |
CN101460663B (zh) | 2011-11-16 |
DE602006020112D1 (de) | 2011-03-31 |
NO345106B1 (no) | 2020-09-28 |
ES2360871T3 (es) | 2011-06-09 |
EP2007929A2 (en) | 2008-12-31 |
AR060596A1 (es) | 2008-07-02 |
WO2007116320A3 (en) | 2008-09-04 |
AU2007237131A1 (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1845175B1 (en) | System and process for collecting effluents from an electrolytic cell | |
CA2737240C (en) | A device for collection of hot gas from an electrolysis process, and a method for gas collection with said device | |
CN107075608B (zh) | 综合气体处理 | |
EP2360296A1 (en) | A method of ventilating an aluminium production electrolytic cell | |
AU594767B2 (en) | Process for purifying the gases emitted from the electrolysis pots for the production of aluminum and related equipment | |
AU2003300608B2 (en) | Electrolytic cell effluent treatment method and device for the production of aluminium | |
CN115573005A (zh) | 一种下阴极稀土电解槽 | |
EP3938564B1 (en) | Arrangement for collection of hot gas from an electrolysis process, and a method for such gas collection | |
US20070240996A1 (en) | Apparatus for collection and removal of gases from an aluminum reduction cell | |
EP2431499B1 (en) | Raw gas collection system | |
Ruonala et al. | Latest Development in Zinc Processing | |
JP2018202353A (ja) | 集塵機及びそのフィルタ交換方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080124 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AXX | Extension fees paid |
Extension state: BA Payment date: 20060509 |
|
17Q | First examination report despatched |
Effective date: 20080709 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GIRAULT, GUILLAUME Inventor name: CANTIN, PHILIPPE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: BA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602006020112 Country of ref document: DE Date of ref document: 20110331 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006020112 Country of ref document: DE Effective date: 20110331 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2360871 Country of ref document: ES Kind code of ref document: T3 Effective date: 20110609 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20110401134 Country of ref document: GR Effective date: 20110614 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110616 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 9266 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110516 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20111117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006020112 Country of ref document: DE Effective date: 20111117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140428 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20140426 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20150323 Year of fee payment: 10 Ref country code: SK Payment date: 20150319 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20150319 Year of fee payment: 10 Ref country code: ES Payment date: 20150427 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150424 Year of fee payment: 10 Ref country code: GR Payment date: 20150429 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150411 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20150501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 9266 Country of ref document: SK Effective date: 20160411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160411 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160411 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20161227 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20110401134 Country of ref document: GR Effective date: 20161104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160412 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160411 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161104 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160412 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181205 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20240326 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240326 Year of fee payment: 19 Ref country code: FR Payment date: 20240321 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240319 Year of fee payment: 19 |