EP1840337A1 - Nut-Feder-Verbindung zwischen zwei Turbinenkomponenten einer Turbine - Google Patents

Nut-Feder-Verbindung zwischen zwei Turbinenkomponenten einer Turbine Download PDF

Info

Publication number
EP1840337A1
EP1840337A1 EP06006938A EP06006938A EP1840337A1 EP 1840337 A1 EP1840337 A1 EP 1840337A1 EP 06006938 A EP06006938 A EP 06006938A EP 06006938 A EP06006938 A EP 06006938A EP 1840337 A1 EP1840337 A1 EP 1840337A1
Authority
EP
European Patent Office
Prior art keywords
turbine
groove
components
tongue
filling material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06006938A
Other languages
English (en)
French (fr)
Inventor
Fathi Ahmad
Rostislav Teteruk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06006938A priority Critical patent/EP1840337A1/de
Publication of EP1840337A1 publication Critical patent/EP1840337A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3092Protective layers between blade root and rotor disc surfaces, e.g. anti-friction layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/506Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the invention relates to a turbine with a number of turbine components, in which a first turbine component is connected via a tongue and groove connection with a second turbine component.
  • Turbines in particular gas turbines, are used in many areas to drive generators or work machines.
  • the energy content of a fuel is used to generate a rotational movement of a turbine shaft.
  • the fuel is burned in a combustion chamber, compressed air being supplied by an air compressor.
  • the working medium produced in the combustion chamber by the combustion of the fuel which is under high pressure and at high temperature, is guided via a turbine unit arranged downstream of the combustion chamber, where it relaxes to perform work.
  • a number of rotor blades which are usually combined to form groups of blades or rows of blades, are arranged thereon and drive the turbine shaft via a momentum transfer from the working medium.
  • To guide the working fluid in the turbine unit also usually connected between adjacent blade rows are connected to the turbine housing Leitschaufelhalln.
  • the turbine components forming this flow channel for the working medium are usually connected to one another via tongue-and-groove connections.
  • an integrally formed on one of the turbine components mounting lip engages in an associated groove in the second turbine component.
  • Such connection techniques are usually chosen to keep Abström maste and leaks as low as possible and thus to lead the working fluid in the flow channel particularly effective through the blade rows.
  • such groove-and-tongue connections between individual turbine components are usually designed with particularly high accuracy of fit and with particularly low tolerances, so that due to the high accuracy of fit unwanted leakage losses can be kept particularly low.
  • the invention is therefore based on the object of specifying a turbine of the type mentioned above, in which the leakage losses can be kept particularly low with particularly low assembly and manufacturing costs during operation of the turbine.
  • This object is achieved according to the invention in that a groove formed between groove and tongue is filled with a filling material in the tongue-and-groove joint connecting the first and the second turbine components.
  • the invention is based on the consideration that, for particularly low leakage losses, a particularly high tightness between the mutually connected turbine components should be ensured.
  • the possibilities for this are limited in the utilization of manufacturing accuracies and the like, in particular because of systemic effects due to thermal stress additional gap formations could occur.
  • the turbine components should therefore have a suitably selected sealing element or sealing material in the region of their connection. This can be achieved by a suitable filling material is provided in the region of a gap formed between tongue and groove, which can deform plastically, for example, during assembly of the two components and in the production of tongue and groove connection and thus manufacturing inaccuracies of the actual component parts suitable compensates.
  • a suitable filling material is provided in the region of a gap formed between tongue and groove, which can deform plastically, for example, during assembly of the two components and in the production of tongue and groove connection and thus manufacturing inaccuracies of the actual component parts suitable compensates.
  • a softer material than the material of the turbine components is advantageously selected as the filling material.
  • a softer material than the material of the turbine components is advantageously selected as the filling material.
  • the turbine is designed as a gas turbine.
  • the tongue-and-groove connection provided with the filling material is preferably used in turbine components which are used in the region of the flow space for the working medium.
  • the tongue-and-groove connection with the filling material connects a guide vane to a guide vane carrier or a vane to an end piece of a combustion chamber wall or a guide ring segment with its holder.
  • the advantages achieved by the invention are, in particular, that a particularly high density of the interconnected turbine components can be achieved by the introduction of the filling material in the gap formed between the tongue and groove of the tongue and groove joint.
  • the turbine components can be manufactured with comparatively generously dimensioned manufacturing tolerances, since fit inaccuracies and the like can be compensated appropriately in the installed state via the filling material anyway.
  • the gas turbine 1 has a compressor 2 for combustion air, a combustion chamber 4 and a turbine 6 for driving the compressor 2 and a generator or a working machine (not shown).
  • the turbine 6 and the compressor 2 are arranged on a common, also called turbine rotor turbine shaft 8, with which the generator or the working machine is connected, and which is rotatably mounted about its central axis 9.
  • the combustion chamber 4 is equipped with a number of burners 10 for the combustion of a liquid or gaseous fuel. It is also provided on its inner wall with heat shield elements not shown.
  • the turbine 6 has a number of rotatable blades 12 connected to the turbine shaft 8.
  • the blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of blade rows.
  • the turbine 6 comprises a number of fixed vanes 14, which are also fixed in a ring shape to form an airfoil on an inner casing 16 of the turbine 6.
  • the blades 12 are used to drive the turbine shaft 8 by momentum transfer from a turbine 6 flowing through the working medium M.
  • a successive pair of a ring of vanes 14 or a row of vanes and a ring of vanes 12 or a blade row is also referred to as a turbine stage.
  • Each vane 14 has a platform 18, which is arranged to fix the respective vane 14 on the inner housing 16 of the turbine 6 as a wall element.
  • the platform 18 is a thermally comparatively heavily loaded component which defines the outer boundary of a hot gas channel for the turbine 6 flowing through the working medium M forms.
  • Each blade 12 is attached to the turbine shaft 8 in an analogous manner via a platform 20, also referred to as a blade root.
  • each guide ring 21 on the inner housing 16 of the turbine 6 is arranged between the spaced-apart platforms 18 of the guide vanes 14 of two adjacent rows of guide vanes.
  • the inner surface of each guide ring 21 is also exposed to the hot working medium M flowing through the turbine 6 and spaced radially from the outer end 22 of the blades 12 of a blade row opposite it through a gap 24.
  • the arranged between adjacent rows of guide vanes 21 serve as a by their thermal expansion, the gap 24 between the respective guide ring 21 and associated blade row regulating components and on the other as cover that the inner housing 16 or other housing-mounting components from thermal overload by the Turbine 6 through flowing hot working medium M protect.
  • a tongue-and-groove connection Several of the turbine components forming the turbine 6, in particular the turbine components arranged in the region of the hot gas duct, are connected to the respectively adjacent turbine components via a tongue-and-groove connection.
  • some of these tongue-and-groove joints are made with a specifically selected filling material prepared, as shown by way of example in Fig. 2 is.
  • a first turbine component 30 is shown, which has an integrally formed, in a longitudinal direction extending mounting lip to form a spring 32.
  • the spring 32 engages in an associated groove 34 of a second turbine component 36 for producing the tongue-and-groove connection.
  • the gap 38 formed between the groove 34 and the spring 32 is filled with a filling material 40.
  • a material which is softer than the material of the actual turbine components 30, 36 is selected as filler material 40.
  • the spring 32 When mounting the turbine components 30,36, the spring 32 is inserted or introduced into the groove 34.
  • the filling material 40 is suitably shaped beforehand, for example in the form of a thickly applied coating either on the spring 32 or in the groove 34 or else in the manner of a suitably chosen starting body, such as a long-drawn wire or the like , introduced into the region between the groove 34 and the spring 32.
  • the filling material 40 is suitably deformed and thus fills the gap 38 almost completely. Production inaccuracies and the like are thereby compensated, so that a tight connection between the turbine components 30,36 arises.
  • a soldering material or the like is considered as filling material 40, which is attached to one of the two turbine components 30, 36, for example, in a materially bonded manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Es wird eine Turbine (1) mit einer Anzahl von Turbinenkomponenten vorgestellt, bei der eine erste Turbinenkomponente (30) über eine Nut-und-Feder-Verbindung mit einer zweiten Turbinenkomponente (36) verbunden ist, wobei ein zwischen Nut (34) und Feder (32) der Nut-und-Feder-verbindung gebildeter Spalt (38) mit einem Füllmaterial (40) gefüllt ist. Das Füllmaterial (40) ermöglicht eine besonders hohe Dichtigkeit der miteinander verbundenen Turbinenkomponenten (30,36) und die Verwendung von Turbinenkomponenten mit vergleichsweise großzügig bemessenen Fertigungstoleranzen.

Description

  • Die Erfindung bezieht sich auf eine Turbine mit einer Anzahl von Turbinenkomponenten, bei der eine erste Turbinenkomponente über eine Nut-und-Feder-Verbindung mit einer zweiten Turbinenkomponente verbunden ist.
  • Turbinen, insbesondere Gasturbinen, werden in vielen Bereichen zum Antrieb von Generatoren oder von Arbeitsmaschinen eingesetzt. Dabei wird der Energieinhalt eines Brennstoffs zur Erzeugung einer Rotationsbewegung einer Turbinenwelle genutzt. Der Brennstoff wird dazu in einer Brennkammer verbrannt, wobei von einem Luftverdichter verdichtete Luft zugeführt wird. Das in der Brennkammer durch die Verbrennung des Brennstoffs erzeugte, unter hohem Druck und unter hoher Temperatur stehende Arbeitsmedium wird über eine der Brennkammer nachgeschaltete Turbineneinheit geführt, wo es sich arbeitsleistend entspannt.
  • Zur Erzeugung der Rotationsbewegung der Turbinenwelle sind an dieser eine Anzahl von üblicherweise zu Schaufelgruppen oder Schaufelreihen zusammengefassten Laufschaufeln angeordnet, die über einen Impulsübertrag aus dem Arbeitsmedium die Turbinenwelle antreiben. Zur Führung des Arbeitsmediums in der Turbineneinheit sind zudem üblicherweise zwischen benachbarten Laufschaufelreihen mit dem Turbinengehäuse verbundene Leitschaufelreihen angeordnet.
  • Bei der Auslegung derartiger Gasturbinen ist üblicherweise darauf zu achten, dass das Arbeitsmedium in der Turbineneinheit die Laufschaufelreihen in ihrem Arbeitsbereich durchtritt und diese nicht etwa seitlich umströmt. Um dies zu gewährleisten, wird durch eine Anzahl von Turbinenkomponenten üblicherweise ein Strömungskanal für das Arbeitsmedium gebildet, in dem dieses geführt ist, und in dem die Laufschaufeln geeignet angeordnet sind. Der Strömungskanal wird üblicherweise durch die Schaufelplattformen der Leitschaufeln und durch zwischen in Strömungsrichtung des Arbeitsmediums gesehen hintereinander angeordneten Leitschaufelreihen angeordnete Übergangsstücke, so genannte Führungsringe, gebildet.
  • Die diesen Strömungskanal für das Arbeitsmedium bildenden Turbinenkomponenten, also insbesondere Führungsringe oder deren Segmente sowie Leitschaufelträger oder -plattformen, sind miteinander üblicherweise über Nut-und-Feder-Verbindungen verbunden. Dabei greift eine an einer der Turbinenkomponenten angeformte Montagelippe in eine zugeordnete Nut in der zweiten Turbinenkomponente ein. Derartige Verbindungstechniken werden üblicherweise gewählt, um Abströmverluste und Leckagen möglichst gering halten zu können und damit das Arbeitsmedium im Strömungskanal besonders wirkungsvoll durch die Laufschaufelreihen zu führen. Zu diesem Zweck sind derartige Nut-und-Feder-Verbindungen zwischen einzelnen Turbinenkomponenten üblicherweise mit besonders hoher Passgenauigkeit und mit besonders gering gehaltenen Toleranzen ausgeführt, so dass infolge der hohen Passgenauigkeit unerwünschte Leckageverluste besonders gering gehalten werden können.
  • Allerdings bedingen derartige hohe Passgenauigkeiten und geringe Toleranzen einen erhöhten Aufwand bei der Herstellung und der Montage der entsprechenden Komponenten. Darüber hinaus treten infolge der üblichen Betriebs- und Einsatzbedingungen in Gasturbinen üblicherweise thermische Längendehnungen in den einzelnen Turbinenkomponenten auf, so dass im eigentlichen Betriebszustand selbst bei besonders hoher Genauigkeit der gefertigten Komponenten unerwünschte Spaltbildungen und damit einhergehend Leckageverluste auftreten können.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Turbine der oben genannten Art anzugeben, bei der mit besonders gering gehaltenem Montage- und Herstellungsaufwand beim Betrieb der Turbine die Leckageverluste besonders gering gehalten werden können.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem in der die erste und die zweite Turbinenkomponente miteinander verbindenden Nut-und-Feder-Verbindung ein zwischen Nut und Feder gebildeter Spalt mit einem Füllmaterial gefüllt ist.
  • Die Erfindung geht von der Überlegung aus, dass für besonders gering gehaltene Leckageverluste eine besonders hohe Dichtigkeit zwischen den miteinander entsprechend verbundenen Turbinenkomponenten gewährleistet sein sollte. Die Möglichkeiten hierzu sind jedoch bei der Ausnutzung von Fertigungsgenauigkeiten und dergleichen begrenzt, insbesondere da systembedingt infolge thermischer Beanspruchung zusätzliche Spaltbildungen auftreten könnten. Um dies geeignet kompensieren zu können, sollten die Turbinenkomponenten daher im Bereich ihrer Verbindung ein geeignet gewähltes Dichtelement oder Dichtmaterial aufweisen. Dies ist erreichbar, indem im Bereich eines zwischen Nut und Feder gebildeten Spalts ein geeignetes Füllmaterial vorgesehen ist, das sich beispielsweise bei der Montage der beiden Komponenten und bei der Herstellung der Nut-und-Feder-Verbindung plastisch verformen kann und somit Fertigungsungenauigkeiten der eigentlichen Komponententeile geeignet ausgleicht. Im Sinne einer einmalig ausgleichenden Fügung kann somit eine besonders innige und insbesondere auch dichte Verbindung zwischen den beiden Turbinenkomponenten hergestellt werden.
  • Um die angestrebte plastische Verformung und damit die erhöhte Dichtungswirkung des Füllmaterials besonders günstig ausnutzen zu können, ist als Füllmaterial vorteilhafterweise ein im Vergleich zum Material der Turbinenkomponenten weicheres Material gewählt. Bei eine derartigen Materialwahl kann bei der Montage der Turbinenkomponenten gezielt eine plastische Verformung ausschließlich im Bereich des Füllmaterials erreicht werden, so dass einerseits eine hohe Dichtungswirkung erzielt wird, wobei andererseits die funktionsbestimmende Konturierung und Dimensionierung der eigentlichen Turbinenkomponenten unverändert beibehalten werden kann. Vorteilhafterweise ist als Füllmaterial ein Lötmaterial, insbesondere ein AMDRY-Material, welches zweckmäßigerweise stoffschlüssig an einer der beiden Turbinenkomponenten angebracht sein kann.
  • Vorteilhafterweise ist die Turbine als Gasturbine ausgestaltet. Die mit dem Füllmaterial versehene Nut-und-Feder-Verbindung kommt vorzugsweise bei Turbinenkomponenten zum Einsatz, die im Bereich des Strömungsraums für das Arbeitsmedium eingesetzt sind. Besonders vorteilhaft verbindet die Nut-und-Feder-Verbindung mit dem Füllmaterial eine Leitschaufel mit einem Leitschaufelträger oder eine Leitschaufel mit einem Endstück einer Brennkammerwand oder ein Führungsringsegment mit dessen Halterung.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Einbringung des Füllmaterials in den zwischen Nut und Feder der Nut-und-Feder-Verbindung gebildeten Spalt eine besonders hohe Dichtigkeit der miteinander verbundenen Turbinenkomponenten erreichbar ist. Darüber hinaus können die Turbinenkomponenten mit vergleichsweise großzügig bemessenen Fertigungstoleranzen hergestellt werden, da Passungenauigkeiten und dergleichen ohnehin im eingebauten Zustand über das Füllmaterial geeignet ausgeglichen werden können.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    einen Längsschnitt durch eine Gasturbine,
    FIG 2
    im Ausschnitt eine mit einer ersten Turbinenkomponente verbundene zweite Turbinenkomponente, und
    FIG 3
    ebenfalls im Ausschnitt zwei miteinander verbundene Turbinenkomponenten.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Die Gasturbine 1 gemäß FIG 1 weist einen Verdichter 2 für Verbrennungsluft, eine Brennkammer 4 sowie eine Turbine 6 zum Antrieb des Verdichters 2 und eines nicht dargestellten Generators oder einer Arbeitsmaschine auf. Dazu sind die Turbine 6 und der Verdichter 2 auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle 8 angeordnet, mit der auch der Generator bzw. die Arbeitsmaschine verbunden ist, und die um ihre Mittelachse 9 drehbar gelagert ist.
  • Die Brennkammer 4 ist mit einer Anzahl von Brennern 10 zur Verbrennung eines flüssigen oder gasförmigen Brennstoffs bestückt. Sie ist weiterhin an ihrer Innenwand mit nicht näher dargestellten Hitzeschildelementen versehen.
  • Die Turbine 6 weist eine Anzahl von mit der Turbinenwelle 8 verbundenen rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbine 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter Bildung von Leitschaufelreihen an einem Innengehäuse 16 der Turbine 6 befestigt sind. Die Laufschaufeln 12 dienen zum Antrieb der Turbinenwelle 8 durch Impulsübertrag von einem die Turbine 6 durchströmenden Arbeitsmedium M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums M gesehen aufeinander folgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinander folgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufelreihe und aus einem Kranz von Leitschaufeln 12 oder einer Laufschaufelreihe wird auch als Turbinenstufe bezeichnet.
  • Jede Leitschaufel 14 weist eine Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 am Innengehäuse 16 der Turbine 6 als Wandelement angeordnet ist. Die Plattform 18 ist ein thermisch vergleichsweise stark belastetes Bauteil, das die äußere Begrenzung eines Heißgaskanals für das die Turbine 6 durchströmende Arbeitmedium M bildet. Jede Laufschaufel 12 ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform 20 an der Turbinenwelle 8 befestigt.
  • Zwischen den voneinander beabstandet angeordneten Plattformen 18 der Leitschaufeln 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 am Innengehäuse 16 der Turbine 6 angeordnet. Die innere Oberfläche jedes Führungsrings 21 ist ebenfalls dem heißen, die Turbine 6 durchströmenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende 22 der ihm gegenüberliegenden Laufschaufeln 12 einer Laufschaufelreihe durch einen Spalt 24 beabstandet. Die zwischen benachbarten Leitschaufelreihen angeordneten Führungsringe 21 dienen zum einen als durch ihre thermische Ausdehnung den Spalt 24 zwischen jeweiligem Führungsring 21 und zugeordneter Laufschaufelreihe regelnde Bauteile und zum anderen auch als Abdeckelemente, die das Innengehäuse 16 oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch das die Turbine 6 durchströmende heiße Arbeitsmedium M schützen.
  • Mehrere der die Turbine 6 bildenden Turbinenkomponenten, insbesondere die im Bereich des Heißgaskanals angeordneten Turbinenkomponenten, sind mit den ihnen jeweils benachbarten Turbinenkomponenten über eine Nut-und-Feder-Verbindung verbunden. Um bei derartigen Verbindungen mit vergleichsweise gering gehaltenem Montage- und Herstellungsaufwand eine hohe Dichtigkeit insbesondere zur Vermeidung von Leckageverlusten erreichen zu können, sind einige dieser Nut-und-Feder-Verbindungen mit einem spezifisch ausgewählten Füllmaterial versehen hergestellt, wie dies beispielhaft in Fig. 2 gezeigt ist. Dort ist eine erste Turbinenkomponente 30 dargestellt, die zur Bildung einer Feder 32 eine angeformte, sich in einer Längsrichtung erstreckende Montagelippe aufweist. Die Feder 32 greift zur Herstellung der Nut-und-Feder-Verbindung in eine zugeordnete Nut 34 einer zweiten Turbinenkomponente 36 ein. Zur Herstellung einer besonders dichten Nut-und-Feder-Verbindung bei besonders gering gehaltenem Montage- und Herstellungsaufwand, der insbesondere die Fertigung der Turbinenkomponenten 30,36 mit vergleichsweise groß bemessenen Toleranzbereichen erlaubt, ist der zwischen der Nut 34 und der Feder 32 gebildete Spalt 38 mit einem Füllmaterial 40 gefüllt. Als Füllmaterial 40 ist insbesondere ein Material gewählt, das weicher ist als das Material der eigentlichen Turbinenkomponenten 30,36.
  • Bei der Montage der Turbinenkomponenten 30,36 wird die Feder 32 in die Nut 34 eingeschoben oder eingebracht. Zur Herstellung der besonders dichten Verbindung wird zuvor das Füllmaterial 40 in geeigneter Form, beispielsweise in Form einer dick aufgebrachten Beschichtung entweder auf der Feder 32 oder in der Nut 34 oder auch in der Art eines geeignet gewählten Ausgangskörpers, wie beispielsweise einem lang ausgestreckten Draht oder dergleichen, in den Bereich zwischen der Nut 34 und der Feder 32 eingebracht. Beim anschließenden Einschieben der Feder 32 in die Nut 34 oder beim ersten Auftreten von thermischen Dehnungen wird das Füllmaterial 40 geeignet verformt und füllt den Spalt 38 somit nahezu vollständig aus. Fertigungsungenauigkeiten und dergleichen werden dadurch ausgeglichen, so dass eine dichte Verbindung zwischen den Turbinenkomponenten 30,36 entsteht. Als Füllmaterial 40 kommt dabei insbesondere ein Lötmaterial oder dergleichen in Betracht, welches beispielsweise stoffschlüssig an einem der beiden Turbinenkomponenten 30, 36 angebracht ist.
  • In besonders günstiger Weise ist eine derartige Verbindung zwischen einer Leitschaufel 16 und dem dieser zugeordneten Leitschaufelträger, also im Bereich der Leitschaufelverhakung, oder zwischen der Leitschaufel 16 der ersten Turbinenstufe und einem Ausgangsstück der Brennkammer 4 (so genanntes transition piece) oder zwischen einem Segment eines Führungsrings 21 und dessen Halterung eingesetzt. In FIG 3 ist dies am Beispiel eines Leitschaufel-Ringsegments gezeigt, wobei die Leitschaufel 16 die erste Turbinenkomponente 30 bildet, die über angeformte Federn 32 mit benachbarten zweiten Turbinenkomponenten 36 verbunden ist.

Claims (4)

  1. Turbine (6) mit einer Anzahl von Turbinenkomponenten, bei der eine erste Turbinenkomponente (30) über eine Nut-und-Feder-Verbindung mit einer zweiten Turbinenkomponente (36) verbunden ist, wobei ein zwischen Nut (34) und Feder (32) der Nut-und-Feder-Verbindung gebildeter Spalt (38) mit einem Füllmaterial (40) gefüllt ist.
  2. Turbine (6) nach Anspruch 1, bei der als Füllmaterial (40) ein im Vergleich zum Material der Turbinenkomponenten (30, 36) weicheres Material gewählt ist.
  3. Turbine (6) nach Anspruch 1 oder 2, bei der die Nut-und-Feder-Verbindung eine Leitschaufel (16) mit einem Leitschaufelträger oder eine Leitschaufel (16) mit einem Endstück einer Brennkammerwand oder ein Führungsringsegment mit dessen Halterung verbindet.
  4. Turbine (6) nach einem der Ansprüche 1 bis 3, bei der das Füllmaterial (40) stoffschlüssig mit einem der beiden Turbinenkomponenten (30, 36) verbunden ist.
EP06006938A 2006-03-31 2006-03-31 Nut-Feder-Verbindung zwischen zwei Turbinenkomponenten einer Turbine Withdrawn EP1840337A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06006938A EP1840337A1 (de) 2006-03-31 2006-03-31 Nut-Feder-Verbindung zwischen zwei Turbinenkomponenten einer Turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06006938A EP1840337A1 (de) 2006-03-31 2006-03-31 Nut-Feder-Verbindung zwischen zwei Turbinenkomponenten einer Turbine

Publications (1)

Publication Number Publication Date
EP1840337A1 true EP1840337A1 (de) 2007-10-03

Family

ID=36888897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06006938A Withdrawn EP1840337A1 (de) 2006-03-31 2006-03-31 Nut-Feder-Verbindung zwischen zwei Turbinenkomponenten einer Turbine

Country Status (1)

Country Link
EP (1) EP1840337A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2163734A2 (de) * 2008-09-12 2010-03-17 General Electric Company Vorrichtung zur Befestigung von Gasturbinenleitschaufel
EP2206885A1 (de) * 2009-01-08 2010-07-14 Siemens Aktiengesellschaft Gasturbine
EP2211023A1 (de) * 2009-01-21 2010-07-28 Siemens Aktiengesellschaft Leitschaufelsystem für eine Strömungsmaschine mit segmentiertem Leitschaufelträger
EP3023594A1 (de) * 2014-10-22 2016-05-25 United Technologies Corporation Statoranordnung mit pad-schnittstelle für eine gasturbine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936155A (en) * 1951-12-10 1960-05-10 Power Jets Res & Dev Ltd Resiliently mounted turbine blades
CH423431A (de) * 1965-10-13 1966-10-31 Licentia Gmbh Verfahren zur Herstellung eines Strömungsmaschinenschaufelfusses und/oder dessen am Schaufelträger befindlichen Halterung
DE2250563A1 (de) * 1971-11-03 1973-05-10 British Leyland Truck & Bus Turbinen-rotor
US3784320A (en) * 1971-02-20 1974-01-08 Motoren Turbinen Union Method and means for retaining ceramic turbine blades
US4417854A (en) * 1980-03-21 1983-11-29 Rockwell International Corporation Compliant interface for ceramic turbine blades
US4552509A (en) * 1980-01-31 1985-11-12 Motoren-Und Turbinen-Union Munchen Gmbh Arrangement for joining two relatively rotatable turbomachine components
EP1035377A2 (de) * 1999-03-08 2000-09-13 Mitsubishi Heavy Industries, Ltd. Abdichtung für das Endstück einer Gasturbinenbrennkammer
US20020189722A1 (en) * 1999-06-29 2002-12-19 Hasz Wayne Charles Turbine engine component having wear coating and method for coating a turbine engine component
EP1491720A1 (de) * 2003-06-25 2004-12-29 General Electric Company Verfahren zur Verbesserung der Abriebfestigkeit einer Trägerverbindung zwischen einem Turbinengehäuse und einer Leitschaufel
EP1561905A1 (de) * 2004-02-09 2005-08-10 Siemens Aktiengesellschaft Plastisch deformierbare Schicht im Verbindungsbereich einer Turbinenschaufel und Verfahren zur Schaufelbefestigung
EP1584792A1 (de) * 2004-04-08 2005-10-12 Siemens Aktiengesellschaft Schaufelbefestigung für einen Verdichter oder eine Turbine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936155A (en) * 1951-12-10 1960-05-10 Power Jets Res & Dev Ltd Resiliently mounted turbine blades
CH423431A (de) * 1965-10-13 1966-10-31 Licentia Gmbh Verfahren zur Herstellung eines Strömungsmaschinenschaufelfusses und/oder dessen am Schaufelträger befindlichen Halterung
US3784320A (en) * 1971-02-20 1974-01-08 Motoren Turbinen Union Method and means for retaining ceramic turbine blades
DE2250563A1 (de) * 1971-11-03 1973-05-10 British Leyland Truck & Bus Turbinen-rotor
US4552509A (en) * 1980-01-31 1985-11-12 Motoren-Und Turbinen-Union Munchen Gmbh Arrangement for joining two relatively rotatable turbomachine components
US4417854A (en) * 1980-03-21 1983-11-29 Rockwell International Corporation Compliant interface for ceramic turbine blades
EP1035377A2 (de) * 1999-03-08 2000-09-13 Mitsubishi Heavy Industries, Ltd. Abdichtung für das Endstück einer Gasturbinenbrennkammer
US20020189722A1 (en) * 1999-06-29 2002-12-19 Hasz Wayne Charles Turbine engine component having wear coating and method for coating a turbine engine component
EP1491720A1 (de) * 2003-06-25 2004-12-29 General Electric Company Verfahren zur Verbesserung der Abriebfestigkeit einer Trägerverbindung zwischen einem Turbinengehäuse und einer Leitschaufel
EP1561905A1 (de) * 2004-02-09 2005-08-10 Siemens Aktiengesellschaft Plastisch deformierbare Schicht im Verbindungsbereich einer Turbinenschaufel und Verfahren zur Schaufelbefestigung
EP1584792A1 (de) * 2004-04-08 2005-10-12 Siemens Aktiengesellschaft Schaufelbefestigung für einen Verdichter oder eine Turbine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2163734A2 (de) * 2008-09-12 2010-03-17 General Electric Company Vorrichtung zur Befestigung von Gasturbinenleitschaufel
CN101672300A (zh) * 2008-09-12 2010-03-17 通用电气公司 燃气涡轮机叶片连接
EP2163734A3 (de) * 2008-09-12 2012-11-07 General Electric Company Vorrichtung zur Befestigung von Gasturbinenleitschaufel
EP2206885A1 (de) * 2009-01-08 2010-07-14 Siemens Aktiengesellschaft Gasturbine
EP2211023A1 (de) * 2009-01-21 2010-07-28 Siemens Aktiengesellschaft Leitschaufelsystem für eine Strömungsmaschine mit segmentiertem Leitschaufelträger
WO2010084028A1 (de) * 2009-01-21 2010-07-29 Siemens Aktiengesellschaft Leitschaufelsystem für eine strömungsmaschine mit segmentiertem leitschaufelträger
US9238976B2 (en) 2009-01-21 2016-01-19 Siemens Aktiengesellschaft Guide vane system for a turbomachine having segmented guide vane carriers
EP3023594A1 (de) * 2014-10-22 2016-05-25 United Technologies Corporation Statoranordnung mit pad-schnittstelle für eine gasturbine
US10036263B2 (en) 2014-10-22 2018-07-31 United Technologies Corporation Stator assembly with pad interface for a gas turbine engine

Similar Documents

Publication Publication Date Title
EP1947293A1 (de) Leitschaufel für eine Gasturbine
EP1678410A2 (de) Verfahren zum verbinden von schaufelblättern mit schaufelfüssen oder motorscheiben bei der herstellung und/oder reparatur von gasturbinenschaufeln oder integral beschaufelten gasturbinenrotoren
EP1898054B1 (de) Gasturbine
DE102015201782A1 (de) Leitschaufelring für eine Strömungsmaschine
EP3273001B1 (de) Verfahren zum herstellen eines tandem-leitschaufelsegments
EP2647795A1 (de) Dichtungssystem für eine Strömungsmaschine
DE102014119693B4 (de) Turbinenschaufel mit hohlem schaufelblatt mit inneren rippen und kühlkanälen
DE602004001532T2 (de) Verfahren zur Kühlung einer tannenbaumförmigen Befestigung zwischen einer Turbinenscheibe und ihrer Schaufel
DE102016124296A1 (de) Innere Kühlkonfigurationen in Turbinenlaufschaufeln
DE102015120128A1 (de) Turbinenradabdeckplattenmontierte Gasturbinen-Zwischenstufendichtung
EP1245806A1 (de) Gekühlte Gasturbinenschaufel
EP3064706A1 (de) Leitschaufelreihe für eine axial durchströmte Strömungsmaschine
EP2818643B1 (de) Dichteinrichtung und Strömungsmaschine
EP2084368A1 (de) Turbinenschaufel
EP1840337A1 (de) Nut-Feder-Verbindung zwischen zwei Turbinenkomponenten einer Turbine
EP2236759A1 (de) Laufschaufelsystem
WO2001016467A1 (de) Turbine sowie verfahren zur abführung von leckfluid
EP2644843A1 (de) Schraubenkühlung für eine Strömungsmaschine
EP2823154B1 (de) Kühlmittelüberbrückungsleitung, zugehörige turbinenschaufel, gasturbine und kraftwerksanlage
DE102016124147A1 (de) Innenkühlkonfigurationen in Turbinenrotorschaufeln
CH709090A2 (de) Turbinenschaufel mit einer Kammer zur Aufnahme eines Kühlmittelstroms.
EP3290649A1 (de) Einlaufbelag und verfahren zum herstellen eines einlaufbelags zum abdichten eines spaltes zwischen einem rotor und einem stator einer strömungsmaschine
EP1654440A1 (de) Gasturbine mit einem dichtungselement zwischen leitschaufelkranz und laufschaufelkranz des turbinenteils
DE102011084125A1 (de) Schaufelsegment und Strömungsmaschine
EP1247943A1 (de) Formstück zur Bildung eines kühlbaren Turbinen-Mantelrings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080404

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566