EP1836387B1 - Multi-fan-jet nozzle and a fuel injection valve provided with said nozzle - Google Patents
Multi-fan-jet nozzle and a fuel injection valve provided with said nozzle Download PDFInfo
- Publication number
- EP1836387B1 EP1836387B1 EP05811079A EP05811079A EP1836387B1 EP 1836387 B1 EP1836387 B1 EP 1836387B1 EP 05811079 A EP05811079 A EP 05811079A EP 05811079 A EP05811079 A EP 05811079A EP 1836387 B1 EP1836387 B1 EP 1836387B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fan
- jet nozzle
- fuel injection
- nozzle
- injection valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
- F02M61/184—Discharge orifices having non circular sections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1853—Orifice plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/061—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
- F02M51/0625—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
- F02M51/0664—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
- F02M51/0671—Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
Definitions
- the invention relates to a multi-fan jet nozzle according to the preamble of claim 1 and of a fuel injection valve according to the preamble of claim 6.
- a fuel injection valve is already known, in which a perforated disc is provided downstream of the valve seat surface, which has a plurality of injection openings.
- the especiallyigerweise ten to twenty spray orifices are located in a plane of the perforated disc, which is perpendicular to the valve longitudinal axis.
- the largest part of the ejection openings is obliquely or inclined introduced into the perforated disc, so that the opening axes of the ejection openings have no parallelism to the valve longitudinal axis. Since the inclinations of the ejection openings can be chosen differently, a divergence of the individual jets to be sprayed is easily achievable.
- the ejection openings are introduced, for example, by laser drilling in the perforated disk in a largely uniform size.
- the fuel injector is particularly suitable for fuel injection systems of mixture-compression spark-ignition internal combustion engines.
- a fuel injection valve is already known in which a slot-shaped outlet opening is provided at the downstream end.
- the outlet opening is formed either in a perforated disc or directly in the nozzle body itself.
- the slot-shaped outlet openings are always introduced centrally on the valve longitudinal axis, so that the injection of the fuel takes place axially parallel from the fuel injection valve out.
- a swirl groove is provided, which sets the fuel flowing to the valve seat in a circular rotational movement.
- the flat outlet opening ensures that the fuel is hosed fan-like.
- a fuel injector for direct injection of fuel into a combustion chamber of an internal combustion engine from the US 6,019,296 A in that at the downstream end, a slot-shaped outlet opening is provided, can emerge from the fuel at an angle to the valve longitudinal axis.
- a fuel injector for fuel injection systems of internal combustion engines which has a fixed valve seat having valve seat body.
- the valve has a cooperating with the valve seat valve closing body which is axially movable along the valve longitudinal axis.
- an outlet opening is provided in the valve seat body.
- an atomizing device Downstream of the valve seat and the outlet opening, an atomizing device is arranged, wherein the atomizing device is designed as a multi-hole nozzle with a plurality of spray-injection slots parallel to one another.
- the multi-hole nozzle is designed as a flat spray orifice plate at the downstream end of the fuel injection valve, in which various alternatives regarding hole shape, number and arrangement can be introduced.
- the multi-fan jet nozzle according to the invention with the characterizing features of claim 1 has the advantage that it can be sprayed with her very atomizing fluid sprays. Over the very narrow spray-discharge slots, a multiplicity of fan-shaped beams are generated, which for the time being leave the multi-fan-jet nozzle parallel to one another and disintegrate into small droplets at a distance from the multi-fan-jet nozzle.
- upstream collisions of partial flows of the fluid take place upstream of the spray-discharge slots. The collisions take place transversely to the slot direction of the spray-discharge slots.
- fan-shaped spreading of the flow occurs in the spray-discharge slots.
- When leaving the ejection slots arise from the divergent flow plane fan beams, which thicken greatly by their spreading and disintegrate at a certain decay distance into correspondingly small droplets.
- the fuel injection valve according to the invention with the characterizing features of claim 6 has the advantage that in a simple manner a uniform Feinstzerstäubung of the fuel is achieved, with a particularly high quality of preparation and Zerstäubungsgüte is achieved with very small fluid droplets.
- the multi-fan jet nozzle has at the downstream end of the
- Fuel injector a variety of very small direction parallel spray-discharge slots, so that fuel sprays with extremely small fuel droplets with a Sauter Mean Diameter (SMD) of about 20 microns can be sprayed off. In this way, the HC emission of the internal combustion engine can be significantly reduced significantly.
- SMD Sauter Mean Diameter
- the multi-fan jet nozzle is a micro-disk, which has a plurality of very small spray-discharge slots, which have a slot width of about 20 to 100 microns
- the spray-discharge slots are arranged in parallel, lined up in a line and possible distributed evenly over a large area over a curved nozzle area. Due to this division, the flow rate to be atomized per individual spray slot is correspondingly small.
- FIG. 1 a partially illustrated valve in the form of a fuel injection valve with an embodiment of a multi-fan jet nozzle in a sectional view
- FIG. 2 the valve end with the multi-fan jet nozzle according to FIG. 1 in a 90 ° rotated sectional view
- FIG. 3 the multi-fan jet nozzle in a view according to FIG. 2
- FIG. 4 the multi-fan jet nozzle in a view according to FIG. 1
- FIG. 5 the multi-fan jet nozzle in a bottom view
- FIG. 6 a second embodiment of a multi-fan jet nozzle in a bottom view
- FIG. 7 the multi-fan jet nozzle according to FIG.
- FIG. 8 A third embodiment of a multi-fan jet nozzle in a bottom view
- FIG. 9 A fourth embodiment of a multi-fan jet nozzle in a bottom view
- FIG. 10 a first symbolic tool for producing a multi-fan jet nozzle
- FIG. 11 a second symbolic tool for producing a multi-fan jet nozzle.
- FIG. 12 a section through a mikrogalvanisch produced fifth multi-fan jet nozzle
- FIG. 13 a sectional view of a section along the line XIII-XIII in FIG. 12
- FIG. 14 A sixth embodiment of a multi-fan jet nozzle in a partial bottom view
- FIG. 15 a section through a seventh embodiment of a multi-fan jet nozzle along one of
- FIG. 13 corresponding cutting plane FIG. 16 a section through an eighth embodiment of a multi-fan jet nozzle along one of FIG. 13 corresponding cutting plane and
- FIG. 17 a cross section through a single layer electrodeposited multi-fan jet nozzle in the region of a spray-discharge slot.
- a valve in the form of an injection valve for fuel injection systems of mixture-compression spark-ignition internal combustion engines is partially shown.
- the fuel injection valve has a tubular valve seat carrier 1, which only schematically indicates a part of a valve housing and in which a longitudinal opening 3 is formed concentrically to a valve longitudinal axis 2.
- a longitudinal opening 3 is a z.
- the actuation of the fuel injection valve takes place in a known manner, for example electromagnetically.
- An actuation of the fuel injection valve with a piezoelectric or magnetostrictive actuator is also conceivable.
- a schematically indicated electromagnetic circuit with a solenoid 10, an armature 11 and a core 12.
- the armature 11 is connected to the valve closing body. 7 opposite end of the valve needle 5 by eg a trained by a laser weld and aligned with the core 12.
- a valve seat body 16 is tightly mounted, for example by welding.
- a multi-fan jet nozzle 23 is attached as an atomizer.
- the connection of valve seat body 16 and multi-fan jet nozzle 23 takes place for example by a circumferential and dense, formed by a laser weld 26, which is provided for example on the end face 17 or on the outer periphery of the valve seat body 16 and multi-fan jet nozzle 23.
- the multi-fan jet nozzle 23 is engaged by a support plate 25.
- the support disk 25 is annular in order to receive a central dome-shaped or domed nozzle-like nozzle region 28 of the multi-fan jet nozzle 23 in an inner opening.
- the insertion depth of the valve seat body 16 with the multi-fan jet nozzle 23 in the longitudinal opening 3 determines the size of the stroke of the valve needle 5, since the one end position of the valve needle 5 at non-energized solenoid 10 by the contact of the valve closing body 7 at a downstream conically tapered Valve seat surface 29 of the valve seat body 16 is fixed.
- the other end position of the valve needle 5 is fixed in the excited magnet coil 10, for example, by the system of the armature 11 to the core 12. The path between these two end positions of the valve needle 5 thus represents the hub.
- an outlet opening 27 is provided, from which the fuel to be sprayed enters a flow cavity 24, which is formed by the curved or kalottêtieri formation of the nozzle portion 28 of the multi-fan jet nozzle 23.
- the multi-fan jet nozzle 23 for example, in the region of the longitudinal axis of the valve 2 their greatest distance from the end face 17, while in the region of the weld 26, the multi-fan jet nozzle 23 as a thin disc without curvature directly against the valve seat body 16 and through the support disk 25 is stabilized.
- a sufficiently pressure-stable and thick design of the mikrogalvanisch produced multi-fan jet nozzle 23 can be completely dispensed with a support plate 25.
- the formation of the nozzle portion 28 is above all in the FIGS. 3 to 5 clear.
- a multiplicity of very small spray-discharge slots 30 are provided in the multi-fan jet nozzle 23 and, in particular, in its nozzle region 28, which run in the direction parallel to one another.
- the spray-discharge slots 30 have a slot width of approximately 20 to 100 ⁇ m, in particular 20 to 50 ⁇ m, and a slot length of up to 1 mm, in particular less than 150 ⁇ m, so that fuel sprays with extremely small fuel droplets with a Sauter Mean Diameter (SMD ) of about 20 microns can be sprayed off.
- SMD Sauter Mean Diameter
- Pro multi-fan jet nozzle 23 are provided between two and sixty spray-discharge slots 30, wherein a number of eight to forty spray-discharge slots 30 brings optimal atomization results.
- FIG. 2 shows the downstream valve end of the fuel injection valve with the multi-fan jet nozzle 23 according to FIG. 1 in a 90 ° rotated side view.
- the central nozzle region 28 has an elongated elliptical shape. While the sprayed fuel spray in its longitudinal direction according to FIG. 1 For example, has an outer angle ⁇ with about 15 °, an outer angle ⁇ of the fuel spray in its transverse orientation according to FIG. 2 about 30 °. Via the nozzle region 28 with the many spray-discharge slots 30, therefore, a fuel spray with elliptical jet cross-section is emitted, which disintegrates into very fine droplets.
- the spray-discharge slots 30 are arranged centrally in the nozzle region 28 and are each formed with identical size and shape.
- two adjacent spray-discharge slots 30 have a spacing of approximately 40 to 300 ⁇ m. The distance from slot center to slot center is thus about 100 to 400 microns.
- the multi-fan jet nozzle 23 is advantageously produced microgalvanically in a galvanic layer.
- the spray-discharge slots 30 have walls running perpendicularly to the surface of the pane as a result of this manufacturing technology.
- the central nozzle region 28 with the spray-discharge slots 30 is formed by embossing technology after the galvanic production of the disk, for example.
- FIGS. 10 and 11 symbolically shown two embossing tools 32, 33 for producing the nozzle portion 28 of the multi-fan jet nozzle 23, wherein the in FIG. 10 shown tool 32 annular or semi-circular ring and the in FIG. 11 shown tool 33 is executed elliptical or partially elliptical.
- the curvature of the nozzle region 28 is shaped convexly in the direction of ejection.
- the disc of the multi-fan jet nozzle 23 is made of nickel, which is very ductile, so it can be easily deformed during embossing without material cracks.
- the curvature of the nozzle portion 28 has an elliptical cross section in the bottom view.
- the spray-discharge slots 30 are, for example, equidistant and parallel to one another lined up.
- the longitudinal axes of the spray-discharge slots 30 are perpendicular to the longitudinal axis of the ellipse.
- the curvature of the nozzle portion 28 has along its width a smaller radius of curvature (eg, 0.25 mm) than the radius of curvature along its length (eg, 10 mm), such as FIGS. 3 and 4 clarify.
- the spray-discharge slots 30 extend with their longitudinal axes along the greater curvature and are therefore strongly convexly curved in the direction of discharge.
- the flow exiting per spray slot 30 emerges as a flat jet fan due to this curvature ( FIG. 2 ).
- the fan-out angle ⁇ results from the curvature and the run length of the spray-discharge slots 30.
- Each jet fan emerges perpendicular to the surface of the curvature. Consequently, a uniform directional spread is achieved between the individual fan sheds.
- the total spread angle corresponds to the beam angle ⁇ ( FIG. 1 ).
- the beam angles ⁇ and ⁇ determine the cross section of the total beam and can be varied as desired.
- the aspect ratio of the total beam can be customized, for example, to the geometry of a suction tube.
- FIG. 17 Is exemplary in the FIG. 17 a cross-section through a single-layer electrodeposited multi-fan jet nozzle 23 in the region of a spray slot 30 shown in which the walls of the spray slot 30 are not perpendicular, but curved in a trumpet shape over the entire boundary of the spray slot 30.
- the production of such a multi-fan jet Nozzle 23 takes place in such a way that first two photoresist layers are deposited onto one another on a substrate body.
- the second lacquer layer is applied only after the masking, exposure and patterning of the first lacquer layer. After masking, exposing and structuring of the second lacquer layer, both lacquer layers are developed in one step, ie unexposed areas of the lacquer layers are removed by wet-chemical means.
- the paint tower has a much larger width than in the second coat of paint, which, however, is applied in much greater height.
- metal is electroplated onto the substrate body around the paint towers in a one-step process.
- the electroplating layer initially grows up from the substrate body on the first lacquer layer, and overgrows this first lacquer layer on its surface until the electroplating layer completely touches the circumference of the second lacquer layer.
- the electroplating is stopped in the moment in which the circumference of the second Lackhus a small galvanic layer thickness is present.
- the overgrowth of the first lacquer layer results in a funnel-shaped indentation in the electroplating layer around the second lacquer layer in the area of each coater tower ("laleral overgrowth"). This indentation on each paint tower forms a diverging part of the respective spray-discharge slot 30.
- the spray-discharge slots 30 of the multi-fan jet nozzle 23 are in the installed state, e.g. flows through against the electroplating growth direction.
- the narrowest width of the ejection slot 30 is in the range of about 30 to 100 microns.
- the mikrogalvanisch produced multi-fan jet nozzle 23 can be completely dispensed with a support plate 25.
- the downstream of their narrowest width enlarged Abspritzkonturen have, which form a kind of slit-shaped frame around each spray-discharge slot 30 in a bottom view of the spray-discharge slots 30.
- FIG. 6 are a second embodiment of a multi-fan jet nozzle 23 in a bottom view and in the FIG. 7 the multi-fan jet nozzle 23 according to FIG. 6 shown in a side view.
- This is an obliquely spraying multi-fan jet nozzle 23.
- the jet structure is tilted by an angle ⁇ . This is achieved in that all spray-discharge slots 30 are arranged with their center off-center with respect to the longitudinal axis of the ellipse of the nozzle region 28. In the exemplary embodiment shown, all spray-discharge slots 30 have the same center offset.
- the execution according to FIG. 5 can be varied so that the curvature of the nozzle portion 28 is disposed with the spray-discharge slots 30 off-center on the multi-fan jet nozzle 23, but the spray slots 30 are arranged centrally on the curvature of the nozzle portion 28.
- the transverse flow of the curvature of the nozzle region 28 also produces a ⁇ -angle of the sprayed-off spray.
- FIGS. 8 and 9 show a third and fourth embodiment of a multi-fan jet nozzle 23 in a bottom view.
- the entire cross section of the nozzle region 28 is designed H-shaped.
- the H-shape is formed from two parallel curvatures, each one eg FIG. 5 corresponds to known curvature.
- the injection slots 30 are arranged in these two curvatures of the nozzle portion 28. So that individual fan beams do not touch out of the two bulges outside the fuel injection valve, the spray-discharge slots 30 are offset from one another in the middle between the two curvatures. Both vaults are connected by a third transverse curvature.
- the third curvature is centric to the outlet opening 27, receives the fuel coming from the outlet opening 27 and distributes it to the two occupied with the spray-discharge slots 30 vaults, from where the fuel is sprayed.
- the injection slots 30 can over the entire length of the bulges ( FIG. 8 ) or only in partial areas of the vaults ( FIG. 9 ) be provided. With the in FIG. 9 shown example of the multi-fan jet nozzle 23, a beam gap can be generated.
- the entire Sirahlgesente takes a two-beam characteristic, which may be advantageous for internal combustion engines with two intake valves per cylinder.
- FIG. 12 shows a section through a mikrogalvanisch manufactured fifth multi-fan nozzle 23, which is mounted on a valve seat body 16.
- the multi-fan jet nozzle 23 is constructed from two structural planes 35, 36.
- FIG. 13 is a sectional view of a section along the line XIII-XIII in FIG. 12 , whereby a plan view of the spray-discharge slots 30 is made possible.
- the multi-fan jet nozzle 23 has a continuous disk-shaped design without bulges in a special nozzle region 28. In both structural planes 35, 36 there are different opening contours with respect to size and shape.
- the spray-discharge slots 30 of the lower structural plane 36 are generally below cross-sections of the upper structural plane 35.
- the spray-discharge slots 30 are centered at their longitudinal axes and at right angles to an axis of symmetry 37 and are arranged along this axis of symmetry 37 in series parallel to each other, wherein they are in the Normally equidistant from each other.
- each spray-discharge slot 30 is fed from two adjacent flow channels 38 (see arrows in FIG. 13 ). Consequently, there is a frontal collision of two partial flows from two opposite directions centrally and upstream of the injection slots 30. The collision takes place transversely to the slot direction of the spray-discharge slot 30. As a reaction arise in the Spray-discharge slots 30 fan-shaped spreading of the flow.
- the flow channels 38 of the upper structural plane 35 form a cross-shaped grid, which consists on the one hand of parallel to the spray-discharge slots 30 extending feed channels 39, on the other hand, perpendicular to this inflow channels 40 connect.
- material walls of the upper structural plane 35 do not run directly in alignment with the walls of the spray-discharge slots 30 in the lower structural plane 36, but with a slight offset to the outside, so that the spray-discharge slots 30 can be flowed on all sides.
- FIG. 14 illustrates with a sixth embodiment of a multi-fan jet nozzle 23 in a partial bottom view that the spray-discharge slots 30 may also be arranged eccentrically with offset regular, irregular, one-sided or alternating with respect to the axis of symmetry 37.
- the micro-galvanic production of the multi-fan-jet nozzle 23 takes place in such a way that first the upper structural plane 35 is deposited and subsequently the lower structural plane 36.
- the electroplating is started on a flat, electrically conductive base (substrate).
- a first photoresist layer is applied.
- This is followed by a selective exposure of the first photoresist layer by means of UV light and a partial, structured cover by a photomask.
- the structure of the later structural plane 35 is depicted.
- a sputter layer is then applied flat. Subsequently, a second photoresist layer is applied.
- FIG. 15 is a section through a seventh embodiment of a multi-fan jet nozzle 23 along one of FIG. 13 corresponding cutting plane shown.
- the relative position of the multi-fan jet nozzle 23 to the valve seat body 16 is indicated by the drawing of the outlet opening 27.
- a large-area flow channel 38 is provided here, which in turn resembles the shape of an H.
- Two mutually parallel rows of spray-discharge slots 30 are accommodated in the lower structural plane 36. Both rows are offset with respect to their subdivision into spray-discharge slots 30. It is adjusted in an advantageous manner, a center offset, in which the spray-discharge slots 30 of one row are centrally offset to those of the other row. This avoids that the fan beams emerging from both rows unite at some distance from the multi-fan jet nozzle 23. Both rows are, for example, arranged symmetrically to the center of the multi-fan jet nozzle 23.
- FIG. 16 is a section through an eighth embodiment of a multi-fan jet nozzle 23 along one of FIG. 13 corresponding section plane shown.
- the area of the multi-fan jet nozzle 23 is maximally utilized in order to have a possible large distance between adjacent fan beams. This reduces the risk of sucking in two adjacent fan beams.
- the flow channel 38 is circular. All spray-discharge slots 30 are distributed randomly and offset from one another. This ensures that the exiting fan beams do not overlap each other in the spray room. In this arbitrary distribution of the spray-discharge slots 30, however, these are arranged in direction parallel.
- the widths and lengths of the spray-discharge slots 30 in each case in a multi-fan jet nozzle 23 are constant.
- the widths and lengths of the ejection slots 30 may also vary within a multi-fan jet nozzle 23.
- the ejection slots 30 are wider at the center of a series of ejection slots 30 than at the two ends of such a row. Thereby can under cramped conditions larger flows can be displayed. The center of the total jet comes less into contact with the wall of the suction tube, which is why the drops in the center of the spray may be larger without greater risk of Saugrohrwandfilm Struktur.
- a multi-fan jet nozzle 23 of the present invention is by no means limited to use with a fuel injector. Rather, such a multi-fan jet nozzle 23 may be attached to any form of nozzle that requires or desires to spray liquids in fan-beam form, which fluids then disintegrate into very atomized droplets. Areas of application are e.g. Chemistry, agriculture, painting or heating technology.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Description
Die Erfindung geht aus von einer Multi-Fächerstrahl-Düse nach der Gattung des Anspruchs 1 sowie von einem Brennstoffeinspritzventil nach der Gattung des Anspruchs 6.The invention relates to a multi-fan jet nozzle according to the preamble of
Aus der
Aus der
Bekannt ist zudem noch ein Brennstoffeinspritzventil zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine aus der
Die erfindungsgemäße Multi-Fächerstrahl-Düse mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass mit ihr feinstzerstäubende Fluidsprays abspritzbar sind. Über die sehr engen Abspritzschlitze werden eine Vielzahl von Fächerstrahlen erzeugt, die vorerst parallel zueinander die Multi-Fächerstrahl-Düse verlassen und mit Abstand zur Multi-Fächerstrahl-Düse in kleine Tröpfchen zerfallen. In idealer Weise erfolgen in der Multi-Fächerstrahl-Düse stromaufwärts der Abspritzschlitze Frontalkollisionen von Teilströmen des Fluids. Die Kollisionen finden quer zur Schlitzrichtung der Abspritzschlitze statt. Als Reaktion entstehen in den Abspritzschlitzen fächerartige Aufspreizungen der Strömung. Beim Verlassen der Abspritzschlitze entstehen aus der divergenten Strömung ebene Fächerstrahlen, die durch ihre Aufspreizungen stark ausdünnen und ab einer gewissen Zerfallsstrecke in entsprechend kleine Tröpfchen zerfallen.The multi-fan jet nozzle according to the invention with the characterizing features of
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Multi-Fächerstrahl-Düse möglich.The measures listed in the dependent claims advantageous refinements and improvements of
Besonders vorteilhaft ist es, die Multi-Fächerstrahl-Düse mikrogalvanisch einlagig oder mit mehreren Strukturebenen herzustellen. Auf diese Weise sind einfach und in großen Stückzahlen exakt reproduzierbar Abspritzschlitze mit filigranen Öffnungsstrukturen, wie z.B. Schlitzbreiten von ca. 20 bis 100 µm, insbesondere 20 bis 50 µm, und Schlitzlängen von bis zu 1 mm, insbesondere unter 150 µm herstellbar.It is particularly advantageous to produce the multi-fan jet nozzle in a single layer or with several structural planes. In this way, injection slots with filigree opening structures, such as, for example, are easily reproducible in large quantities. Slot widths of about 20 to 100 .mu.m, in particular 20 to 50 microns, and slot lengths of up to 1 mm, in particular less than 150 microns produced.
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 6 hat den Vorteil, dass auf einfache Art und Weise eine gleichmäßige Feinstzerstäubung des Brennstoffs erreicht wird, wobei eine besonders hohe Aufbereitungsqualität und Zerstäubungsgüte mit sehr kleinen Fluidtröpfchen erzielt wird. In idealer Weise besitzt die Multi-Fächerstrahl-Düse am stromabwärtigen Ende desThe fuel injection valve according to the invention with the characterizing features of
Brennstoffeinspritzventils eine Vielzahl von sehr kleinen richtungsparallelen Abspritzschlitzen, so dass Brennstoffsprays mit extrem kleinen Brennstofftröpfchen mit einem Sauter Mean Diameter (SMD) von ca. 20 µm abspritzbar sind. Auf diese Weise kann sehr wirkungsvoll die HC-Emission der Brennkraftmaschine deutlich reduziert werden.Fuel injector a variety of very small direction parallel spray-discharge slots, so that fuel sprays with extremely small fuel droplets with a Sauter Mean Diameter (SMD) of about 20 microns can be sprayed off. In this way, the HC emission of the internal combustion engine can be significantly reduced significantly.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 6 angegebenen Brennstoffeinspritzventils möglich.The measures listed in the dependent claims advantageous refinements and improvements of
In idealer Weise handelt es sich bei der Multi-Fächerstrahl-Düse um eine Mikrolochscheibe, die eine Vielzahl von sehr kleinen Abspritzschlitzen aufweist, die eine Schlitzbreite von jeweils ca. 20 bis 100 µm besitzen Erfindungsgemäss sind die Abspritzschlitze parallel angeordnet, linienförmig aufgereiht und dabei möglichst gleichmäßig und großflächig über einen gewölbten Düsenbereich verteilt. Durch diese Aufteilung ist pro einzelnem Abspritzschlitz die zu zerstäubende Durchflussmenge entsprechend klein.Ideally, the multi-fan jet nozzle is a micro-disk, which has a plurality of very small spray-discharge slots, which have a slot width of about 20 to 100 microns According to the invention, the spray-discharge slots are arranged in parallel, lined up in a line and possible distributed evenly over a large area over a curved nozzle area. Due to this division, the flow rate to be atomized per individual spray slot is correspondingly small.
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
In der
Die Betätigung des Brennstoffeinspritzventils erfolgt in bekannter Weise, beispielsweise elektromagnetisch. Eine Betätigung des Brennstoffeinspritzventils mit einem piezoelektrischen oder magnetostriktiven Aktor ist jedoch ebenso denkbar. Zur axialen Bewegung der Ventilnadel 5 und damit zum Öffnen entgegen der Federkraft einer nicht dargestellten Rückstellfeder bzw. Schließen des Brennstoffeinspritzventils dient ein schematisch angedeuteter elektromagnetischer Kreis mit einer Magnetspule 10, einem Anker 11 und einem Kern 12. Der Anker 11 ist mit dem dem Ventilschließkörper 7 abgewandten Ende der Ventilnadel 5 durch z.B. eine mittels eines Lasers ausgebildete Schweißnaht verbunden und auf den Kern 12 ausgerichtet.The actuation of the fuel injection valve takes place in a known manner, for example electromagnetically. An actuation of the fuel injection valve with a piezoelectric or magnetostrictive actuator is also conceivable. For axial movement of the
In dem stromabwärts liegenden Ende des Ventilsitzträgers 1 ist ein Ventilsitzkörper 16 z.B. durch Schweißen dicht montiert. An der dem Ventilschließkörper 7 abgewandten, unteren Stirnseite 17 des Ventilsitzkörpers 16 ist eine erfindungsgemäße Multi-Fächerstrahl-Düse 23 als Zerstäubereinrichtung befestigt. Die Verbindung von Ventilsitzkörper 16 und Multi-Fächerstrahl-Düse 23 erfolgt beispielsweise durch eine umlaufende und dichte, mittels eines Lasers ausgebildete Schweißnaht 26, die z.B. an der Stirnseite 17 oder am äußeren Umfang von Ventilsitzkörper 16 und Multi-Fächerstrahl-Düse 23 vorgesehen ist. Zur sicheren Befestigung der sehr dünnen scheibenförmigen Multi-Fächerstrahl-Düse 23 am Ventilsitzkörper 16 wird die Multi-Fächerstrahl-Düse 23 von einer Stützscheibe 25 untergriffen. Die Stützscheibe 25 ist dabei ringförmig ausgeführt, um einen mittleren kalottierten bzw. ausgewölbten kuppenartigen Düsenbereich 28 der Multi-Fächerstrahl-Düse 23 in einer inneren Öffnung aufzunehmen.In the downstream end of the
Die Einschubtiefe des Ventilsitzkörpers 16 mit der Multi-Fächerstrahl-Düse 23 in der Längsöffnung 3 bestimmt die Größe des Hubs der Ventilnadel 5, da die eine Endstellung der Ventilnadel 5 bei nicht erregter Magnetspule 10 durch die Anlage des Ventilschließkörpers 7 an einer sich stromabwärts konisch verjüngenden Ventilsitzfläche 29 des Ventilsitzkörpers 16 festgelegt ist. Die andere Endstellung der Ventilnadel 5 wird bei erregter Magnetspule 10 beispielsweise durch die Anlage des Ankers 11 an dem Kern 12 festgelegt. Der Weg zwischen diesen beiden Endstellungen der Ventilnadel 5 stellt somit den Hub dar.The insertion depth of the
In dem Ventilsitzkörper 16 ist stromabwärts der Ventilsitzfläche 29 eine Austrittsöffnung 27 vorgesehen, von der aus der abzuspritzende Brennstoff in einen Strömungshohlraum 24 eintritt, der durch die gewölbte oder kalottierte Ausbildung des Düsenbereichs 28 der Multi-Fächerstrahl-Düse 23 gebildet ist. Dabei weist die Multi-Fächerstrahl-Düse 23 z.B. im Bereich der Ventillängsachse 2 ihren größten Abstand zur Stirnseite 17 auf, während im Bereich der Schweißnaht 26 die Multi-Fächerstrahl-Düse 23 als dünne Scheibe ohne Wölbung unmittelbar am Ventilsitzkörper 16 anliegt und durch die Stützscheibe 25 stabilisiert ist. Bei einer ausreichend druckstabilen und dicken Auslegung der mikrogalvanisch hergestellten Multi-Fächerstrahl-Düse 23 kann auch auf eine Stützscheibe 25 ganz verzichtet werden. Die Ausbildung des Düsenbereichs 28 wird vor allen Dingen in den
Erfindugsgemäß sind in der Multi-Fächerstrahl-Düse 23 und insbesondere in deren Düsenbereich 28 eine Vielzahl von sehr kleinen Abspritzschlitzen 30 vorgesehen, die richtungsparallel verlaufen. Die Abspritzschlitze 30 weisen eine Schlitzbreite von jeweils ca. 20 bis 100 µm, insbesondere 20 bis 50 µm, und eine Schlitzlänge von bis zu 1 mm, insbesondere unter 150 µm auf, so dass Brennstoffsprays mit extrem kleinen Brennstofftröpfchen mit einem Sauter Mean Diameter (SMD) von ca. 20 µm abspritzbar sind. Auf diese Weise kann sehr wirkungsvoll die HC-Emission der Brennkraftmaschine deutlich gegenüber bekannter Einspritzanordnungen reduziert werden. Pro Multi-Fächerstrahl-Düse 23 sind zwischen zwei und sechzig Abspritzschlitze 30 vorgesehen, wobei eine Anzahl von acht bis vierzig Abspritzschlitzen 30 optimale Zerstäubungsergebnisse bringt.According to the invention, a multiplicity of very small spray-
In den
Die Wölbung des Düsenbereichs 28 hat in der Unteransicht einen elliptischen Querschnitt. Auf der Längsachse der Ellipse sind die Abspritzschlitze 30 z.B. äquidistant und parallel zueinander aufgereiht. Die Längsachsen der Abspritzschlitze 30 stehen senkrecht zur Längsachse der Ellipse. Die Wölbung des Düsenbereichs 28 hat entlang ihrer Breite einen kleineren Krümmungsradius (z.B. 0,25 mm) als den Krümmungsradius entlang ihrer Länge (z.B. 10 mm), wie die
Beispielhaft ist in der
In einem nächsten Prozessschritt wird Metall auf den Substratkörper um die Lacktürme herum in einem einstufigen Prozess aufgalvanisiert. Die Galvanikschicht wächst zunächst vom Substratkörper aus an der ersten Lackschicht hoch, und überwächst diese erste Lackschicht an deren Oberfläche bis die Galvanikschicht den Umfang der zweiten Lackschicht komplett berührt. Die Galvanik wird in dem Moment gestoppt, in dem am Umfang der zweiten Lackschicht eine geringe Galvanikschichtdicke vorhanden ist. Durch das Überwachsen der ersten Lackschicht ergibt sich um die zweite Lackschicht im Bereich jedes Lackturms ein trichterförmiger Einzug in der Galvanikschicht ("lalerales Überwachsen"). Dieser Einzug an jedem Lackturm bildet einen divergierenden Teil des jeweiligen Abspritzschlitzes 30.In a next process step, metal is electroplated onto the substrate body around the paint towers in a one-step process. The electroplating layer initially grows up from the substrate body on the first lacquer layer, and overgrows this first lacquer layer on its surface until the electroplating layer completely touches the circumference of the second lacquer layer. The electroplating is stopped in the moment in which the circumference of the second Lackschicht a small galvanic layer thickness is present. The overgrowth of the first lacquer layer results in a funnel-shaped indentation in the electroplating layer around the second lacquer layer in the area of each coater tower ("laleral overgrowth"). This indentation on each paint tower forms a diverging part of the respective spray-
Nach dem Entfernen der Lacktürme ("Strippen") und des Substratkörpers liegt eine einlagige Multi-Fächerstrahl-Düse 23 mit einer Vielzahl von Abspritzschlitzen 30 vor. Wie der Pfeil 31 andeutet, werden die Abspritzschlitze 30 der Multi-Fächerstrahl-Düse 23 im eingebauten Zustand z.B. entgegen der Galvanikaufwachsrichtung durchströmt. Die engste Weite des Abspritzschlitzes 30 liegt im Bereich von ca. 30 bis 100 µm. Bei dieser druckstabilen und dicken Auslegung der mikrogalvanisch hergestellten Multi-Fächerstrahl-Düse 23 kann auf eine Stützscheibe 25 ganz verzichtet werden. Bei dieser Herstellung mit zwei Lackschichten entstehen z.B. Abspritzschlitze 30, die stromabwärts ihrer engsten Weite vergrößert Abspritzkonturen besitzen, die in einer Unteransicht der Abspritzschlitze 30 eine Art schlitzförmigen Rahmen um jeden Abspritzschlitz 30 bilden.After removal of the paint towers ("stripping") and the substrate body is a single-layer
In der
Die Ausführung gemäß
Nicht erfindungsgemäß
In der oberen Strukturebene 35 sind Strömungskanäle 38 vorgesehen, die Öffnungen innerhalb der mikrogalvanisch abgeschiedenen Strukturebene 35 darstellen. Durch die Strömungskanäle 38 wird der Brennstoff horizontal in der Strukturebene 35 zu den Abspritzschlitzen 30 geleitet. Dabei wird jeder Abspritzschlitz 30 aus zwei benachbarten Strömungskanälen 38 gespeist (siehe Pfeile in
Nicht erfindungsgemäß
Die mikrogalvanische Herstellung der Multi-Fächerstrahl-Düse 23 erfolgt in der Weise, dass zuerst die obere Strukturebene 35 abgeschieden wird und nachfolgend die untere Strukturebene 36. Die Galvanik wird auf einer ebenen, elektrisch leitfähigen Grundfläche (Substrat) gestartet. Auf dem Substrat wird ein erste Fotolackschicht aufgebracht. Danach erfolgt ein selektives Belichten der ersten Fotolackschicht mittels UV-Licht und eine partielle, strukturierte Abdeckung durch eine Fotomaske. Es wird die Struktur der späteren Strukturebene 35 abgebildet. Auf die erste Fotolackschicht wird dann eine Sputterschicht flächig aufgebracht. Anschließend kommt es zu einem Aufbringen einer zweiten Fotolackschicht. Danach erfolgt ein selektives Belichten der zweiten Fotolackschicht mittels UV-Licht und eine partielle, strukturierte Abdeckung durch eine Fotomaske. Es wird die Struktur der späteren Strukturebene 36 abgebildet. Beide Lackschichten werden nachfolgend in einem Schritt entwickelt, d.h. unbelichtete Stellen werden nasschemisch entfernt. Es bleiben auf dem Substrat an den Stellen gestufte Lackstrukturen stehen, wo später Öffnungsstrukturen innerhalb der Multi-Fächerstrahl-Düse 23 vorhanden sein sollen. Danach erfolgt das Aufgalvanisieren. Sobald die Galvanik in der Strukturebene 35 die Dicke der Fotolackschicht übersteigt, gerät sie in elektrischen Kontakt mit der auf dieser Fotolackschicht liegenden Sputterschicht. Auf der Sputterschicht wird ab diesem Zeitpunkt das Galvanikwachstum gestartet. Die Galvanik wird gestoppt, bevor sie die Oberseite der zur Strukturebene 36 gehörenden Fotolackschicht erreicht hat. Abschließend wird die Galvanikschicht vom Substrat abgelöst und der Fotolack herausgelöst.The micro-galvanic production of the multi-fan-
In der nicht erfindungsgemäß
In der nicht erfindungsgemäß
In den beschriebenen Ausführungsbeispielen der Multi-Fächerstrahl-Düsen 23 sind die Breiten und Längen der Abspritzschlitze 30 in jeweils einer Multi-Fächerstrahl-Düse 23 konstant. Die Breiten und Längen der Abspritzschlitze 30 können jedoch auch innerhalb einer Multi-Fächerstrahl-Düse 23 variieren. Auf diese Weise ergeben sich neue Möglichkeiten in der Strahlformgebung. Beispielsweise sind die Abspritzschlitze 30 im Zentrum einer Reihe von Abspritzschlitzen 30 breiter als an den beiden Enden einer solchen Reihe. Dadurch können unter beengten Platzverhältnissen auch größere Durchflüsse dargestellt werden. Das Zentrum des Gesamtstrahls kommt weniger mit der Wandung des Saugrohrs in Berührung, weshalb die Tropfen im Zentrum des Sprays ohne größere Gefahr der Saugrohrwandfilmbildung größer sein dürfen.In the described embodiments of the
Eine erfindungsgemäße Multi-Fächerstrahl-Düse 23 ist jedoch keineswegs auf eine Anwendung an einem Brennstoffeinspritzventil beschränkt. Vielmehr kann eine solche Multi-Fächerstrahl-Düse 23 an jeglicher Form von Düsen angebracht werden, bei denen einen Abspritzen von Flüssigkeiten in Fächerstrahlform gefordert oder gewünscht ist, wobei die Fluide dann in feinstzerstäubte Tröpfchen zerfallen. Anwendungsgebiete sind z.B. Chemie, Landwirtschaft, Lackiertechnik oder Heiztechnik.However, a
Claims (14)
- Multi-fan-jet nozzle as a vaporizer device for discharging a finely vaporized fluid, having a multiplicity of ejection openings, with the ejection openings being provided as a multiplicity of mutually parallel ejection slots (30), with the multi-fan-jet nozzle (23) being of disc-shaped design,
characterized
in that the multi-fan-jet nozzle (23) has a spherical-cap-shaped or domed nozzle region (28) which has the ejection slots (30), with the nozzle region (28) having a longitudinal extent with a longitudinal axis perpendicular to the longitudinal axes of the ejection slots (30). - Multi-fan-jet nozzle according to Claim 1, characterized in that the ejection slots (30) have in each case a slot width of approximately 20 to 100 µm and a slot length of up to 1 mm.
- Multi-fan-jet nozzle according to one of the preceding claims, characterized in that two to sixty ejection slots (30) are provided in the multi-fan-jet nozzle (23).
- Multi-fan-jet nozzle according to one of the preceding claims, characterized in that the ejection slots (30) have the cross-sectional shape of a rectangle, of an ellipse or of a lens.
- Multi-fan-jet nozzle according to one of the preceding claims, characterized in that the multi-fan-jet nozzle (23) can be produced microgalvanically.
- Fuel injection valve for fuel injection systems of internal combustion engines, having a valve longitudinal axis (2), having a valve seat body (16) which has a fixed valve seat (29), having a valve closing body (7) which interacts with the valve seat (29) and which is axially movable along the valve longitudinal axis (2), having an outlet opening (27) in the valve seat body (16) and having a vaporizer device arranged downstream of the valve seat (29), with the vaporizer device being designed as a multi-fan-jet nozzle (23) with a multiplicity of mutually parallel ejection slots (30), with the multi-fan-jet nozzle (23) being of disc-shaped design,
characterized
in that the multi-fan-jet nozzle (23) has a spherical-cap-shaped or domed nozzle region (28) which has the ejection slots (30), with the nozzle region (28) having a longitudinal extent with a longitudinal axis perpendicular to the longitudinal axes of the ejection slots (30). - Fuel injection valve according to Claim 6, characterized in that the multi-fan-jet nozzle (23) is fixedly connected to the valve seat body (16).
- Fuel injection valve according to one of Claims 6 or 7, characterized in that the multi-fan-jet nozzle (23) is fastened to the valve seat body (16) by means of a support disc (25).
- Fuel injection valve according to one of Claims 6 to 8, characterized in that the ejection slots (30) have in each case a slot width of approximately 20 to 100 µm and a slot length of up to 1 mm.
- Fuel injection valve according to one of Claims 6 to 9, characterized in that two to sixty ejection slots (30) are provided in the multi-fan-jet nozzle (23).
- Fuel injection valve according to one of Claims 6 to 10, characterized in that the ejection slots (30) have the cross-sectional shape of a rectangle, of an ellipse or of a lens.
- Fuel injection valve according to one of Claims 6 to 11, characterized in that a plurality of ejection slots (30) are arranged in at least one row.
- Fuel injection valve according to one of Claims 6 to 12, characterized in that a flow cavity (24) is provided in the multi-fan-jet nozzle (23) directly upstream of the ejection slots (30).
- Fuel injection valve according to one of Claims 6 to 13, characterized in that the multi-fan-jet nozzle (23) can be produced microgalvanically.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005000620A DE102005000620A1 (en) | 2005-01-03 | 2005-01-03 | Multi-fan jet nozzle and fuel injector with multi-fan jet nozzle |
PCT/EP2005/055700 WO2006072487A1 (en) | 2005-01-03 | 2005-11-02 | Multi-fan-jet nozzle and a fuel injection valve provided with said nozzle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1836387A1 EP1836387A1 (en) | 2007-09-26 |
EP1836387B1 true EP1836387B1 (en) | 2010-09-08 |
Family
ID=35610172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05811079A Expired - Fee Related EP1836387B1 (en) | 2005-01-03 | 2005-11-02 | Multi-fan-jet nozzle and a fuel injection valve provided with said nozzle |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090321541A1 (en) |
EP (1) | EP1836387B1 (en) |
JP (1) | JP2008527230A (en) |
CN (1) | CN101094984A (en) |
DE (2) | DE102005000620A1 (en) |
WO (1) | WO2006072487A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007020281A1 (en) | 2007-04-30 | 2008-11-06 | Robert Bosch Gmbh | System for finishing treatment of exhaust gases, for reduction of nitrogen oxides in exhaust gases of internal combustion engine, has solution, water, urea and reaction chamber |
DE102007062190A1 (en) | 2007-12-21 | 2009-06-25 | Robert Bosch Gmbh | Fuel injector |
DE102008054840A1 (en) | 2007-12-21 | 2009-06-25 | Robert Bosch Gmbh | Fuel injector |
DE102007062184A1 (en) | 2007-12-21 | 2009-06-25 | Robert Bosch Gmbh | Perforated disk forming method for fuel injection valve of mixture-compressing, spark-ignition internal combustion engine, involves forming nozzle area with injection opening using pressurized fluid or compressible, elastic pressure body |
NL2002079C (en) * | 2008-10-10 | 2010-04-13 | Univ Eindhoven Tech | FUEL INJECTOR FOR A BURNING ENGINE. |
DE102008055083A1 (en) | 2008-12-22 | 2010-06-24 | Robert Bosch Gmbh | Fuel injection valve for fuel injection system of internal-combustion engine, has opening in seat body, where diameter of opening is less than or equal to square root of six times of diameter of seat and distance of closing body from seat |
US20150090225A1 (en) * | 2012-05-11 | 2015-04-02 | Toyota Jidosha Kabushiki Kaisha | Fuel injection valve and fuel injection device with same |
WO2014022640A1 (en) * | 2012-08-01 | 2014-02-06 | 3M Innovative Properties Company | Fuel injectors with non-coined three-dimensional nozzle inlet face |
DE102012214522B3 (en) * | 2012-08-15 | 2014-03-27 | Ford Global Technologies, Llc | Injector |
KR101337713B1 (en) * | 2012-12-20 | 2013-12-06 | 주식회사 현대케피코 | Vehicular gdi injector with valve seat body for fuel atomization |
CN107165755A (en) * | 2017-07-03 | 2017-09-15 | 浙江凯利智控科技有限公司 | Fuel injector atomization characteristics can adjust cone structure |
US20200025060A1 (en) * | 2018-07-19 | 2020-01-23 | GM Global Technology Operations LLC | Fuel Injector and Nozzle Passages Therefor |
FR3098137B1 (en) * | 2019-07-02 | 2022-07-15 | Aptar France Sas | Method of manufacturing a distribution wall |
CN117138989B (en) * | 2023-08-28 | 2024-06-11 | 中国机械总院集团哈尔滨焊接研究所有限公司 | Push-pull jet nozzle device for water-guided laser processing and use method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002084113A1 (en) * | 2001-04-11 | 2002-10-24 | Robert Bosch Gmbh | Fuel injection valve |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2865677B2 (en) * | 1988-10-07 | 1999-03-08 | 株式会社日立製作所 | Gasoline engine fuel supply system |
US5201806A (en) * | 1991-06-17 | 1993-04-13 | Siemens Automotive L.P. | Tilted fuel injector having a thin disc orifice member |
DE69415362T2 (en) * | 1993-02-17 | 1999-06-10 | DENSO CORPORATION, Kariya-city, Aichi-pref. | Liquid injector |
US5383597A (en) * | 1993-08-06 | 1995-01-24 | Ford Motor Company | Apparatus and method for controlling the cone angle of an atomized spray from a low pressure fuel injector |
JPH08200187A (en) * | 1995-01-23 | 1996-08-06 | Nippondenso Co Ltd | Fuel injection valve |
BR9605943A (en) * | 1995-03-29 | 1997-08-19 | Bosch Gmbh Robert | Perforated disc particularly for injection valves |
DE19527846A1 (en) * | 1995-07-29 | 1997-01-30 | Bosch Gmbh Robert | Valve, in particular fuel injector |
DE19636396B4 (en) | 1996-09-07 | 2005-03-10 | Bosch Gmbh Robert | Fuel injector |
DE19703200A1 (en) * | 1997-01-30 | 1998-08-06 | Bosch Gmbh Robert | Fuel injector |
JPH11117831A (en) | 1997-10-17 | 1999-04-27 | Toyota Motor Corp | Fuel injection valve for internal combustion engine |
JP3323429B2 (en) | 1997-11-19 | 2002-09-09 | トヨタ自動車株式会社 | Fuel injection valve for internal combustion engine |
US6588399B2 (en) * | 2000-02-22 | 2003-07-08 | Hitachi, Ltd. | Fuel injection method of internal combustion engine and fuel injection apparatus of internal combustion engine |
JP2002332935A (en) * | 2001-05-08 | 2002-11-22 | Hitachi Ltd | Fuel injection valve and internal combustion engine |
JP2003003932A (en) * | 2001-06-19 | 2003-01-08 | Hitachi Unisia Automotive Ltd | Fuel injection valve |
JP3941109B2 (en) * | 2003-04-30 | 2007-07-04 | 株式会社デンソー | Fuel injection valve |
DE102004005526B4 (en) * | 2003-02-05 | 2022-03-31 | Denso Corporation | Fuel injector of an internal combustion engine |
-
2005
- 2005-01-03 DE DE102005000620A patent/DE102005000620A1/en not_active Withdrawn
- 2005-11-02 CN CNA2005800458606A patent/CN101094984A/en active Pending
- 2005-11-02 WO PCT/EP2005/055700 patent/WO2006072487A1/en active Application Filing
- 2005-11-02 US US11/794,651 patent/US20090321541A1/en not_active Abandoned
- 2005-11-02 DE DE502005010248T patent/DE502005010248D1/en active Active
- 2005-11-02 EP EP05811079A patent/EP1836387B1/en not_active Expired - Fee Related
- 2005-11-02 JP JP2007548786A patent/JP2008527230A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002084113A1 (en) * | 2001-04-11 | 2002-10-24 | Robert Bosch Gmbh | Fuel injection valve |
Also Published As
Publication number | Publication date |
---|---|
DE102005000620A1 (en) | 2006-07-13 |
CN101094984A (en) | 2007-12-26 |
DE502005010248D1 (en) | 2010-10-21 |
EP1836387A1 (en) | 2007-09-26 |
US20090321541A1 (en) | 2009-12-31 |
WO2006072487A1 (en) | 2006-07-13 |
JP2008527230A (en) | 2008-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1836387B1 (en) | Multi-fan-jet nozzle and a fuel injection valve provided with said nozzle | |
EP0914556B1 (en) | Fuel injection valve | |
EP0783628B1 (en) | Fuel injection valve | |
WO1999053193A1 (en) | Atomizing disc and a fuel injection valve having an atomizing disc | |
WO1999053194A1 (en) | Fuel injection valve | |
DE19815775A1 (en) | Swirl disk and fuel injector with swirl disk | |
EP0783627B1 (en) | Valve, in particular fuel injection valve | |
WO2006040246A1 (en) | Fuel injection valve | |
EP0939858B1 (en) | Perforated disk or atomizing disk and an injection valve with a perforated disk or atomizing disk | |
EP2064438A1 (en) | Fuel injection valve | |
DE102006047136A1 (en) | Fuel injection valve for mixture-compressing, external-ignition internal-combustion engine, has atomizer device implemented as multi-fan jet-nozzle with openings, such that openings have exits that are shifted from center axes of openings | |
DE102006041471A1 (en) | Fuel injecting valve for fuel injection systems of internal-combustion engines, has spraying device which is carried out as multi-fan-jet nozzle such that fluid disks form laminated disks in which fluid disks run divergently to each other | |
DE102005007805A1 (en) | Atomizer structure of atomizing device for discharge of fine-atomized fluid has flow channel which runs partially opened and injection openings which are covered with material bridges | |
DE102006047137A1 (en) | Perforated disk for fuel injection valve for internal combustion (IC) engine, has passage having larger diameter side inlet opening and smaller diameter side outlet opening | |
DE102006041476A1 (en) | Fuel injecting valve for fuel injection systems of internal combustion engine, has atomizing device, which is acted as multi-fan-jet nozzle with multiple pair of holes consists of two injection openings | |
WO2002084112A1 (en) | Fuel injection valve | |
EP2072805B1 (en) | Fuel injector valve | |
DE102004060535A1 (en) | Fuel injection valve for internal combustion engine, has several radially arranged channel-like areas provided in atomizer attachment, along which flow forms half-open jet in each case | |
DE102007062184A1 (en) | Perforated disk forming method for fuel injection valve of mixture-compressing, spark-ignition internal combustion engine, involves forming nozzle area with injection opening using pressurized fluid or compressible, elastic pressure body | |
EP2072798A2 (en) | Fuel injection valve | |
DE102007062183A1 (en) | Fuel injection valve for fuel injection system in internal-combustion engine, has groove-shaped flow channel formed downstream to outlet in valve seat body, where channel opens to disk-shaped nozzle and extends downstream to openings | |
DE102004051743A1 (en) | Fuel injection valve for fuel injection installation has two slot shaped annular-gap segments, provided on spray element, which fuel lamellae are sprayable with different spraying directions, angles and thicknesses | |
DE10118272A1 (en) | Fuel injection valve has atomizer disk with upstream, middle and downstream positions | |
DE102006041474A1 (en) | Fuel injecting valve for fuel injection systems of internal-combustion engines, has spraying device which is carried out as multi-fan-jet nozzle, which has multiple groove-shaped upstream flow areas and discharge port per upstream flow area | |
DE19831845A1 (en) | Nebuliser plate used in combustion machinery injection valves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070803 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR |
|
17Q | First examination report despatched |
Effective date: 20090226 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR |
|
REF | Corresponds to: |
Ref document number: 502005010248 Country of ref document: DE Date of ref document: 20101021 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110609 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005010248 Country of ref document: DE Effective date: 20110609 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20111125 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120124 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005010248 Country of ref document: DE Effective date: 20130601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 |