EP1836386B1 - Procede et dispositif de commande d'un injecteur - Google Patents

Procede et dispositif de commande d'un injecteur Download PDF

Info

Publication number
EP1836386B1
EP1836386B1 EP05813421A EP05813421A EP1836386B1 EP 1836386 B1 EP1836386 B1 EP 1836386B1 EP 05813421 A EP05813421 A EP 05813421A EP 05813421 A EP05813421 A EP 05813421A EP 1836386 B1 EP1836386 B1 EP 1836386B1
Authority
EP
European Patent Office
Prior art keywords
control
piezo actuator
pressure
ctrl
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05813421A
Other languages
German (de)
English (en)
Other versions
EP1836386A1 (fr
Inventor
Joachim Frank
Hellmut Freudenberg
Manfred Weigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1836386A1 publication Critical patent/EP1836386A1/fr
Application granted granted Critical
Publication of EP1836386B1 publication Critical patent/EP1836386B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • F02D2041/223Diagnosis of fuel pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators

Definitions

  • the invention relates to a method and a device for controlling an injector, which is designed in particular for metering fuel into an internal combustion engine.
  • a starting point here is to reduce the pollutant emissions generated during the combustion process of the air / fuel mixture.
  • soot is highly dependent on the preparation of the air / fuel mixture in the respective cylinder of the internal combustion engine.
  • fuel is increasingly metered under very high pressure. In the case of diesel internal combustion engines, the fuel pressures are up to 2000 bar.
  • Injectors are increasingly being used for such applications with a piezo actuator as an actuator. Piezo actuators are characterized by very short response times. Such injection valves are optionally suitable for metering fuel several times within a working cycle of a cylinder of the internal combustion engine.
  • a particularly good mixture preparation can be achieved if, prior to a main injection, one or more pre-injections take place, which are also referred to as pilot injection, with possibly a very low fuel mass being metered for the individual pre-injection should.
  • pilot injection pilot injection
  • a precise control of the injection valve is very important, especially for these cases.
  • a method for detecting injection events of an injection valve with a piezoelectric actuator includes an injector body having a control chamber associated with a control valve that controls fuel pressure in the control chamber.
  • the piezoelectric actuator acts on the control valve.
  • the piezoelectric actuator is subjected to a voltage such that the resulting stroke of the piezoelectric actuator actuates the control valve.
  • An axial displacement of a nozzle needle from a valve seat is detected as a function of an increase in the voltage drop across the piezoelectric actuator.
  • An end of the movement of the nozzle needle is detected by means of an abrupt drop in the voltage across the piezoelectric actuator.
  • an injection valve with a control circuit which controls an actuator which is in operative connection with an actuator, with which the pressure in a control chamber can be influenced.
  • a nozzle needle is provided which is in operative connection with the pressure in the control chamber.
  • the nozzle needle is movable in different positions depending on the pressure in the control chamber and thus influences the metering of fluid.
  • the actuator designed as a piezoelectric actuator is used as a sensor with which a pressure in the control chamber is detected.
  • a detection signal is determined, which gives the information in a time range that the nozzle needle has reached its end position, that is, its maximum needle stroke. At this time, the total available opening cross-section opened between the fuel line and the injection holes.
  • a bleed valve for controlling an injection timing and controlling a fuel pressure in a common pipe is disposed in a fuel injector.
  • the drain valve is coupled on the drive side with a piezoelectric actuator, which expands or shrinks in accordance with the electrical charge supplied thereto.
  • a drive circuit includes first and second capacitors that are charged by a DC-DC converter. When a first switch is closed, the piezoelectric actuator of both capacitors is charged by an induction coil. When a second switch is pulsed in place of the first switch, the piezoelectric actuator is only charged by the first capacitor through the induction coil. In this case, the piezoelectric actuator is half charged and half expands to open the drain valve halfway.
  • the opening degree of the purge valve can be set to two levels.
  • an injection valve device with an electrostrictive or magnetostrictive element is known.
  • a control device acts as a power supply control means for adjusting the power supplied to the electrostrictive or magnetostrictive element.
  • the supplied electrical energy is in a stepped Form supplied to open the electrostictive element in a very short time and to generate a pressure wave.
  • the object of the invention is to provide a method and a device which enable precise control of an injector.
  • the invention is characterized by a method and a corresponding device for controlling an injector, which can also be referred to as an injection valve.
  • the injector has a nozzle needle whose position is adjustable depending on a pressure in a control chamber and which in a closed position prevents fluid flow through at least one injection hole in a nozzle body and otherwise releases it.
  • the injector further comprises a control chamber which is hydraulically coupled to a fluid high-pressure accumulator, a piezo actuator and a control valve which hydraulically decouples the control chamber in its closed position of a low-pressure space, which outside of its closed position hydraulically couples the control chamber with the low-pressure chamber and on that the piezo actuator acts.
  • a combination of a drive time period of the piezo actuator and an electrical energy supplied to the piezo actuator is varied from a predetermined start combination to a target combination in which a pressure profile is detected, which is characteristic for a movement of the control valve out of its closed position, without the metering of fluid through the injection hole.
  • the target combination is a simple and accurate measure of the dead-stroke of the piezo actuator, which is an extremely important parameter especially in the context of metering the smallest possible amount of fluid through the injector.
  • the target combination can thus be determined as a measure of the current idle stroke at any predeterminable time intervals over the operating period of the injector, which can change significantly over the lifetime of the injector and may also be subject to short-term fluctuations. Influencing variables for the idle stroke are, for example, the temperature, wear and aging of the piezo actuator.
  • the electrical energy to be supplied to the piezo actuator and / or the actuation period of the piezo actuator can then be corrected for the following injection processes.
  • the target combination can also be advantageously used in the context of the control of the injector for other purposes, such as a diagnosis.
  • the combination of the An horrin and the supplied energy is carried out starting from the predetermined starting position to the target combination in an operating condition in which an actuator for setting a fluid supply in the fluid high-pressure accumulator in its closed state.
  • This has the advantage that the detected pressure curve is then more independent of disturbing influences, which are caused by a conveyance of the fluid into the fluid high-pressure accumulator.
  • it is easier then a precise detection of the pressure curve possible, which is characteristic of the movement of the control valve out of its closed position, without there being a metering of fluid through the injection hole.
  • the combination of the An Kunststoffzeitdauer and the supplied electrical energy varies with a charging period during which the piezoelectric actuator electrical energy is supplied, which is longer than that during operation of the injector in which a metering is intended by fluid. In this way, a generation of sound is reduced, which can be perceived by a user as unpleasant.
  • the combination of the An Kunststoffzeitdauer and the supplied electrical energy varies with a discharge period during which the piezoelectric actuator electrical energy is taken, which is longer than that during operation of the injector, in which a metering from Fluid through the injection hole is intended. Also in this way the sound is reduced, which is perceived by a user as unpleasant.
  • a beginning of successive An Kunststoffzeitdauern is varied with respect to the respective cylinder segment.
  • the sound spectrum can be adjusted by the control of the control valve targeted, so as to make the subjective perception of the sound by the user as less disturbing.
  • an end of successive An Kunststoffzeitdauern is varied with respect to the respective cylinder segment.
  • the sound spectrum generated by the control of the control valve can be selectively adjusted so as to make the subjective perception of the sound by the user less disturbing.
  • the beginning of successive drive time durations for different injectors which for example are all assigned to an internal combustion engine, is varied with respect to the respective cylinder segment. Also in this way, the sound spectrum generated by the control of the respective control valves can be adjusted very effectively.
  • the end of successive An Kunststoffzeitdauern for different injectors with respect to the respective cylinder segment is varied. Even this way can be easy the sound spectrum generated by driving the respective control valves can be adjusted.
  • An internal combustion engine ( FIG. 1 ) comprises an intake tract 1, an engine block 2, a cylinder head 3, an exhaust tract 4 and a feed device 5 for fuel.
  • a plurality of cylinders Z1 to Z4 are formed at each of which injectors 7, 9, 11, 13 are assigned.
  • a crankshaft 15 is provided, which is associated with a crankshaft angle sensor 17, which detects the current crankshaft angle, from which then a speed of the crankshaft can be derived.
  • the fuel supply device 5 comprises a fuel tank 19 and a low-pressure region 21 which is either hydraulically coupled directly to the fuel tank 19 or is hydraulically coupled to the fuel tank 19 via a low-pressure pump 23.
  • a regulator 25 is further provided, by means of which a pressure in the low-pressure region 21 can be adjusted.
  • a high-pressure pump 29 is hydraulically coupled on the input side via a volume flow control valve VCV with the low pressure region 21.
  • the high-pressure pump 29 is hydraulically coupled on the output side to a fluid high pressure accumulator 31 and thus promotes fluid, in particular fuel in the fluid high pressure accumulator 31.
  • volume flow control valve VCV By means of the volume flow control valve VCV, a volume flow can be adjusted, which is promoted by the high pressure pump 29 in the fluid high pressure accumulator 31 ,
  • the volume flow control valve VCV may be formed separately from the high-pressure pump 29 or as a structural unit with the high-pressure pump 29.
  • a fuel pressure sensor 33 is arranged, which detects the pressure in the fluid high pressure accumulator.
  • the measurement signal of the high-pressure sensor is thus representative of a pressure profile of the fluid in the high-pressure fluid reservoir 31.
  • the injectors 7, 9, 11, 13 are connected via a respective high-pressure connection ( FIG. 2 ) is hydraulically coupled to the fluid high pressure accumulator 31.
  • a control device 35 which generates control signals for controlling actuators of the internal combustion engine as a function of measured variables which are detected by sensors.
  • the control device 35 has corresponding inputs via which measurement signals of the sensors are detected can, and a program and a data memory and a computing unit and power amplifiers for driving the actuators of the internal combustion engine.
  • the injectors 7-13 are identical and are described below with reference to FIGS. 2 to 4 explained in more detail.
  • the injector 7-13 includes an injector housing 37 that receives the high pressure port 39 that is hydraulically coupled to the fluid high pressure accumulator 31.
  • the high pressure port 39 is hydraulically coupled via a first high pressure bore 41 to a control valve 43 which is received in the injector housing 37.
  • a second high-pressure bore 45 extends from the high-pressure port 39 through the injector housing 37 into a nozzle body 47.
  • a low pressure chamber 49 is further formed, which is hydraulically coupled to the low pressure region 21. If the low-pressure pump 23 is present, the low-pressure chamber 49 can also be coupled directly hydraulically with a return to the fuel tank 19.
  • a recess 51 of the injector 37 is formed, in which a control piston 53 is arranged and guided.
  • a control space 55 of the control valve 43 adjoins an end face 69 of the control piston 53 and is formed in the free space between the end face and the control valve 43.
  • a free space of the recess 51 of the injector 37 in the region of one end of the control piston 53, which faces away from the control chamber 55 is hydraulically coupled to the low pressure chamber 49.
  • a nozzle needle 57 is mechanically coupled to the control piston 53 and is in a recess 59 in the Nozzle body 47 is arranged. In a closed position of the nozzle needle 57, this prevents fluid flow through an injection hole 61 which is formed in the nozzle body 57. Outside the closed position, the nozzle needle 57 releases the fluid flow through the injection hole 61. If a plurality of injection holes 61 are present, the nozzle needle 57 prevents the fluid flow in its closed position by all its associated injection holes 61 and releases it otherwise.
  • the position of the nozzle needle 57 depends on a force balance of forces acting on the nozzle needle 57.
  • a first force is caused by the pressure in the control chamber 45, which acts on the end face 69 of the control piston.
  • a second force is coupled by the pressure acting on the surface of a high pressure shoulder 63 and on the needle tip 65.
  • a third force is caused by a spring force of a nozzle spring 67. The position of the nozzle needle depends on the balance of the first to third forces.
  • the control chamber 55 is hydraulically coupled via an inlet throttle 71 with the first high-pressure bore 41.
  • the control chamber 55 is also hydraulically coupled via an outlet throttle 73 depending on the switching position of the control valve 43 with the low pressure chamber 49.
  • the control valve 43 is associated with a piezo actuator 75 whose axial extent depends on the electrical energy supplied to it.
  • the piezo actuator 75 acts on a valve body 77 of the control valve 43 and thus determines the switching position of the control valve 43.
  • An idle stroke between the piezo actuator 75 and the valve body 77 is characterized by a clearance between the piezo actuator 75 and the Valve body 77 given in a state in which the piezo actuator 75, no electrical energy is supplied.
  • the idle stroke also includes a continuous increase in force caused by an elastic tension of the piezo actuator 75 in the injector 7-13 when supplying electric power until the control valve is opened.
  • a supply of electrical energy within the idle stroke of the piezo actuator 75 thus does not lead to an elongation of the piezo actuator 75, which acts on the valve body 77 side facing when the piezo actuator 75 rests against the valve body 77.
  • the valve body 77 may already be in contact with the piezo actuator 75 even if this is no electrical energy supplied.
  • control valve 43 If the control valve 43 is in its closed position, no fluid can flow off via the outlet throttle 73 and the pressure thus rises in the control chamber 55 until it approximately reaches the pressure in the high-pressure fluid reservoir 31. If the control valve 43, ie in particular the valve body 77, is moved out of its closed position, then fluid can flow away from the control chamber 55 via the outlet throttle 73 past the valve body 77 to the low-pressure chamber 49. This has the consequence that the pressure in the control chamber 55 decreases depending on the ratio of the throttle effects of the outlet throttle and the inlet throttle and, if the valve body 77 releases such a small free cross-section, that also in this area, a throttling of the outflow of fluid, also depending on the position of the valve body 77th
  • the nozzle needle 57 may be hydraulically coupled to the control chamber 55 and thus the control piston 53 omitted. In this case, then the leakage of fluid in the control chamber 55 is negligible when the control valve 43 is in its closed position.
  • a program for controlling the injector 7-13 is stored in the control device 35 in a program memory and is executed during the operation of the internal combustion engine, preferably for each of the injectors 7, 9, 11, 13.
  • the program for controlling the injector according to the subsequent steps is suitable for determining a measure for the idle stroke of the control valve.
  • the program is started in a step S1 ( FIG. 5 ), in which variables are initialized if necessary.
  • the start of the program can basically be done at any time during operation of the internal combustion engine. Preferably, the start takes place when no fuel in the fluid high-pressure accumulator 31 is promoted and if preferably also no fuel through the injectors 7 to 13 is to be metered into the combustion chambers of the cylinders Z1 to Z4.
  • a charging period T_L and preferably a discharging period T_EL is determined.
  • the charging period T_L, and / or the discharging period T_EL may correspond to those intended for the operation of the fuel metering injector 7-13. However, they can also deviate from these values, in particular be larger and be either fixed or correspondingly predetermined as a function of at least one operating variable of the internal combustion engine, with operating variables comprising the measured variables of the sensors and variables derived therefrom.
  • a drive time T_CTRL of the piezo actuator 75 is assigned a start drive time T_CTRL_ST.
  • an electrical energy E to be supplied to the piezoelectric actuator 75 is assigned a starting energy E_ST.
  • the starting energy E_ST and the starting drive time T_CTRL_ST for the piezo actuator 75 are preferably predetermined so that a correspondingly executed drive pulse certainly does not result in fuel being metered through the injection hole 61 into one of the combustion chambers of the cylinders Z1 to Z4 .
  • the activation period T_CTRL_ST is preferably representative of a period of time from which electrical energy is initially supplied to the piezo actuator 75 and at the end of which a discharge of the piezo actuator takes place.
  • the unloading process is started at the end of the period.
  • step S7 is then checked whether the flow control valve VCV in its closed state CL, in which no or only a small leakage flow of fluid through the volume flow control valve VCV toward the high pressure pump 29 flows and thus from the high pressure pump 29 also no fluid or only the leakage flow of the volume flow control valve VCV in the high-pressure fluid storage 31 promoted becomes.
  • step S7 If the condition of the step S7 is not satisfied, the program is ended in a step S15.
  • step S9 in which the piezo actuator 75 for the drive time T_CTRL is driven by supplying the electrical energy E with the determined in step S5 charging time T_L and the discharge time T_EL.
  • the supply of electrical energy E to the piezoelectric actuator 75 is preferably carried out by directly specifying the supplied electrical energy E, but it can also be done for example by a corresponding predetermining a current waveform or a voltage curve, in which case preferably temperature-dependent capacitance changes of the piezoelectric actuator. Actuator should at least be considered.
  • the temporal position of the respective actuation time T_CTRL relative to the crankshaft angle is then freely selectable if a corresponding function for converting an actuation of an output stage of the control device 35 allows this at any time and also the output stage is designed.
  • the control devices 35 are designed to control the piezoelectric actuator 75 only within the respective cylinder Z1 to Z4 associated cylinder segment ZS1-ZS4. Under the cylinder segment ZS1 to ZS4 is that crankshaft angle and thus a corresponding time range to understand, resulting from the Crankshaft angle for a duty cycle of the internal combustion engine divided by the number of cylinders results.
  • a cylinder segment In an internal combustion engine with a duty cycle of 720 ° crankshaft and, for example, four cylinders, a cylinder segment is thus 180 ° crankshaft angle. The time period associated with the respective cylinder segment is then dependent on the current rotational speed of the crankshaft 15.
  • the cylinder segments assigned to the respective cylinders have a predetermined position with respect to a reference angular position of the crankshaft, which may be, for example, a top dead center of the piston upon ignition.
  • a step S11 it is then checked whether the pressure profile P_V detected by the high-pressure sensor 33 has a characteristic pressure curve P_V_M for a movement of the control valve 43 out of its closed position without a metering of fluid through the injection hole 61.
  • the characteristic pressure curve P_V_M is preferably determined in advance by appropriate tests or simulations and is stored in the data memory of the control device 35. Preferably, it is determined so that the valve body 77 and thus the control valve 43 moves only slightly possible out of its closed position and thus a minimum flow of fuel flows from the control chamber 55 through the outlet throttle 73 past the control valve 43 toward the low pressure chamber 49 when the pressure curve P_V corresponds to the characteristic pressure curve P_V_M.
  • the condition of step S11 is also satisfied if the pressure curve P_V lies in a predeterminable, preferably narrow, range of values window around the characteristic pressure curve P_V_M.
  • the characteristic pressure curve P_V_M can be represented, for example, by a predefinable change in pressure or a predefinable rate of change of pressure, which is also referred to as a gradient, or also a further correspondingly representative variable.
  • step S11 If the condition of step S11 is not met, an incrementing time DT is added to the drive time period T_CTRL in a step S17.
  • an incrementing energy DE is added in step S17 of the electrical energy E to be supplied.
  • the incrementing period DT and the incrementing energy DE are assigned such small values that it can be ensured with high probability that no further metering of the fuel through the injection hole 61 takes place in the case of a corresponding activation of the injector 7 - 13 in a subsequent passage of the step S8.
  • step S17 only either the activation time period T_CTRL or the electrical energy E to be supplied can be varied in the step S17. This can also be done differently in successive runs of step S17. Subsequent to step S17, the processing is then continued in step S7.
  • step S13 the activation time period T_CTRL is assigned to a target activation period T_CTRL_Z. Further, in the step S13, the target electric energy E_Z is assigned the electric power E to be supplied. The process is subsequently ended in step S15.
  • the target energy E_Z determined in step S13 and the target drive time T_CTRL_Z can each be alone or in combination may be a measure of the idle stroke of the control valve 43.
  • reference values for the target energy E_Z or the target drive time T_CTRL_Z can then for the following operation of the injector 7 to 13 with metering of fuel through the injection hole 61 provided for driving times or supplied electrical energy accordingly be adapted and thus a very precise metering of the desired amount of fuel can be achieved.
  • the target drive time T_CTRL_Z and / or the target power E_Z can also be used for a diagnosis of the injector 7 - 13.
  • injector-specific differences can thus be compensated and thus a uniform metering of fuel via the cylinders Z1 to Z4 of the internal combustion engine can be ensured.
  • the program according to the FIG. 5 in an operating state of the overrun operation of the vehicle during which no fuel is metered into the cylinder of the internal combustion engine, processed or even processed immediately after stopping the engine.
  • FIGS. 6A to 6D are respectively the respective injectors 7 - 13 of the respective cylinders Z1 to Z4 associated drive pulses applied, which are respectively generated in the implementation of step S9 in the respective injector 7 to 13.
  • Drive pulses for the piezo actuator 75 of the injector 7, which is assigned to the cylinder Z1 are respectively performed in the cylinder segment ZS1 assigned to the cylinder Z1.
  • the magnitude of the drive pulses may be representative of the energy supplied during the drive pulse E.
  • the respective drive pulses are varied in relation to the respective cylinder segment with respect to its beginning and / or end, which is based on their different position with respect to the respective cylinder segment ZS1 - ZS4 is recognizable.
  • the end and / or the beginning of the respective actuation period T_CTRL are varied relative to one another to various injectors 7 - 13 of associated actuation pulses. This is also based on the different position of the drive pulses relative to the respective beginning of the respective cylinder segment ZS1 to ZS4 in the signal curves of FIGS. 6A to 6D the case.
  • a desired sound spectrum can be selectively generated, which is either not perceived by the user, for example, or is perceived only as noise or fits into other operating noise of the internal combustion engine.
  • the representation of the drive pulses in the FIGS. 6A to 6D does not necessarily correspond to the actual waveform of the corresponding physical quantities.
  • the electrical power supplied to the piezo actuator 75 is removed again at the end of the activation period.
  • FIG. 7 Based on FIG. 7 is a possible course of a drive pulse shown in more detail.
  • electrical energy is supplied to the piezo actuator 75 for the predefined charging period T_L. This is preferably done by corresponding energy pulses, which are preferably varied in their height and thus the supplied power PEL, when the supplied energy E is changed.
  • the piezoelectric actuator 75 is then discharged again by means of corresponding discharge pulses of opposite polarity, namely over the discharge time T_EL.
  • fuel is used in the exemplary embodiments merely as an example for a specific fluid. However, it can also be replaced by fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Injecteur (7, 9, 11, 13) comportant une aiguille (57) dont la position peut être réglée en fonction de la pression régnant dans une chambre de commande (55) et qui, dans une position de fermeture, empêche le passage d'un flux de fluide par au moins un orifice d'injection (61) et sinon libère le passage. Ledit injecteur comporte en outre une chambre de commande (55) raccordée de manière hydraulique à un réservoir de fluide sous haute pression (31), à un actionneur piézo-électrique (75) et à une soupape de commande (43) qui, dans sa position de fermeture, découple hydrauliquement la chambre de commande (55) d'une chambre pour fluide à basse pression (49), qui, hors de sa position de fermeture, couple hydrauliquement la chambre de commande (55) à la chambre pour fluide à basse pression (49), et sur laquelle agit l'actionneur piézo-électrique. Une combinaison constituée d'une durée de commande (T_CTRL) pour l'actionneur piézo-électrique (75) et d'une énergie électrique (E) appliquée à l'actionneur piézo-électrique (75) est modifiée à partir d'une combinaison de départ prédéterminée jusqu'à l'obtention d'une combinaison cible pour laquelle est détectée une courbe de pression (P_V) caractéristique d'un mouvement de la soupape de commande (43) quittant sa position de fermeture, sans que se produise un dosage du fluide passant par l'orifice d'injection (61).

Claims (9)

  1. Procédé pour commander un injecteur (7, 9, 11, 13) comprenant
    - une aiguille de gicleur (57), dont la position peut être réglée en fonction d'une pression dans un espace de commande (55) et qui interdit dans une position de fermeture un flux de fluide par au moins un trou d'injection (61) et autorise autrement ce flux,
    - l'espace de commande (55), qui est couplé de façon hydraulique avec un accumulateur à haute pression de fluide (31),
    - un servomoteur piézoélectrique (75) et
    - une soupape de commande (43), qui, dans sa position de fermeture, dissocie l'espace de commande (55) au plan hydraulique d'un espace de basse pression (49), qui, en dehors de la position de fermeture, couple l'espace de commande (55) au plan hydraulique avec l'espace de basse pression (49) et sur laquelle le servomoteur piézoélectrique (75) agit,
    - une combinaison d'une durée d'activation (T_CTRL) du servomoteur piézoélectrique (75) et d'une énergie (E) électrique à amener au servomoteur piézoélectrique (75) étant modifiée à partir d'une combinaison de démarrage prédéfinie jusqu'à une combinaison cible, avec laquelle une courbe de pression (P_V) est enregistrée, laquelle est caractéristique d'un déplacement de la soupape de commande (43) à la sortie de sa position de fermeture sans qu'une arrivée dosée de fluide s'effectue par le trou d'injection (61),
    - l'énergie (E) électrique à amener au servomoteur piézoélectrique et/ou la durée d'activation (T_CTRL) du servomoteur piézoélectrique (75) pour les opérations d'injection suivantes étant corrigées en fonction de la combinaison cible et/ou un diagnostic de l'injecteur (7, 9, 11, 13) s'effectuant en fonction de la combinaison cible.
  2. Procédé selon la revendication 1,
    dans lequel la variation de la combinaison de la durée d'activation (T_CTRL) et de l'énergie (E) électrique à amener s'effectue dans un état de service où l'organe final pour le réglage de l'arrivée de fluide dans l'accumulateur à haute pression de fluide (31) est dans son état de fermeture.
  3. Procédé selon l'une quelconque des revendications précédentes,
    dans lequel la variation de la combinaison de la durée d'activation (T_CTRL) et de l'énergie (E) électrique amenée s'effectue avec une durée de charge (T_L), pendant laquelle l'énergie (E) électrique est amenée au servomoteur piézoélectrique (75), qui est plus longue que celle pendant une exploitation de l'injecteur (7-13) dans laquelle une arrivée dosée de fluide est envisagée.
  4. Procédé selon l'une quelconque des revendications précédentes,
    dans lequel la variation de la combinaison de la durée d'activation (T_CTRL) et de l'énergie (E) électrique amenée s'effectue avec une durée de décharge (T_EL), pendant laquelle de l'énergie (E) électrique est prélevée sur le servomoteur piézoélectrique (75), qui est plus longue que celle pendant une exploitation de l'injecteur (7-13) dans laquelle une arrivée dosée de fluide est envisagée.
  5. Procédé selon l'une quelconque des revendications précédentes,
    dans lequel un début de durées d'activation (T_CTRL) consécutives est modifié par rapport au segment de cylindre respectif.
  6. Procédé selon l'une quelconque des revendications précédentes,
    dans lequel une fin de durées d'activation (T_CTRL) consécutives est modifiée par rapport au segment de cylindre respectif.
  7. Procédé selon l'une quelconque des revendications précédentes,
    dans lequel le début de durées d'activation (T_CTRL) consécutives pour différents injecteurs (7, 9, 11, 13) est modifié par rapport au segment de cylindre concerné.
  8. Procédé selon l'une quelconque des revendications précédentes,
    dans lequel la fin de durées d'activation (T_CTRL) consécutives pour différents injecteurs (7, 9, 11, 13) est modifiée par rapport au segment de cylindre respectif.
  9. Dispositif pour commander un injecteur (7-13) comprenant
    - une aiguille de gicleur (57), dont la position peut être réglée en fonction d'une pression dans un espace de commande (55) et qui, dans une position de fermeture, interdit un flux de fluide par au moins un trou d'injection (61) et libère autrement ce flux,
    - l'espace de commande (55), qui est couplé au plan hydraulique avec un accumulateur à haute pression de fluide (31),
    - un servomoteur piézoélectrique (75) et
    - une soupape de commande (43), qui, dans sa position de fermeture, dissocie au plan hydraulique l'espace de commande (55) d'un espace de basse pression (49), qui, en dehors de la position de fermeture, couple au plan hydraulique l'espace de commande (55) avec l'espace de basse pression (49) et sur laquelle le servomoteur piézoélectrique (75) agit, le dispositif étant conçu pour
    - modifier une combinaison d'une durée d'activation (T_CTRL) du servomoteur piézoélectrique (75) et d'une énergie (E) électrique à amener au servomoteur piézoélectrique (75) à partir d'une combinaison de démarrage prédéfinie jusqu'à une combinaison cible, avec laquelle une courbe de pression (P_V) est enregistrée, laquelle est caractéristique d'un déplacement de la soupape de commande (43) à partir de sa position de fermeture, sans qu'une arrivée dosée de fluide par le trou d'injection (61) intervienne,
    - corriger l'énergie (E) électrique à amener au servomoteur piézoélectrique (75) et/ou la durée d'activation (T_CTRL) du servomoteur piézoélectrique (75) pour des opérations d'injection consécutives en fonction de la combinaison cible et/ou utiliser la combinaison cible pour un diagnostic de l'injecteur (7, 9, 11, 13).
EP05813421A 2005-01-12 2005-12-02 Procede et dispositif de commande d'un injecteur Active EP1836386B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005001498A DE102005001498B4 (de) 2005-01-12 2005-01-12 Verfahren und Vorrichtung zum Steuern eines Injektors
PCT/EP2005/056442 WO2006074842A1 (fr) 2005-01-12 2005-12-02 Procede et dispositif de commande d'un injecteur

Publications (2)

Publication Number Publication Date
EP1836386A1 EP1836386A1 (fr) 2007-09-26
EP1836386B1 true EP1836386B1 (fr) 2008-05-28

Family

ID=35965966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05813421A Active EP1836386B1 (fr) 2005-01-12 2005-12-02 Procede et dispositif de commande d'un injecteur

Country Status (5)

Country Link
US (1) US7406952B2 (fr)
EP (1) EP1836386B1 (fr)
CN (1) CN101099039B (fr)
DE (2) DE102005001498B4 (fr)
WO (1) WO2006074842A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007034188A1 (de) * 2007-07-23 2009-01-29 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils
DE102008045955A1 (de) * 2008-09-04 2010-03-11 Continental Automotive Gmbh Verfahren und Vorrichtung zur Korrektur einer temperaturbedingten Längenänderung einer Aktoreinheit, die im Gehäuse eines Kraftstoffinjektors angeordnet ist
DE102009018289B3 (de) * 2009-04-21 2010-06-17 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102009042559A1 (de) * 2009-09-22 2011-03-24 Continental Automotive Gmbh Injektor
JP5609194B2 (ja) * 2010-03-23 2014-10-22 セイコーエプソン株式会社 液体噴射装置
DE102010029064A1 (de) * 2010-05-18 2011-11-24 Robert Bosch Gmbh Verfahren zur Überwachung eines Einspritzventils einer Einspritzeinrichtung
DE102010021168B4 (de) 2010-05-21 2020-06-25 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
DE102010039841B4 (de) * 2010-08-26 2014-01-09 Continental Automotive Gmbh Verfahren zum Anpassen der Einspritzcharakteristik eines Einspritzventils
DE102011005285B4 (de) * 2011-03-09 2015-08-20 Continental Automotive Gmbh Verfahren zur Bestimmung des Leerhubes eines Piezoinjektors mit direkt betätigter Düsennadel
CN102562337A (zh) * 2011-12-31 2012-07-11 中国第一汽车股份有限公司 基于燃油体积的缸内直喷汽油机高压油泵控制器
CN103573506B (zh) * 2013-11-19 2016-03-16 中国第一汽车股份有限公司无锡油泵油嘴研究所 带压电执行元件的电控高压共轨喷油器
FR3013392B1 (fr) * 2013-11-21 2017-12-29 Continental Automotive France Procede de surveillance d'un injecteur de carburant d'un moteur a combustion interne d'un vehicule

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823391B2 (ja) * 1996-08-31 2006-09-20 いすゞ自動車株式会社 エンジンの燃料噴射装置
JPH10213041A (ja) * 1997-01-31 1998-08-11 Yamaha Motor Co Ltd 内燃機関用液体噴射装置
DE19954023B4 (de) * 1998-11-30 2009-02-26 Denso Corp., Kariya-shi Hochdruckkraftstoffeinspritzvorrichtung
DE19901711A1 (de) * 1999-01-18 2000-07-20 Bosch Gmbh Robert Brennstoffeinspritzventil und Verfahren zum Betreiben eines Brennstoffeinspritzventils
DE19905340C2 (de) * 1999-02-09 2001-09-13 Siemens Ag Verfahren und Anordnung zur Voreinstellung und dynamischen Nachführung piezoelektrischer Aktoren
US6253736B1 (en) * 1999-08-10 2001-07-03 Cummins Engine Company, Inc. Fuel injector nozzle assembly with feedback control
DE19945670B4 (de) * 1999-09-23 2006-01-12 Siemens Ag Verfahren zum Ansteuern eines kapazitiven Stellgliedes eines Kraftstoffeinspritzventils einer Brennkraftmaschine
US6420817B1 (en) * 2000-02-11 2002-07-16 Delphi Technologies, Inc. Method for detecting injection events in a piezoelectric actuated fuel injector
DE10012607C2 (de) * 2000-03-15 2002-01-10 Siemens Ag Verfahren zur Ansteuerung eines kapazitiven Stellgliedes
DE10014737A1 (de) * 2000-03-24 2001-10-11 Bosch Gmbh Robert Verfahren zur Bestimmung des Raildrucks eines Einspritzventils mit einem piezoelektrischen Aktor
EP1138907B1 (fr) * 2000-04-01 2006-10-04 Robert Bosch GmbH Système d'injection de combustible
DE60043181D1 (de) * 2000-04-01 2009-12-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung von Spannungen und Spannungsgradienten zum Antrieb eines piezoelektrischen Elements
EP1138915B1 (fr) * 2000-04-01 2005-10-26 Robert Bosch GmbH Procédé et dispositif de détermination de quantité de charges au cours de la charge et de la décharge des éléments piézoélectriques
DE10024662B4 (de) * 2000-05-18 2005-12-15 Siemens Ag Verfahren zum Betreiben eines Einspritzventils
DE10123372B4 (de) * 2001-05-14 2006-12-28 Siemens Ag Verfahren zur Ansteuerung eines piezoelektrischen Aktors, der der Verschiebung eines Elements dient
US6837221B2 (en) * 2001-12-11 2005-01-04 Cummins Inc. Fuel injector with feedback control
DE10319530B4 (de) * 2003-04-30 2007-01-25 Siemens Ag Verfahren und Vorrichtung zur Überwachung eines elektromechanischen Aktors
JP2006200478A (ja) * 2005-01-21 2006-08-03 Denso Corp 燃料噴射装置
DE602005004892T2 (de) * 2005-03-25 2009-03-05 Delphi Technologies, Inc., Troy Verfahren zur Bestimmung von Parametern eines Einspritzsystems

Also Published As

Publication number Publication date
DE102005001498A1 (de) 2006-07-20
WO2006074842A1 (fr) 2006-07-20
CN101099039B (zh) 2010-05-12
US20070250248A1 (en) 2007-10-25
EP1836386A1 (fr) 2007-09-26
US7406952B2 (en) 2008-08-05
DE102005001498B4 (de) 2007-02-08
DE502005004321D1 (de) 2008-07-10
CN101099039A (zh) 2008-01-02

Similar Documents

Publication Publication Date Title
EP1836386B1 (fr) Procede et dispositif de commande d'un injecteur
DE102006027405B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
EP1825124B1 (fr) Procede pour commander un actionneur piezoelectrique, et unite de commande pour commander un actionneur piezoelectrique
DE102009018289B3 (de) Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102008023373A1 (de) Verfahren zum Steuern eines Einspritzventils, Kraftstoff-Einspritzanlage und Verbrennungsmotor
EP2022969A2 (fr) Procédé de fonctionnement d'une soupape d'injection à commande piézoélectrique
DE102011089296B4 (de) Verfahren und Vorrichtung zur Kalibrierung eines Kraftstoffzumesssystems eines Kraftfahrzeugs
DE102010022910B4 (de) Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE10359675B3 (de) Verfahren und Vorrichtung zum Steuern eines Ventils und Verfahren und Vorrichtung zum Steuern einer Pumpe-Düse-Vorrichtung mit dem Ventil
DE102006011725B4 (de) Verfahren und Vorrichtung zum Kalibrieren eines Piezo-Aktuators
DE102005046933B4 (de) Verfahren zum Ansteuern eines piezobetätigten Einspritzventils
EP1567758B1 (fr) Procede et dispositif pour faire fonctionner un systeme d'injection d'un moteur a combustion interne
WO2004090314A1 (fr) Procédé pour déterminer la tension d'amorçage individuelle d'un élément piézo-électrique
DE10305525B4 (de) Verfahren und Vorrichtung zur Adaption der Druckwellenkorrektur in einem Hochdruck-Einspritzsystem eines Kraftfahrzeuges im Fahrbetrieb
DE102005001499B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102017216942A1 (de) Verfahren zum Kalibrieren eines Kraft- oder Drucksensors
DE102005001497B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE10323488B4 (de) Verfahren und Vorrichtung zur betriebspunktabhängigen Steuerung von Injektoren eines Kraftstoffzumesssystems einer Brennkraftmaschine
DE102007061946A1 (de) Verfahren zum Betreiben einer Kraftstoff-Einspritzvorrichtung
DE102005040530B3 (de) Verfahren und Vorrichtung zum Ansteuern eines Ventils
EP3258091B1 (fr) Procédé de fonctionnement d'un actionneur d'un injecteur et actionneur correspondant
DE102004063294B4 (de) Verfahren und Vorrichtung zum Steuern eines Einspritzventils
DE102017213127A1 (de) Verfahren zum Ermitteln eines Kalibrierungsfaktors für einen Drucksensor eines Kraftstoffinjektors
DE102011089368A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE10328788A1 (de) Verfahren und Vorrichtung zur Ansteuerung von Einspritzventilaktoren eines Kraftstoffzumesssytems einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 502005004321

Country of ref document: DE

Date of ref document: 20080710

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081212

Year of fee payment: 4

26N No opposition filed

Effective date: 20090303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502005004321

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005004321

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005004321

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231231

Year of fee payment: 19