EP1836244A1 - Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition - Google Patents
Use of carbon nanotubes for the production of a conductive organic composition and applications of one such compositionInfo
- Publication number
- EP1836244A1 EP1836244A1 EP06709033A EP06709033A EP1836244A1 EP 1836244 A1 EP1836244 A1 EP 1836244A1 EP 06709033 A EP06709033 A EP 06709033A EP 06709033 A EP06709033 A EP 06709033A EP 1836244 A1 EP1836244 A1 EP 1836244A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- poly
- styrene
- composition
- carbon nanotubes
- polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/04—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08L27/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/16—Homopolymers or copolymers or vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/016—Additives defined by their aspect ratio
Definitions
- the present invention relates to the use of carbon nanotubes for the manufacture of an electrically conductive organic composition having a constant electrical resistivity as a function of temperature as well as the applications of these compositions.
- Prior art and technical problem Prior art and technical problem.
- Carbon nanotubes are known and used for their excellent properties of electrical and thermal conductivity as well as their mechanical properties. They are thus more and more used as additives to bring to materials including those of macromolecular type these electrical, thermal and / or mechanical properties (WO 91/03057, US5744235, US5445327, US54663230).
- carbon nanotubes in many fields, in particular in electronics (depending on the temperature and their structure, they can be conductors, semiconductors or insulators), in mechanics, for example for the reinforcement of composite materials (nanotubes of carbon are one hundred times stronger and six times lighter than steel) and electromechanical (they can elongate or contract by charge injection).
- carbon nanotubes in macromolecular compositions intended for the packaging of electronic components, for the manufacture of fuel lines (fuel oil), for antistatic coatings or coatings, in thermistors, electrodes for super-abilities, etc.
- compositions which specifically exhibit effects of positive or negative variation of electrical resistance as a function of temperature (PTC or NTC effect) and their use in resistive devices (US Pat. No. 6,640,420) are well known. These compositions are generally formulations based on macromolecular substances of which at least one component is semi-crystalline in nature, for example polyethylene, and which contains conductive additives, the best known being carbon black (J. of PoI, Sci. Part B - Vol 41, 3094-3101 (2003)) or PVDF (US 20020094441 A1, US 6,640,420).
- a PTC system can be used as a heating system by Joule effect or an electric limiter (voltage or current: circuit breaker) through a resistance that increases rapidly depending on the temperature through the Joule effect.
- the PTC effect is used to shape thermistors, heat paints, heating systems for car seats, ...
- the object of the invention is to propose the use of carbon nanotubes in other types of organic material in order to produce conductive organic compositions having a temperature insensitive electrical resistivity.
- “Insensitive” means a relative variation of less than or equal to 80%, preferably less than or equal to 50%, more preferably less than or equal to 30% over the working temperature range (generally from -50 ° C to the melting temperature of the polymer when the formulation is based on a semi-crystalline or until the glass transition when the formulation is based on an amorphous polymer). In general, this temperature range is conditioned by the nature of the organic formulation used.
- the organic materials used in the present invention are selected from a.
- the group of thermoplastic resins consisting of resins: i. acrylonitrile-butadiene-styrene (ABS), ii. acrylonitrile-ethylene / propylene-styrene (AES), iii. methylmethacrylate-butadiene-styrene (MBS), iv. acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS), ca. acrylonitrile-n-butylacrylate-styrene (AAS), b. modified polystyrene gums; vs. the resins of i.
- polystyrene polymethyl methacrylate, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide; d. the resins: i. halogenated, preferably fluorinated as polyvinylidene fluoride (PVDF) or chlorinated as polyvinyl chloride (PVC), silicone, polybenzimidazole; e.
- PVDF polyvinylidene fluoride
- PVC polyvinyl chloride
- silicone silicone
- polybenzimidazole polybenzimidazole
- thermosetting resins consisting of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane; f.
- thermoplastic elastomers consisting of styrene-type elastomers such as styrene-butadiene-styrene block co-polymers or styrene-isoprene-styrene block co-polymers or their hydrogenated form, elastomers of PVC, urethane, polyester, polyamide type, thermoplastic elastomers of polybutadiene type such as 1,2-polybutadiene or trans-1,4-polybutadiene resins; chlorinated polyethylene, fluoro-type thermoplastic elastomers, polyether esters and polyether amides; boy Wut.
- the group of water soluble polymers consisting of cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, acrylic acid polymers, gum arabic, poly (vinyl pyrrolidone), poly (vinyl alcohol), poly (acrylic acid), poly
- polyacrylic acid sodium polyacrylate
- polyacrylamide poly (ethylene oxide), polyethylene glycol, poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate , their copolymers, and mixtures thereof; h.
- PSS polystyrene sulfonate
- the present invention relates to the use of carbon nanotubes for the manufacture of a conductive organic composition having a temperature insensitive electrical resistivity.
- the organic conductive composition in the aforementioned use, also has a thermal conductivity insensitive to temperature.
- the composition comprises one or more electroconductive fillers of which at least one filler comprises carbon nanotubes having a ratio of form (L / D) greater than or equal to at 5 and preferably greater than or equal to 50 and advantageously greater than or equal to 100.
- the percentage by weight of carbon nanotubes in the composition is less than 30%, preferably between 0.01 and 20%, and advantageously between 0.1 and 15%.
- the carbon nanotubes have a diameter of between 0.4 and 50 nm and a length of 100 and 100,000 times their diameter.
- the carbon nanotubes are in multi-wall form, their diameter being between 10 and 30 nm and their length being greater than 0.5 micron.
- the organic composition has a percolation threshold ranging from 0.01 to 5%.
- the organic composition further comprises one or more macromolecular materials chosen from liquids such as oils, greases such as those used for lubrication, liquid formulations. water based or solvents such as adhesives, paints and varnishes.
- the organic composition comprises at least one semi-crystalline type polymer.
- the invention finds a particularly noted application, in the context of the above-mentioned use, in the fields of the packaging of electronic components, the manufacture of fuel lines (fuel oil), antistatic coatings or coating, thermistors, electrodes for supercapacities, mechanical reinforcing fibers, textile fibers, rubber or elastomer formulations, seals, radiofrequency wave and electromagnetic wave screens.
- the subject of the present invention is also, as a new industrial product, a conductive organic composition having a temperature-insensitive electrical resistivity comprising an amount up to 30% by weight, relative to the weight of the composition, of carbon nanotubes. whose diameter is between 0.4 and 50 nm, whose aspect ratio (L / D) is greater than 100.
- the present composition comprises at least one polymeric material selected from a.
- the group of thermoplastic resins consisting of resins: i. acrylonitrile-butadiene-styrene (ABS), ii. acrylonitrile-ethylene / propylene-styrene (AES), iii. methylmethacrylate-butadiene-styrene (MBS), iv. acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS), ca. acrylonitrile-n-butylacrylate-styrene (AAS), b. modified polystyrene gums; vs. the resins of i.
- polystyrene polymethyl methacrylate, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide; d. the resins: i. halogenated, preferably fluorinated as polyvinylidene fluoride (PVDF) or chlorinated as polyvinyl chloride (PVC), silicone, polybenzimidazole; e.
- PVDF polyvinylidene fluoride
- PVC polyvinyl chloride
- silicone silicone
- polybenzimidazole polybenzimidazole
- thermosetting resins consisting of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane; f.
- thermoplastic elastomers consisting of styrene-type elastomers such as styrene-butadiene-styrene block copolymers or styrene-isoprene-styrene block co-polymers or their hydrogenated form, elastomers of PVC, urethane, polyester, polyamide type, Thermoplastic elastomers of the polybutadiene type, such as resins
- the group of water soluble polymers consisting of cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, acrylic acid polymers, gum arabic, poly (vinyl pyrrolidone), poly (vinyl alcohol), poly (acrylic acid), poly (methacrylic acid), sodium polyacrylate, polyacrylamide, poly (ethylene oxide), polyethylene glycol, poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate, their copolymers, and mixtures thereof ; h.
- polystyrene sulfonate PSS
- polystyrene sulfonate PSS
- poly (1-vinylpyrrolidone-co-vinyl acetate poly (1-vinylpyrrolidone-co-acrylic acid
- poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate) polyvinyl sulfate
- dextran dextran sulfate
- gelatin bovine serum albumin
- poly (methyl methacrylate-co-ethyl acrylate) polyallyl amino, and combinations thereof.
- the carbon nanotubes in said composition have a diameter of between 10 and 30 nm and a length greater than 0.5 micron. According to one embodiment of the invention, said composition also has a temperature insensitive thermal conductivity.
- the weight percentage of carbon nanotubes is between 0.1 and 20%, and preferably between 1 and 15%.
- the composition has a percolation threshold ranging from 0.01 to 5% by weight of carbon nanotubes, preferably from 0.1 to 3%.
- said composition further comprises one or more macromolecular materials chosen from liquids such as oils, greases such as those used for lubrication, liquid formulations based on water or solvents such as adhesives, paints and varnishes.
- said composition comprises at least one semi-crystalline type polymer.
- Figure 1 shows the percolation threshold of the organic composition used in the invention.
- Figure 2 shows the effect of constant resistivity as a function of temperature, with a concentration of nanotubes below the percolation threshold.
- Figure 3 shows the PTC effect of the reference example compared to the compositions used in the invention.
- the composition comprises one or more electroconductive (and or thermally conductive) fillers of which at least one filler comprises carbon nanotubes having a shape ratio (LfD) greater than or equal to 5 and preferably greater than or equal to 50 and advantageously greater than or equal to
- the carbon nanotubes used in the invention generally have a tubular structure with a diameter of less than 100 nm, preferably between 0.4 and 50 nm and / or in general of length greater than 5 times their diameter, preferably greater than 50 times their diameter and advantageously from 100 to 100000 or from 1000 to 10000 times their diameter.
- Carbon nanotubes consist of an allotropic variety of carbon in a sp 2 configuration consisting of a long single, double or multi-walled tube of aromatic rings con
- the nanotube When the nanotube consists of a single tube, we speak of mono-wall, two tubes we speak of double walls. Beyond that, we will talk about multi walls.
- the outer surface of the nanotubes may be uniform or textured.
- nanotubes can be chemically or physically treated to purify or functionalize them in order to give them new properties of dispersion, and interaction with the components of the formulation such as polymer matrices, elastomers, thermosetting resins, oils, greases, water-based or solvent-based formulations such as paints, adhesives, varnishes.
- the carbon nanotubes can be prepared by various methods, such as the Electric Arc method (C. Journet et al in Nature (London), 388 (1997) 756, the CVD gas phase method, Hipco (P. Shinv et al. in Chem Phys Lett, 1999, 313, 91), the Laser process (AG Rinzler et al in Appl Phys., A, 1998, 67, 29), or any method giving tubular shapes that are empty or filled with carbonaceous substances. or other than carbon We can refer for example more particularly to WO 86/03455, WO 03/002456 for the preparation of separate or non-aggregated multi-wall carbon nanotubes.
- the organic composition comprises one or more macromolecular materials.
- These materials are generally liquids or solids such as oils or greases such as those used for lubrication, water-based liquid formulations or solvents such as adhesives, paints and varnishes, polymers and the like. copolymers, in particular thermoplastic or thermosetting, water-soluble polymers, elastomers and their formulations in bulk, or in suspension or in dispersion ....
- thermoplastic resins examples include: acrylonitrile-butadiene-styrene (AB S), acrylonitrile-ethylene / propylene-styrene (AES), methylmethacrylate-butadiene-styrene (MBS), acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS ), acrylonitrile-n-butylacrylate-styrene (AAS) 5 gums polystyrene modified resins: polystyrene, polymethyl methacrylate, polyvinyl chloride, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide, resins: halogenated, preferably fluorinated as PVDF or chlorinated as the
- thermosetting resins examples include resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane, etc.
- thermoplastic elastomers examples include elastomer of the polyolefin type, of the styrene type, such as styrene-butadiene-styrene block co-polymers or styrene-isoprene-styrene block copolymers, or their hydrogenated form, the elastomers of the PVC, urethane, polyester, polyamide type, thermoplastic elastomers of the polybutadiene type, for example 1,2-polybutadiene or trans-1,4-polybutadiene resins; chlorinated polyethylene, fluoro-type thermoplastic elastomers, polyether esters and polyether amides etc.,
- water-soluble polymers examples include amphiphilic polymers, also referred to as surfactant polymers, which contain both hydrophobic and hydrophilic segments, cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, polymer polymers and the like. acrylic acid, copolymers thereof and mixtures thereof.
- amphiphilic polymers also referred to as surfactant polymers, which contain both hydrophobic and hydrophilic segments
- cellulosic polymers polyelectrolytes, ionic polymers, acrylate polymers, polymer polymers and the like.
- acrylic acid copolymers thereof and mixtures thereof.
- polyethylene glycol poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate, their copolymers, and mixtures thereof.
- PSS polystyrene sulfonate
- polystyrene sulfonate poly (1-vinylpyrrolidone-co-vinyl acetate), poly (1-vinylpyrrolidone-co-acrylic acid), poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate), polyvinyl sulfate, poly (sodium styrene sulfonic acid co-maleic acid), dextran, dextran sulfate, gelatin, bovine serum albumin, poly (methyl methacrylate-co-ethyl acrylate), polyallyl amino, and combinations thereof.
- PSS polystyrene sulfonate
- poly (1-vinylpyrrolidone-co-vinyl acetate poly (1-vinylpyrrolidone-co-acrylic acid
- the formulations of the organic compositions with constant resistivity are defined as a function of the desired Joule heat energy and of the electrical power used (voltage or imposed current).
- the percentage by weight of carbon nanotubes in the composition is less than 30%, preferably between 0.01 and 20%, more preferably the percentage of nanotubes will be between 0. , 1 and 15%.
- composition with constant resistivity as a function of temperature can be obtained by any method known to those skilled in the art such as dry mixing, concentrated in a polymer matrix or resin, suspended, etc.
- the mixing process can use different technologies such as those used for rubbers, polymers, liquids, etc. Internal mixers, single or twin screw extruders, buses, ultraturax mixers, ultrasonic mixers or any type of mixing tool known to those skilled in the art.
- compositions can be obtained directly or by dilution via the use of a master batch as described in WO 91/03057 or US 5646990, EP 692136 or US 5591382 US 5643502 or US 5651922, US 6221283.
- These compositions can also be obtained by direct synthesis of the organic material in the presence of carbon nanotubes.
- a physical interaction between the polymer or copolymer and the carbon nanotubes is generated or a covalent bond which is sought when the aim is to significantly improve the mechanical properties (good transfer of the mechanical forces between the matrix and the carbon nanotubes.
- composition has a percolation threshold in the range of 0.01 to 5%, preferably 0.1 to 3% by weight of carbon nanotubes.
- the percolation threshold corresponds to the amount of conductive filler in the macromolecular substance to change the composition of a conductive regime to an insulating regime and vice versa.
- the percolation threshold depends on the state of dispersion and therefore the tool and the mixing parameters.
- this threshold is proportional to the L / D form ratio.
- One of the relations giving this threshold is (L / D) .Fv ⁇ 3 where Fv is the volume fraction in carbon nanotube.
- Fv is the volume fraction in carbon nanotube.
- the volume fraction at the percolation threshold will be 3% and 0.3% for L / D ⁇ 1000.
- compositions may have the same uses as known macromolecular compositions containing carbon nanotubes as cited in the following references: US 6 689835 - US6746627 - US 6491789- Carbon, 2002,40 (10) 1741/1749 - US2003 / 0130061-WO97 / 15934-JP 2004-244490-WO2004 / 097853 - Science 2000, 290 (5495), 1331/1334 - J.Mater.Chem., 2994,14, 1/3 .
- the compositions according to the invention also have the mechanical advantages related to the use of nanotubes.
- compositions with constant temperature resistivity can be used in the final applications described above in different forms: liquid, solid or elastomeric solid, powder, film, fiber, gel ... Examples The following examples illustrate the present invention without however, limit its scope.
- Carbon nanotubes obtained according to the method described in PCT patent WO 03/002456 A2 are used. These nanotubes have a diameter of between 10 and 30 nm and a length> 0.4 ⁇ m. They are presented in the final composition, in multi-wall form in whole or in more than 98% in distinct form, ie not aggregated.
- a polymer formulation, additive of graphite and carbon black marketed by Timcal under the name ENSACO 250 for the reference formulation is used a polymer formulation, additive of graphite and carbon black marketed by Timcal under the name ENSACO 250.
- Fluorinated or chlorinated halogenated polymers such as PVDF or PVC are used in the formulations.
- the polymer used is a thermoplastic polymer of the PVDF type marketed by Arkema under the name Kynar 720. Unless otherwise indicated, the amounts are expressed by weight.
- compositions are generally made by melt blending a polymer with carbon nanotubes or the reference additive.
- the mixture is produced using an internal mixer, for example of the Haak type.
- the temperature of the mixture is generally about 230 ° C.
- the mixing time is conditioned by the stability of the torque of the mixer. In general, it is less than 7 minutes.
- the ingredients are introduced into the mixer in the following manner: 50% of the polymer is first introduced. When the polymer begins to melt, the conductive filler is added and then the remaining portion of polymer is added.
- the evaluation of the PTC effect is done using a dielectric spectrometer at the frequency 50.02 Hz.
- the sample in the form of a compression molded plate is covered on both sides by a layer of silver.
- compositions on either side of this threshold namely 0.5, 1 and 2% of nanotubes. These compositions are referenced IA, IB and IC.
- composition according to the prior art is prepared according to the following composition: 70.4% of an organic composition based on PVDF 720 17.6% graphite 12% carbon black
- Figure 2 shows the effect of constant resistivity as a function of temperature, with a concentration of nanotubes below the percolation threshold.
- Figure 3 shows the PTC effect of the reference example compared to the compositions used in the invention.
- compositions of the invention have no PTC effect and what is before or after the percolation threshold.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Sealing Material Composition (AREA)
- Paints Or Removers (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Artificial Filaments (AREA)
Abstract
The invention relates to the use of carbon nanotubes for the production of an electrically-conductive organic composition having an electrical resistivity that is constant as a function of temperature and to the applications of said compositions. The conductive organic composition has a temperature-insensitive electrical resistivity and a temperature-insensitive thermal conductivity. Constant resistivity as a function of temperature is represented in figure 2.
Description
UTILISATION DE NANOTUBES DE CARBONE USE OF CARBON NANOTUBES
POUR LA FABRICATION D'UNE COMPOSITION ORGANIQUE CONDUCTRICE ET APPLICATIONS D'UNE TELLE COMPOSITION.PROCESS FOR PRODUCING CONDUCTIVE ORGANIC COMPOSITION AND APPLICATIONS THEREOF.
Domaine de l'invention.Field of the invention
La présente invention concerne l'utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice électriquement ayant une résistivité électrique constante en fonction de la température ainsi que les applications de ces compositions. Art antérieur et problème technique.The present invention relates to the use of carbon nanotubes for the manufacture of an electrically conductive organic composition having a constant electrical resistivity as a function of temperature as well as the applications of these compositions. Prior art and technical problem.
Les nanotubes de carbone sont connus et utilisés pour leurs excellentes propriétés de conductivité électrique et thermique ainsi que leurs propriétés mécaniques. Ils sont ainsi de plus en plus utilisés en tant qu'additifs pour apporter aux matériaux notamment ceux de type macromoléculaire ces propriétés électriques, thermiques et/ou mécaniques (WO 91/03057 ; US5744235, US5445327, US54663230).Carbon nanotubes are known and used for their excellent properties of electrical and thermal conductivity as well as their mechanical properties. They are thus more and more used as additives to bring to materials including those of macromolecular type these electrical, thermal and / or mechanical properties (WO 91/03057, US5744235, US5445327, US54663230).
On trouve des applications des nanotubes de carbone dans de nombreux domaines, notamment en électronique (selon la température et leur structure, ils peuvent être conducteurs, semi-conducteurs ou isolants), en mécanique, par exemple pour le renfort des matériaux composites (les nanotubes de carbone sont cent fois plus résistants et six fois plus légers que l'acier) et électromécanique (ils peuvent s'allonger ou se contracter par injection de charge).There are applications of carbon nanotubes in many fields, in particular in electronics (depending on the temperature and their structure, they can be conductors, semiconductors or insulators), in mechanics, for example for the reinforcement of composite materials (nanotubes of carbon are one hundred times stronger and six times lighter than steel) and electromechanical (they can elongate or contract by charge injection).
On peut par exemple citer l'utilisation de nanotubes de carbone dans des compositions macromoléculaires destinées à l'emballage de composants électroniques, à la fabrication de conduites d'essence (fuel une), de revêtements ou coating antistatiques, dans des thermistors, des électrodes pour super-capacités, etc.It is possible, for example, to use carbon nanotubes in macromolecular compositions intended for the packaging of electronic components, for the manufacture of fuel lines (fuel oil), for antistatic coatings or coatings, in thermistors, electrodes for super-abilities, etc.
Par ailleurs, on connaît bien les compositions organiques conductrices qui présentent spécifiquement des effets de variation positive ou négative de la résistance électrique en fonction de la température (effet PTC ou NTC) et leur utilisation dans des dispositifs résistifs (US 6640420). Ces compositions sont généralement des formulations à base de substances macromoléculaires dont au moins un composant est de nature semi-cristalline comme par exemple le polyéthylène et qui contiennent des additifs conducteurs, le plus connu étant le noir de carbone (J. of PoI. Sci. Part B - Vol. 41, 3094-3101 (2003)) ou le PVDF (US 20020094441 Al, US 6,640,420). Le principe de base avancé est que la fusion des domaines cristallins augmente le volume changeant ainsi le ratio substance macromoléculaire/charge conductrice faisant passer la composition d'un régime conducteur à un régime isolant: on franchit ainsi le seuil de percolation.
Un système PTC pourra donc être utilisé comme un système chauffant par effet Joule ou un limitateur électrique (en tension ou courant: coupe circuit) par le biais d'une résistance qui augmente rapidement en fonction de la température grâce à l'effet Joule.Moreover, conductive organic compositions which specifically exhibit effects of positive or negative variation of electrical resistance as a function of temperature (PTC or NTC effect) and their use in resistive devices (US Pat. No. 6,640,420) are well known. These compositions are generally formulations based on macromolecular substances of which at least one component is semi-crystalline in nature, for example polyethylene, and which contains conductive additives, the best known being carbon black (J. of PoI, Sci. Part B - Vol 41, 3094-3101 (2003)) or PVDF (US 20020094441 A1, US 6,640,420). The basic premise is that the melting of the crystal domains increases the volume thereby changing the ratio of macromolecular substance / conductive filler passing the composition of a conductive regime to an insulating regime: thus crossing the percolation threshold. A PTC system can be used as a heating system by Joule effect or an electric limiter (voltage or current: circuit breaker) through a resistance that increases rapidly depending on the temperature through the Joule effect.
L'effet PTC est mis à profit pour façonner des thermistors, des peintures chauffantes, des systèmes chauffants pour siège de voiture, ...The PTC effect is used to shape thermistors, heat paints, heating systems for car seats, ...
Dans le cas des compositions organiques électroconductrices contenant des nanotubes de carbone agrégés ou non, on peut citer par exemple les brevets WO 91/03057, US 5744235, US 5611964 US 6403696.In the case of electroconductive organic compositions containing aggregated or non-aggregated carbon nanotubes, mention may be made for example of the patents WO 91/03057, US 5744235, US 5611964 US 6403696.
Plus particulièrement, on peut noter les brevets de Hypérion US 5651922, WO 94/23433 et EP692136 dans lesquels on fait le parallèle avec les noirs de carbone ou le graphite pour attribuer un effet PTC à des compositions conductrices électriquement contenant des nanotubes, c'est à dire dont la résistivité croit avec l'augmentation de la température, dans le but d'assurer la protection des circuits électroniques et/ou les systèmes chauffants basé sur l'effet Joule. Par ailleurs l'utilisation des nanotubes de carbone dans des compositions organiques pour obtenir des compositions conductrices électriquement ayant un effet contraire à l'effet PTC, c'est à dire une résistivité indépendante de la température est décrite dans EP 1052654 avec des polymères de type polyéthylène et polypropylène. On note aussi que WO 03/024798 ou US2003/122111 décrivent cette utilisation avec des polymères de type polyimides. Résumé de l'invention.More particularly, it is possible to note the patents of Hyperion US 5651922, WO 94/23433 and EP692136 in which carbon blacks or graphite are compared to attribute a PTC effect to electrically conductive compositions containing nanotubes. to say whose resistivity increases with increasing temperature, in order to ensure the protection of electronic circuits and / or heating systems based on the Joule effect. Moreover, the use of carbon nanotubes in organic compositions to obtain electrically conductive compositions having an effect contrary to the PTC effect, ie a temperature-independent resistivity is described in EP 1052654 with polymers of the type polyethylene and polypropylene. It is also noted that WO 03/024798 or US2003 / 122111 describe this use with polyimide polymers. Summary of the invention.
L'invention a pour but de proposer l'utilisation des nanotubes de carbone dans d'autres types de matériau organique en vue de fabriquer des compositions organiques conductrices ayant une résistivité électrique insensible à la température. Par "insensible", on entend une variation relative inférieure ou égale à 80%, de préférence inférieure ou égale à 50%, encore préférentiellement inférieure ou égale à 30% sur la gamme de température de travail (en général de -50°C jusque la température de fusion du polymère lorsque la formulation est à base d'un semi cristallin ou jusqu'à la transition vitreuse lorsque la formulation est base d'un polymère amorphe). De manière générale, cette gamme de température est conditionnée par la nature de la formulation organique utilisée.The object of the invention is to propose the use of carbon nanotubes in other types of organic material in order to produce conductive organic compositions having a temperature insensitive electrical resistivity. "Insensitive" means a relative variation of less than or equal to 80%, preferably less than or equal to 50%, more preferably less than or equal to 30% over the working temperature range (generally from -50 ° C to the melting temperature of the polymer when the formulation is based on a semi-crystalline or until the glass transition when the formulation is based on an amorphous polymer). In general, this temperature range is conditioned by the nature of the organic formulation used.
Les matériaux organiques utilisés dans la présente invention sont choisis parmi a. Le groupe des résines thermoplastiques constitué par les résines: i. acrylonitrile-butadiène-styrène (ABS), ii. acrylonitrile-éthylène/propylène-styrène (AES), iii. méthylméthacrylate-butadiène-styrène (MBS), iv. acrylonitrile-butadiène-méthylméthacrylate-styrène (ABMS), v. acrylonitrile-n-butylacrylate-styrène (AAS),
b. les gommes de polystyrène modifié ; c. les résines de i. polystyrène, polyméthyl-méthacrylate, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfide ; d. les résines : i. halogénées, de préférence fluorées comme le fluorure de polyvinylidène (PVDF) ou encore chlorées comme le chlorure de polyvinyle (PVC), siliconées, polybenzimidazole ; e. Le groupe des résines thermodurcissables constitué par les résines à base de phénol, urée, mélamine, xylène, diallylphthalate, époxy, aniline, furane, polyuréthane ; f. Le groupe des élastomères thermoplastiques constitué des élastomères de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co-polymères bloc styrène-isoprène-styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide, les élastomères thermoplastiques de type polybutadiène comme les résines 1,2-polybutadiène ou trans-l,4-polybutadiène; les polyéthylène chlorés, les élastomères thermo-plastiques de type fluorés, les polyéthers esters et les polyéthers amides ; g. Le groupe des polymères solubles dans l'eau constitué des polymères cellulosiques, les polyélectrolytes, les polymères ioniques, les polymères acrylates, les polymères d' acide acrylique, la gomme arabique, les poly (vinyl pyrrolidone), poly (vinyl-alcool), poly (acide acrylique), polyThe organic materials used in the present invention are selected from a. The group of thermoplastic resins consisting of resins: i. acrylonitrile-butadiene-styrene (ABS), ii. acrylonitrile-ethylene / propylene-styrene (AES), iii. methylmethacrylate-butadiene-styrene (MBS), iv. acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS), ca. acrylonitrile-n-butylacrylate-styrene (AAS), b. modified polystyrene gums; vs. the resins of i. polystyrene, polymethyl methacrylate, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide; d. the resins: i. halogenated, preferably fluorinated as polyvinylidene fluoride (PVDF) or chlorinated as polyvinyl chloride (PVC), silicone, polybenzimidazole; e. The group of thermosetting resins consisting of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane; f. The group of thermoplastic elastomers consisting of styrene-type elastomers such as styrene-butadiene-styrene block co-polymers or styrene-isoprene-styrene block co-polymers or their hydrogenated form, elastomers of PVC, urethane, polyester, polyamide type, thermoplastic elastomers of polybutadiene type such as 1,2-polybutadiene or trans-1,4-polybutadiene resins; chlorinated polyethylene, fluoro-type thermoplastic elastomers, polyether esters and polyether amides; boy Wut. The group of water soluble polymers consisting of cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, acrylic acid polymers, gum arabic, poly (vinyl pyrrolidone), poly (vinyl alcohol), poly (acrylic acid), poly
(acide méthacrylique), sodium polyacrylate, polyacrylamide, poly (éthylène oxide), polyéthylène glycol, poly (éthylène formamide), polyhydroxyéther, poly (vinyl oxazolidinone), méthyl cellulose, éthyl cellulose, carboxyméthyl cellulose, éthyl (hydroxyéthyl) cellulose, sodium polyacrylate, leurs copolymères, et des mélanges de ceux-ci ; h. Le groupe constitué par les polystyrène sulfonate (PSS), poly (1-vinyl pyrrolidone-co-vinyl acétate), poly(l- vinyl pyrrolidone-co- acide acrylique), poly (1-vinylpyrrolidone-co-dimethylaminoéthyl méthacrylate), polyvinyl sulfate, poly (sodium styrène acide sulfonique- co-acide maleique), dextran, dextran sulfate, gélatine, sérum albumine bovine, poly (méthyl méthacrylate-co-éthyl acrylate), polyallyl aminé, et leurs combinaisons.
La présente invention a pour objet l'utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice ayant une résistivité électrique insensible à la température.(methacrylic acid), sodium polyacrylate, polyacrylamide, poly (ethylene oxide), polyethylene glycol, poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate , their copolymers, and mixtures thereof; h. The group consisting of polystyrene sulfonate (PSS), poly (1-vinylpyrrolidone-co-vinyl acetate), poly (1-vinylpyrrolidone-co-acrylic acid), poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate), polyvinyl sulfate, poly (sodium styrene sulfonic acid co-maleic acid), dextran, dextran sulfate, gelatin, bovine serum albumin, poly (methyl methacrylate-co-ethyl acrylate), polyallyl amino, and combinations thereof. The present invention relates to the use of carbon nanotubes for the manufacture of a conductive organic composition having a temperature insensitive electrical resistivity.
Selon une forme de mise en œuvre de l'invention précitée, dans l'utilisation précitée, la composition organique conductrice a de plus une conductivité thermique insensible à la température.According to one embodiment of the aforementioned invention, in the aforementioned use, the organic conductive composition also has a thermal conductivity insensitive to temperature.
Selon une autre forme de mise en œuvre de l'invention, dans l'utilisation précitée, la composition comprend une ou plusieurs charges électroconductrices dont au moins une charge comprend des nanotubes de carbone ayant un rapport de forme (L/D) supérieur ou égal à 5 et de préférence supérieur ou égale à 50 et avantageusement supérieur ou égal à 100.According to another embodiment of the invention, in the above-mentioned use, the composition comprises one or more electroconductive fillers of which at least one filler comprises carbon nanotubes having a ratio of form (L / D) greater than or equal to at 5 and preferably greater than or equal to 50 and advantageously greater than or equal to 100.
Selon encore une autre forme de mise en œuvre de l'invention, dans l'utilisation précitée, le pourcentage en poids de nanotubes de carbone dans la composition est inférieur à 30%, de préférence compris entre 0,01 et 20%, et avantageusement entre 0,1 et 15%.According to yet another embodiment of the invention, in the aforementioned use, the percentage by weight of carbon nanotubes in the composition is less than 30%, preferably between 0.01 and 20%, and advantageously between 0.1 and 15%.
Selon une autre forme encore de mise en œuvre de l'invention, dans l'utilisation précitée, les nanotubes de carbone ont un diamètre compris entre 0,4 et 50 nm et une longueur comprise 100 et 100000 fois leur diamètre.According to yet another embodiment of the invention, in the above-mentioned use, the carbon nanotubes have a diameter of between 0.4 and 50 nm and a length of 100 and 100,000 times their diameter.
Suivant un mode de réalisation de l'invention, dans l'utilisation précitée, les nanotubes de carbone sont sous forme multi-parois, leur diamètre étant compris entre 10 et 30 nm et leur longueur étant supérieure à 0,5 micron.According to one embodiment of the invention, in the aforementioned use, the carbon nanotubes are in multi-wall form, their diameter being between 10 and 30 nm and their length being greater than 0.5 micron.
Suivant un mode de réalisation de l'invention, dans l'utilisation précitée la composition organique a un seuil de percolation allant de 0.01 et 5%.According to one embodiment of the invention, in the aforementioned use the organic composition has a percolation threshold ranging from 0.01 to 5%.
Suivant un autre mode de réalisation de l'invention, dans l'utilisation précitée, la composition organique comprend de plus un ou plusieurs matériaux macromoléculaires choisis parmi les liquides tels que les huiles, les graisses telles que celle utilisées pour la lubrification, les formulations liquides à base d'eau ou solvants tels que les adhésifs, les peintures et les vernis.According to another embodiment of the invention, in the aforementioned use, the organic composition further comprises one or more macromolecular materials chosen from liquids such as oils, greases such as those used for lubrication, liquid formulations. water based or solvents such as adhesives, paints and varnishes.
Suivant encore un autre mode de réalisation de l'invention, dans l'utilisation précitée, la composition organique comprend au moins un polymère de type semi- cristallin.According to yet another embodiment of the invention, in the aforementioned use, the organic composition comprises at least one semi-crystalline type polymer.
L'invention trouve une application particulièrement remarquée, dans le cadre de l'utilisation précitée, dans les domaines de l'emballage de composants électroniques, la fabrication de conduites d'essence (fuel Une), les revêtements ou coating antistatiques, les thermistors, les électrodes pour supercapacités, les fibres de renfort mécaniques, les fibres textile, les formulations de caoutchouc ou d'élastomère, les joints, les écrans aux ondes radiofréquences et ondes électromagnétiques.
La présente invention a également pour objet, à titre de produit industriel nouveau, une composition organique conductrice ayant une résistivité électrique insensible à la température, comprenant une quantité jusque 30% en poids, par rapport au poids de la composition, de nanotubes de carbone, dont le diamètre est compris entre 0,4 et 50 nm, dont le rapport de forme (L/D) est supérieur à 100. La présente composition comprend au moins un matériau polymère choisis parmi a. Le groupe des résines thermoplastiques constitué par les résines: i. acrylonitrile-butadiène-styrène (ABS), ii. acrylonitrile-éthylène/propylène-styrène (AES), iii. méthylméthacrylate-butadiène-styrène (MBS), iv. acrylonitrile-butadiène-méthylméthacrylate-styrène (ABMS), v. acrylonitrile-n-butylacrylate-styrène (AAS), b. les gommes de polystyrène modifié ; c. les résines de i. polystyrène, polyméthyl-méthacrylate, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfîde ; d. les résines : i. halogénées, de préférence fluorées comme le fluorure de polyvinylidène (PVDF) ou encore chlorées comme le chlorure de polyvinyle (PVC), siliconées, polybenzimidazole ; e. Le groupe des résines thermodurcissables constitué par les résines à base de phénol, urée, mélamine, xylène, diallylphthalate, époxy, aniline, furane, polyuréthane ; f. Le groupe des élastomères thermoplastiques constitué des élastomères de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co-polymères bloc styrène-isoprène-styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide, les élastomères thermoplastiques de type polybutadiène comme les résinesThe invention finds a particularly noted application, in the context of the above-mentioned use, in the fields of the packaging of electronic components, the manufacture of fuel lines (fuel oil), antistatic coatings or coating, thermistors, electrodes for supercapacities, mechanical reinforcing fibers, textile fibers, rubber or elastomer formulations, seals, radiofrequency wave and electromagnetic wave screens. The subject of the present invention is also, as a new industrial product, a conductive organic composition having a temperature-insensitive electrical resistivity comprising an amount up to 30% by weight, relative to the weight of the composition, of carbon nanotubes. whose diameter is between 0.4 and 50 nm, whose aspect ratio (L / D) is greater than 100. The present composition comprises at least one polymeric material selected from a. The group of thermoplastic resins consisting of resins: i. acrylonitrile-butadiene-styrene (ABS), ii. acrylonitrile-ethylene / propylene-styrene (AES), iii. methylmethacrylate-butadiene-styrene (MBS), iv. acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS), ca. acrylonitrile-n-butylacrylate-styrene (AAS), b. modified polystyrene gums; vs. the resins of i. polystyrene, polymethyl methacrylate, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide; d. the resins: i. halogenated, preferably fluorinated as polyvinylidene fluoride (PVDF) or chlorinated as polyvinyl chloride (PVC), silicone, polybenzimidazole; e. The group of thermosetting resins consisting of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane; f. The group of thermoplastic elastomers consisting of styrene-type elastomers such as styrene-butadiene-styrene block copolymers or styrene-isoprene-styrene block co-polymers or their hydrogenated form, elastomers of PVC, urethane, polyester, polyamide type, Thermoplastic elastomers of the polybutadiene type, such as resins
1,2-polybutadiène ou trans-l,4-polybutadiène; les polyéthylène chlorés, les élastomères thermo-plastiques de type fluorés, les polyéthers esters et les polyéthers amides ; g. Le groupe des polymères solubles dans l'eau constitué des polymères cellulosiques, les polyélectrolytes, les polymères ioniques, les polymères acrylates, les polymères d' acide acrylique, la gomme arabique, les poly (vinyl pyrrolidone), poly (vinyl-alcool), poly (acide acrylique), poly (acide méthacrylique), sodium polyacrylate, polyacrylamide, poly
(éthylène oxide), polyéthylène glycol, poly (éthylène formamide), polyhydroxyéther, poly (vinyl oxazolidinone), méthyl cellulose, éthyl cellulose, carboxyméthyl cellulose, éthyl (hydroxyéthyl) cellulose, sodium polyacrylate, leurs copolymères, et des mélanges de ceux-ci ; h. Le groupe constitué par les polystyrène sulfonate (PSS), poly (1- vinyl pyrrolidone-co-vinyl acétate), poly(l- vinyl pyrrolidone-co- acide acrylique), poly (1-vinylpyrrolidone-co-dimethylaminoéthyl méthacrylate), polyvinyl sulfate, poly (sodium styrène acide sulfonique- co-acide maleique), dextran, dextran sulfate, gélatine, sérum albumine bovine, poly (méthyl méthacrylate-co-éthyl acrylate), polyallyl aminé, et leurs combinaisons.1,2-polybutadiene or trans-1,4-polybutadiene; chlorinated polyethylene, fluoro-type thermoplastic elastomers, polyether esters and polyether amides; boy Wut. The group of water soluble polymers consisting of cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, acrylic acid polymers, gum arabic, poly (vinyl pyrrolidone), poly (vinyl alcohol), poly (acrylic acid), poly (methacrylic acid), sodium polyacrylate, polyacrylamide, poly (ethylene oxide), polyethylene glycol, poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate, their copolymers, and mixtures thereof ; h. The group consisting of polystyrene sulfonate (PSS), poly (1-vinylpyrrolidone-co-vinyl acetate), poly (1-vinylpyrrolidone-co-acrylic acid), poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate), polyvinyl sulfate, poly (sodium styrene sulfonic acid co-maleic acid), dextran, dextran sulfate, gelatin, bovine serum albumin, poly (methyl methacrylate-co-ethyl acrylate), polyallyl amino, and combinations thereof.
Selon une forme de réalisation de l'invention, dans ladite composition les nanotubes de carbone ont un diamètre compris entre 10 et 30 nm et une longueur supérieure à 0,5 micron. Selon une forme de réalisation de l'invention, ladite composition présente en outre une conductivité thermique insensible à la température.According to one embodiment of the invention, in said composition the carbon nanotubes have a diameter of between 10 and 30 nm and a length greater than 0.5 micron. According to one embodiment of the invention, said composition also has a temperature insensitive thermal conductivity.
Selon une autre forme de réalisation de l'invention, dans ladite composition, le pourcentage en poids de nanotubes de carbone est compris entre 0,1 et 20%, et de préférence entre 1 et 15%. Selon une autre forme de réalisation de l'invention la composition a un seuil de percolation allant de 0.01 et 5% en poids de nanotubes de carbone, de préférence de 0.1 à 3%.According to another embodiment of the invention, in said composition, the weight percentage of carbon nanotubes is between 0.1 and 20%, and preferably between 1 and 15%. According to another embodiment of the invention the composition has a percolation threshold ranging from 0.01 to 5% by weight of carbon nanotubes, preferably from 0.1 to 3%.
Selon encore une autre forme de réalisation de l'invention, ladite composition comprend de plus un ou plusieurs matériaux macromoléculaires choisis parmi les liquides tels que les huiles, les graisses telles que celle utilisées pour la lubrification, les formulations liquides à base d'eau ou solvants tels que les adhésifs, les peintures et les vernis.According to yet another embodiment of the invention, said composition further comprises one or more macromolecular materials chosen from liquids such as oils, greases such as those used for lubrication, liquid formulations based on water or solvents such as adhesives, paints and varnishes.
Selon une autre forme encore de réalisation de l'invention, ladite composition comprend au moins un polymère de type semi-cristallin. Brève description des figures.According to yet another embodiment of the invention, said composition comprises at least one semi-crystalline type polymer. Brief description of the figures.
La figure 1 montre le seuil de percolation de la composition organique utilisée dans l'invention.Figure 1 shows the percolation threshold of the organic composition used in the invention.
La Figure 2 montre l'effet de résistivité constante en fonction de la température, avec une concentration de nanotubes en dessous du seuil de percolation. La Figure 3 montre l'effet PTC de l'exemple de référence en comparaison des compositions utilisées dans l'invention. Exposé détaillé de modes de réalisation de l'invention.
La composition comprend une ou plusieurs charges électroconductrices (et ou thermoconductrices) dont au moins une charge comprend des nanotubes de carbone ayant un rapport de forme (LfD) supérieur ou égal à 5 et de préférence supérieur ou égale à 50 et avantageusement supérieur ou égal à 100. Les nanotubes de carbone utilisés dans l'invention présentent en général une structure tubulaire de diamètre inférieur à 100 nm, préférentiellement compris entre 0,4 et 50 nm et/ou en général de longueur supérieure à 5 fois leur diamètre, préférentiellement supérieure à 50 fois leur diamètre et avantageusement comprise de 100 à 100000 ou encore comprise de 1000 à 10000 fois leur diamètre. Les nanotubes de carbone sont constitués d'une variété allotropique du carbone dans une configuration sp2 consistant en un long tube simple, double ou multi parois de cycles aromatiques accolés les uns aux autres, agrégés ou non.Figure 2 shows the effect of constant resistivity as a function of temperature, with a concentration of nanotubes below the percolation threshold. Figure 3 shows the PTC effect of the reference example compared to the compositions used in the invention. DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION The composition comprises one or more electroconductive (and or thermally conductive) fillers of which at least one filler comprises carbon nanotubes having a shape ratio (LfD) greater than or equal to 5 and preferably greater than or equal to 50 and advantageously greater than or equal to The carbon nanotubes used in the invention generally have a tubular structure with a diameter of less than 100 nm, preferably between 0.4 and 50 nm and / or in general of length greater than 5 times their diameter, preferably greater than 50 times their diameter and advantageously from 100 to 100000 or from 1000 to 10000 times their diameter. Carbon nanotubes consist of an allotropic variety of carbon in a sp 2 configuration consisting of a long single, double or multi-walled tube of aromatic rings contiguous to each other, aggregated or not.
Lorsque le nanotube est constitué d'un seul tube, on parlera de mono-paroi, de deux tubes on parlera de double parois. Au-delà, on parlera de multi parois. La surface externe des nanotubes peut être uniforme ou texturée.When the nanotube consists of a single tube, we speak of mono-wall, two tubes we speak of double walls. Beyond that, we will talk about multi walls. The outer surface of the nanotubes may be uniform or textured.
On citera à titre d'exemple, les nanotubes mono-parois, les bi-parois ou les multi- parois, les nanofibres, ....By way of example, mention may be made of single-wall nanotubes, bi-walls or multi-walls, nanofibers, etc.
Ces nanotubes peuvent être traités chimiquement ou physiquement pour les purifier ou les fonctionnaliser dans le but de leurs conférer de nouvelles propriétés de dispersion, et d'interaction avec les composants de la formulation telles que les matrices polymère, les élastomères, les résines thermodurcissables, les huiles, les graisses, les formulations à base aqueuse ou solvant telles que les peintures, les adhésifs, les vernis.These nanotubes can be chemically or physically treated to purify or functionalize them in order to give them new properties of dispersion, and interaction with the components of the formulation such as polymer matrices, elastomers, thermosetting resins, oils, greases, water-based or solvent-based formulations such as paints, adhesives, varnishes.
Les nanotubes de carbone peuvent être préparés selon différents procédés, tels que le procédé Arc électrique (C. Journet et al. dans Nature (london), 388 (1997) 756, le procédé phase gaz CVD, Hipco (P. Nicolaev et al. dans Chem. Phys. Lett, 1999, 313, 91), le procédé Laser (A.G. Rinzler et al. dans Appl. Phys. A, 1998, 67, 29), ou tout procédé donnant des formes tubulaires vides ou remplies de substances carbonées ou autres que le carbone On pourra se référer par exemple plus particulièrement aux documents WO 86/03455, WO 03/002456 pour la préparation de nanotubes de carbone multi-parois distincts ou non agrégés.The carbon nanotubes can be prepared by various methods, such as the Electric Arc method (C. Journet et al in Nature (London), 388 (1997) 756, the CVD gas phase method, Hipco (P. Nicolaev et al. in Chem Phys Lett, 1999, 313, 91), the Laser process (AG Rinzler et al in Appl Phys., A, 1998, 67, 29), or any method giving tubular shapes that are empty or filled with carbonaceous substances. or other than carbon We can refer for example more particularly to WO 86/03455, WO 03/002456 for the preparation of separate or non-aggregated multi-wall carbon nanotubes.
La composition organique comprend un ou plusieurs matériaux macromoléculaires.The organic composition comprises one or more macromolecular materials.
Ces matériaux sont généralement les liquides ou des solides tels que les huiles ou bien des graisses telles que celle utilisées pour la lubrification, les formulations liquides à base d'eau ou les solvants tels que les adhésifs, les peintures et les vernis, les polymères et copolymères, notamment thermoplastiques ou thermodurcissables, les polymères solubles dans l'eau, les élastomères et leurs formulations en masse, ou en suspension ou en dispersion ....
Comme exemple de résines thermoplastiques on peut citer les résines: acrylonitrile-butadiène-styrène (AB S), acrylonitrile-éthylène/propylène-styrène (AES), méthylméthacrylate-butadiène-styrène (MBS), acrylonitrile-butadiène-méthylméthacrylate-styrène (ABMS), acrylonitrile-n-butylacrylate-styrène (AAS)5 les gommes de: polystyrène modifié, les résines de: polystyrène, polyméthyl-méthacrylate, chlorure de polyvinyle, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfide, les résines : halogénées, de préférence fluorées come le PVDF ou chlorées comme leThese materials are generally liquids or solids such as oils or greases such as those used for lubrication, water-based liquid formulations or solvents such as adhesives, paints and varnishes, polymers and the like. copolymers, in particular thermoplastic or thermosetting, water-soluble polymers, elastomers and their formulations in bulk, or in suspension or in dispersion .... Examples of thermoplastic resins that may be mentioned are: acrylonitrile-butadiene-styrene (AB S), acrylonitrile-ethylene / propylene-styrene (AES), methylmethacrylate-butadiene-styrene (MBS), acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS ), acrylonitrile-n-butylacrylate-styrene (AAS) 5 gums polystyrene modified resins: polystyrene, polymethyl methacrylate, polyvinyl chloride, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide, resins: halogenated, preferably fluorinated as PVDF or chlorinated as the
PVC, siliconées, polybenzimidazole.PVC, silicone, polybenzimidazole.
Comme exemples de résines thermodurcissables, on peut citer, les résines à base de phénol, urée, mélamine, xylène, diallylphthalate, époxy, aniline, furane, polyuréthane, etc. Comme exemples d'élastomères thermoplastiques utilisables dans la présente invention on peut citer les élastomères de type polyoléfine, de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co-polymères bloc styrène-isoprène- styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide, les élastomères thermoplastiques de type polybutadiène comme les résines 1,2-polybutadiène ou trans-l,4-polybutadiène; les polyéthylène chlorés, les élastomères thermo-plastiques de type fluorés, les polyéthers esters et les polyéthers amides etc.,As examples of thermosetting resins, mention may be made of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane, etc. Examples of thermoplastic elastomers that can be used in the present invention include elastomer of the polyolefin type, of the styrene type, such as styrene-butadiene-styrene block co-polymers or styrene-isoprene-styrene block copolymers, or their hydrogenated form, the elastomers of the PVC, urethane, polyester, polyamide type, thermoplastic elastomers of the polybutadiene type, for example 1,2-polybutadiene or trans-1,4-polybutadiene resins; chlorinated polyethylene, fluoro-type thermoplastic elastomers, polyether esters and polyether amides etc.,
Comme exemples de polymères solubles dans l'eau on peut citer les polymères amphiphiles, aussi nommés polymères surfactants, qui contiennent à la fois des segments hydrophobes et hydrophiles, les polymères cellulosiques, les polyélectrolytes, les polymères ioniques, les polymères acrylates, les polymères d' acide acrylique, les copolymères de ceux-ci et leurs mélanges. Parmi les polymères spécifiques solubles dans l'eau on peut citer la gomme arabique, les poly (vinyl pyrrolidone), poly (vinyl- alcool), poly (acide acrylique), poly (acide méthacrylique), sodium polyacrylate, polyacrylamide, poly (éthylène oxide), polyéthylène glycol, poly (éthylène formamide), polyhydroxyéther, poly (vinyl oxazolidinone), méthyl cellulose, éthyl cellulose, carboxyméthyl cellulose, éthyl (hydroxyéthyl) cellulose, sodium polyacrylate, leurs copolymères, et des mélanges de ceux-ci.
On peut encore citer les polystyrène sulfonate (PSS), poly (1-vinyl pyrrolidone-co- vinyl acétate), poly(l- vinyl pyrrolidone-co- acide acrylique), poly (1-vinylpyrrolidone- co-dimethylaminoéthyl méthacrylate), polyvinyl sulfate, poly (sodium styrène acide sulfonique-co-acide maleique), dextran, dextran sulfate, gélatine, sérum albumine bovine, poly (méthyl méthacrylate-co-éthyl acrylate), polyallyl aminé, et leurs combinaisons.Examples of water-soluble polymers that may be mentioned include amphiphilic polymers, also referred to as surfactant polymers, which contain both hydrophobic and hydrophilic segments, cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, polymer polymers and the like. acrylic acid, copolymers thereof and mixtures thereof. Among the specific polymers that are soluble in water, mention may be made of gum arabic, poly (vinyl pyrrolidone), poly (vinyl alcohol), polyacrylic acid, poly (methacrylic acid), sodium polyacrylate, polyacrylamide and polyethylene. oxide), polyethylene glycol, poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate, their copolymers, and mixtures thereof. Mention may also be made of polystyrene sulfonate (PSS), poly (1-vinylpyrrolidone-co-vinyl acetate), poly (1-vinylpyrrolidone-co-acrylic acid), poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate), polyvinyl sulfate, poly (sodium styrene sulfonic acid co-maleic acid), dextran, dextran sulfate, gelatin, bovine serum albumin, poly (methyl methacrylate-co-ethyl acrylate), polyallyl amino, and combinations thereof.
Les formulations des compositions organiques à résistivité constante sont définies en fonction de l'énergie thermique à effet de Joule souhaitée et de la puissance électrique utilisée (tension ou courant imposé). Préférentiellement et essentiellement pour des raisons de coût de formulation, le pourcentage en poids de nanotubes de carbone dans la composition est inférieur à 30%, de préférence compris entre 0,01 et 20%, encore plus préférentiellement le pourcentage de nanotubes sera compris entre 0,1 et 15%.The formulations of the organic compositions with constant resistivity are defined as a function of the desired Joule heat energy and of the electrical power used (voltage or imposed current). Preferably and essentially for reasons of formulation cost, the percentage by weight of carbon nanotubes in the composition is less than 30%, preferably between 0.01 and 20%, more preferably the percentage of nanotubes will be between 0. , 1 and 15%.
La composition à résistivité constante en fonction de la température peut être obtenue par tout procédé connu de l'homme de l'art tel que mélange à sec, concentré dans une matrice polymère ou résine, mise en suspension,...The composition with constant resistivity as a function of temperature can be obtained by any method known to those skilled in the art such as dry mixing, concentrated in a polymer matrix or resin, suspended, etc.
Le procédé de mélange peut utiliser différentes technologies telles que celles utilisées pour les caoutchoucs, les polymères, les liquides, .... On peut citer les mélangeurs internes, les extrudeuses mono ou double vis, les bus, les mélangeurs du type ultraturax, les mélangeurs à ultrasons ou tout type d'outil de mélange connu par l'homme de l'art.The mixing process can use different technologies such as those used for rubbers, polymers, liquids, etc. Internal mixers, single or twin screw extruders, buses, ultraturax mixers, ultrasonic mixers or any type of mixing tool known to those skilled in the art.
Les compositions précédemment décrites peuvent être obtenue directement ou par dilution via l'utilisation d'un master batch comme décrit dans les brevet WO 91/03057 ou US 5646990, EP 692136 ou US 5591382 US 5643502 ou US 5651922, US 6221283. Ces compositions peuvent aussi être obtenues par synthèse directe de la matière organique en présence de nanotubes de carbone. On génère ainsi soit une interaction physique entre le polymère ou copolymère et les nanotubes de carbone soit une liaison covalente qui est recherchée lorsqu'on vise l'amélioration significative des propriétés mécaniques (bon transfert des efforts mécaniques entre la matrice et les nanotubes de carbone.The previously described compositions can be obtained directly or by dilution via the use of a master batch as described in WO 91/03057 or US 5646990, EP 692136 or US 5591382 US 5643502 or US 5651922, US 6221283. These compositions can also be obtained by direct synthesis of the organic material in the presence of carbon nanotubes. Thus, a physical interaction between the polymer or copolymer and the carbon nanotubes is generated or a covalent bond which is sought when the aim is to significantly improve the mechanical properties (good transfer of the mechanical forces between the matrix and the carbon nanotubes.
Par ailleurs la composition a un seuil de percolation situé dans la gamme allant de 0,01 à 5%, de préférence de 0,1 à 3% en poids de nanotubes de carbone.Furthermore the composition has a percolation threshold in the range of 0.01 to 5%, preferably 0.1 to 3% by weight of carbon nanotubes.
Le seuil de percolation correspond à la quantité de charge conductrice dans la substance macromoléculaire pour faire passer la composition d'un régime conducteur à un régime isolant et vice versa.The percolation threshold corresponds to the amount of conductive filler in the macromolecular substance to change the composition of a conductive regime to an insulating regime and vice versa.
Sans être liés par une quelconque théorie, les inventeurs ont constaté que le seuil de percolation dépend de l'état de dispersion et donc de l'outil et des paramètres de mélangeage. Lorsque la dispersion est parfaite, c'est à dire tous les nanotubes sont
dispersés individuellement, ce seuil est proportionnel au rapport de forme L/D. Une des relation donnant ce seuil est (L/D).Fv~3 où Fv est la fraction volumique en nanotube de carbone. Par exemple, pour un rapport dd L/D ~100, la fraction volumique au seuil de percolation sera de 3% et de 0,3% pour L/D ~1000. Les compositions décrites ci dessus sont utilisées dans toutes applications où l'on recherche une résistivité indépendante de la température.Without being bound by any theory, the inventors have found that the percolation threshold depends on the state of dispersion and therefore the tool and the mixing parameters. When the dispersion is perfect, ie all the nanotubes are dispersed individually, this threshold is proportional to the L / D form ratio. One of the relations giving this threshold is (L / D) .Fv ~ 3 where Fv is the volume fraction in carbon nanotube. For example, for a dd L / D ~ 100 ratio, the volume fraction at the percolation threshold will be 3% and 0.3% for L / D ~ 1000. The compositions described above are used in all applications where a temperature-independent resistivity is required.
Sans être lié par une quelconque théorie, on peut avancer que le chemin de percolation des noirs de carbone serait différent de celui des nanotubes de carbone. En effet, les contacts dans le noir de carbone sont ponctuels et peuvent se défaire facilement. Pour les nanotubes de carbone, même si ces contacts sont aussi ponctuels, le glissement des nanotubes de carbone les uns par rapport aux autres permettrait un maintien de ces contacts. La différence résiderait donc dans l'organisation des composants conducteurs. Les noirs de carbone se présentent le plus souvent sous forme de chapelet (au-dessus du seuil de percolation) alors que les nanotubes de carbone se présentent le plus souvent sous forme plus ou moins enchevêtrée. Ce niveau d'enchevêtrement serait probablement responsable de l'effet de résistance constante de la composition à base de nanotubes de carbone en fonction de la température.Without being bound by any theory, it can be argued that the percolation path of carbon blacks would be different from that of carbon nanotubes. Indeed, the contacts in carbon black are punctual and can be easily discarded. For carbon nanotubes, even if these contacts are also punctual, the sliding of the carbon nanotubes relative to each other would allow a maintenance of these contacts. The difference therefore lies in the organization of the conductive components. Carbon blacks are most often in the form of a string (above the percolation threshold) whereas carbon nanotubes are most often in more or less entangled form. This level of entanglement would probably be responsible for the effect of constant resistance of the composition based on carbon nanotubes as a function of temperature.
Par ailleurs, en plus de l'effet résistivité constante, les compositions peuvent avoir les mêmes utilisations que les compositions macromoléculaires connues contenant des nanotubes de carbone comme cités dans les références suivantes : US 6 689835 — US6746627 - US 6491789- Carbon, 2002,40(10) 1741/1749 - US2003/0130061- WO97/15934 - JP 2004-244490- WO2004/097853 - Science 2000, 290 (5495), 1331/1334 - J.Mater.Chem., 2994,14, 1/3. En particulier, les compositions selon l'invention présentent aussi les avantages mécaniques liés à l'utilisation des nanotubes. On peut citer les applications suivantes: emballage de composants électroniques, fabrication de conduites d'essence (fuel line), revêtements ou coating antistatiques, thermistors, électrodes pour supercapacités, fibres de renfort mécanique, fibres textile, formulations de caoutchouc ou d'élastomère telles que les pneumatiques, les joints et notamment d'étanchéité, écran aux ondes radiofréquences et ondes électromagnétiques, muscle artificiel, ...Moreover, in addition to the constant resistivity effect, the compositions may have the same uses as known macromolecular compositions containing carbon nanotubes as cited in the following references: US 6 689835 - US6746627 - US 6491789- Carbon, 2002,40 (10) 1741/1749 - US2003 / 0130061-WO97 / 15934-JP 2004-244490-WO2004 / 097853 - Science 2000, 290 (5495), 1331/1334 - J.Mater.Chem., 2994,14, 1/3 . In particular, the compositions according to the invention also have the mechanical advantages related to the use of nanotubes. The following applications can be mentioned: packaging of electronic components, manufacture of fuel lines (fuel line), antistatic coatings or coating, thermistors, electrodes for supercapacities, mechanical reinforcing fibers, textile fibers, rubber or elastomer formulations such as that tires, seals and especially sealing, screen radiofrequency waves and electromagnetic waves, artificial muscle, ...
Les compositions à résistivité constante en fonction de Ia température peuvent être utilisées dans les applications finales décrites ci dessus sous différentes formes : liquide, solide dur ou élastomérique, poudre, film, fibre, gel ... Exemples Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.The compositions with constant temperature resistivity can be used in the final applications described above in different forms: liquid, solid or elastomeric solid, powder, film, fiber, gel ... Examples The following examples illustrate the present invention without however, limit its scope.
On utilise des nanotubes de carbone obtenus selon le procédé décrit dans le brevet PCT WO 03/002456 A2. Ces nanotubes ont un diamètre compris entre 10 et 30 nm et
une longueur > 0,4μm. Ils se présentent, dans la composition finale, sous forme multiparoi en totalité ou à plus de 98% sous forme distincte c'est à dire non agrégée. Pour la formulation de référence on utilise une formulation polymère, additivée de graphite et de noir de carbone commercialisée par Timcal sous la dénomination ENSACO 250.Carbon nanotubes obtained according to the method described in PCT patent WO 03/002456 A2 are used. These nanotubes have a diameter of between 10 and 30 nm and a length> 0.4μm. They are presented in the final composition, in multi-wall form in whole or in more than 98% in distinct form, ie not aggregated. For the reference formulation is used a polymer formulation, additive of graphite and carbon black marketed by Timcal under the name ENSACO 250.
On utilise dans les formulations des polymères halogènes fluorés ou chlorés tels que le PVDF ou le PVC.Fluorinated or chlorinated halogenated polymers such as PVDF or PVC are used in the formulations.
Dans les exemples suivants le polymère utilisé est un polymère thermoplastique de type PVDF commercialisé par Arkema sous la dénomination Kynar 720. Sauf indication contraire, les quantités sont exprimées en poids.In the following examples, the polymer used is a thermoplastic polymer of the PVDF type marketed by Arkema under the name Kynar 720. Unless otherwise indicated, the amounts are expressed by weight.
Dans ces exemples, le schéma de préparation des compositions est le suivant:In these examples, the scheme for preparing the compositions is as follows:
Les compositions sont généralement réalisées par mélange à l'état fondu d'un polymère avec des nanotubes de carbone ou l'additif de référence. Le mélange est réalisé à l'aide d'un mélangeur interne par exemple du type Haak. La température du mélange est généralement d'environ 2300C. La durée du mélange est conditionnée par la stabilité du couple du mélangeur. De manière générale, elle est inférieure à 7 minutes. L'introduction des ingrédients dans le mélangeur se fait de la manière suivante : on introduit d'abord 50% du polymère. Lorsque le polymère commence à fondre, on ajoute la charge conductrice puis on rajoute la partie restante de polymère.The compositions are generally made by melt blending a polymer with carbon nanotubes or the reference additive. The mixture is produced using an internal mixer, for example of the Haak type. The temperature of the mixture is generally about 230 ° C. The mixing time is conditioned by the stability of the torque of the mixer. In general, it is less than 7 minutes. The ingredients are introduced into the mixer in the following manner: 50% of the polymer is first introduced. When the polymer begins to melt, the conductive filler is added and then the remaining portion of polymer is added.
Les mesures de résistivité électrique sont réalisées à l'aide d'un système diélectrique pour les compositions peu conductrices et par la méthode de quatre pointes pour celles ayant des résistivités inférieures à 107 ohms.cm.Electrical resistivity measurements are made using a dielectric system for low-conductive compositions and the four-point method for those with resistivities below 10 7 ohm.cm.
L'évaluation de l'effet PTC se fait à l'aide d'un spectromètre diélectrique à la fréquence 50,02Hz. Pour assurer le contact électrique, l'échantillon sous forme de plaque moulé par compression est recouvert sur ses deux faces par une couche d'argent.The evaluation of the PTC effect is done using a dielectric spectrometer at the frequency 50.02 Hz. To ensure electrical contact, the sample in the form of a compression molded plate is covered on both sides by a layer of silver.
Pour chaque test, l'échantillon est soumis à deux chauffes de 3°C/min. La première va de -200C à 165°C et la deuxième de -20°C à 1800C. Exemple 1. On prépare diverses compositions selon l'invention selon le procédé décrit ci- dessus, avec des teneurs en nanotubes variables, de 0 à 4%.For each test, the sample is subjected to two heatings of 3 ° C / min. The first is from -20 ° C. to 165 ° C. and the second from -20 ° C. to 180 ° C. EXAMPLE 1 Various compositions according to the invention are prepared according to the process described above, with varying contents of nanotubes , from 0 to 4%.
Au préalable, une analyse de la résistivité du mélange PVDF/nanotube a été entreprise pour rechercher le seuil de percolation. Les résultats obtenus sont donnés dans la figure N°l et le tableau N°l . Le seuil de percolation peut être estimé à 0,75%.
Tableau 1Beforehand, an analysis of the resistivity of the PVDF / nanotube mixture was undertaken to find the percolation threshold. The results obtained are given in FIG. 1 and Table No. 1. The percolation threshold can be estimated at 0.75%. Table 1
Pour étudier l'effet PTC, nous avons choisi des compositions de part et d'autre de ce seuil à savoir 0,5, 1 et 2% de nanotubes. Ces compositions sont référencées IA, IB et IC.To study the PTC effect, we chose compositions on either side of this threshold namely 0.5, 1 and 2% of nanotubes. These compositions are referenced IA, IB and IC.
Exemple 2 (comparatif).Example 2 (comparative).
On prépare une composition selon l'art antérieur selon la composition suivante: 70,4% d'une composition organique à base de PVDF 720 17,6% graphite 12% noir de carboneA composition according to the prior art is prepared according to the following composition: 70.4% of an organic composition based on PVDF 720 17.6% graphite 12% carbon black
Résultats des essais.Results of the tests.
La Figure 2 montre l'effet de résistivité constante en fonction de la température, avec une concentration de nanotubes en dessous du seuil de percolation.Figure 2 shows the effect of constant resistivity as a function of temperature, with a concentration of nanotubes below the percolation threshold.
La Figure 3 montre l'effet PTC de l'exemple de référence en comparaison des compositions utilisées dans 1 ' invention.Figure 3 shows the PTC effect of the reference example compared to the compositions used in the invention.
A partir des résultats montrés dans les courbes des figures 2 et 3, on voit bien l'effet PTC de l'exemple de référence à savoir l'augmentation de la résistivité en fonction de la température.From the results shown in the curves of FIGS. 2 and 3, the PTC effect of the reference example, namely the increase of the resistivity as a function of the temperature, is clearly visible.
Ainsi les compositions de l'invention n'ont pas d'effet PTC et ce que l'on soit avant ou après le seuil de percolation.Thus the compositions of the invention have no PTC effect and what is before or after the percolation threshold.
Nous obtenons donc des compositions dont la résistivité électrique est indépendante de la température.We thus obtain compositions whose electrical resistivity is independent of the temperature.
Cette constance de la résistivité électrique est maintenue sur toute la gamme de variation de la température jusqu'à la fusion de la matrice polymère. De plus cet effet de résistivité constante est conjugué avec un très faible taux de percolation.
This constancy of the electrical resistivity is maintained over the entire range of temperature variation until the polymer matrix melts. In addition, this constant resistivity effect is conjugated with a very low rate of percolation.
Claims
1. Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice ayant une résistivité électrique insensible à la température, la composition organique comprenant au moins un matériau polymère choisi parmi a. Le groupe des résines thermoplastiques constitué par les résines: i. acrylonitrile-butadiène-styrène (ABS), ii. acrylonitrile-éthylène/propylène-styrène (AES), iii. méthylméthacrylate-butadiène-styrène (MBS), iv. acrylonitrile-butadiène-méthybnéthacrylate-styrène (ABMS), v. acrylonitrile-n-butylacrylate-styrène (AAS), b. les gommes de polystyrène modifié ; c. les résines de i. polystyrène, polyméthyl-méthacrylate, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfîde ; d. les résines : i. halogénées, fluorées ou chlorées, siliconées, polybenzimidazole ; e. Le groupe des résines thermodurcissables constitué par les résines à base de phénol, urée, mélamine, xylène, diallylphthalate, époxy, aniline, furane, polyuréthane ; f. Le groupe des élastomères thermoplastiques constitué des élastomères de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co-polymères bloc styrène-isoprène-styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide, les élastomères thermoplastiques de type polybutadiène comme les résines 1,2-polybutadiène ou trans-l,4-polybutadiène; les polyéthylène chlorés, les élastomères thermo-plastiques de type fluorés, les polyéthers esters et les polyéthers amides ; g. Le groupe des polymères solubles dans l'eau constitué des polymères cellulosiques, les polyélectrolytes, les polymères ioniques, les polymères acrylates, les polymères d' acide acrylique, la gomme arabique, les poly (vinyl pyrrolidone), poly (vinyl-alcool), poly (acide acrylique), poly1. Use of carbon nanotubes for the manufacture of a conductive organic composition having a temperature-insensitive electrical resistivity, the organic composition comprising at least one polymeric material selected from a. The group of thermoplastic resins consisting of resins: i. acrylonitrile-butadiene-styrene (ABS), ii. acrylonitrile-ethylene / propylene-styrene (AES), iii. methylmethacrylate-butadiene-styrene (MBS), iv. acrylonitrile-butadiene-methylbeta-styrene-styrene (ABMS), ca. acrylonitrile-n-butylacrylate-styrene (AAS), b. modified polystyrene gums; vs. the resins of i. polystyrene, polymethyl methacrylate, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide; d. the resins: i. halogenated, fluorinated or chlorinated, silicone, polybenzimidazole; e. The group of thermosetting resins consisting of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane; f. The group of thermoplastic elastomers consisting of styrene-type elastomers such as styrene-butadiene-styrene block co-polymers or styrene-isoprene-styrene block co-polymers or their hydrogenated form, elastomers of PVC, urethane, polyester, polyamide type, thermoplastic elastomers of polybutadiene type such as 1,2-polybutadiene or trans-1,4-polybutadiene resins; chlorinated polyethylene, fluoro-type thermoplastic elastomers, polyether esters and polyether amides; boy Wut. The group of water soluble polymers consisting of cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, acrylic acid polymers, gum arabic, poly (vinyl pyrrolidone), poly (vinyl alcohol), poly (acrylic acid), poly
(acide méthacrylique), sodium polyacrylate, polyacrylamide, poly (éthylène oxide), polyéthylène glycol, poly (éthylène formamide), polyhydroxyéther, poly (vinyl oxazolidinone), méthyl cellulose, éthyl cellulose, carboxyméthyl cellulose, éthyl (hydroxyéthyl) cellulose, sodium polyacrylate, leurs copolymères, et des mélanges de ceux-ci ; h. Le groupe constitué par les polystyrène sulfonate (PSS), poly (1-vinyl pyrrolidone-co-vinyl acétate), poly(l- vinyl pyrrolidone-co- acide acrylique), poly (1-vinylpyrrolidone-co-dimethylaminoéthyl méthacrylate), polyvinyl sulfate, poly (sodium styrène acide sulfonique- co-acide maleique), dextran, dextran sulfate, gélatine, sérum albumine bovine, poly (méthyl méthacrylate-co-éthyl acrylate), polyallyl aminé, et leurs combinaisons.(methacrylic acid), sodium polyacrylate, polyacrylamide, polyethylene oxide, polyethylene glycol, poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate, their copolymers, and mixtures thereof; h. The group consisting of polystyrene sulfonate (PSS), poly (1-vinylpyrrolidone-co-vinyl acetate), poly (1-vinylpyrrolidone-co-acrylic acid), poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate), polyvinyl sulfate, poly (sodium styrene sulfonic acid co-maleic acid), dextran, dextran sulfate, gelatin, bovine serum albumin, poly (methyl methacrylate-co-ethyl acrylate), polyallyl amino, and combinations thereof.
2. Utilisation selon la revendication 1 dans laquelle la composition organique comprend un polymère halogène.The use of claim 1 wherein the organic composition comprises a halogenated polymer.
3. Utilisation selon la revendication 2 dans laquelle le polymère halogène est une résine fluorée.3. Use according to claim 2 wherein the halogenated polymer is a fluororesin.
4. Utilisation selon la revendication 3 dans laquelle la résine fluorée est le fluorure de polyvinylidène (PVDF).4. Use according to claim 3 wherein the fluororesin is polyvinylidene fluoride (PVDF).
5. Utilisation selon la revendication 2 dans laquelle le polymère halogène est une résine chlorée.5. Use according to claim 2 wherein the halogenated polymer is a chlorinated resin.
6. Utilisation selon la revendication 5 dans laquelle la résine chlorée est le chlorure de polyvinyle (PVC).6. Use according to claim 5 wherein the chlorinated resin is polyvinyl chloride (PVC).
7. Utilisation selon l'une des revendications 1 à 6 dans laquelle la composition organique conductrice a de plus une conductivité thermique insensible à la température.7. Use according to one of claims 1 to 6 wherein the conductive organic composition further has a thermal conductivity insensitive to temperature.
8. Utilisation selon l'une des revendications 1 à 7 dans laquelle la composition comprend une ou plusieurs charges électroconductrices dont au moins une charge comprend des nanotubes de carbone ayant un rapport de forme (L/D) supérieur ou égal à 5 et de préférence supérieur ou égale à 50 et avantageusement supérieur ou égal à 100.8. Use according to one of claims 1 to 7 wherein the composition comprises one or more electroconductive charges of which at least one filler comprises carbon nanotubes having a shape ratio (L / D) greater than or equal to 5 and preferably greater than or equal to 50 and advantageously greater than or equal to 100.
9. Utilisation selon l'une des revendications 1 à 8 dans laquelle le pourcentage en poids de nanotubes de carbone dans la composition est inférieur à 30%, de préférence compris entre 0,01 et 20%, et avantageusement entre 0,1 et 15%. 9. Use according to one of claims 1 to 8 wherein the weight percentage of carbon nanotubes in the composition is less than 30%, preferably between 0.01 and 20%, and preferably between 0.1 and 15. %.
10. Utilisation selon l'une des revendications 1 à 9 dans laquelle les nanotubes de carbone ont un diamètre compris entre 0,4 et 50 nm et une longueur comprise 100 et 100000 fois leur diamètre.10. Use according to one of claims 1 to 9 wherein the carbon nanotubes have a diameter between 0.4 and 50 nm and a length of 100 and 100 000 times their diameter.
11. Utilisation selon l'une des revendications 1 à 10 dans laquelle les nanotubes de carbone sont sous forme multi-parois, leur diamètre est compris entre 10 et 30 nm et leur longueur est supérieure à 0,5 micron.11. Use according to one of claims 1 to 10 wherein the carbon nanotubes are in multi-wall form, their diameter is between 10 and 30 nm and their length is greater than 0.5 micron.
12. Utilisation selon l'une des revendications 1 à 11 dans laquelle la composition organique a un seuil de percolation allant de 0.01 et 5%.12. Use according to one of claims 1 to 11 wherein the organic composition has a percolation threshold ranging from 0.01 and 5%.
13. Utilisation selon l'une des revendications 1 à 12 dans laquelle la composition organique. comprend de plus un ou plusieurs matériaux macromoléculaires choisis parmi les liquides tels que les huiles, les graisses telles que celle utilisées pour la lubrification, les formulations liquides à base d'eau ou solvants tels que les adhésifs, les peintures et les vernis.13. Use according to one of claims 1 to 12 wherein the organic composition. further comprises one or more macromolecular materials selected from liquids such as oils, greases such as those used for lubrication, liquid formulations based on water or solvents such as adhesives, paints and varnishes.
14. Utilisation selon l'une quelconque des revendications 1 à 13 dans les domaines de l'emballage de composants électroniques, la fabrication de conduites d'essence (fuel line), les revêtements ou coating antistatiques, les thermistors, les électrodes pour supercapacités, les fibres de renfort mécaniques, les fibres textile, les formulations de caoutchouc ou d'élastomère, les joints, les écrans aux ondes radiofréquences et ondes électromagnétiques.14. Use according to any one of claims 1 to 13 in the fields of the packaging of electronic components, the manufacture of gasoline lines (fuel line), antistatic coatings or coating, thermistors, electrodes for supercapacities, mechanical reinforcing fibers, textile fibers, rubber or elastomer formulations, seals, radiofrequency wave and electromagnetic wave screens.
15. Composition organique conductrice ayant une résistivité électrique insensible à la température, comprenant une quantité jusque 30% en poids, par rapport au poids de la composition, de nanotubes de carbone, dont le diamètre est compris entre 0,4 et 50 nm, dont le rapport de forme (L/D) est supérieur à 100 et comprenant au moins un matériau polymère choisi parmi a. Le groupe des résines thermoplastiques constitué par les résines: i. acrylonitrile-butadiène-styrène (ABS), ii. acrylonitrile-éthylène/propylène-styrène (AES), iii. méthylméthacrylate-butadiène-styrène (MBS), iv. acrylonitrile-butadiène-méthylméthacrylate-styrène (ABMS), v. acrylonitrile-n-butylacrylate-styrène (AAS), b. les gommes de polystyrène modifié ; c. les résines de i. polystyrène, polyméthyl-méthacrylate, chlorure de polyvinyle, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfîde ; d. les résines : i. halogénées fluorées ou chlorées, siliconées, polybenzimidazole ; e. Le groupe des résines thermodurcissables constitué par les résines à base de phénol, urée, mélamine, xylène, diallylphthalate, époxy, aniline, furane, polyuréthane ; f. Le groupe des élastomères thermoplastiques constitué des élastomères de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co-polymères bloc styrène-isoprène-styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide, les élastomères thermoplastiques de type polybutadiène comme les résines 1,2-polybutadiène ou trans-l,4-polybutadiène; les polyéthylène chlorés, les élastomères thermo-plastiques de type fluorés, les polyéthers esters et les polyéthers amides ; g. Le groupe des polymères solubles dans l'eau constitué des polymères cellulosiques, les polyélectrolytes, les polymères ioniques, les polymères acrylates, les polymères d' acide acrylique, la gomme arabique, les poly15. A conductive organic composition having a temperature insensitive electrical resistivity, comprising an amount up to 30% by weight, relative to the weight of the composition, of carbon nanotubes, whose diameter is between 0.4 and 50 nm, of which the aspect ratio (L / D) is greater than 100 and comprising at least one polymeric material selected from a. The group of thermoplastic resins consisting of resins: i. acrylonitrile-butadiene-styrene (ABS), ii. acrylonitrile-ethylene / propylene-styrene (AES), iii. methylmethacrylate-butadiene-styrene (MBS), iv. acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS), ca. acrylonitrile-n-butylacrylate-styrene (AAS), b. modified polystyrene gums; vs. the resins of i. polystyrene, polymethyl methacrylate, polyvinyl chloride, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulfone, polyphenylenesulphide; d. the resins: i. fluorinated or chlorinated halogenated, silicone, polybenzimidazole; e. The group of thermosetting resins consisting of resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane; f. The group of thermoplastic elastomers consisting of styrene-type elastomers such as styrene-butadiene-styrene block co-polymers or styrene-isoprene-styrene block co-polymers or their hydrogenated form, elastomers of PVC, urethane, polyester, polyamide type, thermoplastic elastomers of polybutadiene type such as 1,2-polybutadiene or trans-1,4-polybutadiene resins; chlorinated polyethylene, fluoro-type thermoplastic elastomers, polyether esters and polyether amides; boy Wut. The group of water-soluble polymers consisting of cellulosic polymers, polyelectrolytes, ionic polymers, acrylate polymers, acrylic acid polymers, gum arabic, polyesters
(vinyl pyrrolidone), poly (vinyl-alcool), poly (acide acrylique), poly(vinyl pyrrolidone), poly (vinyl-alcohol), poly (acrylic acid), poly
(acide méthacrylique), sodium polyacrylate, polyacrylamide, poly(methacrylic acid), sodium polyacrylate, polyacrylamide, poly
(éthylène oxide), polyéthylène glycol, poly (éthylène formamide), polyhydroxyéther, poly (vinyl oxazolidinone), méthyl cellulose, éthyl cellulose, carboxyméthyl cellulose, éthyl (hydroxyéthyl) cellulose, sodium polyacrylate, leurs copolymères, et des mélanges de ceux-ci ; h. Le groupe constitué par les polystyrène sulfonate (PSS), poly (1-vinyl pyrrolidone-co-vinyl acétate), poly(l- vinyl pyrrolidone-co- acide acrylique), poly (1-vinylpyrrolidone-co-dimethylaminoéthyl méthacryîate), polyvinyl sulfate, poly (sodium styrène acide sulfonique- co-acide maleique), dextran, dextran sulfate, gélatine, sérum albumine bovine, poly (méthyl méthacrylate-co-éthyl acrylate), polyallyl aminé, et leurs combinaisons.(ethylene oxide), polyethylene glycol, poly (ethylene formamide), polyhydroxyether, poly (vinyl oxazolidinone), methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethyl (hydroxyethyl) cellulose, sodium polyacrylate, their copolymers, and mixtures thereof ; h. The group consisting of polystyrene sulfonate (PSS), poly (1-vinylpyrrolidone-co-vinyl acetate), poly (1-vinylpyrrolidone-co-acrylic acid), poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate), polyvinyl sulfate, poly (sodium styrene sulfonic acid co-maleic acid), dextran, dextran sulfate, gelatin, bovine serum albumin, poly (methyl methacrylate-co-ethyl acrylate), polyallyl amino, and combinations thereof.
16. Composition selon la revendication 15 comprenant au moins un polymère halogène.16. Composition according to claim 15 comprising at least one halogenated polymer.
17. Composition selon la revendication 16 dans laquelle le polymère halogène est une résine fluorée ou chlorée. 17. The composition of claim 16 wherein the halogenated polymer is a fluorinated or chlorinated resin.
18. Composition selon la revendication 17 dans laquelle la résine fluorée est le PVDF, la résine chlorée est le PVC.18. The composition of claim 17 wherein the fluororesin is PVDF, the chlorinated resin is PVC.
19. Composition selon l'une des revendications 15 à 1? dans laquelle les nanotubes de carbone ont un diamètre compris entre 10 et 30 nm et une longueur supérieure à 0,5 micron.19. Composition according to one of claims 15 to 1? wherein the carbon nanotubes have a diameter of between 10 and 30 nm and a length greater than 0.5 micron.
20. Composition l'une des revendications 15 à 19, qui a de plus une conductivité thermique insensible à la température.20. The composition of one of claims 15 to 19, which further has a thermal conductivity insensitive to temperature.
21. Composition selon l'une des revendications 15 à 20 dans laquelle le pourcentage en poids de nanotubes de carbone dans la composition est compris entre 0,1 et 20%, et de préférence entre 1 et 15%.21. Composition according to one of claims 15 to 20 wherein the weight percentage of carbon nanotubes in the composition is between 0.1 and 20%, and preferably between 1 and 15%.
22. Composition selon l'une des revendications 15 à 21, ayant un seuil de percolation allant de 0.01 et 5% en poids de nanotubes de carbone.22. Composition according to one of claims 15 to 21, having a percolation threshold ranging from 0.01 to 5% by weight of carbon nanotubes.
23. Composition selon la revendication 22 ayant un seuil de percolation 0,1 à 3% en poids de nanotubes de carbone.23. Composition according to claim 22 having a percolation threshold of 0.1 to 3% by weight of carbon nanotubes.
24. Composition selon l'une des revendications 15 à 23 dans laquelle la composition organique comprend de plus un ou plusieurs matériaux macromoléculaires choisis parmi les liquides tels que les huiles, les graisses telles que celle utilisées pour la lubrification, les formulations liquides à base d'eau ou solvants tels que les adhésifs, les peintures et les vernis. 24. Composition according to one of claims 15 to 23 wherein the organic composition further comprises one or more macromolecular materials selected from liquids such as oils, greases such as that used for lubrication, liquid formulations based on water or solvents such as adhesives, paints and varnishes.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0500075A FR2880353B1 (en) | 2005-01-05 | 2005-01-05 | USE OF CARBON NANOTUBES FOR THE MANUFACTURE OF A CONDUCTIVE ORGANIC COMPOSITION AND APPLICATIONS THEREOF |
PCT/FR2006/000016 WO2006072741A1 (en) | 2005-01-05 | 2006-01-05 | Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1836244A1 true EP1836244A1 (en) | 2007-09-26 |
Family
ID=34955147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06709033A Withdrawn EP1836244A1 (en) | 2005-01-05 | 2006-01-05 | Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090121196A1 (en) |
EP (1) | EP1836244A1 (en) |
JP (1) | JP2008527064A (en) |
KR (1) | KR20070092725A (en) |
CN (1) | CN101098921A (en) |
CA (1) | CA2593476A1 (en) |
FR (1) | FR2880353B1 (en) |
WO (1) | WO2006072741A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140087185A1 (en) * | 2008-07-17 | 2014-03-27 | Katholieke Universiteit Leuven | Method for the preparation of a reinforced thermoset polymer composite |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4528223B2 (en) * | 2005-07-25 | 2010-08-18 | 本田技研工業株式会社 | Heat transport fluid |
JP4878832B2 (en) * | 2005-12-26 | 2012-02-15 | 株式会社プライムポリマー | Molded body and manufacturing method thereof |
EP2066743B1 (en) * | 2006-09-04 | 2021-12-15 | Oy Morphona Ltd. | Functionalized cellulose - carbon nanotube nanocomposites |
WO2008046165A2 (en) * | 2006-10-18 | 2008-04-24 | Nanocyl S.A. | Anti-adhesive and antistatic composition |
FR2907442B1 (en) * | 2006-10-19 | 2008-12-05 | Arkema France | CONDUCTIVE COMPOSITE MATERIAL BASED ON THERMOPLASTIC POLYMER AND CARBON NANOTUBE |
JP4528324B2 (en) * | 2007-01-11 | 2010-08-18 | 本田技研工業株式会社 | Heat transport fluid and manufacturing method thereof |
FR2907443B1 (en) * | 2007-02-20 | 2012-04-20 | Arkema France | CONDUCTIVE COMPOSITE MATERIAL BASED ON THERMOPLASTIC POLYMER AND CARBON NANOTUBE |
JP5339284B2 (en) * | 2008-03-04 | 2013-11-13 | リンテック株式会社 | Adhesive composition and adhesive sheet |
JP5390881B2 (en) * | 2008-03-04 | 2014-01-15 | リンテック株式会社 | Adhesive composition and adhesive sheet |
CN101239714B (en) * | 2008-03-06 | 2010-06-09 | 广州大学 | Ethoxyl cellulose-carbon nano-tube derivatives and preparation method thereof |
US8018675B2 (en) * | 2008-03-06 | 2011-09-13 | Tdk Corporation | Thin film magnetic head |
GB2464085A (en) * | 2008-06-07 | 2010-04-07 | Hexcel Composites Ltd | Improved Conductivity of Resin Materials and Composite Materials |
FR2933426B1 (en) * | 2008-07-03 | 2010-07-30 | Arkema France | PROCESS FOR PRODUCING COMPOSITE CONDUCTIVE FIBERS, FIBERS OBTAINED BY THE PROCESS AND USE OF SUCH FIBERS |
CN101328276B (en) * | 2008-07-24 | 2010-12-08 | 同济大学 | Preparation of single wall carbon nanotube-polymer conductive composite film |
KR101036148B1 (en) * | 2008-07-30 | 2011-05-23 | 한국과학기술원 | Method for fabricating carbon nanotube-metal-polymer nanocomposites |
JP5557992B2 (en) * | 2008-09-02 | 2014-07-23 | 国立大学法人北海道大学 | Conductive fiber, conductive yarn, fiber structure having carbon nanotubes attached thereto, and manufacturing method thereof |
US8063730B2 (en) * | 2008-09-30 | 2011-11-22 | Tsinghua University | Thermistor and electrical device employed with same |
JP5603059B2 (en) | 2009-01-20 | 2014-10-08 | 大陽日酸株式会社 | Composite resin material particles and method for producing the same |
FR2943349B1 (en) | 2009-03-23 | 2012-10-26 | Arkema France | PROCESS FOR PREPARING ELASTOMERIC COMPOSITE MATERIAL HAVING HIGH NANOTUBE CONTENT |
FR2957910B1 (en) * | 2010-03-23 | 2012-05-11 | Arkema France | MASTER MIXTURE OF CARBON NANOTUBES FOR LIQUID FORMULATIONS, PARTICULARLY IN LI-ION BATTERIES |
CN101891930B (en) * | 2010-08-17 | 2012-01-04 | 上海交通大学 | Carbon nano tube-containing sulfur-based composite cathode material and preparation method thereof |
US8968605B2 (en) | 2010-09-17 | 2015-03-03 | Lg Hausys, Ltd. | Conductive polymer composition for PTC element with decreased NTC characteristics, using carbon nanotube |
JP5777323B2 (en) * | 2010-11-01 | 2015-09-09 | 大阪瓦斯株式会社 | Nanocarbon-containing coating composition and coating film formed thereby |
CN103459313A (en) * | 2010-12-14 | 2013-12-18 | 钢筋分子设计有限责任公司 | Improved elastomer formulations |
DE102011009469B4 (en) * | 2011-01-21 | 2013-04-18 | Innovent E.V. | Process for the preparation of polymer-functionalized carbon nanotubes |
US9183966B2 (en) | 2011-02-07 | 2015-11-10 | Taiyo Nippon Sanso Corporation | Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same |
KR101285765B1 (en) * | 2011-03-15 | 2013-07-19 | 천만식 | Joining Material of Polyethylene Pipe |
WO2012124977A2 (en) * | 2011-03-15 | 2012-09-20 | Park Woo Il | Joining material for polyethylene pipe, and joining method using same |
KR101285764B1 (en) * | 2011-03-15 | 2013-07-19 | 천만식 | Joining Method of Polyethylene Pipe |
FR2975219B1 (en) * | 2011-05-11 | 2014-10-31 | Arkema France | METHOD FOR PRODUCING AN ELECTROMAGNETIC WAVE RADIATION ABSORBING MATERIAL, COMPRISING CARBON NANOPARTICLES, AND MATERIAL OBTAINED BY THE PROCESS |
FI20110232L (en) * | 2011-07-05 | 2013-01-11 | Hafmex Oy | Heated wind turbine rotor |
US9484123B2 (en) * | 2011-09-16 | 2016-11-01 | Prc-Desoto International, Inc. | Conductive sealant compositions |
US20130082214A1 (en) * | 2011-09-16 | 2013-04-04 | Prc-Desoto International, Inc. | Conductive sealant compositions |
CN103160056B (en) * | 2011-12-15 | 2015-12-02 | 中国石油天然气股份有限公司 | Preparation method of high-performance butadiene-styrene-isoprene powder polymer |
WO2013107535A1 (en) * | 2012-01-20 | 2013-07-25 | Total Research & Technology Feluy | Polymer composition comprising carbon nanotubes |
US9879131B2 (en) | 2012-08-31 | 2018-01-30 | Soucy Techno Inc. | Rubber compositions and uses thereof |
EP2892859A2 (en) | 2012-09-04 | 2015-07-15 | OCV Intellectual Capital, LLC | Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media |
KR101837316B1 (en) * | 2013-07-08 | 2018-03-09 | 도요보 가부시키가이샤 | Electrically conductive paste |
CN105358627A (en) * | 2013-08-29 | 2016-02-24 | 住友理工株式会社 | Flexible conductive material and transducer |
CA2925928C (en) | 2013-10-18 | 2018-06-19 | Soucy Techno Inc. | Rubber compositions and uses thereof |
CN103709853B (en) * | 2013-12-19 | 2016-08-31 | 深圳市摩码科技有限公司 | A kind of electric conductive dustproof coating and preparation method thereof |
US9663640B2 (en) | 2013-12-19 | 2017-05-30 | Soucy Techno Inc. | Rubber compositions and uses thereof |
KR101635171B1 (en) * | 2014-04-18 | 2016-07-11 | 건국대학교 산학협력단 | Electronic textile and producing method thereof |
CN104087188B (en) * | 2014-05-26 | 2015-09-02 | 东莞市纳利光学材料有限公司 | A kind of anti-electromagnetic-radiation protective membrane and preparation method thereof |
CN104017346B (en) * | 2014-06-07 | 2016-06-22 | 西南交通大学 | A kind of melt blending prepares the method for high-ductility blend polymer alloy |
KR102046880B1 (en) | 2016-04-25 | 2019-11-20 | 주식회사 엘지화학 | Electroconductive carbon composite material, molded article and process for preparing thereof |
CN109790424B (en) * | 2016-09-23 | 2020-12-08 | E.I.内穆尔杜邦公司 | Conductive adhesive |
CN111050884A (en) | 2017-09-01 | 2020-04-21 | 夏普株式会社 | Moisture-absorbing material |
JP7003141B2 (en) | 2017-09-04 | 2022-01-20 | シャープ株式会社 | Humidity control device |
CN108441088A (en) * | 2018-03-01 | 2018-08-24 | 苏州甫众塑胶有限公司 | A kind of anticorrosion and antistatic coating material and preparation method thereof |
CN109546160B (en) * | 2018-11-23 | 2021-01-05 | 中国科学院大连化学物理研究所 | Composite bipolar plate for fuel cell and preparation method and application thereof |
CN109627855A (en) * | 2018-12-31 | 2019-04-16 | 方少章 | A kind of led heat radiation coating and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1052654B1 (en) * | 1999-05-13 | 2004-01-28 | Union Carbide Chemicals & Plastics Technology Corporation | Cable semiconducting shield |
US7265174B2 (en) * | 2001-03-22 | 2007-09-04 | Clemson University | Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions |
CN1543399B (en) * | 2001-03-26 | 2011-02-23 | 艾考斯公司 | Coatings containing carbon nanotubes |
FR2826646B1 (en) * | 2001-06-28 | 2004-05-21 | Toulouse Inst Nat Polytech | PROCESS FOR THE SELECTIVE MANUFACTURE OF ORDINATED CARBON NANOTUBES IN FLUIDIZED BED |
US6783702B2 (en) * | 2001-07-11 | 2004-08-31 | Hyperion Catalysis International, Inc. | Polyvinylidene fluoride composites and methods for preparing same |
US20030164427A1 (en) * | 2001-09-18 | 2003-09-04 | Glatkowski Paul J. | ESD coatings for use with spacecraft |
EP1349179A1 (en) * | 2002-03-18 | 2003-10-01 | ATOFINA Research | Conductive polyolefins with good mechanical properties |
EP1449885B1 (en) * | 2003-02-18 | 2013-10-02 | Arkema France | Use of carbon nanotubes in compositions based on polyamides and polyolefins |
US20040211942A1 (en) * | 2003-04-28 | 2004-10-28 | Clark Darren Cameron | Electrically conductive compositions and method of manufacture thereof |
US20040262581A1 (en) * | 2003-06-27 | 2004-12-30 | Rodrigues David E. | Electrically conductive compositions and method of manufacture thereof |
-
2005
- 2005-01-05 FR FR0500075A patent/FR2880353B1/en not_active Expired - Fee Related
-
2006
- 2006-01-05 US US11/813,102 patent/US20090121196A1/en not_active Abandoned
- 2006-01-05 WO PCT/FR2006/000016 patent/WO2006072741A1/en active Application Filing
- 2006-01-05 CA CA002593476A patent/CA2593476A1/en not_active Abandoned
- 2006-01-05 CN CNA2006800018530A patent/CN101098921A/en active Pending
- 2006-01-05 EP EP06709033A patent/EP1836244A1/en not_active Withdrawn
- 2006-01-05 KR KR1020077015453A patent/KR20070092725A/en not_active Application Discontinuation
- 2006-01-05 JP JP2007548883A patent/JP2008527064A/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2006072741A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140087185A1 (en) * | 2008-07-17 | 2014-03-27 | Katholieke Universiteit Leuven | Method for the preparation of a reinforced thermoset polymer composite |
Also Published As
Publication number | Publication date |
---|---|
FR2880353A1 (en) | 2006-07-07 |
US20090121196A1 (en) | 2009-05-14 |
JP2008527064A (en) | 2008-07-24 |
CN101098921A (en) | 2008-01-02 |
WO2006072741A1 (en) | 2006-07-13 |
KR20070092725A (en) | 2007-09-13 |
FR2880353B1 (en) | 2008-05-23 |
CA2593476A1 (en) | 2006-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006072741A1 (en) | Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition | |
Pötschke et al. | Rheological behavior of multiwalled carbon nanotube/polycarbonate composites | |
EP1885790B1 (en) | Method for dispersing carbon nanotubes in a polymer matrix | |
CA1273484A (en) | Electroconductive thermoplastic material | |
EP1813649B1 (en) | Electroconductive masterbatch and resin composition including the same | |
EP2081989A1 (en) | Conducting composite material containing a thermoplastic polymer and carbon nanotubes | |
JP5466952B2 (en) | Processing and performance aids for carbon nanotubes | |
CN101421338A (en) | Conductive carbon nanotube-polymer composite | |
CA2853397A1 (en) | Method for preparing a paste-like composition comprising carbon-based conductive fillers | |
TW201315763A (en) | Nanotube and finely milled carbon fiber polymer composite compositions and methods of making | |
Hermant et al. | Probing the cooperative nature of the conductive components in polystyrene/poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate)− single-walled carbon nanotube composites | |
Leyva Egurrola et al. | Electrical, mechanical, and piezoresistive properties of carbon nanotube–polyaniline hybrid filled polydimethylsiloxane composites | |
EP2622017A2 (en) | Novel composition for conductive transparent film | |
CA2364215A1 (en) | Fluorinated polymer-based conductive composition | |
Park et al. | Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites | |
Li et al. | Improving dispersion of multiwalled carbon nanotubes in polyamide 6 composites through amino‐functionalization | |
FR3079521A1 (en) | POLYOLEFIN THERMOPLASTIC COMPOSITION FOR PRODUCING OBJECTS OF PERMANENT ANTISTATIC PROPERTIES. | |
WO2007116014A2 (en) | Aqueous emulsion comprising a functionalized polyolefin and carbon nanotubes | |
EP3737640A1 (en) | Agglomerated solid material made from disintegrated carbon nanotubes | |
Yu et al. | Fabrication and characterization of carbon nanotube reinforced poly (methyl methacrylate) nanocomposites | |
EP3853936A1 (en) | Compositions for bipolar plates and methods for manufacturing said compositions | |
Huang et al. | The effects of plasticizers on carbon black-filled elastomers | |
Ide Seyni | Diblock carbon nanotubes compatibilized immiscible polymer blends | |
EP4374437A1 (en) | Method for manufacturing bipolar plates | |
FR2784494A1 (en) | ADAPTIVE MATERIAL WITH TERNARY COMPOSITION FOR USE IN ELECTRICAL CABLES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070806 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARKEMA FRANCE |
|
17Q | First examination report despatched |
Effective date: 20071112 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110128 |