CA1273484A - Electroconductive thermoplastic material - Google Patents

Electroconductive thermoplastic material

Info

Publication number
CA1273484A
CA1273484A CA000497802A CA497802A CA1273484A CA 1273484 A CA1273484 A CA 1273484A CA 000497802 A CA000497802 A CA 000497802A CA 497802 A CA497802 A CA 497802A CA 1273484 A CA1273484 A CA 1273484A
Authority
CA
Canada
Prior art keywords
carbon
proportion
weight
resistivity
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000497802A
Other languages
French (fr)
Inventor
Rene Delphin
Bernard Regnaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Occidental Chemical Corp
Original Assignee
Occidental Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Occidental Chemical Corp filed Critical Occidental Chemical Corp
Application granted granted Critical
Publication of CA1273484A publication Critical patent/CA1273484A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2707/00Use of elements other than metals for preformed parts, e.g. for inserts
    • B29K2707/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Conductive Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Un matériau plastique conducteur à base de résine thermoplastique et de charges carbonées, particuliaires et fibreuses. Les charges carbonées particuliaires se trouvent dans une proportion comprise entre 30% et 50%, tandis que les charges carbonées fibreuses se trouvent dans une proportion inférieure à 10%.A conductive plastic material based on thermoplastic resin and carbon, particulate and fibrous fillers. The particulate carbonaceous fillers are found in a proportion of between 30% and 50%, while the fibrous carbonaceous fillers are found in a proportion of less than 10%.

Description

~273a~8~

Matériau thermoplastique conducteur de l'électricité
La présente invention concerne un matériau thermoplastique très conducteur de l'électricité, utilisable, par exemple, dans les ioints conducteurs, dans les éléments bipolaires de piles à combustible, dans d'autres dispositifs électrochimiques, etc...
Un tel matériau doit présenter simultanément plusieurs caractéris-tiques :
- une résistivité électrique aussi faible que possible comprise, par exemple, entre quelques ohms. centimètre et quelques dixièmes d'ohms.
centimètre ;
- une bonne homogénéité de composition et de caractéristiques, notamment électriques et mécaniques ;
- une absence d'additifs nuisibles aux catalyseurs éventuellement employés dans les dispositifs électrochimiques concernés ;
- une inertie chimique suffisante vis-à-vis des fluides pouvant circuler dans ces dispositifs électrochim.ques, aux températures de travail uti-lisées ;
- un prix de revient très bas ;
- une aptitude à la mise en oeuvre industrielle économique par des opérations d'extruYion, calandrage, thermocompression, injection, atc... en vue d'obtenir en grandes séries des pièces ayant la forme générale de plaques minces de grande surface : épaisseurs voisines du millimètre ; surface de plusieurs décimètres carrés pouvant atteindre le mètre carré ;
- des caractéristiques mécaniques telles que les plaques ainsi réalisées avec ce matériau ne soient pas fragiles mais possèdent une résistance à
la flexion, à froid et à chaud, compatible avec les méthodes d'assemblage des dispositifs électrochimiques ou autres dont elles peuvent constituer des éléments ;
- une étanchéité su~fisantP aux gaz et aux liquides pour les épaisseurs de pièces indiquées ci-dessus ;
- une stabilité des caractéristiques dans le temps compatible avec les utilisations envisagées.
En ce qui concerne la résistivité, il est possible d'obtenir un matériau ~;~734~

satisfaisant en incorporant au matériau thermoplastique des charges métalliques ; mais le coût d'un tel matériau est très élevé et en outre les charges métal~iques peuvent ne pas être chimiquement ir.ertes vis-à-vis du milieu environnant. Il est donc plus avantageux pour ces raisons de mettre en oeuvre des charges carbonée3, beaucoup moins coûteuses, et dont la réactivité est généralement beaucoup plus faible.
De nombreux matériaux thermoplastiques conducteurs de l'électri-cité contenant des charges carbonées ont déjà été réalisés et, parfois, commercialisés comme en témoignent les articles suivants :
- Electrical Conduction Mechanism in carbon filled polymers (IEEE
Transactions May/June 1971 ; pages 913 à 916) ;
- Modern Plastics Intarnational : March 1976 ; pages 45 à 47 ;
- JEE ; Novembre 1978 pages 42 à 45 ;
- Modern Plastics International : August 1983; pages 38 à 40;
- Research and Development : May 1984; pages 118 à 123;
- Adhesives Age : June 1984; pages 17 à 20.
Aucun des produits décrits dans ces articles ne présente l'ensemble des caractéristiques précitees.
Le tableau I ci-après résume les résistivités électriques des pro-20 duits commerciaux actuellement connus ainsi que quelques renseignementsconcernant leur fabrication, le taux de charge carbonée, et l'indice de viscosité à chaud (Melt Flow Index) qui conditionne leur mise en oeuvre économique pour réaliser des pièces minces de grande surface.

3o ~;Z734~3~

TABLEAU I
_ _ REFERENCEPROCEDE RESISTIVITE CONCENTRATION MELT INDEX
type de machine (~1_cm) (%) (g/10 mn) _ DARLING Comélangeur ouvert25,4 64 DARLING Co 1- " 7,6 7o DARLING Co .. .. 5,1 76 .

Esso Research 57 39 (1) Esso Research 17 32 (1) L N P 5 à 20 40 (2) 15 UNIROYAL (TPR) 150 CAPREZ 9,3 30 14,4 à 230 sous 21,6 Kg CAPREZ CP 6 4,5 à 230 sous 21,6 Kg 25 (NDX4769) CABELEC 0,7 5o 3o CABELEC 0,9 47 _ _ (1) : Noir de carbone Vulcan XC72*
~ 273a ~ 8 ~

Electrically conductive thermoplastic material The present invention relates to a very thermoplastic material conductor of electricity, usable, for example, in ioints conductors, in the bipolar elements of fuel cells, in other electrochemical devices, etc.
Such a material must simultaneously present several characteristics ticks:
- an electrical resistivity as low as possible understood, by example, between a few ohms. centimeter and a few tenths of an ohm.
centimeter;
- good homogeneity of composition and characteristics, in particular electrical and mechanical;
- an absence of additives harmful to the catalysts possibly employed in the electrochemical devices concerned;
- sufficient chemical inertness vis-à-vis the fluids that can circulate in these electrochemical devices, at the working temperatures used read;
- a very low cost price;
- an aptitude for economic industrial implementation by extruYion operations, calendering, thermocompression, injection, atc ... in order to obtain large series of pieces having the form general of thin plates of large surface: thicknesses close to millimeter; area of several square decimeters up to the square meter ;
- mechanical characteristics such as the plates thus produced with this material are not fragile but have resistance to bending, cold and hot, compatible with assembly methods electrochemical or other devices of which they may constitute elements ;
- a tightness su ~ fisantP to gases and liquids for thicknesses parts listed above;
- stability of characteristics over time compatible with intended uses.
Regarding resistivity, it is possible to obtain a material ~; ~ 734 ~

satisfactory by incorporating fillers into the thermoplastic material metallic; but the cost of such a material is very high and further metal charges may not be chemically ir.ertes vis-à-vis the surrounding environment. It is therefore more advantageous for these reasons to use carbon charges3, much less expensive, and whose reactivity is generally much lower.
Many thermoplastic electrically conductive materials city containing carbon charges have already been made and sometimes marketed as evidenced by the following articles:
- Electrical Conduction Mechanism in carbon filled polymers (IEEE
Transactions May / June 1971; pages 913 to 916);
- Modern Plastics Intarnational: March 1976; pages 45 to 47;
- JEE; November 1978 pages 42 to 45;
- Modern Plastics International: August 1983; pages 38 to 40;
- Research and Development: May 1984; pages 118 to 123;
- Adhesives Age: June 1984; pages 17 to 20.
None of the products described in these articles have all of the above characteristics.
Table I below summarizes the electrical resistivities of the pro-20 currently known commercial products as well as some information concerning their manufacture, the rate of carbonaceous load, and the index of hot viscosity (Melt Flow Index) which conditions their implementation economical to produce thin parts with a large surface area.

3o ~; Z734 ~ 3 ~

TABLE I
_ _ REFERENCEPROCEDE RESISTIVITY CONCENTRATION MELT INDEX
machine type (~ 1_cm) (%) (g / 10 min) _ DARLING Open mixer 25.4 64 DARLING Co 1- "7.6 7o DARLING Co .. .. 5.1 76.

Esso Research 57 39 (1) Esso Research 17 32 (1) LNP 5 to 20 40 (2) 15 UNIROYAL (TPR) 150 CAPTURE 9.3 30 14.4 to 230 under 21.6 Kg CAPREZ CP 6 4,5 to 230 under 21.6 Kg 25 (NDX4769) CABELEC 0.7 5o 3o CABELEC 0.9 47 _ _ (1): Vulcan XC72 carbon black *

(2) : Fibres de carbone * Vulcan XC72 est une marque de commerce , .

~Z73~

On constate que les faibles résistivités élsctriques obtenues par les méthodes clas~ique3 (mélangeur ouvert ou mélangeur interne de type Banbury*) le sont au prix d'un taux de charge carbonée très élevé.
Les produits ainsi obtenus ne sont pas utilisables pour l'injec-tion économique de pièces minces de grande surface du fait de leur fluidité à chaud insuffisante ou de la fragilité des objets obtenus.
Le brevet américain n 4.124.747 décrit par ailleurs un procédé
discontinu consi3tant à mélanger dans un malaxeur préchauffé de type Banbury un mélange d'un copolymère thermoplastique de propylène-éthylène et de carbone finement divisé, la proportion de carbone étant de l'ordre de 30% en poids.
Le préchauffage est de l'ordre de 100 ; le malaxage est effectué pendant une durée de l'ordre de 3 à 5 minutes.
Le matériau thermoplastique ainsi obtenu peut être extrudé sous forme de feuilles dont l'épaisseur est comprise entre 150 micron~ et 500 microns et dont la résistivité est de l'ordre de quelques ohms-centimètre. Mais sa mise en oeuvre par injection en vue d'obtenir des pièces minces et de grande surface est pratiquement impossible pour les raisons déià
indiquées ci-dessus.
Par ailleurs, la Demanderesse a réalisé un certain nombre d'essais en vue de tenter d'améliorer cette situation, en utilisant des mélangeurs ouverts ou fermés (de type Banbury*) ainsi que par mélange préalable des deux constituants à l'état de poudre dans un mélangeur ultra-rapide~ suivi d'une plastification de ce mélange dans une boudineuse. Les principaux résultats de ces essais ~ont résumés ci-dessous dans le Tableau II.

* Banbury est une marque de commerce.

1;~734~3~

TABLEAU II

REFERENCE PROCEDE RESISTI~ITE CONCENTRATION ~eL~ INDEX
type de machine enl~ cm en % en g/10 mn _ _ . ESSAI n 1 Mélangeur 0,85 47 ESSAI n 2 Mélangeur 0,87 47 ouvert ESSAI n 3 Banbury 0,43 47 0 à 230 sous 21 kg ESSAI n 4 Banbury 0,80 47 ESSAI n 5 Banbury 1 47 1 à 230 _ sous 21,6 kg En conclusion, il semble que les différents procédés utilisés jus-qu'ici ne permettent pas de réali~er un matériau suffisamment conducteur de l'électricité sans recourir à des concentrations de carbone qui entraînent un indice de fluidité à chaud beaucoup trop bas pour permettre l'in~ection de pièces minces de grande surface.
La présente invention a pour but de réaliser un matériau thermo-plastique conducteur qui présente une résistivité encore inférieure à
celle des ~atériaux précédents, c'est-à-dire de l'ordre de quelques dizièmes d'ohm-cm, et dont la fluidité à chaud soit suffisante pour que l'on puisse lui faire subir industriellement les opérations précitées, afin d'obtenir des feuille~ conductrices très minces et peu fragiles.

B~

~Z734~4 Selon la présente invention, il est prévu un matériau thermoplastique conducteur de l'électricité, caractérisé par le fait qu'il comprend un mélange de copolymère de propylène et d'ethylène, de noir de carbone dans une proportion de 30% à 50~ en poids, et d'une charge carbonée fibreuse dans une proportion comprise entre 1~ et 10% en poids, ledit matériau présentant une résistivité inférieure à 10 ohm-cm.
De préférence, la proportion de noir de carbone est comprise entre 35% et 45% en poids.
De préférence, la charge carbonée fibreuse est dans une proportion de 3% à 9% en poids.
~e manière tout-à-fait inattendue, on obtient un produit dont les caractéristiques électriques sont tout-à-fait remarquables, la conductivité électrique se trouve multipliée de plusieurs fois sa valeur.
on fabrique le matériau selon l'invention de la manière suivante:
On met en oeuvre un malaxeur à double vis, la longueur de la vis étant supérieure à vingt fois son diamètre, on introduit en continu ladite résine thermoplastique dans une première zone de ladite double vis où elle subit un compactage et un préchauffage, ladite résine passe ensuite dans une seconde zone de ladite double vis où elle subit un malaxage et une plastification, on introduit en continu des charges carbonées particu-liaires, dans une proportion de 30~ à 50% en poids, au niveau d'ùne troisième zone de la double vis pour la dispersion desdites charges, la vitesse de rotation de la double vis étant comprise entre 150 et 250 tours par minute, la température desdites zones étant située entre 165 et 300C, ledit mélange étant ensuite récupéré
à la sortie d'une tête d'extrusion; on a introduit, .), - 6a -soit en meme temps que les charges carbonées particuliai-res, soit à un autre moment, des charges carbonées fibreu-ses dans une proportion inférieure à 10% en poids.
Avantageusement on met en oeuvre une double vis S comportant une quatrième zone faisant suite à ladite troi-sième zone et destinée à réaliser un dégazage dudit mélange à une pression comprise entre la pression atmosphérique et quelques millibars.
De manière tout-à-fait inattendue, la mise en oeuvre du procédé précédent permet d'améliorer encore nota-blement le produit selon l'invention.
Le noir de carbone choisi pour le matériau de la présente invention est une charge carbonée qui est très conductrice et d'un prix de revient aussi bas que possible tout en étant facile à incorporer dans la résine. En effet, plus la densité des charges carbonées est faible, plus /

~,.. ..

~73489L

leur dispersion est bonne, mais plus l'incorporation se révèle délicate.
Des compromis sont à choisir entre un taux de charge faible avec un noir trè~ divisé et un taux de charge plus élevé avec un noir plus dense mais plu~ facile a incorporer.
Les résultat~ précités qont obtenus plus aisément si l'alimenta-tion en continu en résine thermoplastique et en charges carbonées parti-culaire~ et fibreuses est effectuée par l'intermédiaire de doseurs gravimétriques garantissant une variation du dosage inférieure ou égale a ~ 1~ de la valeur de consigne.
D'autre~ caractéristiqueq et avantages de la présente invention apparaîtront au cours de la description suivante de différents exempleA
de matériaux selon l'invention.
Dans le dessin annexé :
- la figure 1 est une vue tout à fait schématique d'un exemple de dispo-sitif pour la fabrication du matériau selon l'invention.
- la figure 2 montre la variation de la résistivité ~ ( Q am) en fonction de la concentration C (~) de charges carbonées fibreuses, d'un matériau selon l'invention (courbe F).

EXEMPLE I
On réalise un matériau de l'art antérieur en incorporant danq un mélangeur interne de type 3anbury (voir tableau II) un copolymère d'éthylène et de propylène du type vendu ~OU9 la dénomination PROPATHENE GY 702 M*, et du noir de carbonyle vendu sous la dénomination VULCAN XC 72. Le taux de noir est de 47~.
La température de préchauffage est de 100C et la température de malaxage eqt de 150C à 200C ; la durée de malaxage est de 5 à 10 minutes.
On obtient un matériau thermoplastique dont la résistivité est de 0,54 ohm-cm.
Selon l'invention, on opère dans les mêmes conditions que précédemment, en ajoutant au mélange des fibres de carbone vendueq sous la dénomination MORGANITE*type II-S.
Si l'on ajoute ces fibres dans une proportion de 3~ en poids de mélange, on obtiant une résistivité qui passe de 0,54 ohm-cm * PROPATHENE GY 702 M et MORGANITE sont des marques de commerce 127;~84 à 0,2 ohm-cm. Si l'on a~oute ces fibres dans une proportion de 6~ en poids de mélange, on obtient également une résistivité qui paqse de 0,54 ohm-c~ à 0,2 ohm-cm. L'addition de fibres apporte donc un progrès important du point de vue de la résistivité.

EXEMPLE II
On part des memes composants de base que dans l'exemple I, et on opère à l'aide d'un malaxeur 11 visible sur la figure 1, pour réaliser un matériau thermoplastique comportant des charges particulaires dans une 10proportion de 38g.
Il s'agit d'un malaxeur à double vis du type de ceux vendus sous la marque WERNER und PFLEIDERE~, la longueur de la double vis étant supérieure à vingt fois son diamètre. A titre d'exemple les malaxeurs vendus souq la référence ZSK 30*et ZSK 57*ont respectivement un diamètre 15de 30 mm et 57 mm.
La double vis est entourée de fourreaux, référencés de 1 à 10 dans la figure, et qui sont régulés comme on va le voir plus loin à des températures comprises entre 165C et 300C. La double vis est actionnée par un moteur schématiquement représenté par la boîte 20 et sa vitesse de 20rotation est comprise entre 150 tours par minute et 250 tours par minute.
Un copolymère de propylène et d'éthylène 22 dosé avec une précision de + 1% dans un doseur eravimétrique 21 est introduit par un dispositif 25 dans la première æone de la double vis entourée par le fourreau 1 ; à ce niveau la résine est compactée et préchauffée, mais il 25faut éviter toute gélification. Au niveau des fourreaux 2 et 3, la double vis réalise un malaxage et une plastification de la résine, le fourreau 2 étant régulé à 220C et le fourreau 3 à 295C. Au niveau du fourreau 4, également régulé à 295C, on introduit des charges carbonées de type noir de carbone 24. Ces charges ont été préalablement dosées à 38% en poids 30avec grande précision dans un doseur gravimétrique 23. Il se produit alors l'incorporation du noir de carbone 24 et sa dispersion dans la résine.
Le malaxage et la dispersion se poursuivent dan~ la double Vi3 au niveau des fourreaux 5 à 10, le fourreau 5 étant régulé à 2953C, les 35fourreaux 6 à 10 à 200C. Un dégazage du mélange est prévu au niveau du * WERNER UND PFLEIDERER, ZSK 30 et ZSK 57 sont des marques de comm~erce 1273~

fourreau 9, par exemple sous 55 mBars.
Le mélange obtenu passe à travers une tête d'extrusion 30 régulée à une température de l'ordre de 250C. L'extrusion s'effectue à travers une filière de dix trous présentant un diamètre de quelques millimètres chacun, le matériau à la 30rtie de la filière se trouvant à une température de l'ordre de 270C. Les joncs ainsi formés pas~ent dans un bac d'eau et sont introduits dan~ un granulateur.
On peut obtenir par exemple un débit de matériau de l'ordre de 55 Kg/heure lorsque la double Vi5 tourne à 250 tours/minute.
La résistivité du matériau obtenu est de 0,70 ohm-cm. Remarquons ici que la charge en noir de carbone est très inférieure à celle de l'exemple I.
Selon l'invention on a a~outé au mélange précédemment décrit con-tenant déjà 38g de noir VULCAN XC 72~ des charges carbonaes fibreuses dans un rapport de poids de 3% à 9%. On a observé de manière surprenante une multiplication de la conductivité électrique par un facteur allant de 3 à 6. Si on se réfère à la figure a, on peut voir qu'avec une addition de fibres C de 3~, 6% et 9%, on passe successivement à des résisti-vités e de 0,25, 0,14 et 0,12 Ohm centimètre.
Il convient de remarquer que l'utilisation de fibres de carbone seule conduirait à des résistivités considérables, même avec des taux de charge beaucoup plus élevés que ceux utilisés jusqu'ici. Par exemple, un mélange de 60% de Nylon 6/6 et 40% de fibres de carbone fabriqué par L.N.P. présente une résistivité de 5 à 20 Ohms-centimètre.
Avec un mélange conducteur chargé à 6% de fibres de carbone courtes selon l'invention, la Demanderesse a réalisé dans les mêmes conditions que celles décrites plus haut des éléments bipolaires de piles à combus-tible qui pos~èdent une conductibilité très supérieure avec en outre toutes les qualités suivantes :
- la dureté : 60 à 70 Shore - la souplesse : un élément de 1,5 mm d'épaisseur peut être fléchi sans dommage en arc de cercle de 150 mm de diamètre.
- la résistance à la traction : ledit élément peut subir une contrainte maximale de 2,5 da N/mm à 3,5 da N/mm2 pour un allongement de 4,0~ à 7,5%.

12~34~
_ 10 -- l'inertie thermique et l'inertie chimique.
Bien entendu, l'invention n'est pas limitée au mode de réalisation qui a été décrit, notamment en ce qui concerne le type de malaxeur double vis, les températures de régulation des différents fourreaux, la nature de la résine thermoplastique et celle des charges carbonées.
On peut en particulier remplacer le noir de carbone VULCAN*par d'autres charges carbonées particulaires. Ainsi, le KETJEN BLACK*de mar-que AKZO*a permis d'obtenir avec un taux de charge de 25% la même résistivité que le VULCAN*au taux de 38%.

* KETJEN BLACK et AK~O sont des mar~les de commerce.

3o
(2): Carbon fibers * Vulcan XC72 is a trademark ,.

~ Z73 ~

It can be seen that the low electrical resistivities obtained by clas ~ ique3 methods (open mixer or internal type mixer Banbury *) are at the cost of a very high carbon load rate.
The products thus obtained cannot be used for injection.
the economical use of thin parts of large surface area due to their insufficient hot fluidity or the fragility of the objects obtained.
U.S. Patent No. 4,124,747 also describes a process batch consisting of mixing in a preheated mixer type Banbury a blend of a propylene-ethylene thermoplastic copolymer and finely divided carbon, the proportion of carbon being of the order 30% by weight.
Preheating is around 100; mixing is carried out during a duration of the order of 3 to 5 minutes.
The thermoplastic material thus obtained can be extruded in the form of sheets whose thickness is between 150 micron ~ and 500 microns and whose resistivity is of the order of a few ohms-centimeters. But its implementation by injection in order to obtain thin parts and large area is practically impossible for the above reasons indicated above.
Furthermore, the Applicant has carried out a number of tests in an attempt to improve this situation, using open or closed mixers (Banbury type *) as well as by mixing preliminary of the two constituents in the powder state in a mixer ultra-fast ~ followed by plasticization of this mixture in a extruder. The main results of these tests have been summarized below.
below in Table II.

* Banbury is a trademark.

1; ~ 734 ~ 3 ~

TABLE II

REFERENCE PROCESS RESISTI ~ ITE CONCENTRATION ~ eL ~ INDEX
type of machine enl ~ cm in% in g / 10 min _ _ . TEST # 1 Mixer 0.85 47 TEST 2 Mixer 0.87 47 open TEST # 3 Banbury 0.43 47 0 to 230 under 21 kg TEST 4 Banbury 0.80 47 TEST # 5 Banbury 1 47 1 to 230 _ under 21.6 kg In conclusion, it seems that the different processes used so far that here do not allow to realize a sufficiently conductive material electricity without resorting to carbon concentrations which result in a hot melt index that is far too low to allow in ~ ection of thin parts of large area.
The object of the present invention is to produce a thermo-material conductive plastic which has a resistivity even lower than that of the ~ previous materials, that is to say of the order of a few tenths of ohm-cm, and whose hot fluidity is sufficient for it can be subjected industrially to the above operations, in order to obtain very thin and not very fragile conductive sheets.

B ~

~ Z734 ~ 4 According to the present invention, there is provided an electrically conductive thermoplastic, characterized by the fact that it comprises a mixture of copolymer of propylene and ethylene, carbon black in a proportion of 30% to 50 ~ by weight, and a carbonaceous fibrous charge in a proportion included between 1 ~ and 10% by weight, said material having a resistivity less than 10 ohm-cm.
Preferably, the proportion of carbon black is between 35% and 45% by weight.
Preferably, the fibrous carbon charge is in a proportion of 3% to 9% by weight.
~ e quite unexpectedly, we get a product whose electrical characteristics are quite remarkable, the electrical conductivity is multiplied by several times its value.
we make the material according to the invention as follows:
We use a twin screw mixer, the length of the screw being greater than twenty times its diameter, said thermoplastic resin is continuously introduced in a first zone of said double screw where it undergoes compaction and preheating, said resin then goes into a second area of said double screw where it undergoes kneading and plasticization, continuous carbon charges are introduced liars, in a proportion of 30 ~ to 50% by weight, at the level of a third zone of the double screw for the dispersion of said charges, the speed of rotation of the double screw being between 150 and 250 turns per minute, the temperature of said zones being located between 165 and 300C, said mixture then being recovered at the outlet of an extrusion head; we introduced, .), - 6a -either at the same time as the particular carbonaceous charges res, or at another time, carbonaceous fibrous charges its in a proportion of less than 10% by weight.
Advantageously, a double screw is used S comprising a fourth zone following said third sth zone and intended for degassing said mixture at a pressure between atmospheric pressure and a few millibars.
Quite unexpectedly, the implementation work of the preceding process makes it possible to further improve the product according to the invention.
The carbon black chosen for the material of the present invention is a carbonaceous filler which is very conductive and cost price as low as possible while being easy to incorporate into the resin. Indeed, the lower the density of carbon charges, the more /

~, .. ..

~ 73489L

their dispersion is good, but the more delicate the incorporation turns out to be.
Compromises to choose between a low charge rate with a black very very divided and a higher charge rate with a denser black but plus ~ easy to incorporate.
The above results are obtained more easily if the continuous in thermoplastic resin and partial carbon charges Cular ~ and fibrous is carried out via dosers gravimetric guaranteeing a variation of the dosage less or equal a ~ 1 ~ of the set value.
Other ~ characteristicq and advantages of the present invention will appear during the following description of different examplesA
of materials according to the invention.
In the attached drawing:
- Figure 1 is a completely schematic view of an exemplary arrangement sitive for the manufacture of the material according to the invention.
- Figure 2 shows the variation of the resistivity ~ (Q am) as a function of the concentration C (~) of carbonaceous fibrous fillers, of a material according to the invention (curve F).

EXAMPLE I
A material of the prior art is produced by incorporating into a internal mixer type 3anbury (see table II) a copolymer of ethylene and propylene of the type sold ~ OU9 the name PROPATHENE GY 702 M *, and carbonyl black sold under the name VULCAN XC 72. The black ratio is 47 ~.
The preheating temperature is 100C and the temperature mixing eqt from 150C to 200C; the mixing time is 5 to 10 minutes.
A thermoplastic material is obtained whose resistivity is 0.54 ohm-cm.
According to the invention, one operates under the same conditions as previously, by adding carbon fibers sold under the name MORGANITE * type II-S.
If we add these fibers in a proportion of 3 ~ by weight of mixture, obtaining a resistivity which goes from 0.54 ohm-cm * PROPATHENE GY 702 M and MORGANITE are trademarks 127; ~ 84 at 0.2 ohm-cm. If we have ~ oute these fibers in a proportion of 6 ~ in weight of mixture, we also get a resistivity which from 0.54 ohm-c ~ to 0.2 ohm-cm. The addition of fibers therefore provides significant progress from the point of view of resistivity.

EXAMPLE II
We start from the same basic components as in Example I, and we operates using a mixer 11 visible in Figure 1, to achieve a thermoplastic material comprising particulate fillers in a 10proportion of 38g.
It is a twin screw mixer of the type sold under the brand WERNER und PFLEIDERE ~, the length of the double screw being greater than twenty times its diameter. For example, mixers sold under reference ZSK 30 * and ZSK 57 * respectively have a diameter 15 of 30 mm and 57 mm.
The double screw is surrounded by sleeves, referenced from 1 to 10 in the figure, and which are regulated as will be seen below at temperatures between 165C and 300C. The double screw is activated by a motor schematically represented by the box 20 and its speed of 20rotation is between 150 revolutions per minute and 250 revolutions per minute.
A copolymer of propylene and ethylene 22 dosed with a accuracy of + 1% in an eravimetric doser 21 is introduced by a device 25 in the first æone of the double screw surrounded by the scabbard 1; at this level the resin is compacted and preheated, but it 25 Avoid gelation. At the level of sleeves 2 and 3, the double screw performs kneading and plasticization of the resin, the sleeve 2 being regulated at 220C and the sheath 3 at 295C. At the level of the sheath 4, also regulated at 295C, black type carbon charges are introduced of carbon 24. These charges were previously dosed at 38% by weight 30 with great precision in a gravimetric doser 23. It occurs then the incorporation of carbon black 24 and its dispersion in the resin.
Mixing and dispersion continue in the double Vi3 at level of the sheaths 5 to 10, the sheath 5 being regulated at 2953C, the 35 forks 6 to 10 to 200C. Degassing of the mixture is planned at the level of * WERNER UND PFLEIDERER, ZSK 30 and ZSK 57 are trade marks 1273 ~

sleeve 9, for example under 55 mBars.
The mixture obtained passes through a regulated extrusion head 30 at a temperature of the order of 250C. Extrusion takes place through a ten-hole die with a diameter of a few millimeters each, the material at the end of the die being at a temperature of the order of 270C. The rods thus formed not ~ ent in a water tank and are introduced dan ~ a granulator.
One can obtain for example a material flow of the order of 55 kg / hour when the double Vi5 rotates at 250 revolutions / minute.
The resistivity of the material obtained is 0.70 ohm-cm. Notice here that the charge in carbon black is much lower than that of Example I.
According to the invention, the mixture described above has been ~ a ~
already holding 38g of black VULCAN XC 72 ~ fibrous carbon charges in a weight ratio of 3% to 9%. We have surprisingly observed a multiplication of the electrical conductivity by a factor ranging from 3 to 6. If we refer to figure a, we can see that with an addition of C fibers of 3 ~, 6% and 9%, we pass successively to resisti-speeds of 0.25, 0.14 and 0.12 Ohm cm.
It should be noted that the use of carbon fibers alone would lead to considerable resistivities, even with rates of loads much higher than those used so far. For example, a blend of 60% Nylon 6/6 and 40% carbon fiber manufactured by LNP has a resistivity of 5 to 20 Ohms-cm.
With a conductive mixture loaded with 6% short carbon fibers according to the invention, the Applicant has carried out under the same conditions than those described above of the bipolar elements of fuel cells-tible which pos ~ have a very higher conductivity with in addition all of the following:
- hardness: 60 to 70 Shore - flexibility: a 1.5 mm thick element can be flexed without damage in an arc of 150 mm diameter.
- tensile strength: said element may be stressed maximum from 2.5 da N / mm to 3.5 da N / mm2 for an elongation of 4.0 ~ to 7.5%.

12 ~ 34 ~
_ 10 -- thermal inertia and chemical inertia.
Of course, the invention is not limited to the embodiment which has been described, in particular with regard to the type of double mixer screw, the regulation temperatures of the different sleeves, the nature thermoplastic resin and that of carbonaceous fillers.
We can in particular replace the carbon black VULCAN * by other particulate carbon charges. Thus, the KETJEN BLACK * from mar-that AKZO * made it possible to obtain with the same 25% charge rate resistivity than VULCAN * at the rate of 38%.

* KETJEN BLACK and AK ~ O are commercial markets.

3o

Claims (3)

Les réalisations de l'invention, au sujet des-quelles un droit exclusif de propriété ou de privilège est revendiqué, sont définies comme il suit: The embodiments of the invention, concerning the-which an exclusive property right or privilege is claimed, are defined as follows: 1. Matériau thermoplastique conducteur de l'é-lectricité, caractérisé par le fait qu'il comprend un mé-lange de copolymère de propylène et d'éthylène, de noir de carbone dans une proportion de 30% à 50% en poids, et d'une charge carbonée fibreuse dans une proportion comprise entre 1% et 10% en poids, ledit matériau présentant une résistivité inférieure à 10 ohm-cm. 1. Thermally conductive material electricity, characterized by the fact that it includes a met line of propylene-ethylene copolymer, black carbon in a proportion of 30% to 50% by weight, and of a fibrous carbonaceous charge in a proportion comprised between 1% and 10% by weight, said material having a resistivity less than 10 ohm-cm. 2. Matériau selon la revendication 1, dans le-quel la proportion de noir de carbone est comprise entre 35% et 45% en poids. 2. Material according to claim 1, in the-what the proportion of carbon black is between 35% and 45% by weight. 3. Matériau selon la revendication 1 ou 2, dans lequel la charge carbonée fibreuse est dans une proportion de 3% à 9% en poids. 3. Material according to claim 1 or 2, in which the carbonaceous fibrous load is in a proportion from 3% to 9% by weight.
CA000497802A 1984-12-18 1985-12-17 Electroconductive thermoplastic material Expired - Fee Related CA1273484A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8419359A FR2574803B1 (en) 1984-12-18 1984-12-18 ELECTRICALLY CONDUCTIVE THERMOPLASTIC MATERIAL AND METHOD FOR MANUFACTURING SUCH MATERIAL
FR8419359 1984-12-18

Publications (1)

Publication Number Publication Date
CA1273484A true CA1273484A (en) 1990-09-04

Family

ID=9310724

Family Applications (2)

Application Number Title Priority Date Filing Date
CA000497802A Expired - Fee Related CA1273484A (en) 1984-12-18 1985-12-17 Electroconductive thermoplastic material
CA000497803A Expired CA1257062A (en) 1984-12-18 1985-12-17 Manufacturing method of electricity conducting thermoplastic material

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA000497803A Expired CA1257062A (en) 1984-12-18 1985-12-17 Manufacturing method of electricity conducting thermoplastic material

Country Status (6)

Country Link
US (2) US4839114A (en)
EP (2) EP0192005B1 (en)
JP (2) JPH0611491B2 (en)
CA (2) CA1273484A (en)
DE (2) DE3574646D1 (en)
FR (1) FR2574803B1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264261A (en) * 1986-12-06 1993-11-23 Prosyma Research Limited Fibre reinforced polymer compositions and process and apparatus for production thereof
DK89087A (en) * 1987-02-20 1988-08-21 Nordiske Kabel Traad METHOD FOR MANUFACTURING AN ELECTRIC SEMI-CONDUCTIVE, STRIPABLE PLASTIC BLENDER
US4923637A (en) * 1987-06-24 1990-05-08 Yazaki Corporation High conductivity carbon fiber
US5032473A (en) * 1987-07-06 1991-07-16 Alupower, Inc. Electrochemical cathode
US5213736A (en) * 1988-04-15 1993-05-25 Showa Denko K.K. Process for making an electroconductive polymer composition
DE3824292A1 (en) * 1988-07-16 1990-01-18 Battelle Institut E V Method for fabricating thin-film absorbers for electromagnetic waves
US5116540A (en) * 1989-03-03 1992-05-26 Ferro Corporation Free-radical modified carbon black filled polypropylenes
US4976904A (en) * 1989-04-20 1990-12-11 Energy Research Corporation Method and apparatus for continuous formation of fibrillated polymer binder electrode component
WO1991016716A1 (en) * 1990-04-24 1991-10-31 Ferro Corporation Free-radical modified carbon black filled polypropylenes
US5122641A (en) * 1990-05-23 1992-06-16 Furon Company Self-regulating heating cable compositions therefor, and method
DE4024268A1 (en) * 1990-07-31 1992-02-06 Lehmann & Voss & Co Electroconductive plastics element for heater or electronic device - contains synergistic mixt. of carbon or graphite powder and fibres and opt. metal fibres
WO1992021156A1 (en) * 1991-05-23 1992-11-26 Alupower, Inc. Improved electrochemical electrode
DE4130314C1 (en) * 1991-09-12 1992-10-15 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
US5374387A (en) * 1993-01-29 1994-12-20 The Gates Rubber Company Process for processing elastomeric compositions
WO1995029050A1 (en) * 1994-04-21 1995-11-02 Lion Corporation Method of manufacturing composition of electrically conductive thermoplastic resin and electric conductor
US5585054A (en) * 1995-03-08 1996-12-17 Evans; Daniel W. Method of making a composite fiber reinforced polyethylene
US5776281A (en) * 1995-03-08 1998-07-07 Evans; Daniel W. Method of manufacturing a pallet made of composite fiber reinforced polyolefin
US5858291A (en) * 1997-03-04 1999-01-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of making an electrically conductive strain gauge material
DE60007914T2 (en) * 1999-05-13 2004-12-23 Union Carbide Chemicals & Plastics Technology Corp., Danbury Semiconductor cable shield
US7235514B2 (en) * 2000-07-28 2007-06-26 Tri-Mack Plastics Manufacturing Corp. Tribological materials and structures and methods for making the same
US20020111415A1 (en) * 2000-07-28 2002-08-15 Mack Edward J. Thermoplastic materials with improved thermal conductivity and methods for making the same
KR100841106B1 (en) * 2001-11-19 2008-06-25 연세대학교 산학협력단 Preparation method of bipolar plate using the electron conducting polymer composite
EP1474838A1 (en) * 2002-02-13 2004-11-10 Dupont Canada Inc. Method for manufacturing fuel cell separator plates under low shear strain
TWI241732B (en) * 2002-09-25 2005-10-11 E I Du Pont Canada Company Mesh reinforced fuel cell separator plate
WO2004086540A1 (en) * 2003-03-27 2004-10-07 E.I. Du Pont Canada Company Post-molding treatment of current collector plates for fuel cells to improve conductivity
US7686994B2 (en) * 2005-03-02 2010-03-30 Cabot Microelectronics Corporation Method of preparing a conductive film
JP4896422B2 (en) * 2005-03-31 2012-03-14 燕化学工業株式会社 Method for producing fine carbon fiber-containing resin composition
JP4869615B2 (en) * 2005-03-31 2012-02-08 燕化学工業株式会社 Method for producing fine carbon fiber-containing resin composition
JP2009047312A (en) * 2008-10-06 2009-03-05 Yanmar Co Ltd Hydraulic device for excavation turning working vehicle
CN103192514A (en) * 2013-03-29 2013-07-10 江苏德威新材料股份有限公司 Preparation method of high-voltage semi-conduction electric screening material
WO2017019023A1 (en) * 2015-07-27 2017-02-02 Hewlett-Packard Indigo B.V. Conductive plastic structure

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE548552A (en) * 1955-06-14 1900-01-01
GB1201166A (en) * 1967-12-04 1970-08-05 Ici Ltd Conducting plastic articles
JPS5648923B2 (en) * 1972-01-20 1981-11-18
US3846223A (en) * 1972-08-30 1974-11-05 Gulf & Western Ind Prod Co Conductive plastic article and method for making same
US4124747A (en) * 1974-06-04 1978-11-07 Exxon Research & Engineering Co. Conductive polyolefin sheet element
GB1495275A (en) * 1974-06-04 1977-12-14 Exxon Research Engineering Co Conductive polyolefin compositions
DE2612827C3 (en) * 1976-03-26 1982-11-18 Werner & Pfleiderer, 7000 Stuttgart Screw extruder for the continuous preparation and degassing of elastomers and polymers with a viscosity of more than 1000 d Pa s
DE2901758A1 (en) * 1979-01-18 1980-07-31 Basf Ag METHOD FOR PRODUCING ELECTRICALLY CONDUCTIVE POLYOLEFINE MOLDED BODIES AND THE USE THEREOF
US4288352A (en) * 1979-03-26 1981-09-08 Exxon Research & Engineering Co. Electrically conductive polymeric compositions
US4279783A (en) * 1979-04-04 1981-07-21 Dow Corning Corporation Electrically conductive silicone elastomers
JPS5716041A (en) * 1980-05-23 1982-01-27 Kureha Chem Ind Co Ltd Electrically conductive molding resin composite material
NL8006774A (en) * 1980-12-13 1982-07-01 Electrochem Energieconversie FUEL CELL ELECTRODE AND METHOD FOR PRODUCING A FUEL CELL ELECTRODE
US4465616A (en) * 1981-02-04 1984-08-14 Rca Corporation Formulation of electrically conductive plastics
US4461814A (en) * 1982-02-08 1984-07-24 Gte Laboratories Incorporated Electrochemical cell
US4474685A (en) * 1982-03-29 1984-10-02 Occidental Chemical Corporation High performance molding compounds for shielding electromagnetic interference
US4551220A (en) * 1982-08-03 1985-11-05 Asahi Glass Company, Ltd. Gas diffusion electrode material
JPS59138067A (en) * 1983-01-27 1984-08-08 Meidensha Electric Mfg Co Ltd Positive electrode of metal-halogen battery
JPS59100145A (en) * 1982-12-01 1984-06-09 Denki Kagaku Kogyo Kk Conductive composition
EP0123540A3 (en) * 1983-04-20 1985-01-02 RAYCHEM CORPORATION (a California corporation) Conductive polymers and devices containing them
JPS59210957A (en) * 1983-05-17 1984-11-29 Denki Kagaku Kogyo Kk Electrically conductive plastic film or sheet
NL8301780A (en) * 1983-05-19 1984-12-17 Electrochem Energieconversie POROUS ELECTRODE.
JPS6042442A (en) * 1983-08-19 1985-03-06 Nippon Oil Co Ltd Electrically conductive resin composition
US4585711A (en) * 1983-12-15 1986-04-29 Communications Satellite Corporation Hydrogen electrode for a fuel cell
JPS6197360A (en) * 1984-10-18 1986-05-15 Denki Kagaku Kogyo Kk Electrically conductive composition
JPS6197359A (en) * 1984-10-18 1986-05-15 Denki Kagaku Kogyo Kk Highly electrically conductive composition
DE3543279A1 (en) * 1985-12-07 1987-06-11 Roehm Gmbh METHOD FOR PRODUCING PLASTIC PRESSING PLATES WITH ELECTRICAL CONDUCTIVITY
US4758473A (en) * 1986-11-20 1988-07-19 Electric Power Research Institute, Inc. Stable carbon-plastic electrodes and method of preparation thereof

Also Published As

Publication number Publication date
DE3578338D1 (en) 1990-07-26
US4717505A (en) 1988-01-05
JPH0611491B2 (en) 1994-02-16
JPS61155461A (en) 1986-07-15
US4839114A (en) 1989-06-13
FR2574803B1 (en) 1987-01-30
JPS61154811A (en) 1986-07-14
EP0192005B1 (en) 1989-12-06
EP0191256B1 (en) 1990-06-20
DE3574646D1 (en) 1990-01-11
EP0192005A1 (en) 1986-08-27
EP0191256A1 (en) 1986-08-20
FR2574803A1 (en) 1986-06-20
CA1257062A (en) 1989-07-11

Similar Documents

Publication Publication Date Title
CA1273484A (en) Electroconductive thermoplastic material
FR2880353A1 (en) USE OF CARBON NANOTUBES FOR THE MANUFACTURE OF A CONDUCTIVE ORGANIC COMPOSITION AND APPLICATIONS THEREOF
Zhang et al. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction
WO2008047022A1 (en) Conducting composite material containing a thermoplastic polymer and carbon nanotubes
TWI448415B (en) Process and performance aid for carbon nanotubes
FR2742445A1 (en) ANTISTATIC AND ADHERENT COMPOSITIONS BASED ON POLYAMIDE
FR2514937A1 (en) DIELECTRIC FILM AND METHOD FOR MANUFACTURING THE SAME
McNally et al. Recycled carbon fiber filled polyethylene composites
FR2591146A1 (en) PROCESS FOR MANUFACTURING HARD PLATES OF PLASTIC MATERIAL WITH ELECTRICAL CONDUCTIVITY AND PLATES OBTAINED THEREBY
FR3079521A1 (en) POLYOLEFIN THERMOPLASTIC COMPOSITION FOR PRODUCING OBJECTS OF PERMANENT ANTISTATIC PROPERTIES.
FR3034771A1 (en) THERMAL AND / OR ELECTRICALLY CONDUCTIVE MATERIALS AND METHOD FOR THE PREPARATION THEREOF
WO2005088797A1 (en) Electric field control material
FR2982869A1 (en) VEGETABLE CHARCOAL POWDER ADDITIVE FOR POLYMER MATRIX OR THE LIKE
FR2809859A1 (en) CONDUCTIVE POLYMER COMPOSITIONS CONTAINING FIBRILLATED FIBERS
KR100660144B1 (en) Thermoplastic material for injection molding a fuel cell separator
WO2020058626A1 (en) Compositions for bipolar plates and processes for manufacturing said compositions
EP3853936A1 (en) Compositions for bipolar plates and methods for manufacturing said compositions
WO2023002109A1 (en) Method for manufacturing bipolar plates
FR2553937A1 (en) Electrode made of carbon bonded by a thermoplastic resin.
LU85462A1 (en) NOVEL POLYMER COMPOSITIONS, METHODS FOR THEIR PRODUCTION AND THEIR APPLICATIONS
FR3097160A1 (en) MANUFACTURING PROCESS OF AN ELECTRICALLY CONDUCTIVE THERMOPLASTIC COMPOSITE MATERIAL
CH719959A1 (en) Bipolar plate for fuel cell and its manufacturing process.
JP2017190444A (en) Resin pellet, manufacturing method therefor, manufacturing method of molded article
EP0066236A1 (en) Highly thermal conductive plastics material with good mechanical resistance, and processes for its preparation
FR2907443A1 (en) Preparation of a conducting composite material, comprises preparing the composite material followed by thermal treatment comprising maintaining the material at a temperature greater than or equal to the melting point of the polymer

Legal Events

Date Code Title Description
MKLA Lapsed