WO2012124977A2 - Joining material for polyethylene pipe, and joining method using same - Google Patents

Joining material for polyethylene pipe, and joining method using same Download PDF

Info

Publication number
WO2012124977A2
WO2012124977A2 PCT/KR2012/001834 KR2012001834W WO2012124977A2 WO 2012124977 A2 WO2012124977 A2 WO 2012124977A2 KR 2012001834 W KR2012001834 W KR 2012001834W WO 2012124977 A2 WO2012124977 A2 WO 2012124977A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
pipe
polyethylene pipe
carbon nanotubes
bonding material
Prior art date
Application number
PCT/KR2012/001834
Other languages
French (fr)
Korean (ko)
Other versions
WO2012124977A3 (en
Inventor
박우일
천만식
Original Assignee
Park Woo Il
Cheon Man Sik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110023087A external-priority patent/KR101285764B1/en
Priority claimed from KR1020110023089A external-priority patent/KR101285765B1/en
Application filed by Park Woo Il, Cheon Man Sik filed Critical Park Woo Il
Publication of WO2012124977A2 publication Critical patent/WO2012124977A2/en
Publication of WO2012124977A3 publication Critical patent/WO2012124977A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/30Electrical means
    • B29C65/305Electrical means involving the use of cartridge heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3408Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3412Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3492Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3496Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic with a coating, e.g. a metallic or a carbon coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/004Preventing sticking together, e.g. of some areas of the parts to be joined
    • B29C66/0042Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined
    • B29C66/0044Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined using a separating sheet, e.g. fixed on the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • B29C66/52293Joining tubular articles involving the use of a socket said socket comprising a stop said stop being external
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52298Joining tubular articles involving the use of a socket said socket being composed by several elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/63Internally supporting the article during joining
    • B29C66/636Internally supporting the article during joining using a support which remains in the joined object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73113Thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81471General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps being a wrap-around tape or band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • B29K2105/167Nanotubes

Definitions

  • the present invention relates to a polyethylene pipe bonding material, a polyethylene pipe bonding method using the bonding material, a polyethylene pipe bonding material, a connecting pipe and a heat generating sheet used in the bonding method.
  • the present invention is to insert the polyethylene pipe to be bonded to the connecting pipe, the pipe bonding material filled with the bonding particles including carbon nanotubes and polyethylene therebetween the polyethylene pipe, wrapped around the heating sheet and the pipe bonding material It relates to a polyethylene pipe bonding material or the like used to join polyethylene pipes by melting them.
  • Polyethylene pipes for water and sewage and gas do not have corrosion, corrosion, and no capstone, and thus have excellent physical properties as pipes. Furthermore, it is odorless, has excellent physical and chemical properties such as acid resistance and alkali resistance, and has a life span of more than 50 years.
  • connection area Polyethylene does not bond with other polymers and does not dissolve in solvents, so connection of polyethylene pipes is possible only by melt bonding.
  • Such fusion splicing methods include butt fusion, socket fusion, saddle fusion, and the like.
  • Butt fusion is a method of melting the end of a pipe with a heating plate when connecting, and then removing the heating plate and bonding the pipes to each other, but when removing the heating plate, the temperature distribution in the melt at the end of the pipe changes rapidly, resulting in poor adhesion.
  • the construction conditions were difficult, such as fusion conditions were changed depending on the surrounding environment.
  • the sockets or birds are expensive in themselves, and there is a problem in that they are not easy to apply because of limitations in shape or size. In order to solve this problem, there have been attempts to change the copper wire inside the socket to carbon fiber, but it has been difficult to be widely accepted in terms of economics.
  • the present invention has been made to solve the above problems, the outer surface is coated with a carbon nanotube and a thermoplastic resin mixture, the inside is a polyethylene including a sealed polyethylene pouch filled with bonded particles including carbon nanotubes and polyethylene It is an object to provide a pipe joint.
  • the present invention is to insert the polyethylene pipe to be bonded to a separate connecting pipe at intervals, and then the pipe bonding material is sandwiched in the gap, and to melt and cool the pipe bonding material with a separate heating sheet to join the polyethylene pipe
  • Another object is to provide a method for joining polyethylene pipes.
  • Another object of the present invention is to provide a polyethylene pipe bonding material used in the polyethylene pipe bonding method.
  • Another object of the present invention is to provide a connecting pipe used in the polyethylene pipe joining method.
  • Another object of the present invention is to provide a heat generating sheet used in the polyethylene pipe joining method.
  • Hermetically sealed pouches made of polyethylene film
  • thermoplastic resin included in the heat transfer layer of the pipe bonding material may be selected from the group consisting of vinyl resins, acrylic resins, polyamides, polyesters, polyethers and mixtures thereof.
  • the heat transfer layer thickness of the pipe bonding material may be 0.1 to 5 ⁇ m.
  • a step of adjusting the gap between the polyethylene pipes is adjusted so that the outer diameter of the polyethylene pipe bonding material cooled after melting is 95 to 120% of the outer diameter of the polyethylene pipe. It can be included as.
  • the method may further include covering the heating sheet with a cover.
  • the carbon nanotubes included in the heat transfer layer of the pipe joining material, the carbon nanotubes included in the joining particles of the pipe joining material and the carbon nanotubes included in the heat generating layer of the heating sheet are independently of each other, single-walled carbon nanotubes. , Double-walled carbon nanotubes, multi-walled carbon nanotubes and mixtures thereof.
  • the temperature of the pipe bonding material melted in the step (D) may be 130 to 270 °C.
  • the polyethylene pipe joining material of the present invention is characterized in that it is used in the polyethylene pipe joining method.
  • the inner diameter of the connecting pipe may increase toward both ends.
  • the connecting pipe may be made of polyethylene.
  • the length of the connecting pipe may be 10 to 200 mm.
  • the thickness of the connecting pipe may be 1 to 5 mm.
  • the protective film may be made of polyimide.
  • thermosetting resin constituting the heat generating layer of the heat generating sheet may be selected from the group consisting of polyurethane, phenol resin, amino resin, epoxy resin and mixtures thereof.
  • the weight ratio between the carbon nanotubes and the thermosetting resin in the heat generating layer of the heat generating sheet may be 15 to 45 parts by weight of the thermosetting resin per 100 parts by weight of the carbon nanotubes.
  • the heat generating layer of the heat generating sheet may further include an antioxidant.
  • the antioxidant may be hydroquinone.
  • the weight ratio between the carbon nanotubes and the antioxidant in the heat generating layer of the heat generating sheet may be 1 to 2 parts by weight of antioxidant per 100 parts by weight of carbon nanotubes.
  • the heat generating layer of the heat generating sheet may further include a dispersant.
  • the dispersant may be lecithin.
  • the weight ratio between the carbon nanotubes and the dispersant in the heat generating layer of the heat generating sheet may be 1 to 2 parts by weight of the dispersant per 100 parts by weight of carbon nanotubes.
  • the exothermic layer of the exothermic sheet is carbon in a solvent selected from the group consisting of ketone, toluene, butyl cellosolve, N-methyl-2-pyrrolidone (NMP) and mixtures thereof. Nanotubes and thermosetting resins may be added and mixed and then coated and dried.
  • a pair of conductive parts spaced apart from two opposite sides of the heating sheet and formed in parallel to the two sides;
  • a heating unit disposed between the pair of conductive units and connecting the conductive units to each other
  • the heating unit may be provided with 1 to 100 on the heating sheet.
  • a portion of the conductive portion may extend to be connected to a portion of the opposite conductive portion.
  • the thickness of the heat generating layer of the conductive portion may be 1 to 100 ⁇ m.
  • the thickness of the heat generating layer of the heat generating portion may be 1 to 50 ⁇ m.
  • the width of the first conductive portion may be 1 to 200 mm.
  • connection pipe of the present invention is characterized in that it is used in the polyethylene pipe joining method.
  • the heat generating sheet of the present invention is characterized in that it is used in the polyethylene pipe joining method.
  • the polyethylene pipe bonding material of the present invention can quickly transfer heat from a heat source to polyethylene by containing carbon nanotubes having excellent thermal conductivity in the heat transfer layer and the bonding particles on the outer surface. As a result, it is possible to melt the polyethylene quickly and connect the polyethylene pipe to be joined in a short time. This can shorten the time required for joining the socket compared to the melting of the pipe itself, etc., it is also possible to enjoy the effect of reducing the cost and working time.
  • FIG. 1 is a cross-sectional perspective view of a polyethylene pipe joining material used in the polyethylene pipe joining method of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a state in which a polyethylene pipe to be joined to a connection pipe is inserted and a polyethylene pipe bonding material is inserted therebetween.
  • FIG. 3 is a cross-sectional view illustrating a state in which a polyethylene film bonding material is wrapped around a protective film, a heating sheet, and a cover.
  • FIG. 4 is a cross-sectional view of FIG. 3 viewed from a pipe length direction without a cover.
  • FIG. 5 is a cross-sectional view showing an embodiment of a connecting pipe used in the polyethylene pipe joining method of the present invention.
  • Figure 6 is a cross-sectional view showing another embodiment of the connecting pipe used in the polyethylene pipe joining method of the present invention.
  • Figure 7 is a plan view showing an embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
  • FIG. 8 is a plan view showing another embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
  • FIG. 9 is a plan view showing another embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
  • FIG. 10 is a plan view showing another embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
  • 'thickness' refers to half of the difference between the outer diameter and the inner diameter in the case of pipes.
  • the polyethylene pipe bonding material 100 of the present invention is inserted between the polyethylene pipes 400 to be bonded, and then melted and cooled by a separate heat source to bond the polyethylene pipes 400. It is characterized by connecting.
  • the pipe bonding member 100 includes a sealed pouch 120 made of polyethylene film, a heat transfer layer 110 coated on an outer surface thereof, and a bonding particle 130 filling the inside of the pouch 120.
  • the heat transfer layer 110 includes carbon nanotubes and a thermoplastic resin
  • the bonding particles 130 include carbon nanotubes and polyethylene.
  • the polyethylene pipe joining method of the present invention inserts a separate polyethylene between the pipes and is a heat transfer promoting material mixed with the polyethylene. It is characterized in that the polyethylene is rapidly melted through the nanotubes to bond between the pipes. The polyethylene melted by heating is gentle in temperature change of the melt by keeping in contact with the heat source until the joining of the pipe is completed and the molten polyethylene is cooled. Therefore, it is possible to fundamentally block the imperfection of the joint due to a sudden temperature change as in conventional butt fusion.
  • the heat supplied from the external heat source is transferred to the entire surface of the pouch 120 through the heat transfer layer 110, and the heat is evenly transmitted back to the inner bonding particles 130.
  • the bonding particles 130 also contain carbon nanotubes therein, so that the heat transferred from the heat transfer layer 110 can be quickly transferred to the adjacent polyethylene.
  • the heat transferred in this way melts the polyethylene of the bonding particles 130 and the polyethylene of the pouch 120 to fill the gap between the polyethylene pipes 400 in an airtight manner. It is the joining method of the present invention that the melt is cooled to completely join the pipes.
  • the temperature of the molten pipe joining material 100 is 130 to 270 °C, if less than 130 °C, near or below the melting point of polyethylene does not melt the polyethylene, if it exceeds 270 °C polyethylene decomposition or denaturation occurs The durability of the connection site cannot be guaranteed.
  • the carbon nanotubes are mixed with the thermoplastic resin and coated on the heat transfer layer 110 of the pipe joint 100, but there is no limitation on the thermoplastic resin mixed with the carbon nanotubes. It is preferably selected from the group consisting of resins, polyamides, polyesters, polyethers and mixtures thereof.
  • the thickness of the heat transfer layer 110 of the pipe bonding material 100 is preferably 0.1 to 5 ⁇ m, if less than 0.1 ⁇ m to quickly transfer the heat from the heat generating sheet 200 to be described later to the bonding particles (130). In contrast, if the thickness exceeds 5 ⁇ m, the flexibility of the pipe joint 100 is reduced, making it difficult to sandwich the polyethylene pipe 400, and even if it is sandwiched, the heat transfer layer 110 is more likely to be broken.
  • the polyethylene pipe joining method of the present invention first begins by inserting each of the pair of polyethylene pipes 400 to be joined at both ends of the connecting pipe 300 as shown in FIGS. 2 and 3.
  • the presence of such a connecting pipe 300 forms a major feature of the present invention.
  • a separate connecting pipe 300 is applied due to a process of applying and removing a heating plate corresponding to a cross section of the polyethylene pipe 400 to be joined. It was difficult to intervene.
  • the present invention wraps and melts the outside of the pipe, it is possible to interpose the connection pipe 300 therein, and due to the mechanical strength of the connection pipe 300 itself, the durability and impact resistance of the pipe connection area is dramatically increased. will be.
  • the connection pipe 300 used in the present invention is characterized in that it is used in the polyethylene pipe joining method of the present invention.
  • the outer surface of the connection pipe 300 is in close contact with the inner surface of the polyethylene pipe 400 to be bonded, as shown in FIGS. 2 and 3, the polyethylene pipe 400 to be bonded is not opposed to each other but the polyethylene pipe 400 20 to 100% of the thickness is inserted apart from each other, the pipe joining material 100 to be described later is inserted in this interval. If the gap is less than 20% of the thickness of the polyethylene pipe 400 to be bonded, the amount of the pipe bonding material 100 to be inserted is small, so that it is difficult to realize complete bonding. The amount is unnecessarily increased and economic efficiency is lowered.
  • the inner diameter of the connecting pipe 300 may be constant with respect to the longitudinal direction of the connecting pipe 300, as shown in Figures 2 and 3, but more increases toward both ends as shown in Figure 5 or 6 desirable.
  • the inner diameter of the pipe is reduced due to the presence of the connection pipe 300 at the connection portion of the pipe, the fluid flowing inside the pipe is obstructed flow due to the thickness of the connection pipe 300 This results in an increase in the operating cost by increasing the pressure required to transfer the fluid.
  • the inner diameter of the connecting pipe 300 gradually increases toward both ends, so that the fluid flows smoothly and the generation of unnecessary vortices can be suppressed.
  • the inner diameter increasing method may have a straight cross section as shown in FIG. 5, or a curved cross section as shown in FIG. 6.
  • the material of the connecting pipe 300 is not limited as long as it is a synthetic resin that can be used as a pipe, but more preferably made of the same polyethylene as the pipe to be bonded.
  • the length of the connection pipe 300 can be changed and used according to the site situation to be applied, and particularly preferably 10 to 200 mm. If the length of the connecting pipe 300 is less than 10 mm there is a possibility that the length of contact with both polyethylene pipe 400 is short and can be separated, on the contrary, if the length of the connecting pipe 300 exceeds 200 mm, the section of narrowing the inner diameter is unnecessarily increased. .
  • the thickness of the connection pipe 300 can be used in accordance with the field conditions to be applied, it is particularly preferred that the 1 to 5 mm. If the thickness of the connecting pipe 300 is less than 1 mm, there is a possibility that the mechanical strength of the connecting pipe 300 itself may be excessively reduced, and the shape of the pipe may be lost due to excessive melting with the pipe joint 100 during construction. On the contrary, if the diameter exceeds 5 mm, the inner diameter becomes too narrow, which increases the operating pressure.
  • the protective film 500 is introduced to prevent the phenomenon that the molten pipe bonding material 100 becomes difficult to remove the heating sheet 200 by contaminating the heating sheet 200 to be described later. Since the heating sheet 200 is heated to a temperature much higher than the melting point of polyethylene, it should be a material having a very high melting point that does not cause decomposition or denaturation even at such a temperature. Meade is preferred.
  • the protective film 500 is wrapped in this way, the protective film 500 is wrapped with the heating sheet 200 as shown in FIGS. 3 and 4.
  • the heat generating sheet 200 is coated with a heat generating layer 210 including a thermosetting resin and carbon nanotubes on one surface of the polyimide film 220, so that the heat generating layer 210 is in contact with the protective film 500. do.
  • the heating sheet 200 used in the present invention is characterized in that it is used in the polyethylene pipe bonding method as described above.
  • thermosetting resin constituting the heat generating layer 210 is a stable resin even at high temperatures Although it may be used without limitation, it is more preferably selected from the group consisting of polyurethane, phenol resin, amino resin, epoxy resin and mixtures thereof.
  • the weight ratio between the carbon nanotubes and the thermosetting resin in the heat generating layer 210 of the heat generating sheet 200 is preferably 15 to 45 parts by weight of the thermosetting resin per 100 parts by weight of the carbon nanotubes, the binder is less than 15 parts by weight of the thermosetting resin.
  • the heat generating layer 210 of the heat generating sheet 200 may further include an antioxidant to prevent deterioration of the function of the heat generating layer 210 due to oxidation, but there is no particular limitation on the antioxidant used. , Hydroquinone is particularly preferred.
  • the weight ratio between the carbon nanotubes and the antioxidant in the heating layer 210 of the heat generating sheet 200 is preferably 1 to 2 parts by weight of antioxidant per 100 parts by weight of carbon nanotubes, but less than 1 part by weight of the antioxidant effect When it is difficult to harvest enough, on the contrary, if it exceeds 2 parts by weight, the increase in the antioxidant effect due to the increase of the amount of the antioxidant is insignificant, which is unnecessary both economically and in terms of durability.
  • the heating layer 210 of the heating sheet 200 may further include a dispersant to facilitate the dispersion of the carbon nanotubes, there is no particular limitation on the dispersant used, lecithin (lecithin) is particularly desirable.
  • the weight ratio between the carbon nanotubes and the dispersant in the heat generating layer 210 of the heat generating sheet 200 is preferably 1 to 2 parts by weight of antioxidant per 100 parts by weight of carbon nanotubes, if less than 1 part by weight is sufficient to the dispersion effect On the contrary, if the amount is more than 2 parts by weight, the increase of the dispersing effect due to the increase of the amount of the dispersant is insignificant, which is unnecessary both economically and in terms of durability.
  • thermosetting resin and the carbon nanotubes, and the antioxidants and dispersants for forming the exothermic layer 210 is achieved by dissolving and mixing the components in a suitable solvent, and then applied and dried on the polyimide film 220 The coating layer is formed.
  • the solvent used is not particularly limited as long as it is a substance capable of mixing the above components, but ketone, toluene, butyl cellosolve, N-methyl-2-pyrrolidone (N-Methyl-2-Pyrrolidone, NMP) and It is preferable to select from the group which consists of the mixture.
  • the heating layer 210 of the heating sheet 200 may be coated on the polyimide film 220 in a form spaced apart from two opposite sides of the polyimide film 220 as shown in FIG. 7. However, it may be divided into a conductive portion 212 that is responsible for the flow of current and a heating portion 214 that is responsible for heat generation.
  • the heat generating layer 210 is provided with a pair of conductive parts 212 spaced apart from two sides facing each other of the heat generating sheet 200 and formed side by side on the two sides; And a heating unit 214 disposed between the pair of conductive units 212 and connecting the conductive units 212 to each other.
  • the thickness of the conductive part 212 of the heating layer 210 may be the same as the heating part 214 as shown in FIG. 7, the thickness of the conductive part 212 is higher than that of the heating part 214 to lower the resistance and increase the conductivity to increase the electrical conduction efficiency. It is preferable that the thickness is 1-100 micrometers. If the thickness of the conductive portion 212 is less than 1 ⁇ m, the conduction efficiency is lowered and peeling or breaking of the heat generating layer 210 is likely to occur.
  • the thickness of the heat generating layer 210 of the heat generating part 214 is preferably formed to increase the heat generation amount, the thickness is preferably 1 to 50 ⁇ m. When the thickness of the heat generating part 214 is less than 1 ⁇ m, the conduction efficiency is too low, the efficiency is low, and the peeling or breaking of the heat generating layer 210 is likely to occur.
  • the width of the conductive portion 212 may be selected according to the size of the polyethylene pipe 400 to be bonded, preferably 1 to 200 mm.
  • the conductive part 212 extends a part of the conductive part 212 as shown in FIG. 10 to increase the conduction efficiency of the conductive part 212. May be connected to a portion of the If the polyethylene pipe 400 to be bonded is large, the heating sheet 200 should also be large. If the conductive parts 212 are separated from each other, electrical conduction through the heat generating part 214 having high resistance may not be smooth. In this case, when the conductive parts 212 are connected to each other by the conductive parts 212 like a ladder, as shown in FIG. 10, electrical conduction can be stably performed.
  • the heat generating sheet 200 when the polyethylene pipe 400 to be bonded to the heat generating part 214 is small, the heat generating sheet 200 also becomes small, and as a result, a relatively large current flows in a small area, and thus the temperature may increase rapidly. In this case, for proper temperature control, as shown in FIG. 9, it is preferable to form an empty space in the middle of the heat generating layer 210 so as to appropriately control the temperature rise. 214 may be provided with 1 to 100.
  • the power supply 250 is connected to the heating layer 210 of the heating sheet 200, specifically, the conductive part 212 as shown in FIG. It supplies heat.
  • the supplied electricity heats the heat generating layer 210, and the heat generated therein is rapidly bonded to the bonded particles 130 by the carbon nanotubes included in the heat transfer layer 110 and the bonded particles 130 of the polyethylene pipe bonding material 100.
  • the polyethylene of the pouch 120 and further to the adjacent polyethylene pipe 400 to melt the polyethylene and their melt to fill the gap between the polyethylene pipe 400 to be bonded.
  • the electricity supply to the heating sheet 200 is stopped, and the molten pipe bonding material 100 and the adjacent polyethylene pipes 400 are cooled. After the removal, the bonding of the polyethylene pipe 400 is completed by removing the heating sheet 200 and the protective film 500.
  • the polyethylene pipe joining method of the present invention after inserting the pipe joining material 100 in the interval between the polyethylene pipe 400, one or several times between the appropriate time point before the cooling is completed, the cooled after the melting It is preferred to have a step of adjusting the spacing between the polyethylene pipes 400 such that the outer diameter of the pipe joint 100 is 95 to 120% of the outer diameter of the polyethylene pipe 400.
  • the joint of the pipe can be secured to a reliable level. If the outer diameter of the cooled pipe joint 100 after melting is less than 95% of the outer diameter of the polyethylene pipe 400, the durability of the connection is not preferable, Excessive use in excess of 120% is inefficient because it unnecessarily increases the amount of pipe joint 100 to be melted.
  • the polyethylene pipe bonding method of the present invention after wrapping the protective film 500 with the heat generating sheet 200, in order to prevent unnecessary heat loss of the heat generating sheet 200, as shown in FIG. More preferably).
  • Carbon nanotubes included in 210 are not limited as long as they can promote heat transfer, and may be independently selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof. have.
  • a pair of polyethylene pipes having an outer diameter of 60 mm, an inner diameter of 40 mm, and a length of 1 m was inserted at both ends of the connecting pipe having an outer diameter of 40 mm, an inner diameter of 30 mm, and a length of 60 mm with a distance of 7 mm.
  • Polyvinyl chloride resin: multi-walled carbon nanotubes 90: 10 wt% heat transfer layer
  • polyethylene: single-walled and double-walled carbon nanotube mixture 90: containing a sealed polyethylene pouch filled with 10 wt% of the bonded particles Pipe joints were sandwiched in the gaps between the polyethylene pipes.
  • the heat-sealing sheet is formed of a 100 mm wide polyimide protective film to surround the pipe joint and the adjacent polyethylene pipe, and the conductive sheet and the heat generating portion are formed on the polyimide film having a width of 80 mm thereon. Wrapped to contact the protective film.
  • the pipe joint and the adjacent polyethylene pipe were melted by covering the heating sheet with a separate cover and then supplying 220 V of electricity to raise the temperature to 200 ° C. and heating for 10 minutes.
  • the electricity supply was stopped, the molten pipe joint and the adjacent polyethylene pipe were condensed, and then the cover, the heating sheet and the protective film were removed to complete the joining of the polyethylene pipe.
  • the test was carried out for 10 minutes at a water pressure of 5 kg f / cm 2 it was confirmed that no leakage occurs.
  • heating sheet 210 heating layer
  • connection pipe 400 polyethylene pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention relates to a joining material for a polyethylene pipe, to a method for joining a polyethylene pipe using the joining material, and to a joining material for a polyethylene pipe, a connection pipe and a heating sheet, used in said method. More particularly, the present invention relates to a joining material for a polyethylene pipe to be used in joining a polyethylene pipe, wherein the inside of the joining material is packed with joining particles including carbon nanotubes and polyethylene. The polyethylene pipe to be joined is fitted to a connection pipe, and the joining material filled with joining particles is inserted between the polyethylene pipe and the connection pipe, and a heating sheet wraps around and melts the joining member, and thus, the polyethylene pipe is connected. The joining material for a polyethylene pipe according to the present invention contains carbon nanotubes, which have superior thermal conductivity, in a heat transfer layer formed on the outer surface of the joining material and the joining particles, and therefore the joining material of the present invention may quickly transfer heat from a heat source to the polyethylene. As a result, polyethylene may be quickly melted to enable the polyethylene pipe to be connected in a short time period.

Description

폴리에틸렌 파이프 접합재 및 이를 이용한 접합방법 Polyethylene pipe joint and joining method using the same
본 발명은 폴리에틸렌 파이프의 접합재, 상기 접합재를 사용한 폴리에틸렌 파이프 접합방법, 상기 접합방법에 사용되는 폴리에틸렌 파이프 접합재, 연결파이프 및 발열시트에 관한 것이다. 구체적으로, 본 발명은 접합하고자 하는 폴리에틸렌 파이프를 연결파이프에 끼우고, 탄소나노튜브 및 폴리에틸렌을 포함한 접합입자를 내부에 충전한 파이프 접합재를 상기 폴리에틸렌 파이프 사이에 끼우고, 발열시트를 감싸 상기 파이프 접합재를 용융시킴으로써 폴리에틸렌 파이프를 접합시키는 데 사용되는 폴리에틸렌 파이프 접합재 등에 관한 것이다.The present invention relates to a polyethylene pipe bonding material, a polyethylene pipe bonding method using the bonding material, a polyethylene pipe bonding material, a connecting pipe and a heat generating sheet used in the bonding method. Specifically, the present invention is to insert the polyethylene pipe to be bonded to the connecting pipe, the pipe bonding material filled with the bonding particles including carbon nanotubes and polyethylene therebetween the polyethylene pipe, wrapped around the heating sheet and the pipe bonding material It relates to a polyethylene pipe bonding material or the like used to join polyethylene pipes by melting them.
상하수도 및 가스용 폴리에틸렌 파이프는 전식, 부식이 없고, 관석이 발생하지 않아 파이프로서 우수한 물성을 지니고 있다. 나아가, 무독무취하고, 내산성 및 내알칼리성 등 물리적, 화학적 특성이 뛰어나며 수명이 50 년 이상으로 길어 오늘날 많은 분야에서 배관 파이프로 사용되고 있다.Polyethylene pipes for water and sewage and gas do not have corrosion, corrosion, and no capstone, and thus have excellent physical properties as pipes. Furthermore, it is odorless, has excellent physical and chemical properties such as acid resistance and alkali resistance, and has a life span of more than 50 years.
한편 배관의 품질은 연결부위에서 좌우되는데, 폴리에틸렌은 다른 폴리머와 접착되지 않고, 용제에 용해되지도 않아 폴리에틸렌 파이프의 연결은 오로지 용융접합으로만 가능하다.On the other hand, the quality of the pipe depends on the connection area. Polyethylene does not bond with other polymers and does not dissolve in solvents, so connection of polyethylene pipes is possible only by melt bonding.
이러한 용융접합 연결방법으로는 종래 맞대기 융착 (Butt Fusion), 소켓 융착 (Socket Fusion), 새들 융착 (Saddle Fusion) 등이 있다. 기존 방법 중 맞대기 융착은 연결시 발열판으로 파이프 말단을 용융 후 발열판을 제거하고 상기 파이프를 서로 밀착시켜 접착시키는 방법이나, 발열판 제거시 파이프 말단의 용융물 중 온도 분포가 급격하게 변화하여 이후 접착 불량을 발생시키고, 주위 환경에 따라서도 융착 조건이 변화하는 등 실제 시공에 어려운 점이 많았다. 그리고, 소켓이나 새들의 경우 그 자체로 고가이고, 모양이나 크기에 제약이 있어 적용이 쉽지 않은 문제점이 있다. 이러한 문제점의 해결을 위해 소켓 내부의 구리선을 탄소섬유로 변경하는 등의 시도가 있었으나, 경제성 측면에서 널리 받아들여지기 곤란한 단점이 있어 왔다.Such fusion splicing methods include butt fusion, socket fusion, saddle fusion, and the like. Butt fusion is a method of melting the end of a pipe with a heating plate when connecting, and then removing the heating plate and bonding the pipes to each other, but when removing the heating plate, the temperature distribution in the melt at the end of the pipe changes rapidly, resulting in poor adhesion. In many cases, the construction conditions were difficult, such as fusion conditions were changed depending on the surrounding environment. In addition, the sockets or birds are expensive in themselves, and there is a problem in that they are not easy to apply because of limitations in shape or size. In order to solve this problem, there have been attempts to change the copper wire inside the socket to carbon fiber, but it has been difficult to be widely accepted in terms of economics.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 탄소나노튜브 및 열가소성 수지 혼합물로 외표면이 코팅되고, 그 내부는 탄소나노튜브 및 폴리에틸렌을 포함한 접합입자로 충전된 밀폐형 폴리에틸렌 파우치를 포함한 폴리에틸렌 파이프 접합재를 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above problems, the outer surface is coated with a carbon nanotube and a thermoplastic resin mixture, the inside is a polyethylene including a sealed polyethylene pouch filled with bonded particles including carbon nanotubes and polyethylene It is an object to provide a pipe joint.
본 발명은 또한, 접합하고자 하는 폴리에틸렌 파이프를 별도의 연결파이프에 간격을 두고 끼운 다음, 상기 파이프 접합재를 상기 간격에 끼우고, 별도의 발열시트로 상기 파이프 접합재를 용융 및 냉각시켜 폴리에틸렌 파이프를 접합시키는 폴리에틸렌 파이프 접합방법을 제공하는 것을 또 다른 목적으로 한다.In another aspect, the present invention is to insert the polyethylene pipe to be bonded to a separate connecting pipe at intervals, and then the pipe bonding material is sandwiched in the gap, and to melt and cool the pipe bonding material with a separate heating sheet to join the polyethylene pipe Another object is to provide a method for joining polyethylene pipes.
본 발명은 또한, 상기 폴리에틸렌 파이프 접합방법에 사용되는 폴리에틸렌 파이프 접합재를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a polyethylene pipe bonding material used in the polyethylene pipe bonding method.
본 발명은 또한, 상기 폴리에틸렌 파이프 접합방법에 사용되는 연결파이프를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a connecting pipe used in the polyethylene pipe joining method.
본 발명은 또한, 상기 폴리에틸렌 파이프 접합방법에 사용되는 발열시트를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a heat generating sheet used in the polyethylene pipe joining method.
본 발명의 폴리에틸렌 파이프 접합재는 상술한 바와 같은 목적을 달성하기 위하여, In order to achieve the object as described above, the polyethylene pipe joint member of the present invention,
폴리에틸렌 필름으로 이루어진 밀폐형 파우치; Hermetically sealed pouches made of polyethylene film;
상기 밀폐형 파우치의 외표면을 코팅하고, 탄소나노튜브 및 열가소성 수지를 포함한 열전달층; 및 A heat transfer layer coating an outer surface of the sealed pouch and including carbon nanotubes and a thermoplastic resin; And
상기 밀폐형 파우치의 내부를 충전하고, 탄소나노튜브 및 폴리에틸렌을 포함한 접합입자Filling the inside of the sealed pouch, the bonding particles containing carbon nanotubes and polyethylene
를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.
또한, 상기 파이프 접합재의 열전달층에 포함된 열가소성 수지는 비닐수지, 아크릴수지, 폴리아미드, 폴리에스테르, 폴리에테르 및 그 혼합물로 이루어진 군에서 선택될 수 있다.In addition, the thermoplastic resin included in the heat transfer layer of the pipe bonding material may be selected from the group consisting of vinyl resins, acrylic resins, polyamides, polyesters, polyethers and mixtures thereof.
또한, 상기 파이프 접합재의 열전달층 두께는 0.1 내지 5 ㎛일 수 있다.In addition, the heat transfer layer thickness of the pipe bonding material may be 0.1 to 5 ㎛.
또한, 상기 파이프 접합재의 열전달층에서 탄소나노튜브와 열가소성 수지의 중량비는 탄소나노튜브 : 열가소성 수지 = 0.1 내지 60 : 40 내지 99.9 중량%일 수 있다.In addition, the weight ratio of the carbon nanotubes and the thermoplastic resin in the heat transfer layer of the pipe bonding material may be carbon nanotubes: thermoplastic resin = 0.1 to 60: 40 to 99.9% by weight.
또한, 상기 파이프 접합재의 접합입자에서 탄소나노튜브와 폴리에틸렌의 중량비는 탄소나노튜브 : 폴리에틸렌 = 0.1 내지 30 : 70 내지 99.9 중량%일 수 있다.In addition, the weight ratio of the carbon nanotubes and polyethylene in the bonding particles of the pipe joint material may be carbon nanotubes: polyethylene = 0.1 to 30: 70 to 99.9% by weight.
한편, 본 발명의 폴리에틸렌 파이프 접합방법은 On the other hand, the polyethylene pipe joining method of the present invention
(A) 연결파이프의 양단에 접합하고자 하는 한 쌍의 폴리에틸렌 파이프 각각을 끼우고, 이때 연결파이프의 외면이 접합하고자 하는 폴리에틸렌 파이프 내면에 밀착되고, 폴리에틸렌 파이프 사이의 간격은 폴리에틸렌 파이프 두께의 20 내지 100 % 인 단계; (A) Fit each pair of polyethylene pipes to be joined to both ends of the connecting pipe, wherein the outer surface of the connecting pipe is in close contact with the inner surface of the polyethylene pipe to be joined, and the spacing between the polyethylene pipes is 20 to 100 of the thickness of the polyethylene pipe. % Phosphorus step;
(B) 상기 폴리에틸렌 파이프 접합재를 상기 폴리에틸렌 파이프 사이의 간격에 끼워 넣는 단계; (B) inserting the polyethylene pipe joint into the gap between the polyethylene pipes;
(C) 보호필름으로 상기 파이프 접합재 및 인접한 폴리에틸렌 파이프 외면을 감싸는 단계; (C) wrapping the pipe joint and the adjacent polyethylene pipe outer surface with a protective film;
(D) 폴리이미드 필름 일면에 열경화성 수지 및 탄소나노튜브를 포함한 발열층으로 코팅한 발열시트로 상기 보호필름을 감싸고, 이때 발열층이 보호필름에 접하도록 감싸는 단계; (D) wrapping the protective film with a heating sheet coated with a heating layer including a thermosetting resin and carbon nanotubes on one surface of the polyimide film, wherein the heating layer is wrapped in contact with the protective film;
(E) 상기 발열시트의 발열층에 전기를 공급하여 발열시키고, 이로 인해 상기 파이프 접합재 및 인접한 폴리에틸렌 파이프가 용융되어 폴리에틸렌 파이프 사이의 간격을 메우는 단계; (E) supplying electricity to the heat generating layer of the heat generating sheet to generate heat, thereby melting the pipe joint and the adjacent polyethylene pipe to fill a gap between the polyethylene pipes;
(F) 상기 발열시트에의 전기 공급을 중단하고, 용융된 파이프 접합재 및 인접한 폴리에틸렌 파이프를 냉각시키는 단계; 및 (F) discontinuing the supply of electricity to the heating sheet and cooling the molten pipe joint and the adjacent polyethylene pipe; And
(G) 상기 발열시트 및 보호필름을 제거하는 단계(G) removing the heating sheet and the protective film
를 포함하는 것을 특징으로 한다.Characterized in that it comprises a.
또한, 상기 단계 (B) 이후 단계 (G) 이전에, 용융 후 냉각된 상기 폴리에틸렌 파이프 접합재의 외경이 상기 폴리에틸렌 파이프 외경의 95 내지 120 %가 되도록, 상기 폴리에틸렌 파이프 사이의 간격을 조정하는 단계를 추가로 포함할 수 있다.In addition, after step (B) and before step (G), a step of adjusting the gap between the polyethylene pipes is adjusted so that the outer diameter of the polyethylene pipe bonding material cooled after melting is 95 to 120% of the outer diameter of the polyethylene pipe. It can be included as.
또한, 상기 단계 (D) 이후 단계 (E) 이전에, 상기 발열시트를 덮개로 덮는 단계를 추가로 포함할 수 있다.In addition, after step (D) and before step (E), the method may further include covering the heating sheet with a cover.
또한, 상기 파이프 접합재의 열전달층에 포함된 탄소나노튜브, 상기 파이프 접합재의 접합입자에 포함된 탄소나노튜브 및 상기 발열시트의 발열층에 포함된 탄소나노튜브는 서로 독립적으로, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 그 혼합물로 이루어진 군에서 선택될 수 있다.In addition, the carbon nanotubes included in the heat transfer layer of the pipe joining material, the carbon nanotubes included in the joining particles of the pipe joining material and the carbon nanotubes included in the heat generating layer of the heating sheet are independently of each other, single-walled carbon nanotubes. , Double-walled carbon nanotubes, multi-walled carbon nanotubes and mixtures thereof.
또한, 상기 단계 (D)에서 용융된 상기 파이프 접합재의 온도는 130 내지 270 ℃일 수 있다.In addition, the temperature of the pipe bonding material melted in the step (D) may be 130 to 270 ℃.
한편, 본 발명의 폴리에틸렌 파이프 접합재는 상기 폴리에틸렌 파이프 접합방법에 사용되는 것을 특징으로 한다.On the other hand, the polyethylene pipe joining material of the present invention is characterized in that it is used in the polyethylene pipe joining method.
또한, 상기 연결파이프의 내경은 양 말단 쪽으로 갈수록 증가할 수 있다.In addition, the inner diameter of the connecting pipe may increase toward both ends.
또한, 상기 연결파이프는 폴리에틸렌으로 이루어질 수 있다.In addition, the connecting pipe may be made of polyethylene.
또한, 상기 연결파이프의 길이는 10 내지 200 mm일 수 있다.In addition, the length of the connecting pipe may be 10 to 200 mm.
또한, 상기 연결파이프의 두께는 1 내지 5 mm일 수 있다.In addition, the thickness of the connecting pipe may be 1 to 5 mm.
또한, 상기 보호필름은 폴리이미드로 이루어질 수 있다.In addition, the protective film may be made of polyimide.
또한, 상기 발열시트의 발열층을 구성하는 열경화성 수지는 폴리우레탄, 페놀수지, 아미노수지, 에폭시수지 및 그 혼합물로 이루어진 군에서 선택될 수 있다.In addition, the thermosetting resin constituting the heat generating layer of the heat generating sheet may be selected from the group consisting of polyurethane, phenol resin, amino resin, epoxy resin and mixtures thereof.
또한, 상기 발열시트의 발열층 중 탄소나노튜브와 열경화성 수지 사이의 중량비는 탄소나노튜브 100 중량부 당 열경화성 수지 15 내지 45 중량부일 수 있다.In addition, the weight ratio between the carbon nanotubes and the thermosetting resin in the heat generating layer of the heat generating sheet may be 15 to 45 parts by weight of the thermosetting resin per 100 parts by weight of the carbon nanotubes.
또한, 상기 발열시트의 발열층은 산화방지제를 추가로 포함할 수 있다.In addition, the heat generating layer of the heat generating sheet may further include an antioxidant.
또한, 상기 산화방지제는 하이드로퀴논일 수 있다.In addition, the antioxidant may be hydroquinone.
또한, 상기 발열시트의 발열층 중 탄소나노튜브와 산화방지제 사이의 중량비는 탄소나노튜브 100 중량부 당 산화방지제 1 내지 2 중량부일 수 있다.In addition, the weight ratio between the carbon nanotubes and the antioxidant in the heat generating layer of the heat generating sheet may be 1 to 2 parts by weight of antioxidant per 100 parts by weight of carbon nanotubes.
또한, 상기 발열시트의 발열층은 분산제를 추가로 포함할 수 있다.In addition, the heat generating layer of the heat generating sheet may further include a dispersant.
또한, 상기 분산제는 레시틴일 수 있다.In addition, the dispersant may be lecithin.
또한, 상기 발열시트의 발열층 중 탄소나노튜브와 분산제 사이의 중량비는 탄소나노튜브 100 중량부 당 분산제 1 내지 2 중량부일 수 있다.In addition, the weight ratio between the carbon nanotubes and the dispersant in the heat generating layer of the heat generating sheet may be 1 to 2 parts by weight of the dispersant per 100 parts by weight of carbon nanotubes.
또한, 상기 발열시트의 발열층은 케톤, 툴루엔, 부틸셀로솔브, N-메틸-2-피롤리돈 (N-Methyl-2-Pyrrolidone, NMP) 및 그 혼합물로 이루어진 군에서 선택된 용매에 탄소나노튜브 및 열경화성 수지를 첨가 및 혼합하여 코팅한 후 건조시킨 것일 수 있다.In addition, the exothermic layer of the exothermic sheet is carbon in a solvent selected from the group consisting of ketone, toluene, butyl cellosolve, N-methyl-2-pyrrolidone (NMP) and mixtures thereof. Nanotubes and thermosetting resins may be added and mixed and then coated and dried.
또한, 상기 발열시트의 발열층은, In addition, the heat generating layer of the heat generating sheet,
상기 발열시트의 서로 마주보는 두 변으로부터 이격되고 상기 두 변에 나란히 형성된 한 쌍의 도전부; 및 A pair of conductive parts spaced apart from two opposite sides of the heating sheet and formed in parallel to the two sides; And
상기 한 쌍의 도전부 사이에 위치하고 상기 도전부를 서로 연결하는 발열부A heating unit disposed between the pair of conductive units and connecting the conductive units to each other
로 이루어질 수 있다.It may be made of.
또한, 상기 발열부는 상기 발열시트에 1 내지 100 개가 구비될 수 있다.In addition, the heating unit may be provided with 1 to 100 on the heating sheet.
또한, 상기 도전부는 일부가 연장되어 상대측 도전부의 일부와 연결될 수 있다.In addition, a portion of the conductive portion may extend to be connected to a portion of the opposite conductive portion.
또한, 상기 도전부의 발열층 두께는 1 내지 100 ㎛일 수 있다.In addition, the thickness of the heat generating layer of the conductive portion may be 1 to 100 ㎛.
또한, 상기 발열부의 발열층 두께는 1 내지 50 ㎛일 수 있다.In addition, the thickness of the heat generating layer of the heat generating portion may be 1 to 50 ㎛.
또한, 상기 제 1 도전부의 폭은 1 내지 200 mm일 수 있다.In addition, the width of the first conductive portion may be 1 to 200 mm.
한편, 본 발명의 연결파이프는 상기 폴리에틸렌 파이프 접합방법에 사용되는 것을 특징으로 한다.On the other hand, the connection pipe of the present invention is characterized in that it is used in the polyethylene pipe joining method.
한편, 본 발명의 발열시트는 상기 폴리에틸렌 파이프 접합방법에 사용되는 것을 특징으로 한다.On the other hand, the heat generating sheet of the present invention is characterized in that it is used in the polyethylene pipe joining method.
본 발명의 폴리에틸렌 파이프 접합재는 열전도성이 뛰어난 탄소나노튜브를 외표면의 열전달층과 접합입자에 함유함으로써 열원으로부터의 열을 신속히 폴리에틸렌으로 전달할 수 있다. 그 결과 폴리에틸렌을 신속하게 용융시켜 접합하고자 하는 폴리에틸렌 파이프를 짧은 시간 안에 연결하는 것이 가능하다. 이는 종래 소켓 융착 등이 파이프 자체를 용융시키는 것에 비해 접합에 소요되는 시간을 단축시킬 수 있어 비용 절감 및 작업시간 단축의 효과도 누릴 수 있다. 그리고, 이러한 폴리에틸렌 파이프 접합재를 이용한 본 발명의 폴리에틸렌 파이프 접합방법은 파이프의 말단이 아니라 연결 부위의 외경을 발열시트로 감싸 열을 공급하고, 융착 완료 후 냉각이 종료될 때까지 상기 발열시트를 제거하지 않음으로써, 종래 맞대기 융착방법의 문제점이었던 접합 도중의 열원 제거로 인한 융착의 불완전성을 근원적으로 제거할 수 있다. 이처럼 완전한 융착과 별도의 연결파이프로 인해 내압성과 내충격성이 향상되고, 접합 부위의 기밀성 유지 기간이 연장되어 파이프의 유지, 보수 비용을 획기적으로 절감할 수 있다. 또한, 소켓 융착이나 새들 융착과 같이 고가의 소켓이나 새들을 별도로 구비할 필요가 없고, 현장에 다양한 크기와 형태의 소켓이나 새들을 구비할 필요가 없어 경제성 및 작업성이 현저히 개선되는 장점이 있다.The polyethylene pipe bonding material of the present invention can quickly transfer heat from a heat source to polyethylene by containing carbon nanotubes having excellent thermal conductivity in the heat transfer layer and the bonding particles on the outer surface. As a result, it is possible to melt the polyethylene quickly and connect the polyethylene pipe to be joined in a short time. This can shorten the time required for joining the socket compared to the melting of the pipe itself, etc., it is also possible to enjoy the effect of reducing the cost and working time. In addition, the polyethylene pipe joining method of the present invention using the polyethylene pipe joining material not only the end of the pipe but the outer diameter of the connection portion is wrapped with a heating sheet to supply heat, and after the completion of fusion does not remove the heating sheet until the end of cooling. By doing so, it is possible to fundamentally eliminate the imperfection of the fusion due to the removal of the heat source during the bonding, which has been a problem of the conventional butt fusion method. This complete fusion and separate connection pipe improves pressure resistance and impact resistance, and prolongs the airtightness of the joints, greatly reducing the maintenance and repair costs of the pipes. In addition, there is no need to provide expensive sockets or birds separately, such as socket fusion or saddle fusion, and there is no need to provide sockets or birds of various sizes and shapes in the field, thereby improving economics and workability.
도 1은 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 폴리에틸렌 파이프 접합재의 단면 사시도이다.1 is a cross-sectional perspective view of a polyethylene pipe joining material used in the polyethylene pipe joining method of the present invention.
도 2는 연결파이프에 접합하고자 하는 폴리에틸렌 파이프를 끼우고 그 사이에 폴리에틸렌 파이프 접합재를 끼운 상태를 도시한 단면도이다.2 is a cross-sectional view illustrating a state in which a polyethylene pipe to be joined to a connection pipe is inserted and a polyethylene pipe bonding material is inserted therebetween.
도 3은 끼워진 폴리에틸렌 파이프 접합재를 주변을 보호필름, 발열시트 및 덮개로 감싼 상태를 도시한 단면도이다.3 is a cross-sectional view illustrating a state in which a polyethylene film bonding material is wrapped around a protective film, a heating sheet, and a cover.
도 4는 덮개를 제외한 상태에서 도 3을 파이프 길이 방향에서 바라본 단면도이다.4 is a cross-sectional view of FIG. 3 viewed from a pipe length direction without a cover.
도 5는 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 연결파이프의 일 실시예를 도시한 단면도이다.5 is a cross-sectional view showing an embodiment of a connecting pipe used in the polyethylene pipe joining method of the present invention.
도 6은 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 연결파이프의 또 다른 실시예를 도시한 단면도이다.Figure 6 is a cross-sectional view showing another embodiment of the connecting pipe used in the polyethylene pipe joining method of the present invention.
도 7은 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 발열시트의 일 실시예를 도시한 평면도이다.Figure 7 is a plan view showing an embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
도 8은 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 발열시트의 또 다른 실시예를 도시한 평면도이다.8 is a plan view showing another embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
도 9는 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 발열시트의 또 다른 실시예를 도시한 평면도이다.9 is a plan view showing another embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
도 10은 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 발열시트의 또 다른 실시예를 도시한 평면도이다.10 is a plan view showing another embodiment of a heat generating sheet used in the polyethylene pipe joining method of the present invention.
이하, 본 발명의 바람직한 실시예에 대하여 상세히 설명한다. 또한, 하기의 설명에서는 구체적인 구성요소 등과 같은 많은 특정사항들이 설명되어 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들 없이도 본 발명이 실시될 수 있음은 이 기술분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, many specific details such as specific components are described in the following description, which is provided to help a more general understanding of the present invention, and the present invention may be practiced without these specific details. It is self-evident to those who have knowledge of the world. In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
본 명세서에서 사용된 용어 '두께'는 파이프의 경우 외경과 내경의 차이의 절반을 가리킨다.As used herein, the term 'thickness' refers to half of the difference between the outer diameter and the inner diameter in the case of pipes.
본 발명의 폴리에틸렌 파이프 접합재 (100)는 상술한 바와 같은 목적을 달성하기 위하여, 접합하고자 하는 폴리에틸렌 파이프 (400) 사이에 삽입된 후 별도의 열원에 의해 용융 및 냉각되어 상기 폴리에틸렌 파이프 (400)를 접합 연결시키는 것을 특징으로 한다.In order to achieve the object as described above, the polyethylene pipe bonding material 100 of the present invention is inserted between the polyethylene pipes 400 to be bonded, and then melted and cooled by a separate heat source to bond the polyethylene pipes 400. It is characterized by connecting.
상기 파이프 접합재 (100)는 도 1에 도시된 바와 같이 폴리에틸렌 필름으로 이루어진 밀폐형 파우치 (120)와 그 외표면에 코팅된 열전달층 (110), 그리고 상기 파우치 (120) 내부를 충전한 접합입자 (130)를 포함한다. 상기 열전달층 (110)은 탄소나노튜브 및 열가소성 수지를 포함하고, 접합입자 (130)는 탄소나노튜브 및 폴리에틸렌을 포함한다.As shown in FIG. 1, the pipe bonding member 100 includes a sealed pouch 120 made of polyethylene film, a heat transfer layer 110 coated on an outer surface thereof, and a bonding particle 130 filling the inside of the pouch 120. ). The heat transfer layer 110 includes carbon nanotubes and a thermoplastic resin, and the bonding particles 130 include carbon nanotubes and polyethylene.
종래 맞대기 융착방법이 파이프의 단면을 가열하여 파이프 자체를 용융시킨 다음 이를 융착시킴에 반해, 본 발명의 폴리에틸렌 파이프 접합방법은 별도의 폴리에틸렌을 파이프 사이에 끼워 넣고 상기 폴리에틸렌과 혼합된 열전달 촉진물질인 탄소나노튜브를 통해 상기 폴리에틸렌을 신속하게 용융시켜 파이프 사이를 접합하는 것을 특징으로 한다. 이렇게 가열에 의해 용융된 폴리에틸렌은 파이프의 접합이 완료되고 용융된 폴리에틸렌이 냉각될 때까지 계속 열원과 접촉을 유지함으로써 용융물의 온도 변화가 완만하다. 따라서, 종래 맞대기 융착에서와 같은 급격한 온도변화로 인한 접합의 불완전성을 원천적으로 차단할 수 있다.While the conventional butt fusion method heats the end surface of the pipe to melt the pipe itself and then fusions it, the polyethylene pipe joining method of the present invention inserts a separate polyethylene between the pipes and is a heat transfer promoting material mixed with the polyethylene. It is characterized in that the polyethylene is rapidly melted through the nanotubes to bond between the pipes. The polyethylene melted by heating is gentle in temperature change of the melt by keeping in contact with the heat source until the joining of the pipe is completed and the molten polyethylene is cooled. Therefore, it is possible to fundamentally block the imperfection of the joint due to a sudden temperature change as in conventional butt fusion.
이러한 폴리에틸렌 파이프 접합재 (100)의 기능을 달성하기 위해 외부 열원으로부터 공급된 열은 열전달층 (110)을 통해 파우치 (120) 전 표면으로 전달되고 이 열은 다시 내부의 접합입자 (130)로 고루 전달될 수 있다. 나아가, 접합입자 (130) 역시 내부에 탄소나노튜브를 함유함으로써 상기 열전달층 (110)으로부터 전달된 열을 인접한 폴리에틸렌으로 신속하게 전달할 수 있게 된다. 이렇게 전달된 열은 접합입자 (130)의 폴리에틸렌과 파우치 (120)의 폴리에틸렌을 용융시켜 폴리에틸렌 파이프 (400) 사이의 간격을 기밀하게 메운다. 이러한 용융물이 냉각되어 파이프 사이를 완벽하게 접합시키는 것이 본 발명의 접합방식인 것이다.In order to achieve the function of the polyethylene pipe bonding material 100, the heat supplied from the external heat source is transferred to the entire surface of the pouch 120 through the heat transfer layer 110, and the heat is evenly transmitted back to the inner bonding particles 130. Can be. Furthermore, the bonding particles 130 also contain carbon nanotubes therein, so that the heat transferred from the heat transfer layer 110 can be quickly transferred to the adjacent polyethylene. The heat transferred in this way melts the polyethylene of the bonding particles 130 and the polyethylene of the pouch 120 to fill the gap between the polyethylene pipes 400 in an airtight manner. It is the joining method of the present invention that the melt is cooled to completely join the pipes.
상기 용융된 상기 파이프 접합재 (100)의 온도는 130 내지 270 ℃인데, 130 ℃ 미만인 경우, 폴리에틸렌의 융점 근처 또는 그 미만이어서 폴리에틸렌의 용융이 일어나지 않고, 270 ℃를 초과하면 폴리에틸렌의 분해 또는 변성이 일어나 연결 부위의 내구성을 보장할 수 없다.The temperature of the molten pipe joining material 100 is 130 to 270 ℃, if less than 130 ℃, near or below the melting point of polyethylene does not melt the polyethylene, if it exceeds 270 ℃ polyethylene decomposition or denaturation occurs The durability of the connection site cannot be guaranteed.
여기서 상기 파이프 접합재 (100)의 열전달층 (110)에는 탄소나노튜브가 열가소성 수지와 함께 혼합되어 코팅되는데, 상기 탄소나노튜브와 혼합되는 열가소성 수지에는 제한이 없으나, 염화비닐수지를 포함한 비닐수지, 아크릴수지, 폴리아미드, 폴리에스테르, 폴리에테르 및 그 혼합물로 이루어진 군에서 선택되는 것이 바람직하다.Here, the carbon nanotubes are mixed with the thermoplastic resin and coated on the heat transfer layer 110 of the pipe joint 100, but there is no limitation on the thermoplastic resin mixed with the carbon nanotubes. It is preferably selected from the group consisting of resins, polyamides, polyesters, polyethers and mixtures thereof.
또한, 상기 파이프 접합재 (100)의 열전달층 (110)에서 탄소나노튜브와 열가소성 수지의 중량비는 탄소나노튜브 : 열가소성 수지 = 0.1 내지 60 : 40 내지 99.9 중량%일 수 있다. 탄소나노튜브가 0.1 중량% 미만이면, 후술할 발열시트 (200)로부터의 열을 상기 접합입자 (130)로 신속하게 전달하기 어렵고, 반대로 60 중량%를 초과하면 바인더 역할을 하는 열가소성 수지에 비해 과량 함유되어 열전달층 (110)으로부터 탄소나노튜브가 손실될 가능성이 발생한다.In addition, the weight ratio of the carbon nanotubes and the thermoplastic resin in the heat transfer layer 110 of the pipe joint 100 may be carbon nanotubes: thermoplastic resin = 0.1 to 60: 40 to 99.9% by weight. If the carbon nanotube is less than 0.1% by weight, it is difficult to quickly transfer heat from the heat generating sheet 200 to be described later to the bonding particles 130, on the contrary, when the carbon nanotube exceeds 60% by weight, it is excessive compared to the thermoplastic resin serving as a binder. Containing carbon nanotubes from the heat transfer layer 110.
그리고, 상기 파이프 접합재 (100)의 열전달층 (110) 두께는 0.1 내지 5 ㎛인 것이 바람직한데, 0.1 ㎛ 미만이면 후술할 발열시트 (200)로부터의 열을 상기 접합입자 (130)로 신속하게 전달하기 어렵고, 반대로 5 ㎛를 초과하면 파이프 접합재 (100)의 유연성이 떨어져 폴리에틸렌 파이프 (400) 사이에 끼우기가 어려우며 설령 끼운다 하더라도 열전달층 (110)이 깨질 가능성이 높아진다.And, the thickness of the heat transfer layer 110 of the pipe bonding material 100 is preferably 0.1 to 5 ㎛, if less than 0.1 ㎛ to quickly transfer the heat from the heat generating sheet 200 to be described later to the bonding particles (130). In contrast, if the thickness exceeds 5 μm, the flexibility of the pipe joint 100 is reduced, making it difficult to sandwich the polyethylene pipe 400, and even if it is sandwiched, the heat transfer layer 110 is more likely to be broken.
한편, 상기 파이프 접합재 (100)의 접합입자 (130) 역시 탄소나노튜브와 폴리에틸렌의 중량비가 탄소나노튜브 : 폴리에틸렌 = 0.1 내지 30 : 70 내지 99.9 중량%인 것이 바람직한데, 탄소나노튜브가 0.1 중량% 미만이면, 상기 열전달층 (110)으로부터의 열을 인접한 폴리에틸렌으로 신속하게 전달하기 어렵고, 반대로 30 중량%를 초과하면 최종적으로 폴리에틸렌 파이프 (400)의 연결 부위에 폴리에틸렌 이외의 물질 함량이 지나치게 높아지는 결과를 초래하여 내구성이 떨어질 가능성이 있다.On the other hand, the bonding particles 130 of the pipe joint 100 is also preferably a carbon nanotube and the weight ratio of the carbon nanotube: polyethylene = 0.1 to 30: 70 to 99.9% by weight, the carbon nanotube 0.1% by weight If less than, it is difficult to quickly transfer heat from the heat transfer layer 110 to the adjacent polyethylene, on the contrary, if it exceeds 30% by weight, the content of the non-polyethylene material is excessively high at the connection portion of the polyethylene pipe 400. There is a possibility that the durability is reduced.
본 발명의 폴리에틸렌 파이프 접합방법은 먼저 도 2 및 도 3에 도시된 바와 같이 연결파이프 (300)를 중심으로 그 양단에 접합하고자 하는 한 쌍의 폴리에틸렌 파이프 (400) 각각을 끼우는 단계로부터 시작된다. 이러한 연결파이프 (300)의 존재가 본 발명의 주요한 특징을 이루는데, 종래 맞대기 융착의 경우 접합하고자 하는 폴리에틸렌 파이프 (400) 단면에 대응하는 발열판을 적용하고 제거하는 과정 때문에 별도의 연결파이프 (300)를 개재시키기 어려웠다. 그러나, 본 발명은 파이프의 바깥을 감싸서 용융시키므로 내부에 연결파이프 (300)를 개재시키는 것이 가능하며, 이러한 연결파이프 (300) 자체의 기계적 강도 때문에 파이프 연결 부위의 내구성과 내충격성이 비약적으로 상승되는 것이다. 나아가, 본 발명에서 사용되는 연결파이프 (300)는 이러한 본 발명의 폴리에틸렌 파이프 접합방법에 사용되는 것을 특징으로 한다.The polyethylene pipe joining method of the present invention first begins by inserting each of the pair of polyethylene pipes 400 to be joined at both ends of the connecting pipe 300 as shown in FIGS. 2 and 3. The presence of such a connecting pipe 300 forms a major feature of the present invention. In the case of conventional butt fusion, a separate connecting pipe 300 is applied due to a process of applying and removing a heating plate corresponding to a cross section of the polyethylene pipe 400 to be joined. It was difficult to intervene. However, since the present invention wraps and melts the outside of the pipe, it is possible to interpose the connection pipe 300 therein, and due to the mechanical strength of the connection pipe 300 itself, the durability and impact resistance of the pipe connection area is dramatically increased. will be. Further, the connection pipe 300 used in the present invention is characterized in that it is used in the polyethylene pipe joining method of the present invention.
이때 연결파이프 (300)의 외면은 도 2 및 도 3에 도시된 바와 같이 접합하고자 하는 폴리에틸렌 파이프 (400) 내면에 밀착되고, 접합하고자 하는 폴리에틸렌 파이프 (400)는 서로 맞대는 것이 아니라 폴리에틸렌 파이프 (400) 두께의 20 내지 100 % 정도 서로 떨어진 상태로 끼워지는데, 이 간격에 후술할 파이프 접합재 (100)가 삽입된다. 상기 간격이 접합하고자 하는 폴리에틸렌 파이프 (400) 두께의 20 % 미만이면 삽입하는 파이프 접합재 (100)의 양이 적어 완전한 접합을 구현하기 곤란하고, 반대로 100 %를 초과하면 사용해야 하는 파이프 접합재 (100)의 양이 불필요하게 증가하여 경제성이 떨어진다.At this time, the outer surface of the connection pipe 300 is in close contact with the inner surface of the polyethylene pipe 400 to be bonded, as shown in FIGS. 2 and 3, the polyethylene pipe 400 to be bonded is not opposed to each other but the polyethylene pipe 400 20 to 100% of the thickness is inserted apart from each other, the pipe joining material 100 to be described later is inserted in this interval. If the gap is less than 20% of the thickness of the polyethylene pipe 400 to be bonded, the amount of the pipe bonding material 100 to be inserted is small, so that it is difficult to realize complete bonding. The amount is unnecessarily increased and economic efficiency is lowered.
여기서, 상기 연결파이프 (300)의 내경은 도 2 및 도 3에 도시된 바와 같이 연결파이프 (300) 길이 방향에 대해 일정할 수도 있으나, 도 5 또는 도 6과 같이 양 말단 쪽으로 갈수록 증가하는 것이 더욱 바람직하다. 본 발명의 폴리에틸렌 파이프 접합방법에 따르면 파이프의 연결 부위에서는 연결파이프 (300)의 존재로 인해 관의 내경이 줄어들게 되는데, 상기 파이프 내부를 흐르는 유체는 이러한 연결파이프 (300)의 두께로 인해 흐름을 방해받게 되고, 이는 유체의 이송에 필요한 압력을 증가시켜 운전비의 상승을 가져온다. 이러한 문제점의 해결을 위해 연결파이프 (300)의 내경이 양 말단으로 갈수록 서서히 증가하게 함으로써 유체가 부드럽게 흐르고 불필요한 와류의 발생을 억제할 수 있다. 이러한 내경 증가 방식은 도 5처럼 단면이 직선일수도 있고, 도 6처럼 단면이 곡선일 수도 있다.Here, the inner diameter of the connecting pipe 300 may be constant with respect to the longitudinal direction of the connecting pipe 300, as shown in Figures 2 and 3, but more increases toward both ends as shown in Figure 5 or 6 desirable. According to the polyethylene pipe joining method of the present invention, the inner diameter of the pipe is reduced due to the presence of the connection pipe 300 at the connection portion of the pipe, the fluid flowing inside the pipe is obstructed flow due to the thickness of the connection pipe 300 This results in an increase in the operating cost by increasing the pressure required to transfer the fluid. In order to solve this problem, the inner diameter of the connecting pipe 300 gradually increases toward both ends, so that the fluid flows smoothly and the generation of unnecessary vortices can be suppressed. The inner diameter increasing method may have a straight cross section as shown in FIG. 5, or a curved cross section as shown in FIG. 6.
그리고, 상기 연결파이프 (300)의 재질은 파이프로서 사용할 수 있는 합성수지라면 제한이 없으나, 접합하고자 하는 파이프와 동일한 폴리에틸렌으로 이루어지는 더욱 바람직하다.And, the material of the connecting pipe 300 is not limited as long as it is a synthetic resin that can be used as a pipe, but more preferably made of the same polyethylene as the pipe to be bonded.
이러한 연결파이프 (300)의 길이는 적용하고자 하는 현장 상황에 맞추어 변경 사용하는 것이 가능하고, 특히 10 내지 200 mm인 것이 바람직하다. 상기 연결파이프 (300)의 길이가 10 mm 미만이면 양쪽의 폴리에틸렌 파이프 (400)와 접하는 길이가 짧아 이탈할 가능성이 있으며, 반대로 200 mm를 초과하면 내경이 좁아지는 구간이 불필요하게 증가하는 단점이 있다.The length of the connection pipe 300 can be changed and used according to the site situation to be applied, and particularly preferably 10 to 200 mm. If the length of the connecting pipe 300 is less than 10 mm there is a possibility that the length of contact with both polyethylene pipe 400 is short and can be separated, on the contrary, if the length of the connecting pipe 300 exceeds 200 mm, the section of narrowing the inner diameter is unnecessarily increased. .
마찬가지로, 상기 연결파이프 (300)의 두께는 적용하고자 하는 현장 상황에 맞추어 변경 사용하는 것이 가능하고, 특히 1 내지 5 mm인 것이 바람직하다. 상기 연결파이프 (300)의 두께가 1 mm 미만이면 연결파이프 (300) 자체의 기계적 강도가 지나치게 저하될 가능성이 있고 시공시 파이프 접합재 (100)와의 과도한 용융에 의해 파이프의 모양을 잃을 수 있다. 반대로 5 mm를 초과하면 내경이 지나치게 좁아져 운전압력이 증가하는 단점이 있다.Similarly, the thickness of the connection pipe 300 can be used in accordance with the field conditions to be applied, it is particularly preferred that the 1 to 5 mm. If the thickness of the connecting pipe 300 is less than 1 mm, there is a possibility that the mechanical strength of the connecting pipe 300 itself may be excessively reduced, and the shape of the pipe may be lost due to excessive melting with the pipe joint 100 during construction. On the contrary, if the diameter exceeds 5 mm, the inner diameter becomes too narrow, which increases the operating pressure.
상기 폴리에틸렌 파이프 접합재 (100)를 파이프 사이에 끼워 넣으면, 이어서 도 3에 도시된 바와 같이 보호필름 (500)으로 상기 파이프 접합재 (100) 및 인접한 폴리에틸렌 파이프 (400) 외면을 감싸게 된다. 이러한 보호필름 (500)은 상기 용융된 파이프 접합재 (100)가 후술할 발열시트 (200)를 오염시킴으로써 이후 발열시트 (200)의 제거가 곤란해지는 현상을 예방하기 위해 도입한다. 상기 발열시트 (200)는 폴리에틸렌의 융점을 훨씬 상회하는 온도까지 가열되므로 이러한 온도에서도 분해나 변성이 일어나지 않는 대단히 높은 융점을 가진 물질이어야 하며, 융점이 280 ℃ 이상이면 제한 없이 사용 가능하나, 특히 폴리이미드가 바람직하다.When the polyethylene pipe bonding material 100 is sandwiched between the pipes, the outer surface of the pipe bonding material 100 and the adjacent polyethylene pipe 400 is surrounded by the protective film 500 as shown in FIG. 3. The protective film 500 is introduced to prevent the phenomenon that the molten pipe bonding material 100 becomes difficult to remove the heating sheet 200 by contaminating the heating sheet 200 to be described later. Since the heating sheet 200 is heated to a temperature much higher than the melting point of polyethylene, it should be a material having a very high melting point that does not cause decomposition or denaturation even at such a temperature. Meade is preferred.
이렇게 보호필름 (500)을 감싼 다음에는, 도 3 및 도 4에 도시된 바와 같이 발열시트 (200)로 상기 보호필름 (500)을 감싼다.After the protective film 500 is wrapped in this way, the protective film 500 is wrapped with the heating sheet 200 as shown in FIGS. 3 and 4.
상기 발열시트 (200)는 폴리이미드 필름 (220) 일면에 열경화성 수지 및 탄소나노튜브를 포함한 발열층 (210)으로 코팅한 것으로서, 상기 발열층 (210)이 상기 보호필름 (500)에 접하도록 감싸게 된다. 본 발명에서 사용되는 발열시트 (200)는 이처럼 상기 폴리에틸렌 파이프 접합방법에 사용되는 것을 특징으로 한다.The heat generating sheet 200 is coated with a heat generating layer 210 including a thermosetting resin and carbon nanotubes on one surface of the polyimide film 220, so that the heat generating layer 210 is in contact with the protective film 500. do. The heating sheet 200 used in the present invention is characterized in that it is used in the polyethylene pipe bonding method as described above.
상기 발열시트 (200)의 기재로서 폴리이미드 필름 (220)을 적용한 것은 보호필름 (500)으로 폴리이미드 필름을 사용한 이유와 동일하며, 발열층 (210)을 구성하는 열경화성 수지는 고온에서도 안정한 수지라면 제한 없이 사용될 수 있으나, 폴리우레탄, 페놀수지, 아미노수지, 에폭시수지 및 그 혼합물로 이루어진 군에서 선택되는 것이 더욱 바람직하다.Applying the polyimide film 220 as the substrate of the heat generating sheet 200 is the same as the reason for using the polyimide film as the protective film 500, the thermosetting resin constituting the heat generating layer 210 is a stable resin even at high temperatures Although it may be used without limitation, it is more preferably selected from the group consisting of polyurethane, phenol resin, amino resin, epoxy resin and mixtures thereof.
상기 발열시트 (200)의 발열층 (210) 중 탄소나노튜브와 열경화성 수지 사이의 중량비는 탄소나노튜브 100 중량부 당 열경화성 수지 15 내지 45 중량부인 것이 바람직한데, 열경화성 수지가 15 중량부 미만이면 바인더 역할을 하는 열경화성 수지가 너무 적어 발열층 (210)으로부터 탄소나노튜브가 손실될 가능성이 발생하고 쉽게 온도가 상승하여 온도 제어가 어려운 문제점이 있다. 반대로 열경화성 수지의 함량이 45 중량부를 초과하면 가열하는 데 시간이 오래 걸리고 원하는 온도까지 상승시키기가 어렵다.The weight ratio between the carbon nanotubes and the thermosetting resin in the heat generating layer 210 of the heat generating sheet 200 is preferably 15 to 45 parts by weight of the thermosetting resin per 100 parts by weight of the carbon nanotubes, the binder is less than 15 parts by weight of the thermosetting resin There is a problem that there is a possibility that the carbon nanotubes are lost from the heat generating layer 210 due to too little thermosetting resin to play a role and the temperature rises easily, making it difficult to control the temperature. On the contrary, when the content of the thermosetting resin exceeds 45 parts by weight, it takes a long time to heat and it is difficult to raise the temperature to the desired temperature.
또한, 상기 발열시트 (200)의 발열층 (210)은 산화로 인한 발열층 (210)의 기능 저하를 예방하기 위해 산화방지제를 추가로 포함할 수 있는데, 이때 사용하는 산화방지제에는 특별한 제한이 없으나, 하이드로퀴논이 특히 바람직하다. 나아가, 상기 발열시트 (200)의 발열층 (210) 중 탄소나노튜브와 산화방지제 사이의 중량비는 탄소나노튜브 100 중량부 당 산화방지제 1 내지 2 중량부가 바람직한데, 1 중량부 미만인 경우 산화방지 효과를 충분히 거두기 어렵고, 반대로 2 중량부를 초과하면 산화방지제의 양 증가에 따른 산화방지 효과의 증가가 미미하여 경제적으로나 내구성 측면에서나 불필요하다.In addition, the heat generating layer 210 of the heat generating sheet 200 may further include an antioxidant to prevent deterioration of the function of the heat generating layer 210 due to oxidation, but there is no particular limitation on the antioxidant used. , Hydroquinone is particularly preferred. Furthermore, the weight ratio between the carbon nanotubes and the antioxidant in the heating layer 210 of the heat generating sheet 200 is preferably 1 to 2 parts by weight of antioxidant per 100 parts by weight of carbon nanotubes, but less than 1 part by weight of the antioxidant effect When it is difficult to harvest enough, on the contrary, if it exceeds 2 parts by weight, the increase in the antioxidant effect due to the increase of the amount of the antioxidant is insignificant, which is unnecessary both economically and in terms of durability.
또한, 상기 발열시트 (200)의 발열층 (210)은 탄소나노튜브의 분산을 원활하게 하기 위해 분산제를 추가로 포함할 수 있는데, 이때 사용하는 분산제에는 특별한 제한이 없으나, 레시틴(lecithin)이 특히 바람직하다. 나아가, 상기 발열시트 (200)의 발열층 (210) 중 탄소나노튜브와 분산제 사이의 중량비는 탄소나노튜브 100 중량부 당 산화방지제 1 내지 2 중량부가 바람직한데, 1 중량부 미만인 경우 분산 효과를 충분히 거두기 어렵고, 반대로 2 중량부를 초과하면 분산제의 양 증가에 따른 분산 효과의 증가가 미미하여 경제적으로나 내구성 측면에서나 불필요하다.In addition, the heating layer 210 of the heating sheet 200 may further include a dispersant to facilitate the dispersion of the carbon nanotubes, there is no particular limitation on the dispersant used, lecithin (lecithin) is particularly desirable. Further, the weight ratio between the carbon nanotubes and the dispersant in the heat generating layer 210 of the heat generating sheet 200 is preferably 1 to 2 parts by weight of antioxidant per 100 parts by weight of carbon nanotubes, if less than 1 part by weight is sufficient to the dispersion effect On the contrary, if the amount is more than 2 parts by weight, the increase of the dispersing effect due to the increase of the amount of the dispersant is insignificant, which is unnecessary both economically and in terms of durability.
상기 발열층 (210)의 형성을 위한 열경화성 수지와 탄소나노튜브, 나아가 산화방지제 내지 분산제의 혼합은 적당한 용매에 상기 성분들을 용해시켜 혼합함으로써 달성되며, 이후 폴리이미드 필름 (220)에 도포 및 건조시켜 코팅층을 형성하게 된다. 이때 사용되는 용매에는 상기 성분들을 혼합할 수 있는 물질이라면 특별한 제한이 없으나, 케톤, 툴루엔, 부틸셀로솔브, N-메틸-2-피롤리돈 (N-Methyl-2-Pyrrolidone, NMP) 및 그 혼합물로 이루어진 군에서 선택되는 것이 바람직하다.Mixing of the thermosetting resin and the carbon nanotubes, and the antioxidants and dispersants for forming the exothermic layer 210 is achieved by dissolving and mixing the components in a suitable solvent, and then applied and dried on the polyimide film 220 The coating layer is formed. The solvent used is not particularly limited as long as it is a substance capable of mixing the above components, but ketone, toluene, butyl cellosolve, N-methyl-2-pyrrolidone (N-Methyl-2-Pyrrolidone, NMP) and It is preferable to select from the group which consists of the mixture.
한편 상기 발열시트 (200)의 발열층 (210)은, 도 7에 도시된 바와 같이 폴리이미드 필름 (220)의 서로 마주보는 두 변으로부터 이격된 형태로 상기 폴리이미드 필름 (220)에 코팅될 수도 있으나, 전류의 흐름을 담당하는 도전부 (212)와 발열을 담당하는 발열부 (214)로 구분될 수도 있다.Meanwhile, the heating layer 210 of the heating sheet 200 may be coated on the polyimide film 220 in a form spaced apart from two opposite sides of the polyimide film 220 as shown in FIG. 7. However, it may be divided into a conductive portion 212 that is responsible for the flow of current and a heating portion 214 that is responsible for heat generation.
구체적으로, 상기 발열층 (210)은 도 8에 도시된 바와 같이 상기 발열시트 (200)의 서로 마주보는 두 변으로부터 이격되고 상기 두 변에 나란히 형성된 한 쌍의 도전부 (212); 및 상기 한 쌍의 도전부 (212) 사이에 위치하고 상기 도전부 (212)를 서로 연결하는 발열부 (214)로 이루어질 수 있다.Specifically, as shown in FIG. 8, the heat generating layer 210 is provided with a pair of conductive parts 212 spaced apart from two sides facing each other of the heat generating sheet 200 and formed side by side on the two sides; And a heating unit 214 disposed between the pair of conductive units 212 and connecting the conductive units 212 to each other.
상기 발열층 (210) 중 도전부 (212)의 두께는 도 7에서처럼 발열부 (214)와 동일할 수도 있으나, 발열부 (214)보다 두껍게 형성함으로써 저항을 낮추고 전도율을 높여 전기 전도 효율을 높이는 것이 바람직하며, 그 두께는 1 내지 100 ㎛인 것이 바람직하다. 상기 도전부 (212)의 두께가 1 ㎛ 미만이면 전도 효율이 떨어지고 발열층 (210)의 박리나 끊어짐이 발생하기 쉽고, 100 ㎛를 초과하면 필요 이상으로 두꺼워져 경제성이 떨어진다.Although the thickness of the conductive part 212 of the heating layer 210 may be the same as the heating part 214 as shown in FIG. 7, the thickness of the conductive part 212 is higher than that of the heating part 214 to lower the resistance and increase the conductivity to increase the electrical conduction efficiency. It is preferable that the thickness is 1-100 micrometers. If the thickness of the conductive portion 212 is less than 1 μm, the conduction efficiency is lowered and peeling or breaking of the heat generating layer 210 is likely to occur.
상기 발열부 (214)의 발열층 (210) 두께는 얇게 형성함으로써 발열량을 증가시키는 것이 바람직하며, 그 두께는 1 내지 50 ㎛인 것이 바람직하다. 상기 발열부 (214)의 두께가 1 ㎛ 미만이면 전도 효율이 지나치게 떨어져 효율이 낮아지며 발열층 (210)의 박리나 끊어짐이 발생하기 쉽고, 50 ㎛를 초과하면 필요 이상으로 두꺼워져 경제성이 떨어진다.The thickness of the heat generating layer 210 of the heat generating part 214 is preferably formed to increase the heat generation amount, the thickness is preferably 1 to 50 ㎛. When the thickness of the heat generating part 214 is less than 1 μm, the conduction efficiency is too low, the efficiency is low, and the peeling or breaking of the heat generating layer 210 is likely to occur.
또한, 상기 도전부 (212)의 폭은 접합하고자 하는 폴리에틸렌 파이프 (400)의 크기에 맞게 선택할 수 있으며, 통상 1 내지 200 mm인 것이 바람직하다.In addition, the width of the conductive portion 212 may be selected according to the size of the polyethylene pipe 400 to be bonded, preferably 1 to 200 mm.
한편, 상기 도전부 (212)는 상기 발열시트 (200)의 크기가 커질 경우 상대측 도전부 (212)로의 전도 효율을 증가시키기 위해 도 10에 도시된 바와 같이 그 일부가 연장되어 상대측 도전부 (212)의 일부와 연결될 수 있다. 접합하고자 하는 폴리에틸렌 파이프 (400)가 커지면 발열시트 (200) 역시 커져야 하는데, 도전부 (212) 사이가 멀어지면 저항이 큰 발열부 (214)를 통한 전기 전도가 원활하지 않을 수 있다. 이 경우 도 10에서처럼 도전부 (212) 사이를 사다리처럼 도전부 (212)로 연결하면 전기 전도를 안정적으로 수행할 수 있다.Meanwhile, when the size of the heat generating sheet 200 increases, the conductive part 212 extends a part of the conductive part 212 as shown in FIG. 10 to increase the conduction efficiency of the conductive part 212. May be connected to a portion of the If the polyethylene pipe 400 to be bonded is large, the heating sheet 200 should also be large. If the conductive parts 212 are separated from each other, electrical conduction through the heat generating part 214 having high resistance may not be smooth. In this case, when the conductive parts 212 are connected to each other by the conductive parts 212 like a ladder, as shown in FIG. 10, electrical conduction can be stably performed.
또한, 상기 발열부 (214)는 접합하고자 하는 폴리에틸렌 파이프 (400)가 작은 경우 발열시트 (200) 역시 작아지고 그 결과 작은 면적에서 상대적으로 많은 전류가 흐르게 되어 온도가 급격히 상승할 수 있다. 이 경우 적절한 온도 제어를 위해 도 9에 도시된 바와 같이 발열층 (210) 중간에 빈 공간을 형성하여 온도 상승을 적절히 제어하는 것이 바람직하며, 필요에 따라 도전부 (212) 사이에 상기 발열부 (214)를 1 내지 100 개 구비되도록 할 수 있다.In addition, when the polyethylene pipe 400 to be bonded to the heat generating part 214 is small, the heat generating sheet 200 also becomes small, and as a result, a relatively large current flows in a small area, and thus the temperature may increase rapidly. In this case, for proper temperature control, as shown in FIG. 9, it is preferable to form an empty space in the middle of the heat generating layer 210 so as to appropriately control the temperature rise. 214 may be provided with 1 to 100.
이렇게 발열시트 (200)로 상기 보호필름 (500)을 감싸고 나면, 상기 발열시트 (200)의 발열층 (210), 구체적으로 도전부 (212)에 도 4와 같이 전원 (250)을 연결하고 전기를 공급하여 발열시키게 된다. 공급된 전기는 발열층 (210)을 가열하고 여기서 발생한 열은 상기 폴리에틸렌 파이프 접합재 (100)의 열전달층 (110) 및 접합입자 (130)에 포함된 탄소나노튜브에 의해 신속하게 접합입자 (130) 및 파우치 (120)의 폴리에틸렌으로 전달되고 나아가 인접한 폴리에틸렌 파이프 (400)로 전달되어 폴리에틸렌을 용융시키고 이들의 용융물은 접합하고자 하는 폴리에틸렌 파이프 (400) 사이의 간격을 메우게 된다.After the protective film 500 is wrapped with the heating sheet 200, the power supply 250 is connected to the heating layer 210 of the heating sheet 200, specifically, the conductive part 212 as shown in FIG. It supplies heat. The supplied electricity heats the heat generating layer 210, and the heat generated therein is rapidly bonded to the bonded particles 130 by the carbon nanotubes included in the heat transfer layer 110 and the bonded particles 130 of the polyethylene pipe bonding material 100. And to the polyethylene of the pouch 120 and further to the adjacent polyethylene pipe 400 to melt the polyethylene and their melt to fill the gap between the polyethylene pipe 400 to be bonded.
이처럼 폴리에틸렌 용융물이 접합하고자 하는 폴리에틸렌 파이프 (400) 사이의 간격을 기밀하게 메우고 나면, 상기 발열시트 (200)에의 전기 공급을 중단하고, 용융된 파이프 접합재 (100) 및 인접한 폴리에틸렌 파이프 (400)를 냉각시킨 후, 상기 발열시트 (200) 및 보호필름 (500)을 제거함으로써 폴리에틸렌 파이프 (400)의 접합이 완료된다.After the polyethylene melt is completely filled with the gap between the polyethylene pipes 400 to be joined, the electricity supply to the heating sheet 200 is stopped, and the molten pipe bonding material 100 and the adjacent polyethylene pipes 400 are cooled. After the removal, the bonding of the polyethylene pipe 400 is completed by removing the heating sheet 200 and the protective film 500.
또한, 본 발명의 폴리에틸렌 파이프 접합방법은 상기 파이프 접합재 (100)를 폴리에틸렌 파이프 (400) 사이의 간격에 끼운 이후부터 냉각이 완료되기 전 적당한 시점 사이에 1 회 또는 수회에 걸쳐, 상기 용융 후 냉각된 파이프 접합재 (100)의 외경이 상기 폴리에틸렌 파이프 (400) 외경의 95 내지 120 %가 되도록, 상기 폴리에틸렌 파이프 (400) 사이의 간격을 조정하는 단계를 갖는 것이 바람직하다. 이를 통해 파이프의 접합을 신뢰할 수 있는 수준까지 담보할 수 있는데, 용융 후 냉각된 파이프 접합재 (100)의 외경이 상기 폴리에틸렌 파이프 (400) 외경의 95 % 미만이면 연결부위의 내구성이 떨어져 바람직하지 않고, 120 %를 초과할 정도로 과량 사용하는 것은 용융시켜야 하는 파이프 접합재 (100)의 양을 불필요하게 증가시키는 것이므로 비효율적이다.In addition, the polyethylene pipe joining method of the present invention, after inserting the pipe joining material 100 in the interval between the polyethylene pipe 400, one or several times between the appropriate time point before the cooling is completed, the cooled after the melting It is preferred to have a step of adjusting the spacing between the polyethylene pipes 400 such that the outer diameter of the pipe joint 100 is 95 to 120% of the outer diameter of the polyethylene pipe 400. Through this, the joint of the pipe can be secured to a reliable level. If the outer diameter of the cooled pipe joint 100 after melting is less than 95% of the outer diameter of the polyethylene pipe 400, the durability of the connection is not preferable, Excessive use in excess of 120% is inefficient because it unnecessarily increases the amount of pipe joint 100 to be melted.
나아가, 본 발명의 폴리에틸렌 파이프 접합방법은 상기 발열시트 (200)로 보호필름 (500)을 감싼 후, 불필요한 발열시트 (200)의 열손실을 방지하기 위해 도 3에 도시된 바와 같이 별도의 덮개 (600)로 덮는 것이 더욱 바람직하다.Furthermore, the polyethylene pipe bonding method of the present invention after wrapping the protective film 500 with the heat generating sheet 200, in order to prevent unnecessary heat loss of the heat generating sheet 200, as shown in FIG. More preferably).
한편, 상기 파이프 접합재 (100)의 열전달층 (110)에 포함된 탄소나노튜브, 상기 파이프 접합재 (100)의 접합입자 (130)에 포함된 탄소나노튜브 및 상기 발열시트 (200)의 발열층 (210)에 포함된 탄소나노튜브는 열전달을 촉진시킬 수 있는 것이라면 제한이 없으며, 서로 독립적으로, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 그 혼합물로 이루어진 군에서 선택될 수 있다.On the other hand, the carbon nanotubes included in the heat transfer layer 110 of the pipe bonding material 100, the carbon nanotubes included in the bonding particles 130 of the pipe bonding material 100 and the heat generating layer (200) Carbon nanotubes included in 210 are not limited as long as they can promote heat transfer, and may be independently selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof. have.
이하, 본 발명의 실시예에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the Example of this invention is described.
실시예Example
실시예 : 폴리에틸렌 파이프의 접합Example: Bonding of Polyethylene Pipes
외경 40 mm, 내경 30 mm, 길이 60 mm인 연결파이프의 양단에 외경 60 mm, 내경 40 mm, 길이 1 m인 한 쌍의 폴리에틸렌 파이프를 7 mm의 간격을 두고 끼웠다. 염화비닐수지 : 다중벽 탄소나노튜브 = 90 : 10 중량%의 열전달층으로 코팅되고, 폴리에틸렌 : 단일벽 및 이중벽 탄소나노튜브 혼합물 = 90 : 10 중량%의 접합입자를 가득 채운 밀봉형 폴리에틸렌 파우치를 포함한 파이프 접합재를 상기 폴리에틸렌 파이프 사이의 간격에 끼웠다. 여기에, 폭 100 mm의 폴리이미드 재질의 보호필름으로 상기 파이프 접합재 및 인접한 폴리에틸렌 파이프를 감싸고, 다시 그 위에 폭 80 mm의 폴리이미드 필름에 도전부 및 발열부가 형성된 발열시트를 상기 도전부 및 발열부가 상기 보호필름에 접하도록 감쌌다. 별도의 덮개로 상기 발열시트를 덮은 다음 220 V의 전기를 공급하여 200 ℃까지 온도를 올리고 10 분 동안 가열함으로써 상기 파이프 접합재 및 인접한 폴리에틸렌 파이프를 용융시켰다. 전기 공급을 중단하고, 용융된 파이프 접합재 및 인접한 폴리에틸렌 파이프를 응축시킨 다음, 상기 덮개, 발열시트 및 보호필름을 제거하여 폴리에틸렌 파이프의 접합을 완료하였다. 상기 접합부위의 접합정도를 평가하기 위해, 5 kgf/cm2의 수압으로 10 분 동안 시험한 결과 누수현상이 전혀 발생하지 않음을 확인하였다.A pair of polyethylene pipes having an outer diameter of 60 mm, an inner diameter of 40 mm, and a length of 1 m was inserted at both ends of the connecting pipe having an outer diameter of 40 mm, an inner diameter of 30 mm, and a length of 60 mm with a distance of 7 mm. Polyvinyl chloride resin: multi-walled carbon nanotubes = 90: 10 wt% heat transfer layer, polyethylene: single-walled and double-walled carbon nanotube mixture = 90: containing a sealed polyethylene pouch filled with 10 wt% of the bonded particles Pipe joints were sandwiched in the gaps between the polyethylene pipes. Here, the heat-sealing sheet is formed of a 100 mm wide polyimide protective film to surround the pipe joint and the adjacent polyethylene pipe, and the conductive sheet and the heat generating portion are formed on the polyimide film having a width of 80 mm thereon. Wrapped to contact the protective film. The pipe joint and the adjacent polyethylene pipe were melted by covering the heating sheet with a separate cover and then supplying 220 V of electricity to raise the temperature to 200 ° C. and heating for 10 minutes. The electricity supply was stopped, the molten pipe joint and the adjacent polyethylene pipe were condensed, and then the cover, the heating sheet and the protective film were removed to complete the joining of the polyethylene pipe. In order to evaluate the degree of bonding of the junction, the test was carried out for 10 minutes at a water pressure of 5 kg f / cm 2 it was confirmed that no leakage occurs.
이상에서는 본 발명의 바람직한 실시예에 대해서 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 당해 기술분야에서 통상의 지식을 가진 자라면 본원 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능함은 물론이다. 따라서, 본 발명의 범위는 위의 실시예에 국한해서 해석되어서는 안되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.In the above description of the preferred embodiment of the present invention, the present invention is not limited to the specific embodiments described above, those skilled in the art various modifications without departing from the gist of the present invention Of course it is possible. Therefore, the scope of the present invention should not be construed as being limited to the above embodiments, but should be defined by the claims below and equivalents thereof.
[부호의 설명][Description of the code]
100 : 파이프 접합재 110 : 열전달층100: pipe bonding material 110: heat transfer layer
120 : 밀봉형 파우치 130 : 접합입자120: sealed pouch 130: bonded particles
200 : 발열시트 210 : 발열층200: heating sheet 210: heating layer
212 : 도전부 214 : 발열부212: conductive portion 214: heat generating portion
220 : 폴리이미드 필름 250 : 전원220: polyimide film 250: power
300 : 연결파이프 400 : 폴리에틸렌 파이프300: connection pipe 400: polyethylene pipe
500 : 보호필름 600 : 덮개500: protective film 600: cover

Claims (15)

  1. 폴리에틸렌 필름으로 이루어진 밀폐형 파우치; Hermetically sealed pouches made of polyethylene film;
    상기 밀폐형 파우치의 외표면을 코팅하고, 탄소나노튜브 및 열가소성 수지를 포함한 열전달층; 및 A heat transfer layer coating an outer surface of the sealed pouch and including carbon nanotubes and a thermoplastic resin; And
    상기 밀폐형 파우치의 내부를 충전하고, 탄소나노튜브 및 폴리에틸렌을 포함한 접합입자Filling the inside of the sealed pouch, the bonding particles containing carbon nanotubes and polyethylene
    를 포함하는 파이프 접합재.Pipe joint material comprising a.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 파이프 접합재의 열전달층에 포함된 열가소성 수지는 비닐수지, 아크릴수지, 폴리아미드, 폴리에스테르, 폴리에테르 및 그 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리에틸렌 파이프 접합재.The thermoplastic resin included in the heat transfer layer of the pipe joint is selected from the group consisting of vinyl resin, acrylic resin, polyamide, polyester, polyether and mixtures thereof.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 파이프 접합재의 열전달층 두께는 0.1 내지 5 ㎛인 것을 특징으로 하는 폴리에틸렌 파이프 접합재.Polyethylene pipe bonding material, characterized in that the heat transfer layer thickness of the pipe bonding material is 0.1 to 5 ㎛.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 파이프 접합재의 열전달층에서 탄소나노튜브와 열가소성 수지의 중량비는 탄소나노튜브 : 열가소성 수지 = 0.1 내지 60 : 40 내지 99.9 중량%인 것을 특징으로 하는 폴리에틸렌 파이프 접합재.The weight ratio of the carbon nanotubes and the thermoplastic resin in the heat transfer layer of the pipe bonding material is carbon nanotubes: thermoplastic resin = 0.1 to 60: 40 to 99.9% by weight, polyethylene pipe bonding material.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 파이프 접합재의 접합입자에서 탄소나노튜브와 폴리에틸렌의 중량비는 탄소나노튜브 : 폴리에틸렌 = 0.1 내지 30 : 70 내지 99.9 중량%인 것을 특징으로 하는 폴리에틸렌 파이프 접합재.The weight ratio of carbon nanotubes to polyethylene in the bonding particles of the pipe bonding material is carbon nanotubes: polyethylene = 0.1 to 30: polyethylene pipe bonding material, characterized in that 70 to 99.9% by weight.
  6. (A) 연결파이프의 양단에 접합하고자 하는 한 쌍의 폴리에틸렌 파이프 각각을 끼우고, 이때 연결파이프의 외면이 접합하고자 하는 폴리에틸렌 파이프 내면에 밀착되고, 폴리에틸렌 파이프 사이의 간격은 폴리에틸렌 파이프 두께의 20 내지 100 % 인 단계; (A) Fit each pair of polyethylene pipes to be joined to both ends of the connecting pipe, wherein the outer surface of the connecting pipe is in close contact with the inner surface of the polyethylene pipe to be joined, and the spacing between the polyethylene pipes is 20 to 100 of the thickness of the polyethylene pipe. % Phosphorus step;
    (B) 청구항 1 내지 청구항 5 중 어느 한 청구항의 폴리에틸렌 파이프 접합재를 상기 폴리에틸렌 파이프 사이의 간격에 끼워 넣는 단계; (B) inserting the polyethylene pipe joint of any one of claims 1 to 5 into a gap between the polyethylene pipes;
    (C) 보호필름으로 상기 파이프 접합재 및 인접한 폴리에틸렌 파이프 외면을 감싸는 단계; (C) wrapping the pipe joint and the adjacent polyethylene pipe outer surface with a protective film;
    (D) 폴리이미드 필름 일면에 열경화성 수지 및 탄소나노튜브를 포함한 발열층으로 코팅한 발열시트로 상기 보호필름을 감싸고, 이때 발열층이 보호필름에 접하도록 감싸는 단계; (D) wrapping the protective film with a heating sheet coated with a heating layer including a thermosetting resin and carbon nanotubes on one surface of the polyimide film, wherein the heating layer is wrapped in contact with the protective film;
    (E) 상기 발열시트의 발열층에 전기를 공급하여 발열시키고, 이로 인해 상기 파이프 접합재 및 인접한 폴리에틸렌 파이프가 용융되어 폴리에틸렌 파이프 사이의 간격을 메우는 단계; (E) supplying electricity to the heat generating layer of the heat generating sheet to generate heat, thereby melting the pipe joint and the adjacent polyethylene pipe to fill a gap between the polyethylene pipes;
    (F) 상기 발열시트에의 전기 공급을 중단하고, 용융된 파이프 접합재 및 인접한 폴리에틸렌 파이프를 냉각시키는 단계; 및 (F) discontinuing the supply of electricity to the heating sheet and cooling the molten pipe joint and the adjacent polyethylene pipe; And
    (G) 상기 발열시트 및 보호필름을 제거하는 단계(G) removing the heating sheet and the protective film
    를 포함하는 폴리에틸렌 파이프 접합방법.Polyethylene pipe bonding method comprising a.
  7. 청구항 6에 있어서, The method according to claim 6,
    상기 단계 (B) 이후 단계 (G) 이전에, 용융 후 냉각된 상기 폴리에틸렌 파이프 접합재의 외경이 상기 폴리에틸렌 파이프 외경의 95 내지 120 %가 되도록, 상기 폴리에틸렌 파이프 사이의 간격을 조정하는 단계를 추가로 포함하는 것을 특징으로 하는 폴리에틸렌 파이프 접합방법.After step (B) and before step (G), further comprising adjusting the gap between the polyethylene pipes such that the outer diameter of the cooled and melted polyethylene pipe joint is 95 to 120% of the outside diameter of the polyethylene pipe. Polyethylene pipe bonding method characterized in that.
  8. 청구항 6에 있어서, The method according to claim 6,
    상기 단계 (D) 이후 단계 (E) 이전에, 상기 발열시트를 덮개로 덮는 단계를 추가로 포함하는 것을 특징으로 하는 폴리에틸렌 파이프 접합방법.After the step (D) and before the step (E), the polyethylene pipe bonding method further comprising the step of covering the heating sheet with a cover.
  9. 청구항 6에 있어서, The method according to claim 6,
    상기 파이프 접합재의 열전달층에 포함된 탄소나노튜브, 상기 파이프 접합재의 접합입자에 포함된 탄소나노튜브 및 상기 발열시트의 발열층에 포함된 탄소나노튜브는 서로 독립적으로, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 그 혼합물로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리에틸렌 파이프 접합방법.Carbon nanotubes included in the heat transfer layer of the pipe bonding material, carbon nanotubes included in the bonding particles of the pipe bonding material and carbon nanotubes included in the heating layer of the heating sheet are independently of each other, single-walled carbon nanotubes, double wall A polyethylene pipe joining method, characterized in that selected from the group consisting of carbon nanotubes, multi-walled carbon nanotubes and mixtures thereof.
  10. 청구항 6에 있어서, The method according to claim 6,
    상기 단계 (D)에서 용융된 상기 파이프 접합재의 온도는 130 내지 270 ℃인 것을 특징으로 하는 폴리에틸렌 파이프 접합방법.Polyethylene pipe joining method, characterized in that the temperature of the pipe bonding material melted in the step (D) is 130 to 270 ℃.
  11. 청구항 6에 있어서, The method according to claim 6,
    상기 연결파이프의 내경은 양 말단 쪽으로 갈수록 증가하는 것을 특징으로 하는 폴리에틸렌 파이프 접합방법.The inner diameter of the connecting pipe is polyethylene pipe joining method characterized in that it increases toward both ends.
  12. 청구항 6에 있어서, The method according to claim 6,
    상기 발열시트의 발열층은, The heating layer of the heating sheet,
    상기 발열시트의 서로 마주보는 두 변으로부터 이격되고 상기 두 변에 나란히 형성된 한 쌍의 도전부; 및 A pair of conductive parts spaced apart from two opposite sides of the heating sheet and formed in parallel to the two sides; And
    상기 한 쌍의 도전부 사이에 위치하고 상기 도전부를 서로 연결하는 발열부A heating unit disposed between the pair of conductive units and connecting the conductive units to each other
    로 이루어지는 것을 특징으로 하는 폴리에틸렌 파이프 접합방법.Polyethylene pipe joining method comprising a.
  13. 청구항 6 내지 청구항 12 중 어느 한 청구항의 폴리에틸렌 파이프 접합방법에 사용되는 폴리에틸렌 파이프 접합재.The polyethylene pipe bonding material used for the polyethylene pipe joining method of any one of Claims 6-12.
  14. 청구항 6 내지 청구항 12 중 어느 한 청구항의 폴리에틸렌 파이프 접합방법에 사용되는 연결파이프.The connection pipe used for the polyethylene pipe joining method of any one of Claims 6-12.
  15. 청구항 6 내지 청구항 12 중 어느 한 청구항의 폴리에틸렌 파이프 접합방법에 사용되는 발열시트.The heat generating sheet used for the polyethylene pipe joining method of any one of Claims 6-12.
PCT/KR2012/001834 2011-03-15 2012-03-14 Joining material for polyethylene pipe, and joining method using same WO2012124977A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110023087A KR101285764B1 (en) 2011-03-15 2011-03-15 Joining Method of Polyethylene Pipe
KR10-2011-0023089 2011-03-15
KR1020110023089A KR101285765B1 (en) 2011-03-15 2011-03-15 Joining Material of Polyethylene Pipe
KR10-2011-0023087 2011-03-15

Publications (2)

Publication Number Publication Date
WO2012124977A2 true WO2012124977A2 (en) 2012-09-20
WO2012124977A3 WO2012124977A3 (en) 2012-12-27

Family

ID=46831208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001834 WO2012124977A2 (en) 2011-03-15 2012-03-14 Joining material for polyethylene pipe, and joining method using same

Country Status (1)

Country Link
WO (1) WO2012124977A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322364A (en) * 2013-07-15 2013-09-25 李晓明 Connecting device and connecting method of internal and external anti-corrosion plastic-steel composite pipe
CN105927811A (en) * 2016-06-13 2016-09-07 浙江伟星新型建材股份有限公司 Connection structure and method for fiber composite pipelines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196277A (en) * 1996-01-24 1997-07-29 Hitachi Cable Ltd Thermally fused connection of polyethylene pipe
JPH10160081A (en) * 1996-11-29 1998-06-16 Nkk Corp Joint for synthetic resin pipe
KR200304481Y1 (en) * 2002-11-14 2003-02-15 이우현 Connector for pipe
KR20070092725A (en) * 2005-01-05 2007-09-13 아르끄마 프랑스 Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196277A (en) * 1996-01-24 1997-07-29 Hitachi Cable Ltd Thermally fused connection of polyethylene pipe
JPH10160081A (en) * 1996-11-29 1998-06-16 Nkk Corp Joint for synthetic resin pipe
KR200304481Y1 (en) * 2002-11-14 2003-02-15 이우현 Connector for pipe
KR20070092725A (en) * 2005-01-05 2007-09-13 아르끄마 프랑스 Use of carbon nanotubes for the production of a conductive organic composition and applications of one such composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322364A (en) * 2013-07-15 2013-09-25 李晓明 Connecting device and connecting method of internal and external anti-corrosion plastic-steel composite pipe
CN105927811A (en) * 2016-06-13 2016-09-07 浙江伟星新型建材股份有限公司 Connection structure and method for fiber composite pipelines
CN105927811B (en) * 2016-06-13 2018-06-26 浙江伟星新型建材股份有限公司 A kind of connection structure of fiber composite pipeline

Also Published As

Publication number Publication date
WO2012124977A3 (en) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2018155895A1 (en) Electric vehicle charging cable
CN1032446C (en) Method and article for microwave bonding for polythylene pipe
WO2012124977A2 (en) Joining material for polyethylene pipe, and joining method using same
WO2018070675A1 (en) Battery module
US6471530B1 (en) Plug-and-socket connection for water-cooled, current-bearing lines for tools
WO2014088150A1 (en) Pipe connection device and pipe connection method
DK0508474T3 (en) Canned welding of plastic pipes
US10903614B2 (en) Method and device for sealing contact points at electrical line connections
CN105980805A (en) Method for producing a plate-shaped heat exchanger, plate-shaped heat exchanger, and assembly comprising plate-shaped heat exchangers
WO2018074686A1 (en) Battery module
JP2023007444A (en) Method for restoring insulation system of power cable
CN106076745A (en) A kind of Rapid Thermal melting glue gun
WO2018062920A1 (en) Method for sealing pouch case of secondary battery
WO2022035242A1 (en) Heating apparatus capable of differentially heating heat-shrinkable tube
KR960013070B1 (en) Method of joining articles
WO2020105761A1 (en) Lead tab for secondary battery, manufacturing apparatus thereof, and secondary battery comprising same
KR101285765B1 (en) Joining Material of Polyethylene Pipe
KR101285764B1 (en) Joining Method of Polyethylene Pipe
WO2010071256A1 (en) Triple pipe, manufacturing apparatus thereof and manufacturing method thereof, connecting member connecting the triple pipe and connecting method using the member
WO2020050603A1 (en) Carbon felt heating device and method for manufacturing same
JP2012023958A (en) Device for connecting power cable to appliance member
CN213602150U (en) Processing device for butt joint of crosslinked polyethylene cable
WO2021002595A1 (en) Connection member for ceramic heater
WO2015046948A1 (en) Chemical vapor deposition reactor for producing polysilicon
EP0307197A2 (en) Conductive polymeric heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757878

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12757878

Country of ref document: EP

Kind code of ref document: A2