EP1835051A2 - Self-cleaning surface - Google Patents

Self-cleaning surface Download PDF

Info

Publication number
EP1835051A2
EP1835051A2 EP07003184A EP07003184A EP1835051A2 EP 1835051 A2 EP1835051 A2 EP 1835051A2 EP 07003184 A EP07003184 A EP 07003184A EP 07003184 A EP07003184 A EP 07003184A EP 1835051 A2 EP1835051 A2 EP 1835051A2
Authority
EP
European Patent Office
Prior art keywords
titanium dioxide
dioxide particles
metal matrix
surface according
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07003184A
Other languages
German (de)
French (fr)
Other versions
EP1835051B1 (en
EP1835051A3 (en
Inventor
Goetz Mielsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1835051A2 publication Critical patent/EP1835051A2/en
Publication of EP1835051A3 publication Critical patent/EP1835051A3/en
Application granted granted Critical
Publication of EP1835051B1 publication Critical patent/EP1835051B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance

Definitions

  • the invention relates to a self-cleaning surface with photocatalytically active titanium dioxide and a process for their preparation.
  • titanium dioxide as a photocatalyst for decomposing organic compounds under the action of light is known. Due to the semiconductor properties of titanium dioxide according to equation (1), charge separation in the titanium dioxide particle occurs in the first step, forming an electron e - in the conduction band and a positive hole p + in the valence band.
  • the hole oxidizes according to equation (2) a hydroxyl anion formed from water adsorbed on the TiO 2 surface to form a hydroxyl radical.
  • hydroperoxyl radicals are formed from oxygen adsorbed on the TiO 2 surface which, together with the hydroxyl radical, degrade the organic compound as in Jochen Winkler "Titanium Dioxide", Ed. Ulrich Zorll - Hannover: Vincentz, 2003 (Coating Technology), pages 71 to 74 described in detail.
  • the object of the invention is to provide a self-cleaning surface with photocatalytically active titanium dioxide, which can be prepared in a simple manner, leads to a firm adhesion to metallic surfaces and can also be applied to temperature-sensitive substrates.
  • claim 11 is a preferred method for producing the self-cleaning surface according to the invention specified, and in claim 12, a preferred embodiment of this method.
  • the self-cleaning surface consists of a metal matrix in which photocatalytically active titanium dioxide particles are incorporated.
  • the self-cleaning effect is carried out by individual spaced titanium dioxide particles on the surface of the metal matrix, which surprisingly produces the same self-cleaning effect.
  • the part to be provided with the self-cleaning surface is placed in a bath consisting of e.g. aqueous solution of a salt of the metal from which the metal matrix is formed.
  • a bath consisting of e.g. aqueous solution of a salt of the metal from which the metal matrix is formed.
  • the photocatalytically active titanium dioxide particles are formed by movement of the bath, e.g. Stirring or air injection, dispersed and then the metal matrix deposited with the titanium dioxide particles deposited by reduction of the salt on the part.
  • the reduction can be carried out without electricity by adding a reducing agent.
  • the metal matrix with the incorporated titanium dioxide particles is preferably electrodeposited.
  • photocatalytically active titanium dioxide particles can be used to produce the self-cleaning surface according to the invention. From such particles, for example, porous sintered bodies are produced, which are used in wastewater treatment for UV sterilization.
  • the titanium dioxide particles may be in the anatase or brookite crystal form. While titanium dioxide particles in the anatase form require light with a high UV content in order to be self-cleaning, the brookite form also leads to a self-cleaning effect in the visible light range.
  • the particle size of the titanium dioxide particles is preferably 0.01 ⁇ m to 10 ⁇ m, in particular 0.1 ⁇ m to 1 ⁇ m.
  • the proportion of titanium dioxide particles in the metal matrix is preferably 1 to 40% by volume, in particular 5 to 20% by volume, based on the total volume of metal matrix and titanium dioxide particles.
  • the minimum layer thickness of the metal matrix in which the titanium dioxide particles are embedded depends on the particle size of the titanium dioxide particles. That is, the layer thickness of the metal matrix must be at least large enough to securely fix the titanium dioxide particles therein. It is therefore preferably at least one third, in particular at least two thirds of the average particle size of the titanium dioxide particles. On the other hand, the layer thickness of the metal matrix should not be too large, since only the proportion of titanium dioxide particles on the surface of the metal matrix has a self-cleaning effect.
  • the layer thickness of the metal matrix is preferably between 0.5 ⁇ m and 30 ⁇ m, in particular 5 ⁇ m to 20 ⁇ m.
  • the metal matrix may consist of any metal. Preferably, however, it is formed from nickel, chromium, copper, silver or gold.
  • a silver matrix is achieved by the titanium dioxide particles in addition to the self-cleaning effect in addition that the silver surface does not start.
  • the start of the silver is known to be due to oxidation of the silver at the surface by sulfur compounds from the environment to form silver sulfide.
  • titanium dioxide is also a photo-semiconductor, whereby electrons are formed upon incidence of light. By draining these electrons into the silver matrix, reducing properties are imparted to the silver matrix, thereby preventing the formation of silver sulfide.
  • a silver surface formed according to the invention therefore retains its luster, since not only does it not start when exposed to light, but organic impurities, for example traces of grease caused by fingerprints, are removed by self-cleaning.
  • the electron surplus formed by the semiconductor properties of the titanium dioxide upon incidence of light not only prevents the silver from tarnishing, but generally causes a cathodic corrosion protection of the metal matrix.
  • a further thin metal layer can be deposited on the metal matrix, in which the titanium dioxide particles are embedded.
  • the lower layer may be formed by nickel, copper or silver and titanium dioxide particles and the upper layer may be formed by chromium or noble metals such as gold, platinum or ruthenium, in which even particle incorporation is not possible or difficult.
  • the thin upper layer is deposited with a layer thickness of preferably at most 0.8 .mu.m, in particular 0.1 .mu.m to 0.5 .mu.m. It is important that the particles are not covered but present as open pores.
  • the titanium dioxide particles can be deposited, for example, with the lower thick nickel layer, whereupon the chromium layer is deposited.
  • This can be up the part first, for example, galvanically deposited a nickel layer with the embedded therein titanium dioxide particles having a layer thickness of, for example, 5 microns to 20 microns. Since chromium shines only in a thin layer and particle deposition is not possible, then a thin chromium layer of eg 0.1 .mu.m to 0.6 .mu.m is deposited on the nickel layer with the titanium dioxide particles.
  • the part on which the nickel layer is galvanically deposited with the titanium dioxide particles incorporated therein may be e.g. be nickel plated steel sheet.
  • the self-cleaning surface according to the invention can be applied to metal and any other substrate in a simple manner. Since the substrate according to the invention need not be subjected to heating, the self-cleaning surface according to the invention can also be formed on substrates with low temperature stability, that is, for example, plastic, aluminum or zinc die casting. If a galvanic deposition of the metal matrix takes place with the titanium dioxide particles embedded therein, the coating according to the invention can be produced on all substrates with an electrically conductive surface, e.g. also on galvanized plastic.
  • the surface coating according to the invention is particularly suitable for chromed vehicle exterior surfaces that are exposed to heavy pollution by insects, such as flies, or other organic material, such as
  • the self-cleaning surface according to the invention can also be used in the vehicle interior, especially when the brookite form of the titanium dioxide is used.
  • the self-cleaning surface according to the invention for example, permanently high-gloss silver surfaces of high quality can be produced in the interior of a vehicle.
  • a double-nickel plated steel sheet part after a conventional degreasing treatment as a cathode in an electrolyte bath containing as solution components 300 g / l nickel sulfate, 60 g / l nickel chloride and conventional amounts of a commercially available nickel luster carrier, a commercial nickel wetting agent, a also contains 15 g / l titanium dioxide particles of the anatase form with an average particle size of 0.5 microns.
  • the bath is kept in motion by air injection. It is electrodeposited a nickel layer with a thickness of 2 microns, in which the titanium dioxide particles are embedded.
  • a chromium layer with a layer thickness of 0.3 .mu.m is deposited from a commercially available chromium electrolyte in a conventional manner.
  • the bath is kept moving. It is electrodeposited a silver layer with a layer thickness of 10 microns, in which the titanium dioxide particles are embedded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Self-cleaning surface comprises a metal matrix containing embedded photo-catalytically active titanium dioxide particles. An independent claim is also included for a method for the production of a self-cleaning surface.

Description

Die Erfindung bezieht sich auf eine selbstreinigende Oberfläche mit photokatalytisch aktivem Titandioxid und ein Verfahren zu deren Herstellung.The invention relates to a self-cleaning surface with photocatalytically active titanium dioxide and a process for their preparation.

Die Verwendung von Titandioxid als Photokatalysator zum Abbau organischer Verbindungen unter Lichteinwirkung ist bekannt. Dabei kommt es aufgrund der Halbleitereigenschaften des Titandioxids gemäß der Gleichung (1) in einem ersten Schritt zu einer Ladungstrennung im Titandioxid-Partikel unter Bildung eines Elektrons e- im Leitungsband und einem positiven Loch p+ im Valenzband.

Figure imgb0001
The use of titanium dioxide as a photocatalyst for decomposing organic compounds under the action of light is known. Due to the semiconductor properties of titanium dioxide according to equation (1), charge separation in the titanium dioxide particle occurs in the first step, forming an electron e - in the conduction band and a positive hole p + in the valence band.
Figure imgb0001

Im nächsten Schritt oxidiert das Loch gemäß der Gleichung (2) ein aus an der TiO2-Oberfläche adsorbierten Wasser gebildetes Hydroxyl-Anion, wobei ein Hydroxyl-Radikal entsteht.

Figure imgb0002
In the next step, the hole oxidizes according to equation (2) a hydroxyl anion formed from water adsorbed on the TiO 2 surface to form a hydroxyl radical.
Figure imgb0002

Zudem werden aus an der TiO2-Oberfläche adsorbierten Sauerstoff Hydroperoxyl-Radikale gebildet, die zusammen mit dem Hydroxyl-Radikal die organische Verbindung abbauen, wie in Jochen Winkler "Titandioxid", Hrsg. von Dr. Ulrich Zorll - Hannover: Vincentz, 2003 (Technologie des Beschichtens), Seiten 71 bis 74 im Einzelnen beschrieben. Bei Oberflächen, die mit einer solchen photokatalytisch aktiven Titandioxid-Beschichtung versehen sind, führt dies zu einer Zersetzung organischer Verschmutzungen und damit zu einem Selbstreinigungseffekt.In addition, hydroperoxyl radicals are formed from oxygen adsorbed on the TiO 2 surface which, together with the hydroxyl radical, degrade the organic compound as in Jochen Winkler "Titanium Dioxide", Ed. Ulrich Zorll - Hannover: Vincentz, 2003 (Coating Technology), pages 71 to 74 described in detail. For surfaces provided with such a photocatalytically active titanium dioxide coating, this leads to a decomposition of organic contaminants and thus to a self-cleaning effect.

Es ist bekannt, photokatalytisch aktive Titandioxid-Beschichtungen durch chemische Dampfabscheidung (CVD), mittels Vakuumverfahren wie physikalische Dampfabscheidung (PVD) oder Plasmadampfabscheidung (PaCVD) oder mit dem Sol-Gel-Verfahren herzustellen, bei dem ein aus einer hydrolysierten Titanverbindung gebildetes Titandioxid-Sol auf dem Substrat in ein Gel und dann thermisch in kristallisiertes Titandioxid übergeführt wird. Die dabei gebildeten zusammenhängenden Schichten werden vorwiegend auf keramische oder metallische Substrate aufgetragen.It is known to produce photocatalytically active titanium dioxide coatings by chemical vapor deposition (CVD), by vacuum processes such as physical vapor deposition (PVD) or plasma vapor deposition (PaCVD) or by the sol-gel process, in which a titanium dioxide sol formed from a hydrolyzed titanium compound on the substrate into a gel and then thermally converted into crystallized titanium dioxide. The coherent layers formed are mainly applied to ceramic or metallic substrates.

Die bekannten Verfahren sind aufwändig und kostspielig. Zudem können nur temperaturstabile Substrate beschichtet werden. Des weiteren ist die Haftung z.B. beim Sol-Gel-Verfahren auf metallischen Oberflächen schwierig und oft nicht ausreichend.The known methods are complicated and expensive. In addition, only temperature-stable substrates can be coated. Furthermore, the adhesion is e.g. difficult and often insufficient in the sol-gel process on metallic surfaces.

Aufgabe der Erfindung ist es, eine selbstreinigende Oberfläche mit photokatalytisch aktivem Titandioxid bereitzustellen, die auf einfache Weise herstellbar ist, zu einer festen Haftung auf metallischen Oberflächen führt und auch auf temperaturempfindliche Substrate aufgetragen werden kann.The object of the invention is to provide a self-cleaning surface with photocatalytically active titanium dioxide, which can be prepared in a simple manner, leads to a firm adhesion to metallic surfaces and can also be applied to temperature-sensitive substrates.

Dies wird erfindungsgemäß mit der im Anspruch 1 gekennzeichneten selbstreinigenden Oberfläche erreicht, die durch die Merkmale der Ansprüche 2 bis 10 in vorteilhafter Weise ausgestaltet wird. Im Anspruch 11 ist ein bevorzugtes Verfahren zur Herstellung der erfindungsgemäßen selbstreinigenden Oberfläche angegeben, und im Anspruch 12 eine bevorzugte Ausführungsform dieses Verfahrens.This is achieved according to the invention with the characterized in claim 1 self-cleaning surface, which is configured by the features of claims 2 to 10 in an advantageous manner. In claim 11 is a preferred method for producing the self-cleaning surface according to the invention specified, and in claim 12, a preferred embodiment of this method.

Erfindungsgemäß besteht die selbstreinigende Oberfläche aus einer Metallmatrix, in die photokatalytisch aktive Titandioxid-Partikel eingelagert sind. Es liegt also keine zusammenhängende Titandioxid-Beschichtung vor, vielmehr erfolgt die selbstreinigende Wirkung durch einzelne im Abstand angeordnete Titandioxid-Partikel an der Oberfläche der Metallmatrix, wodurch überraschenderweise der gleiche selbstreinigende Effekt hervorgebracht wird.According to the invention, the self-cleaning surface consists of a metal matrix in which photocatalytically active titanium dioxide particles are incorporated. Thus, there is no contiguous titanium dioxide coating, but the self-cleaning effect is carried out by individual spaced titanium dioxide particles on the surface of the metal matrix, which surprisingly produces the same self-cleaning effect.

Zur Herstellung der selbstreinigenden Oberfläche wird erfindungsgemäß das Teil, das mit der selbstreinigenden Oberfläche versehen werden soll, in ein Bad gegeben, das aus einer z.B. wässerigen Lösung eines Salzes des Metalls besteht, aus dem die Metallmatrix gebildet wird. In der Lösung werden die photokatalytisch aktiven Titandioxid-Partikel durch Bewegung des Bades, also z.B. Rühren oder Lufteinblasung, dispergiert und dann die Metallmatrix mit den darin eingelagerten Titandioxid-Partikeln durch Reduktion des Salzes auf dem Teil abgeschieden.To produce the self-cleaning surface, according to the invention, the part to be provided with the self-cleaning surface is placed in a bath consisting of e.g. aqueous solution of a salt of the metal from which the metal matrix is formed. In the solution, the photocatalytically active titanium dioxide particles are formed by movement of the bath, e.g. Stirring or air injection, dispersed and then the metal matrix deposited with the titanium dioxide particles deposited by reduction of the salt on the part.

Die Reduktion kann stromlos durch Zugabe eines Reduktionsmittels erfolgen. Bei Teilen mit elektrisch leitfähiger Oberfläche wird die Metallmatrix mit den eingelagerten Titandioxid-Partikeln jedoch vorzugsweise galvanisch abgeschieden.The reduction can be carried out without electricity by adding a reducing agent. For parts with an electrically conductive surface, however, the metal matrix with the incorporated titanium dioxide particles is preferably electrodeposited.

Zur Herstellung der erfindungsgemäßen selbstreinigenden Oberfläche können im Handel erhältliche photokatalytisch aktive Titandioxid-Partikel verwendet werden. Aus solchen Partikeln werden beispielsweise poröse Sinterkörper hergestellt, die in der Abwasserbehandlung zur UV-Entkeimung verwendet werden.Commercially available photocatalytically active titanium dioxide particles can be used to produce the self-cleaning surface according to the invention. From such particles, for example, porous sintered bodies are produced, which are used in wastewater treatment for UV sterilization.

Die Titandioxid-Partikel können in der Anatas- oder Brookit-Kristallform vorliegen. Während Titandioxid-Partikel in der Anatas-Form Licht mit einem hohen UV-Anteil voraussetzen, um selbstreinigend zu wirken, führt die Brookit-Form auch im sichtbaren Lichtbereich zu einer selbstreinigenden Wirkung.The titanium dioxide particles may be in the anatase or brookite crystal form. While titanium dioxide particles in the anatase form require light with a high UV content in order to be self-cleaning, the brookite form also leads to a self-cleaning effect in the visible light range.

Die Teilchengröße der Titandioxid-Partikel beträgt vorzugsweise 0,01 µm bis 10 µm, insbesondere 0,1 µm bis 1 µm. Der Anteil der Titandioxid-Partikel in der Metallmatrix beträgt vorzugsweise 1 bis 40 Vol.-%, insbesondere 5 bis 20 Vol.-%, bezogen auf das Gesamtvolumen aus Metallmatrix und Titandioxid-Partikeln.The particle size of the titanium dioxide particles is preferably 0.01 μm to 10 μm, in particular 0.1 μm to 1 μm. The proportion of titanium dioxide particles in the metal matrix is preferably 1 to 40% by volume, in particular 5 to 20% by volume, based on the total volume of metal matrix and titanium dioxide particles.

Die Mindestschichtdicke der Metallmatrix, in der die Titandioxid-Partikel eingelagert sind, ist von der Teilchengröße der Titandioxid-Partikel abhängig. D.h., die Schichtdicke der Metallmatrix muss mindestens so groß sein, dass die Titandioxid-Partikel darin sicher fixiert werden. Sie beträgt daher vorzugsweise mindestens ein Drittel, insbesondere mindestens zwei Drittel der mittleren Teilchengröße der Titandioxid-Partikel. Andererseits soll die Schichtdicke der Metallmatrix nicht zu groß sein, da nur der Anteil der Titandioxid-Partikel an der Oberfläche der Metallmatrix eine selbstreinigende Wirkung besitzt. Vorzugsweise liegt die Schichtdicke der Metallmatrix zwischen 0,5 µm und 30 µm, insbesondere 5 µm bis 20 µm.The minimum layer thickness of the metal matrix in which the titanium dioxide particles are embedded depends on the particle size of the titanium dioxide particles. That is, the layer thickness of the metal matrix must be at least large enough to securely fix the titanium dioxide particles therein. It is therefore preferably at least one third, in particular at least two thirds of the average particle size of the titanium dioxide particles. On the other hand, the layer thickness of the metal matrix should not be too large, since only the proportion of titanium dioxide particles on the surface of the metal matrix has a self-cleaning effect. The layer thickness of the metal matrix is preferably between 0.5 μm and 30 μm, in particular 5 μm to 20 μm.

Die Metallmatrix kann aus einem beliebigen Metall bestehen. Vorzugsweise wird sie jedoch aus Nickel, Chrom, Kupfer, Silber oder Gold gebildet.The metal matrix may consist of any metal. Preferably, however, it is formed from nickel, chromium, copper, silver or gold.

In einer Silbermatrix wird durch die Titandioxid-Partikel neben der selbstreinigenden Wirkung zusätzlich erreicht, dass die Silberoberfläche nicht anläuft. Das Anlaufen des Silbers ist bekanntlich darauf zurückzuführen, dass eine Oxidation des Silbers an der Oberfläche durch Schwefelverbindungen aus der Umgebung unter Bildung von Silbersulfid erfolgt. Wie eingangs anhand der Gleichung (1) erläutert, stellt Titandioxid zugleich einen Photohalbleiter dar, wodurch bei Lichteinfall Elektronen gebildet werden. Durch Abfluss dieser Elektronen in die Silbermatrix werden der Silbermatrix reduzierende Eigenschaften verliehen, wodurch die Bildung von Silbersulfid verhindert wird. Eine erfindungsgemäß ausgebildete Silberoberfläche behält daher ihren Glanz, da sie bei Lichteinwirkung nicht nur nicht anläuft, sondern organische Verunreinigungen, beispielsweise Fettspuren durch Fingerabdrücke, selbstreinigend entfernt werden.In a silver matrix is achieved by the titanium dioxide particles in addition to the self-cleaning effect in addition that the silver surface does not start. The start of the silver is known to be due to oxidation of the silver at the surface by sulfur compounds from the environment to form silver sulfide. As explained above with reference to equation (1), titanium dioxide is also a photo-semiconductor, whereby electrons are formed upon incidence of light. By draining these electrons into the silver matrix, reducing properties are imparted to the silver matrix, thereby preventing the formation of silver sulfide. A silver surface formed according to the invention therefore retains its luster, since not only does it not start when exposed to light, but organic impurities, for example traces of grease caused by fingerprints, are removed by self-cleaning.

Der durch die Halbleitereigenschaften des Titandioxids bei Lichteinfall gebildete Elektronenüberschuss verhindert jedoch nicht nur ein Anlaufen des Silbers, sondern bewirkt generell einen kathodischen Korrosionsschutz der Metallmatrix.However, the electron surplus formed by the semiconductor properties of the titanium dioxide upon incidence of light not only prevents the silver from tarnishing, but generally causes a cathodic corrosion protection of the metal matrix.

Auf der Metallmatrix, in die die Titandioxid-Partikel eingelagert sind, kann eine weitere dünne Metallschicht abgeschieden werden. Beispielsweise kann die untere Schicht durch Nickel, Kupfer oder Silber und Titandioxid-Partikel und die obere Schicht durch Chrom oder Edelmetalle wie Gold, Platin oder Ruthenium gebildet sein, in denen selbst eine Partikeleinlagerung nicht möglich oder schwierig ist. Die dünne obere Schicht wird mit einer Schichtdicke von vorzugsweise maximal 0,8 µm, insbesondere 0,1 µm bis 0,5 µm, abgeschieden. Wichtig hierbei ist, dass die Partikel nicht zugedeckt werden, sondern als offene Poren vorliegen.On the metal matrix, in which the titanium dioxide particles are embedded, a further thin metal layer can be deposited. For example, the lower layer may be formed by nickel, copper or silver and titanium dioxide particles and the upper layer may be formed by chromium or noble metals such as gold, platinum or ruthenium, in which even particle incorporation is not possible or difficult. The thin upper layer is deposited with a layer thickness of preferably at most 0.8 .mu.m, in particular 0.1 .mu.m to 0.5 .mu.m. It is important that the particles are not covered but present as open pores.

Um ein Teil zu verchromen, können die Titandioxid-Partikel z.B. mit der unteren dicken Nickelschicht abgeschieden werden, worauf die Chromschicht abgeschieden wird. Dazu kann auf dem Teil zunächst beispielsweise galvanisch eine Nickelschicht mit den darin eingelagerten Titandioxid-Partikeln mit einer Schichtdicke von beispielsweise 5 µm bis 20 µm abgeschieden werden. Da Chrom nur in dünner Schicht glänzt und eine Partikeleinlagerung nicht möglich ist, wird dann auf der Nickelschicht mit den Titandioxid-Partikeln eine dünne Chromschicht von z.B. 0,1 µm bis 0,6 µm abgeschieden.To chromium a part, the titanium dioxide particles can be deposited, for example, with the lower thick nickel layer, whereupon the chromium layer is deposited. This can be up the part first, for example, galvanically deposited a nickel layer with the embedded therein titanium dioxide particles having a layer thickness of, for example, 5 microns to 20 microns. Since chromium shines only in a thin layer and particle deposition is not possible, then a thin chromium layer of eg 0.1 .mu.m to 0.6 .mu.m is deposited on the nickel layer with the titanium dioxide particles.

Wie sich gezeigt hat, findet dabei auf den aus der Oberfläche der Nickelschicht ragenden Titandioxid-Partikeln keine Chromabscheidung statt. In der Chromschicht werden vielmehr Poren gebildet, die einen Lichteinfall auf die Titandioxid-Partikel an der Oberfläche der Nickelschicht ermöglichen. Das Teil, auf dem die Nickelschicht mit den darin eingelagerten Titandioxid-Partikeln galvanisch abgeschieden wird, kann z.B. vernickeltes Stahlblech sein.As has been shown, no chromium deposition takes place on the titanium dioxide particles projecting from the surface of the nickel layer. On the contrary, pores are formed in the chromium layer which allow light to strike the titanium dioxide particles on the surface of the nickel layer. The part on which the nickel layer is galvanically deposited with the titanium dioxide particles incorporated therein may be e.g. be nickel plated steel sheet.

Die erfindungsgemäße selbstreinigende Oberfläche kann auf Metall und jedes andere Substrat auf einfache Weise aufgebracht werden. Da das Substrat erfindungsgemäß keiner Erwärmung unterworfen zu werden braucht, kann die erfindungsgemäße selbstreinigende Oberfläche auch auf Substrate mit geringer Temperaturstabilität, also beispielsweise Kunststoff, Aluminium oder Zinkdruckguss gebildet werden. Sofern eine galvanische Abscheidung der Metallmatrix mit den darin eingelagerten Titandioxid-Partikeln erfolgt, kann die erfindungsgemäße Beschichtung auf allen Substraten mit elektrisch leitfähiger Oberfläche hergestellt werden, also z.B. auch auf galvanisiertem Kunststoff.The self-cleaning surface according to the invention can be applied to metal and any other substrate in a simple manner. Since the substrate according to the invention need not be subjected to heating, the self-cleaning surface according to the invention can also be formed on substrates with low temperature stability, that is, for example, plastic, aluminum or zinc die casting. If a galvanic deposition of the metal matrix takes place with the titanium dioxide particles embedded therein, the coating according to the invention can be produced on all substrates with an electrically conductive surface, e.g. also on galvanized plastic.

Die erfindungsgemäße Oberflächenbeschichtung ist insbesondere für verchromte Fahrzeugaußenflächen geeignet, die einer starken Verschmutzung durch Insekten, wie Fliegen, oder anderes organisches Material ausgesetzt sind, beispielsweise die Spiegelkappe der Außenspiegel, die Scheinwerferringe, der Kühlergrill, usw. Die erfindungsgemäße selbstreinigende Oberfläche kann jedoch auch im Fahrzeuginnenraum eingesetzt werden, insbesondere wenn die Brookit-Form des Titandioxid verwendet wird. So können mit der erfindungsgemäßen selbstreinigenden Oberfläche beispielsweise dauerhaft hochglänzende Silberoberflächen hoher Wertigkeit im Innenraum eines Fahrzeugs hergestellt werden.The surface coating according to the invention is particularly suitable for chromed vehicle exterior surfaces that are exposed to heavy pollution by insects, such as flies, or other organic material, such as However, the self-cleaning surface according to the invention can also be used in the vehicle interior, especially when the brookite form of the titanium dioxide is used. Thus, with the self-cleaning surface according to the invention, for example, permanently high-gloss silver surfaces of high quality can be produced in the interior of a vehicle.

Beispiel 1example 1

Um hochglanzverchromtes Stahlblech mit selbstreinigender Oberfläche herzustellen, wird ein zweifach vernickeltes Stahlblechteil nach einer herkömmlichen Entfettungsbehandlung als Kathode in ein Elektrolytbad gegeben, das als Lösungsbestandteile 300 g/l Nickelsulfat, 60 g/l Nickelchlorid sowie herkömmliche Mengen eines handelsüblichen Nickelglanzträgers, eines handelsüblichen Nickelnetzmittels, eines handelsüblichen Nickelglanzzusatzes und eines handelsüblichen Nickeleinebners enthält, außerdem 15 g/l Titandioxid-Partikel der Anatas-Form mit einer mittleren Teilchengröße von 0,5 µm. Das Bad wird durch Lufteinblasung in Bewegung gehalten. Es wird eine Nickelschicht mit einer Schichtdicke von 2 µm galvanisch abgeschieden, in die die Titandioxid-Partikel eingelagert sind.In order to produce high-gloss chrome-plated steel sheet with self-cleaning surface, a double-nickel plated steel sheet part after a conventional degreasing treatment as a cathode in an electrolyte bath containing as solution components 300 g / l nickel sulfate, 60 g / l nickel chloride and conventional amounts of a commercially available nickel luster carrier, a commercial nickel wetting agent, a also contains 15 g / l titanium dioxide particles of the anatase form with an average particle size of 0.5 microns. The bath is kept in motion by air injection. It is electrodeposited a nickel layer with a thickness of 2 microns, in which the titanium dioxide particles are embedded.

Darauf wird auf herkömmliche Weise eine Chromschicht mit einer Schichtdicke von 0,3 µm aus einem handelsüblichen Chromelektrolyten abgeschieden.Then, a chromium layer with a layer thickness of 0.3 .mu.m is deposited from a commercially available chromium electrolyte in a conventional manner.

Beispiel 2Example 2

Ein Stahlteil wird nach einer herkömmlichen Entfettungsbehandlung als Kathode in ein Elektrolytbad gegeben, das 50 g/l Silbercyanid, 70 g/l Calciumcyanid, 10 g/l Kaliumhydroxid und 20 g/l Kaliumcarbonat als Lösungsbestandteile sowie 15 g/l Titandioxid-Partikel der Anatas-Form mit einer mittleren Teilchengröße von 0,5 µm enthält. Das Bad wird in Bewegung gehalten. Es wird eine Silberschicht mit einer Schichtdicke von 10 µm galvanisch abgeschieden, in die die Titandioxid-Partikel eingelagert sind.A steel part, after a conventional degreasing treatment, is placed as a cathode in an electrolyte bath which is 50 g / l Silver cyanide, 70 g / l calcium cyanide, 10 g / l potassium hydroxide and 20 g / l potassium carbonate as solution components and 15 g / l anatase titanium dioxide particles having a mean particle size of 0.5 microns. The bath is kept moving. It is electrodeposited a silver layer with a layer thickness of 10 microns, in which the titanium dioxide particles are embedded.

Claims (12)

Selbstreinigende Oberfläche mit katalytisch aktivem Titandioxid, dadurch gekennzeichnet, dass sie aus einer Metallmatrix besteht, in die das photokatalytisch aktive Titandioxid in Form von Partikeln eingelagert ist.Self-cleaning surface with catalytically active titanium dioxide, characterized in that it consists of a metal matrix, in which the photocatalytically active titanium dioxide is incorporated in the form of particles. Oberfläche nach Anspruch 1, dadurch gekennzeichnet, dass die Metallmatrix mit den darin eingelagerten Titandioxid-Partikeln eine galvanisch abgeschiedene Metallmatrix ist.Surface according to claim 1, characterized in that the metal matrix with the titanium dioxide particles incorporated therein is an electrodeposited metal matrix. Oberfläche nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Metallmatrix aus Nickel, Chrom, Kupfer, Silber oder Gold besteht.Surface according to claim 1 or 2, characterized in that the metal matrix consists of nickel, chromium, copper, silver or gold. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Metallmatrix eine Schichtdicke von höchstens 30 µm aufweist.Surface according to one of the preceding claims, characterized in that the metal matrix has a layer thickness of at most 30 microns. Oberfläche nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass auf der Metallmatrix, in der die Titandioxid-Partikel eingelagert sind, eine Metallschicht abgeschieden ist.Surface according to claim 3 or 4, characterized in that a metal layer is deposited on the metal matrix in which the titanium dioxide particles are incorporated. Oberfläche nach Anspruch 5, dadurch gekennzeichnet, dass die abgeschiedene Metallschicht eine Schichtdicke von höchstens 2 µm aufweist.Surface according to claim 5, characterized in that the deposited metal layer has a layer thickness of at most 2 microns. Oberfläche nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Metallmatrix, in der die Titandioxid-Partikel eingelagert sind, durch eine Nickelschicht gebildet ist, auf der eine Chromschicht oder ein Metall abgeschieden ist, das selbst keine Metall-Titandioxid-Dispergide bilden kann, wobei die Schichtdicke so gewählt ist, dass die Titandioxid-Partikel der darunter liegenden Schicht nicht verdeckt werden und durch Bildung von Poren photokatalytisch wirksam sind.Surface according to claim 5 or 6, characterized in that the metal matrix in which the titanium dioxide particles embedded, is formed by a nickel layer on which a chromium layer or a metal is deposited, which itself can not form metal-titanium dioxide dispersions, wherein the layer thickness is chosen so that the titanium dioxide particles of the underlying layer are not obscured, and are photocatalytically active by forming pores. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Teilchengröße der Titandioxid-Partikel 0,01 µm bis 10 µm beträgt.Surface according to one of the preceding claims, characterized in that the mean particle size of the titanium dioxide particles is 0.01 μm to 10 μm. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration der Titandioxid-Partikel in der Metallmatrix 1 bis 40 Vol.-% beträgt.Surface according to one of the preceding claims, characterized in that the concentration of the titanium dioxide particles in the metal matrix is 1 to 40% by volume. Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Titandioxid-Partikel in der Anatas- oder Brookit-Form vorliegen.Surface according to one of the preceding claims, characterized in that the titanium dioxide particles are in the anatase or brookite form. Verfahren zur Herstellung der selbstreinigenden Oberfläche nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das mit der selbstreinigenden Oberfläche zu versehende Teil in ein Bad gegeben wird, das ein gelöstes Salz des die Metallmatrix bildenden Metalls und die photokatalytisch aktiven Titandioxid-Partikel enthält, die in dem Bad durch Bewegung dispergiert werden, und die Metallmatrix durch Reduktion des Salzes zusammen mit den Titandioxid-Partikeln auf der Oberfläche des Teiles abgeschieden wird.A process for producing the self-cleaning surface according to any one of the preceding claims, characterized in that the part to be provided with the self-cleaning surface is placed in a bath containing a dissolved salt of the metal matrix-forming metal and the photocatalytically active titanium dioxide particles which are present in the bath is dispersed by agitation, and the metal matrix is deposited by reduction of the salt together with the titanium dioxide particles on the surface of the part. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Metallmatrix mit den Titandioxid-Partikeln galvanisch abgeschieden wird.A method according to claim 11, characterized in that the metal matrix is electrodeposited with the titanium dioxide particles.
EP07003184.4A 2006-03-15 2007-02-15 Self-cleaning surface Active EP1835051B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006011848A DE102006011848A1 (en) 2006-03-15 2006-03-15 Self-cleaning surface

Publications (3)

Publication Number Publication Date
EP1835051A2 true EP1835051A2 (en) 2007-09-19
EP1835051A3 EP1835051A3 (en) 2008-06-25
EP1835051B1 EP1835051B1 (en) 2018-10-17

Family

ID=38051517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07003184.4A Active EP1835051B1 (en) 2006-03-15 2007-02-15 Self-cleaning surface

Country Status (2)

Country Link
EP (1) EP1835051B1 (en)
DE (1) DE102006011848A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012461A1 (en) 2009-03-12 2010-09-16 Kme Germany Ag & Co. Kg Metallic carrier body such as metal sheet or strip useful as pollutant-reducing component in building construction and civil engineering, comprises patina layer applied on the carrier body, where the patina layer contains metal compounds
WO2016065449A1 (en) * 2014-10-29 2016-05-06 Docol Metais Sanitários Ltda. A galvanic process, a chromed material with silver anoparticles and use of said material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009051439A1 (en) 2009-10-30 2011-05-05 Gottfried Wilhelm Leibniz Universität Hannover Producing metallic conductive coating or partial coating made of metal on coated substrate, comprises applying metal coating made of an ionic solution at coated region on semiconductor surface of substrate, using light irradiation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960653A (en) 1988-06-09 1990-10-02 Kanto Kasei Co., Ltd. Method of copper-nickel-cromium bright electroplating which provides excellent corrosion resistance and plating film obtained by the method
JPH11158694A (en) 1997-11-27 1999-06-15 Toto Ltd Article with hydrophilic coating, and coating method
EP1369504A1 (en) 2002-06-05 2003-12-10 Hille & Müller Metal strip for the manufacture of components for electrical connectors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595813A (en) * 1992-09-22 1997-01-21 Takenaka Corporation Architectural material using metal oxide exhibiting photocatalytic activity
EP1304366B2 (en) * 1995-03-20 2012-10-03 Toto Ltd. Use of a photocatalytically rendered superhydrophilic surface with antifogging properties
TW473575B (en) * 1997-05-23 2002-01-21 Kyorasha Co Ltd Natural fibers containing titanium oxide and process for producing the same
DE10118763A1 (en) * 2001-04-11 2002-10-17 Univ Schiller Jena Production of ceramic (mixed) metal oxide layers on substrate made from glass, ceramic, glass-ceramic, iron or other metals comprise coating substrate with an intermediate layer, applying ceramic (mixed) metal oxide layers using anodization
JP2004066218A (en) * 2002-06-12 2004-03-04 Toshiba Lighting & Technology Corp Photocatalyst body
JP2005058900A (en) * 2003-08-12 2005-03-10 Nobuyuki Koura Composite material of metal and photocatalyst particle, and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960653A (en) 1988-06-09 1990-10-02 Kanto Kasei Co., Ltd. Method of copper-nickel-cromium bright electroplating which provides excellent corrosion resistance and plating film obtained by the method
JPH11158694A (en) 1997-11-27 1999-06-15 Toto Ltd Article with hydrophilic coating, and coating method
EP1369504A1 (en) 2002-06-05 2003-12-10 Hille & Müller Metal strip for the manufacture of components for electrical connectors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VINCENTZ, TECHNOLOGIE DES BESCHICHTENS, 2003, pages 71 - 74

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012461A1 (en) 2009-03-12 2010-09-16 Kme Germany Ag & Co. Kg Metallic carrier body such as metal sheet or strip useful as pollutant-reducing component in building construction and civil engineering, comprises patina layer applied on the carrier body, where the patina layer contains metal compounds
WO2016065449A1 (en) * 2014-10-29 2016-05-06 Docol Metais Sanitários Ltda. A galvanic process, a chromed material with silver anoparticles and use of said material

Also Published As

Publication number Publication date
EP1835051B1 (en) 2018-10-17
DE102006011848A1 (en) 2007-09-20
EP1835051A3 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
DE69735999T2 (en) METHOD FOR THE ELECTROCOATING OF A NON-LEADING SHAPED PLASTIC OBJECT
DE3901365C2 (en)
EP1587968B1 (en) Coating method
DE112005002798T5 (en) Process for the preparation of a metal oxide film
EP1987172A2 (en) Corrosion-resistant substrate and method for its production
DE2826630A1 (en) PROCESS FOR IMPROVING THE CORROSION PROPERTIES OF CHROME-PLATED OBJECTS MADE OF ALUMINUM AND ALUMINUM ALLOYS
DE102007053457A1 (en) Gold-containing nickel layer
EP1565596B1 (en) Production of structured hard chrome layers
EP1835051B1 (en) Self-cleaning surface
DE19815568A1 (en) Process for the electrolytic generation of radioactive ruthenium layers on a support and radioactive ruthenium radiation sources
DE102007053456A1 (en) Silver-containing nickel layer
DE2556716C2 (en) Electrolytically produced layers with the properties of a black body, which is almost ideal in the solar spectrum
DE102012008544A1 (en) Chromed composites without nickel coating
DE3151557C2 (en)
EP2215286B1 (en) Provision of water-carrying components made from brass alloys which release reduced quantities of metal ions
DE2406891B2 (en) Corrosion-resistant mirror
EP1558785B1 (en) Substrate coating method
DE3124522C2 (en) Process for electroless coloring of porous materials
DE102022129788A1 (en) Sanitary object, in particular sanitary fitting or fitting
EP0215381B1 (en) Process for manufacturing electrodes
DE102015109506B4 (en) Method for selective metallization of plastic parts and component
DE4311005C1 (en) Window mount and method for manufacturing it
DE2021960C (en) Process for electroless Metallab separation
DE102014210138A1 (en) Use of metal pigments in a liquid polymer formulation
DE2605217C2 (en) Process for the electroforming production of a sieve film for an electrically operated dry shaver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 18/31 20060101ALI20080516BHEP

Ipc: C25D 5/10 20060101ALI20080516BHEP

Ipc: C25D 5/08 20060101AFI20070530BHEP

Ipc: C23C 18/16 20060101ALI20080516BHEP

Ipc: C25D 15/02 20060101ALI20080516BHEP

17P Request for examination filed

Effective date: 20080712

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20110407

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180615

INTG Intention to grant announced

Effective date: 20180711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016437

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016437

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190718

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 18

Ref country code: GB

Payment date: 20240222

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240229

Year of fee payment: 18

Ref country code: FR

Payment date: 20240221

Year of fee payment: 18